
HAL Id: hal-01981516
https://hal.science/hal-01981516v1

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A crossbred algorithm for solving Boolean polynomial
systems

Antoine Joux, Vanessa Vitse

To cite this version:
Antoine Joux, Vanessa Vitse. A crossbred algorithm for solving Boolean polynomial systems. NuTMiC
2017, 2017, Varsovie, Poland. pp.3-21. �hal-01981516�

https://hal.science/hal-01981516v1
https://hal.archives-ouvertes.fr


A crossbred algorithm for solving Boolean
polynomial systems

Antoine Joux1 and Vanessa Vitse2

1 Chaire de Cryptologie de la Fondation de l’UPMC
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris, France

2 Institut Fourier, Université Grenoble-Alpes
antoine.joux@m4x.org vanessa.vitse@univ-grenoble-alpes.fr

Abstract. We consider the problem of solving multivariate systems of
Boolean polynomial equations: starting from a system of m polynomials
of degree at most d in n variables, we want to find its solutions over F2.
Except for d = 1, the problem is known to be NP-hard, and its hardness
has been used to create public cryptosystems; this motivates the search
for faster algorithms to solve this problem. After reviewing the state
of the art, we describe a new algorithm and show that it outperforms
previously known methods in a wide range of relevant parameters. In
particular, the first named author has been able to solve all the Fukuoka
Type I MQ challenges, culminating with the resolution of a system of
148 quadratic equations in 74 variables in less than a day (and with a
lot of luck).

Key words: Multivariate polynomial systems, Gröbner basis, XL, mul-
tivariate cryptography, algebraic cryptanalysis

1 Introduction

The resolution of systems of polynomial equations is a fundamental mathemat-
ical tool with numerous applications. It is well known that solving systems of
multivariate equations is NP-hard in general, but it does not preclude from seek-
ing the most efficient algorithms; besides, systems coming from applications are
often easier to solve than predicted by the worst-case complexity. In this paper,
we mostly focus on random instances which is presumably the hardest case.

Actually, there is a subtlety in the signification of “solving”. Usually, it means
finding all solutions of a given system, i.e. all tuples (x1, . . . , xn) ∈ Kn satisfying

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0

where f1, . . . , fm are elements of K[X1, . . . , Xn]. This is mostly fine if the system
has a finite number of solutions, or more precisely is zero-dimensional. Mostly



2 Antoine Joux and Vanessa Vitse

because this approach ignores the solutions that may exist in a field extension
or at infinity, and also because the solution set may be too large to be prac-
tically listed. In this latter case, or if the solution set has positive dimension,
the alternative is to find a practical description of the corresponding algebraic
variety, and Gröbner bases usually fill that role. Note that, in many applications,
including cryptographic ones, it can be sufficient to find a single solution of a
system. We also consider this weaker form of solving.

In this article, we focus on systems of quadratic (i.e. total degree 2) equations.
It is the simplest case beyond the polynomially-solvable linear case, but the
method we propose can also be applied to systems with an higher degree. Of
course, the complexity quickly grows with the degree. Remarkably, there exists
a general method to transform a system of arbitrary high degree equations into
an equivalent quadratic system. This is done by introducing new variables to
encode high degree monomials and new equations relating them. Due to the
large number of new variables, combining this approach with the resolution of a
quadratic system is usually very unefficient.

More importantly, our work focuses on the Boolean case, i.e. we are looking
for solutions in Fn2 of systems of quadratic polynomials with coefficients in the
field with two elements F2. This is relevant for applications in computer science,
in coding theory and cryptography (see for instance [5,14,18]); furthermore, any
polynomial system defined over a binary field F2d can be translated using Weil
descent as a system over F2. The Boolean case has two important implications:

– Since we are looking for solutions defined over F2 and not an extension, we
can add the field equations x2i + xi = 0 to the system. Equivalently, we can
work in the Boolean polynomial ring B[X1, . . . , Xn] = F2[X1, . . . , Xn]/(X2

1 +
X1, . . . , X

2
n+Xn), where the equations become simpler since no variable may

occur with (individual) degree equal to 2 or more.

– In small finite fields, exhaustive search becomes a viable option. This is
obviously true for F2, but also in a lesser extent for other small finite fields
such as F3 or F5. Our new algorithm, as most current algorithms for solving
Boolean systems, partly relies on exhaustive search.

Despite this, Boolean quadratic systems still capture the NP-hardness of
polynomial solving. In fact, because the 3-SAT problem can be reduced to the
resolution of such systems [10], the existence of an algorithm with worst-case
subexponential complexity would refute the Exponential Time Hypothesis [13],
a conjecture in complexity theory, generalizing P 6= NP and widely believed to
be true.

For the analysis of our algorithm, we will consider systems of random equa-
tions (where the monomial coefficients are chosen independently and uniformly
in {0, 1}). The behaviour of such systems differs according to the relative values
of m and n [11]. If m < n (there are more unknowns than equations), the system
is underdetermined and admits on average O(2n−m) solutions. If m = n, the sys-
tem is determined, and has at least one solution with a probability converging
to 1− 1/e has n grows to infinity. If m > n (there are more equations than un-



A crossbred algorithm for solving Boolean polynomial systems 3

knowns) the system is overdetermined and has no solution with overwhelming
probability.

But in practical applications such as cryptography, the polynomial systems,
even when overdetermined, always have at least one solution. For this reason,
we also consider random consistent systems, i.e. chosen uniformly from the set
of systems of m quadratic Boolean polynomials in n variables with at least one
solution in Fn2 . Then when m is larger than n, this forced solution is unique with
overwhelming probability.

2 State of the art

2.1 Under- and overdetermined systems

Extremely overdetermined (m > n(n+1)/2) or underdetermined (n > m(m+1))
random Boolean quadratic systems can be solved in polynomial time. The first
case simply requires Gaussian elimination on the equations and can be seen as
a particular instance of the general approach presented in Sect. 2.4. The second
case was solved by Kipnis, Patarin and Goubin in [14]. At PKC 2012, Thomae
and Wolf [19] have generalized the algorithm of Kipnis-Patarin-Goubin to other
underdetermined systems, and their complexity interpolates between polynomial
for n > m(m+ 1) and exponential for n close to m.

Beyond these two extremes, the m = n case is essentially the hardest. For
m > n, the additional information given by the extra equations can simplify the
problem. And when n > m, it is always possible to specialize n −m variables
(i.e. set them to arbitrary values) and get back to the case of as many equations
as unknowns; at least, if we only seek a single solution which it usually the case
for such underdetermined systems.

2.2 Exhaustive search

Obviously, since there are 2n possible values to instantiate n variables in F2,
it is possible to evaluate the m polynomials for all values in order to find all
solutions. At first glance, this costs m · 2n evaluations of a degree d polynomial.
However, this first estimation is too pessimistic. Optimizing the 2n evaluations
is quite subtle, but Bouillaguet et al. proposed in [3] a faster method that relies
on the remark that if we know the evaluation of a polynomial at one point and
only change the value of one variable, the evaluation at the new point can be
computed faster. Their idea is based on the use of partial derivatives of the
polynomials. Combined with the use of Gray codes and other techniques, it
allows to find all solutions of a system of m Boolean quadratic equations in
n variables in O(ln(n)2n) elementary operations. Remarkably, this complexity
does not depend of m; but obviously if only one solution is needed the search
will finish faster for smaller m since there are more solutions then. This fast
exhaustive search algorithm is implemented in the libFES library (http://www.
lifl.fr/~bouillag/fes/) and holds several resolution records.

http://www.lifl.fr/~bouillag/fes/
http://www.lifl.fr/~bouillag/fes/


4 Antoine Joux and Vanessa Vitse

2.3 A provable method faster than exhaustive search

Recently, Lokshtanov et al. [16] proposed a probabilistic method that outper-
forms exhaustive search asymptotically. Their idea stems from the following
observation: (x1, . . . , xn) ∈ Fn2 is a solution of the polynomial system generated
by f1, . . . , fm if and only if y = (xk+1, . . . , xn) is a solution of the equation

∏
a∈Fk

2

(1−
m∏
i=1

(1− fi(a, y))) = 0.

Instead of working with this unwieldly polynomial, they consider its probabilistic
counterpart

R(y) =
∑
a∈Fk

2

ta

l∏
i=1

(1−
m∑
j=1

saijfj(a, y))

where saij and ta are chosen independently and uniformly in F2 and l ≤ m is a
parameter. If y is the last part of a solution, then R(y) is uniformly distributed

in F2, but otherwise R(y) = 0 with a probability greater than (1 − 2−l)2
k

. By
performing several complete evaluations of R on all its 2n−k input values of y,
for varying coefficients saij , ta, it is possible to recover with high probability
the last part of all the solutions of the system. Overall, the complexity is in
Õ(20.8765n), faster than the brute force approach.

As far as we know, this method as not been implemented and it seems un-
likely that it outperforms exhaustive search in the range of systems which can
be solved with current computer. However, it is remarkable that it asymptoti-
cally beats brute force without relying on any heuristic hypothesis concerning
the given system. An unfortunate consequence is that the method cannot take
advantage of a large value of m compared to n, since it would necessarily re-
quires some hypothesis of “independence” between the equations. Indeed, if we
don’t care about independence, it is easy to add extra equations by taking linear
combinations of the initial ones. As a final remark, one should note that the al-
gorithm of Lokshtanov et al. makes the assumption that the number of solutions
of the system is smaller than 20.8765n, since otherwise, it would not be possible
to list all of them in the indicated complexity.

2.4 Algebraic methods

Algebraic methods consider systems of polynomial equations by looking at the
ideals they generate and try to solve them by finding a good representation of
the corresponding ideal. More precisely, let F = {f1, . . . , fm} be a family of
elements in a multivariate polynomial ring K[X1, . . . , Xn] and form the ideal
I = 〈f1, . . . , fm〉 generated by the family F . By definition, I is the following set
of polynomials:

I =

{
m∑
i=1

pifi | (p1, . . . , pm) ∈ K[X1, . . . , Xn]m

}
.



A crossbred algorithm for solving Boolean polynomial systems 5

Thus, for any element f of the ideal I, there exist polynomials p1, . . . , pm such
that f =

∑m
i=1 pifi; in other words, there exists an integer D = max{deg pi :

1 ≤ i ≤ m} such that f belongs to the vector space

VF,D = SpanK {ufi| i ∈ [1;m];u a monomial with deg u ≤ D − deg fi} .

Macaulay matrices. The above observation implies that relevant information
on the ideal I can be obtained by studying these vector spaces and motivates
the following definition.

Definition 1 For any integer k, let Tk be the set of monomials of K[X1, . . . , Xn]
of degree smaller than or equal to k. The degree D Macaulay matrix of F , denoted
by MacD(F), is the matrix with coefficients in K whose columns are indexed by
TD, whose lines are indexed by the set

{
(u, fi)

∣∣i ∈ [1;m];u ∈ TD−deg(fi)
}

, and
whose coefficients are those of the products ufi in the basis TD.

Macaulay matrices can be thought as multivariate analogs of the classical
Sylvester matrix. Lazard first showed in [15] that they can be used to compute
Gröbner bases: for any monomial order �, there exists a degree D such that
if the columns of MacD(F) are sorted according to �, the rows of its reduced
echelon form contains the coefficients of a Gröbner basis of I. This idea of ex-
pressing many multiples of a family of polynomials in matrix form and reducing
the resulting matrices is at the heart of most current algorithms for computing
Gröbner bases, such as F4, F5, XL and their many variants [4,7,8].

When K is equal to F2, we usually want to add the field equations X2
i =

Xi for all i ∈ [1;m]. As stated before, it is more efficient to work directly in
the quotient algebra B[X1, . . . , Xn] = F2[X1, . . . , Xn]/(X2

1 + X1, . . . , X
2
n + Xn)

(B stands for Boolean). The definition can be adapted by requiring that every
monomial (either in Tk or in the products ufi) has degree strictly smaller than 2
in each variable. Of course, we can proceed in a similar way when working over
Fq with q small.

In many situations, the system f1 = · · · = fm = 0 is overdetermined and
so has none or very few solutions. This implies that the ideal I = 〈f1, . . . , fm〉
will contain 1 (if there is no solution) or linear polynomials, from which it is
easy to deduce the solutions. Again, such low degree equations can be obtained
by reducing the Macaulay matrix MacD(F), with its columns sorted by total
degree, for some degree D. The smallest such integer D is called the degree of
regularity of the system and denoted by Dreg. (Note that this only one out of
many other definitions of Dreg.)

With this approach, solving an overdetermined system of Boolean quadratic
polynomials amounts to computing the row echelon form of a large matrix, for
a total cost in

Õ

((
n

Dreg

)ω)
,

where ω is the exponent of matrix multiplication (smallest known value is ω =
2.373; in practice ω = 2.807 with Strassen algorithm). But this Macaulay matrix



6 Antoine Joux and Vanessa Vitse

is extremely sparse: by design, it has at most 1+n(n+1)/2 non zero coefficients
per row, which is negligible compared to its number of columns when n goes to
infinity (as soon as D > 2, of course). This suggests that instead of Gaussian
elimination, sparse linear algebra techniques such as Lanczös algorithm [17] or
block Wiedemann algorithm [20] could be used. Indeed, it is possible to prob-

abilistically test the consistency of a Boolean quadratic system in Õ
((

n
Dreg

)2)
and to find a (small number of) solution(s) if any exists. It remains an open
problem to find all solutions with the same complexity, when there are many.

However, determining the degree of regularity is not straightforward, al-
though a practical option is to reduce several Macaulay matrices in increasing
degrees until enough linear polynomials have been found. Asymptotic estimates
exist for an important class of systems, called “semi-regular”; heuristic argu-
ments and experimental evidence suggest that random systems fall in this class
with overwhelming probability. In this case, Bardet et al. showed in [2] that if
m ∼ αn (α ≥ 1 fixed), as n goes to infinity, then Dreg ∼ M(α)n where M(α)
is an explicit decreasing function of α. In particular for α = 1, with ω = 2 this
yields an asymptotic complexity of Õ(20.8728n), faster than exhaustive search
and even than Lokshtanov et al. But this complexity is conditional to the semi-
regularity of the system: it is conjectured to hold with probability converging
to 1 as n grows, but exceptional systems may be harder to solve with this tech-
nique. By contrast, the complexity of the methods of Sect. 2.2 and 2.3 does not
rely on any assumption.

In practice, computing the row echelon form of the Dreg Macaulay matrix of
f1, . . . , fm is too costly to be efficient. In particular, for the Boolean case, it has
been estimated (see [3]) that these methods would not outperform exhaustive
search for any value of n smaller than 200. Nevertheless, algebraic algorithms
have proven themselves to be very efficient on specific systems with extra al-
gebraic properties which imply a low degree of regularity. A striking example
is given by systems arising in the Hidden Field Equations cryptosystem [18].
In this case, a consequence of the presence of a hidden backdoor is a degree of
regularity smaller than expected [6,12], leading to devastating attacks [9].

The BooleanSolve hybrid algorithm. In order to improve on the above al-
gebraic technique, Bardet, Faugère, Salvy and Spaenlehauer [1] have proposed
the BooleanSolve algorithm which combines exhaustive search with linear alge-
bra on a Macaulay matrix. It takes as input the family F = {f1, . . . , fm} ⊂
B[X1, . . . , Xn] of Boolean polynomials, a parameter k ≤ n and proceeds as fol-
lows:

1. For each a = (ak+1, . . . , an) ∈ Fn−k2 , compute the specialized polynomials
f1,a, . . . , fm,a where fi,a = fi(X1, . . . , Xk, ak+1, . . . , an) ∈ B[X1, . . . , Xk].

2. Using the Macaulay matrix of f1,a, . . . , fm,a in degree Dreg, check if the
specialized system f1,a = · · · = fm,a = 0 admits a solution. If no, con-
tinue with the next value of a ∈ Fn−k2 ; otherwise, find the the solution
(x1, . . . , xk, ak+1, . . . , an) using e.g. exhaustive search on x1, . . . , xk.



A crossbred algorithm for solving Boolean polynomial systems 7

Specializing the equations allows to dramatically reduce the size of the Mac-
aulay matrices, not only because the number of variables diminishes, but also
because the degree of regularity decreases as the ratio between the number of
equations and the number of variables goes up. Of course, it also entails a factor
2n−k in the complexity, corresponding to the number of times the second step
has to be executed.

In this second step, for most values a the specialized system will have no
solution, meaning that 1 is in the ideal. As discussed above, it is possible to
take advantage of the sparsity of the Macaulay matrix in testing this property.
Indeed, the full row echelon form of the matrix is not needed; one just has to
test whether a constant polynomial can be found in the Macaulay matrix. This
can be done using a probabilistic method based on Lanczös algorithm.

Under the assumption that the specialized systems still behave like ran-
dom ones — more precisely, that they remain semi-regular (the “strong semi-
regularity” of [1]) — it is possible to derive a complexity estimate. In the case
m ∼ αn (α ≥ 1 fixed and n going to infinity), for α < 1.82 the asymptotically
best choice is k = 0.55αn, for a complexity in Õ(2(1−0.208α)n). In particular,
for α = 1 this yields a (conditional) complexity of Õ(20.792n). For α ≥ 1.82 the
asymptotically best choice is k = n, i.e. no variables are specialized: the system
is too overdetermined for the algorithm, and it does not improve on the standard
reduction of the full Macaulay matrix.

3 Our crossbred algorithm

3.1 General principle

In the BooleanSolve algorithm, the most costly step is the linear algebra of the
Macaulay matrix, which is done 2n−k times. In order to avoid this problem, we
propose a new method that performs the specialization step on n− k variables
after working with the Macaulay matrix .

Basic idea. A first idea is to construct a degree D Macaulay matrix, sort its
columns in lexicographical order, then compute the last rows of its row echelon
form. This allows to generate degree D equations in which k variables have been
eliminated, and this resulting system can then be solved using exhaustive search
on n− k variables. As a toy example, we can consider the following system:

X1X3 +X2X4 +X1 +X3 +X4 = 0

X2X3 +X1X4 +X3X4 +X1 +X2 +X4 = 0

X2X4 +X3X4 +X1 +X3 + 1 = 0

X1X2 +X1X3 +X2X3 +X3 +X4 + 1 = 0

X1X2 +X2X3 +X1X4 +X3 = 0

X1X3 +X1X4 +X3X4 +X1 +X2 +X3 +X4 = 0

The corresponding degree 2 Macaulay matrix, in lex order, is



8 Antoine Joux and Vanessa Vitse

X1X2 X1X3 X1X4 X1 X2X3 X2X4 X2 X3X4 X3 X4 1


0 1 0 1 0 1 0 0 1 1 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 1 0 0
0 1 1 1 0 0 1 1 1 1 0

and its reduced row echelon form is

X1X2 X1X3 X1X4 X1 X2X3 X2X4 X2 X3X4 X3 X4 1


1 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0

We obtain two equations not involving X1, namely X2X3 + X3X4 + X3 +
X4+1 = 0 and X2X4+X2 = 0, which can be solved for instance with exhaustive
search; the solutions thus found must then be checked for compatibility with the
remaining equations in X1.

An obvious drawback of this method is that in order to eliminate a significant
number of variables, the degree D should be taken large enough, and reducing
large Macaulay matrices is quickly prohibitive.

A more refined variant. An important remark is that it is not necessary
to completely eliminate k variables. We now illustrate this with the same ex-
ample. First, we sort the columns, this time according to the graded reverse
lexicographic order (grevlex), and obtain the following row echelon form:

X1X2 X1X3 X2X3 X1X4 X2X4 X3X4 X1 X2 X3 X4 1


1 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 1 1 0 1

The last three equations have degree 1 in X1, X2, X3:
(X4 + 1)X1 +X2 +X3 + 1 = 0

(X4 + 1)X2 = 0

X1 +X2 + (X4 + 1)X3 + 1 = 0



A crossbred algorithm for solving Boolean polynomial systems 9

Consequently, for any assignation of the last variable, we obtain a system that
can be easily solved using linear algebra. Reducing the same Macaulay matrix,
we have thus “eliminated” three variables from the exhaustive search procedure.
This is somewhat reminiscent of Kipnis-Goubin-Patarin algorithm [14] for solv-
ing extremely underdetermined quadratic systems, whose idea is also to generate
enough equations of the form

P1(Xk+1, . . . , Xn)X1 + · · ·+ Pk(Xk+1, . . . , Xn)Xk +Q(Xk+1, . . . , Xn) = 0,

yielding a linear system once the variables Xk+1, . . . , Xn are specialized.

3.2 Description of the algorithm

Our algorithm implements this idea in a scalable way. It depends on three pa-
rameters D, d and k, with D ≥ 2, 1 ≤ d < D and 1 ≤ k ≤ n. To simplify the
description, for any polynomial p ∈ B[X1, . . . , Xn], we let degk p stand for the
total degree in X1, . . . , Xk.

When d = 1, it works as proposed above: from the degree D Macaulay
matrix (sorted by decreasing value of degk), we generate new equations that are
linear in X1, . . . , Xk, i.e. we eliminate all monomials of degree larger than 1 in
these variables. This can be achieved be computing elements in the kernel of
the truncated matrix, from which the monomials containing at most one of the
variables X1, . . . , Xk have been removed. The choice of D is a critical parameter,
it must be large enough for reduced equations to exist and as small as possible
if we want the dimension of the Macaulay matrix to remain manageable. Note
that, since the new equations become linear after performing the evaluation of
variables Xk+1 to Xn, it is sufficient to have a little more than k equations of
this form.

To extend this to larger values of d, we want to contruct new equations of
degree at most d in the first variablesX1, . . . , Xk. For large systems, this allows to
select smaller values of D and to work with smaller Macaulay matrices. However,
the number of equations that we need in this context to solve the system after
specialization through linear algebra becomes larger. Interestingly, when d is
equal to or larger than the degree of the initial equations, these initials equations
can be included in the pool of equations that we are keeping for specialization.

The main difficulty of this method is to analyze the optimal choices of pa-
rameters D, d and k for given values of the number of variables n, the number
of equations m and the degree of these equations (2 if we restrict ourselves to
quadratic systems).

We give below a pseudo-code description of the algorithm. The algorithm
considers the two following submatrices of the full degree D Macaulay matrix:

– Mac
(k)
D,d(F) is the submatrix of MacD(F) whose rows correspond to products

ufi with degk u ≥ d− 1

– M
(k)
D,d(F) is the submatrix of Mac

(k)
D,d(F) whose columns correspond to mono-

mials m with degk m > d.



10 Antoine Joux and Vanessa Vitse

Basically, the algorithm works as follows:

1. Search elements v1, . . . , vr in the kernel of M
(k)
D,d(F)

2. Compute the polynomials pi corresponding to vi.Mac
(k)
D,d(F); they have total

degree at most D, and at most d in X1, . . . , Xk.

3. For all a = (ak+1, . . . , an) ∈ Fn−k2 :

(a) Create the degree d Macaulay matrix Macd(F∗) corresponding to the
polynomials in F (partially) evaluated at a

(b) Evaluate the polynomials pi at a and append them to Macd(F∗)
(c) Check if the resulting system (of degree d) if solvable in X1, . . . , Xk.

As a further refinement, it is possible to add an outer layer of hybridation.
Indeed, we can start by iterating through the possible values of the h last vari-
ables Xn−h+1, . . . , Xn, and apply the above algorithm 2h times to the specialized
systems of m quadratic equations in n − h variables. The main interest of this
outer hybridation is to allow an easy parallelization between 2h computers and
sometimes to offer a slightly better choice of parameters (see Section 3.3). How-
ever, in some sense, it goes against the philosophy of the algorithm and we do
not expect this parameter to be asymptotically useful.

3.3 Finding valid parameters for the algorithm

The parameters D, d and k (and h when outer hybridation is used) control the
course of the algorithm, but finding optimal (or even functional) values is far
from obvious. As a first remark, since we want to find new relations of degree
at most d in the first k variables, cancellations of the highest degree parts in
X1, . . . , Xk must occur. Thus under a strong semi-regularity assumption, we
obtain that the parameter D must be greater than or equal to the degree of
regularity of a semi-regular system of m equations in k variables.

In addition to that, we need (under a regularity assumption) to compute the
number of equations that can be obtained for the final linear system and check
that it is at least3 equal to the number of monomials in the first k variables of
degree at most d. We now explain how this is done in the case where d = 1 and
D = 3, 4 that covers all of the reported experiments.

With d = 1, the matrix Macd(F∗) is empty and the linear algebra is simply
performed on the evaluated linear polynomials (p∗1, . . . , p

∗
r) in k variables. Thus

it suffices to check that r ≥ k + 1. As a consequence, we need enough linearly

independent elements in the kernel of M
(k)
D,1(F) which are not in the kernel of

Mac
(k)
D,1(F) = MacD(F) (otherwise we get the trivial equation 0 = 0). A lower

bound on that number is simply given by the rank RD,1 of MacD(F) minus the

number of columns of M
(k)
D,1(F).

3 Having a bit more equations is even better, since this leads to a smaller number of
consistent systems of evaluation that lead to a finally incorrect solution.



A crossbred algorithm for solving Boolean polynomial systems 11

Algorithm 1 The crossbred algorithm

procedure System Resolution(F = (f1, . . . , fm))
. System of m equations in n variables. Parameters D, d and k.

Construct Mac
(k)
D,d(F) and M

(k)
D,d(F)

Find r linearly independent elements (v1, . . . , vr) in the (left) kernel of M
(k)
D,d(F).

. Using (sparse) linear algebra.

For all i ∈ [1; r] compute the polynomial pi corresponding to vi.Mac
(k)
D,d(F).

. Polynomials of total degree at most D and degree at most d in (X1, . . . , Xk).
Perform fast evaluation on (f1, . . . , fm, p1, . . . , pr), n, k with

Callback procedure
. Get (f∗

1 , ..., f
∗
m, p∗1, ..., p

∗
r) evaluated at each (xk+1, ..., xn) ∈ {0, 1}n−k

Construct the Macaulay matrix Macd(F∗) of degree d from (f∗
1 , . . . , f

∗
m)

Append (p∗1, . . . , p
∗
r) to Macd(F∗)

Use (dense) linear algebra to test the consistency of resulting system,
. As in XL every monomial is viewed as an independent variable.

if System is consistent then
Extract values of (X1, . . . , Xk) and test the candidate solution.
Print any valid solution.

end if
end callback

end procedure

Algorithm 2 Fast Evaluation of a polynomial (over F2)

procedure Fast Evaluation((P1, . . . , PR), `, k, Callback action)
. Polynomials of degree D in ` variables.

if ` = k then
Perform Callback action on (P1, . . . , PR) and (xk+1, . . . , xn)

else
Write each Pi as P

(0)
i + X` · P (1)

i

Let x` ← 0
Fast evaluate on (P

(0)
1 , . . . , P

(0)
R ), `− 1, k and Callback action.

Let x` ← 1
Fast evaluate on (P

(0)
1 + P

(1)
1 , . . . , P

(0)
R + P

(1)
R ), `− 1, k and Callback action.

end if
end procedure



12 Antoine Joux and Vanessa Vitse

The number N
(k)
D,d of columns of M

(k)
D,d(F) corresponds to the number of

monomials labeling its columns and is given by the formula:

N
(k)
D,d =

D∑
dk=d+1

D−dk∑
d′=0

(
k

dk

)(
n− k
d′

)
.

The number of independent rows of Mac
(k)
D,1(F) = MacD(F) is simple to evaluate

when D = 3. In that case and in our range of values of (m,n), under the
regularity assumption the matrix has full rank. Since every polynomial in F is
multiplied by the monomials 1, x1, x2, . . .xn, there are R3,1 = (n+ 1) ·m rows.

For D = 4, it is slightly more complicated, because we need to account for the
trivial relations of the form fifj +fjfi = 0 and (fi+1)fi = 0. As a consequence,
the Macaulay matrix MacD(F) has R4,1 = (1+n+n (n−1)/2) ·m−m (m+1)/2
independent rows.

Table 1 illustrates this on a few parameters extracted from Section 4.

n0 m h n = n0 − h k D N
(k)
D,1 RD,1 Exp. num of polys

35 35 0 35 9 3 1056 1260 204
35 70 0 35 14 3 2366 2520 154
41 41 0 41 11 4 31075 34481 3406
41 82 0 41 15 3 3290 3444 154
74 148 12 62 23 4 277288 278166 878

Table 1. Examples of parameters’ computation

The d > 1 case, which is relevant asymptotically, is much more difficult. Its
complete analysis is an ongoing work.

4 Experiments and timings

4.1 Fukuoka Type I MQ Challenge

In order to experimentally test this new algorithm, we decided to tackle the
Fukuoka MQ Challenges [21]. These challenges, available on https://www.mqchallenge.

org/, were issued in 2015 with the explicit goal to help assess the hardness of
solving systems of quadratic equations. The Type I challenges consist of 2n
Boolean quadratic equations in n variables, and the designers have ensured that
every system has some forced solution. At the time we started, the record on
n = 66 was held by Chou, Niederhagen and Yang, using a fast Gray code enu-
meration technique on an array of FPGA. It took a little less than 8 days using
128 Spartan 6 FPGAs. It is interesting to note that this allows for a much faster
resolution than on CPU based computation. According to our estimations, us-
ing libFES the same computation would have taken about 61 000 cpu · days

https://www.mqchallenge.org/
https://www.mqchallenge.org/


A crossbred algorithm for solving Boolean polynomial systems 13

using Intel Core i7 processors at 2.8 GHz . Note that as mentioned before, the
BooleanSolve algorithm on such systems performs no exhaustive search and boils
down to working with the full Macaulay matrix, for an asymptotic complexity
in Õ(20.585n).

We found the solution of all the remaining challenges n = 67 . . . 74 by run-
ning our code on a heterogenous network of computers at the LIP6 laboratory.
Due to this heterogeneity, the timings are not very precise and the running of
identical jobs greatly varied depending on the individual machine it runned on.
The processors types in the cluster ranged from Opteron 2384 at 2.8 GHz to
Xeon 2690 at 2.6 GHz (the latter being about four times faster). Timings4 are
given in Table 2.

Number of Vars External hybridation Parameters Max CPU Real CPU
(m = 2n) h (D,n− h− k) (estimate) (rounded)

67 9 (4, 36) 6 200 h 3 100 h
68 9 (4, 37) 11 200 h 4 200 h
69 9 (4, 38) 15 400 h 15 400 h
70 13 (4, 34) 33 000 h 16 400 h
71 13 (4, 35) 60 000 h 13 200 h
72 13 (4, 36) 110 000 h 71 800 h
73 13 (4, 37) 190 000 h 14 300 h
74 12 (4, 39) 360 000 h 8 100 h

Table 2. Fukuoka challenge

4.2 Crossover point compared to fast enumeration when m = n

In addition to the above records, which take advantage of having twice as many
equations as variables, it is interesting to compare the relative performances
of our algorithm and fast enumeration when m = n. We ran experiments on
Intel Core i7 laptop at 2.8 GHz for values of n ranging from 35 to 46. For the
fast enumeration, we used the state of the art library libFES. The results are
summarized in Table 3 and make clear that the cross-over point is at n = 37
when m = n. The table also contains timings of our code when m = 2n, in
order to illustrate the gain in terms of running time when extra equations are
available.

5 Conclusion

In this article, we have presented a new “crossbred” algorithm for solving systems
of Boolean equations, using both exhaustive search and the ideal-based approach

4 As remarked in the abstract, the last two entries in this table correspond to extremely
lucky running times. The desired solution just happened to be found by the first series
of parallel jobs.



14 Antoine Joux and Vanessa Vitse

Number of Vars libFES Our code Parameters Our code Parameters
(m = n) (D,n− k) (m = 2n) (D,n− k)

35 2.3 s 3.8 s (3, 26) 0.6 s (3, 21)
36 4.9 s 7.2 s (3, 27) 0.9 s (3, 22)
37 9.6 s 9.5 s (3, 27) 1.5 s (3, 23)
38 20.1 s 16.5 s (3, 28) 2.5 s (3, 24)
39 40.2 s 33 s (3, 29) 2.7 s (3, 24)
40 84 s 65 s (3, 30) 4.8 s (3, 25)
41 162 s 131 s (4, 30) 9 s (3, 26)
42 317 s 242 s (4, 31) 18 s (3, 27)
43 642 s 437 s (4, 32) 36 s (3, 28)
44 1380 s 850 s (4, 33) 71 s (3, 29)
45 2483 s 989 s (4, 33) 146 s (3, 30)
46 5059 s 1905 s (4, 34) 151 s (3, 30)

Table 3. Comparison with libFES (Timings for full enumeration of search space)

0.25

1

4

16

64

256

1024

4096

16384

34 36 38 40 42 44 46

T
im

e
(l

o
g
sc

a
le

)

Number of Variables

libFes
Our code

Our code (m = 2n)

Fig. 1. Comparison with libFES



A crossbred algorithm for solving Boolean polynomial systems 15

of Lazard. The main idea of the new algorithm is to reduce a partial Macaulay
matrix before a specialization of part of the variables. Since it can be combined
with outer hybridation, this leaves more room for optimization and allows to
continue to interpolate between exhaustive search and Macaulay reduction even
for highly overdetermined systems.

We have demonstrated that our mixed approach decisively beats the fast
enumeration technique of [3] for large real-world (over)determined systems of
Boolean quadratic polynomials. In particular, we have been able to solve all
the Fukuoka Type I MQ Challenges [21] up to the last system of 148 quadratic
equations in 74 variables, whereas the previous record using fast enumeration
consisted in the resolution of a system of 132 equations in 66 variables. Note
that, for such parameters (m = 2n) the hybrid BooleanSolve algorithm of [1] is
optimal with an empty hybridation and thus becomes equivalent to the classical
Lazard method [15].

Moreover as mentioned in [3], pre-existing algebraic methods are not expected
to beat brute force for n = m and n lower than 200. Yet, we have demonstrated
that in practice the crossover point between exhaustive search and our method
is n = 37.

We have only implemented and tested the case of quadratic systems over F2.
However, the same principle applies to higher degree and other (small) finite
fields of coefficient.

In addition, the complete complexity analysis of our new algorithm is quite
complicated and involves many parameters. It will be the focus of a future work.

Acknowledgments

This work has been supported in part by the European Union’s H2020 Pro-
gramme under grant agreement number ERC-669891.

References

1. M. Bardet, J.-C. Faugère, B. Salvy, and P.-J. Spaenlehauer. On the complexity of
solving quadratic boolean systems. Journal of Complexity, 29(1):53–75, 2013.

2. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. Presented at MEGA’05,
Eighth International Symposium on Effective Methods in Algebraic Geometry,
2005.

3. C. Bouillaguet, H.-C. Chen, C.-M. Cheng, T. Chou, R. Niederhagen, A. Shamir,
and B.-Y. Yang. Fast exhaustive search for polynomial systems in F2. In
Cryptographic hardware and embedded systems – CHES 2010. 12th international
workshop, Santa Barbara, USA, August 17–20, 2010. Proceedings, pages 203–218.
Berlin: Springer, 2010.

4. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In Advances in Cryptol-
ogy – EUROCRYPT 2000, Lecture Notes in Comput. Sci., pages 392–407. Springer,
2000.



16 Antoine Joux and Vanessa Vitse

5. D. A. Cox, J. Little, and D. O’Shea. Using algebraic geometry. 2nd ed. New York,
NY: Springer, 2nd ed. edition, 2005.

6. V. Dubois and N. Gama. The degree of regularity of HFE systems. In Advances
in cryptology – ASIACRYPT 2010. 16th international conference on the theory
and application of cryptology and information security, Singapore, December 5–9,
2010. Proceedings, pages 557–576. Berlin: Springer, 2010.

7. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra, 139(1-3):61–88, June 1999.

8. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of ISSAC’02, pages 75–83, New York, NY,
USA, 2002. ACM.

9. J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equa-
tion (HFE) Cryptosystems Using Grbner Bases. In B. Dan, editor, Advances in
Cryptology—CRYPTO 2003, volume 2729 of Lecture Notes in Comput. Sci., pages
44–60. Springer Berlin / Heidelberg, 2003.

10. A. S. Fraenkel and Y. Yesha. Complexity of problems in games, graphs and alge-
braic equations. Discrete Appl. Math., 1:15–30, 1979.

11. G. Fusco and E. Bach. Phase transition of multivariate polynomial systems. Math.
Struct. Comput. Sci., 19(1):9–23, 2009.

12. L. Granboulan, A. Joux, and J. Stern. Inverting HFE is quasipolynomial. In Ad-
vances in cryptology – CRYPTO 2006. 26th annual international cryptology con-
ference, Santa Barbara, California, USA, August 20–24, 2006. Proceedings, pages
345–356. Berlin: Springer, 2006.

13. R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

14. A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature
schemes. In Advances in cryptology—EUROCRYPT 1999, volume 1592 of Lec-
ture Notes in Comput. Sci., pages 206–222, Berlin, 1999. Springer.

15. D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations. In Computer algebra (London, 1983), volume 162 of Lecture
Notes in Comput. Sci., pages 146–156. Springer, Berlin, 1983.

16. D. Lokshtanov, R. Paturi, S. Tamaki, R. Williams, and H. Yu. Beating brute
force for systems of polynomial equations over finite fields. To appear in 27th
ACM-SIAM Symposium on Discrete Algorithms (SODA 2017).

17. P. L. Montgomery. A block Lanczos algorithm for finding dependencies over GF(2).
In Advances in cryptology - EUROCRYPT ’95. International conference on the
theory and application of cryptographic techniques, Saint-Malo, France, May 21-
25, 1995. Proceedings, pages 106–120. Berlin: Springer-Verlag, 1995.

18. J. Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In Advances in cryptology – EU-
ROCRYPT ’96. International conference on the theory and application of crypto-
graphic techniques, Saragossa, Spain, May 12-16, 1996. Proceedings, pages 33–48.
Berlin: Springer, 1996.

19. E. Thomae and C. Wolf. Solving underdetermined systems of multivariate
quadratic equations revisited. In Public key cryptography – PKC 2012. 15th inter-
national conference on practice and theory in public key cryptography, Darmstadt,
Germany, May 21–23, 2012. Proceedings, pages 156–171. Berlin: Springer, 2012.

20. E. Thomé. Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of Symbolic Computation,
33(5):757–775, 2002.



A crossbred algorithm for solving Boolean polynomial systems 17

21. T. Yasuda, X. Dahan, Y.-J. Huang, T. Takagi, and K. Sakurai. MQ Challenge:
Hardness evaluation of solving multivariate quadratic problems. NIST Workshop
on Cybersecurity in a Post-Quantum World, 2015. http://eprint.iacr.org/

2015/275.

http://eprint.iacr.org/2015/275
http://eprint.iacr.org/2015/275

	A crossbred algorithm for solving Boolean polynomial systems
	Introduction
	State of the art
	Under- and overdetermined systems
	Exhaustive search
	A provable method faster than exhaustive search
	Algebraic methods
	Macaulay matrices.
	The BooleanSolve hybrid algorithm.


	Our crossbred algorithm
	General principle
	Basic idea.
	A more refined variant.

	Description of the algorithm
	Finding valid parameters for the algorithm

	Experiments and timings
	Fukuoka Type I MQ Challenge
	Crossover point compared to fast enumeration when m=n

	Conclusion


