
HAL Id: hal-01981496
https://hal.science/hal-01981496

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large eddy simulation of heat transfer around a square
cylinder using unstructured grids

M. Boileau, F. Duchaine, J.-C. Jouhaud, Y. Sommerer

To cite this version:
M. Boileau, F. Duchaine, J.-C. Jouhaud, Y. Sommerer. Large eddy simulation of heat transfer around
a square cylinder using unstructured grids. AIAA Journal, 2013, 51 (2), pp.372-385. �hal-01981496�

https://hal.science/hal-01981496
https://hal.archives-ouvertes.fr


Large eddy simulation of heat transfer around a

square cylinder using unstructured grids

M. Boileau1, F. Duchaine2 and J.-C. Jouhaud2
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Y. Sommerer3

AIRBUS (EADS group), Toulouse, France, 31060

This paper presents a method of large eddy simulation on unstructured grids de-

signed to predict the wall heat transfer in typical aeronautical applications featuring

turbulent flows and complex geometries. Two types of wall treatment are considered: a

wall-function model using a full tetrahedral grid and a wall-resolved method computed

on a hybrid tetrahedral-prismatic grid. These two approaches are tested against the

square cylinder case at moderate Reynolds number (Re = 22 050) where many reference

data are available for flow dynamics and heat transfer. Both predict accurately the

unsteady flow around the cylinder and in its near-wake but only the wall-resolved ap-

proach reproduces the Nusselt number global value and its spatial distribution around

the cylinder wall. This latter method is used to investigate the coupling between

periodic vortex shedding and wall heat transfer using a phase-averaged analysis.

Nomenclature

CD = drag coefficient

Cf = algebraic friction coefficient

Cp = pressure coefficient
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D = cylinder diameter, m

E = channel span, m

h = channel height, m

lr = length of recirculation zone

M = Mach number

Nu = local Nusselt number

Nug = global Nusselt number

Pr = Prandtl number

Re = Reynolds number

q = heat flux, W.m−1

Sc = Schmidt number

Sh = Sherwood number

St = Strouhal number

T = temperature, K

tc = convective time

tav = average time

tsh = vortex shedding time

t+ = non dimensional time

U = velocity, m.s−1

u = non dimensional axial velocity

v = non dimensional transverse velocity

y+ = wall Reynolds number

∆x = size of triangle faces

∆h = height of prism cells

λ = thermal conductivity, W.m−1.K−1

µ = dynamic viscosity, kg.m−1.s−1

ν = cinematic viscosity, m2.s−1

φ = phase of vortex shedding, ◦

ρ = density, kg.m−3

= time average (except in section IIA: LES filtering)

˜ = Favre filtering

〈 〉 = phase average
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Subscripts

sgs = subgrid scale quantity

wall = wall quantity

∞ = freestream condition

f = film condition

I. Introduction

Turbulent heat transfer in industrial configurations usually occurs in complex geometries where

flow separation and vortex shedding take place. For example, in a turbo-engine nacelle compartment,

the thermal integration of some dissipative equipment (valves, pumps, generator, etc.) requires to

use models to assess convective, conductive and radiative heat transfer. Those equipments represent

bluff-bodies that sometimes must be air-cooled to be protected from internal heat loads and/or from

the strong heat flux coming from the engine case. An accurate prediction of the local convective

heat transfer is crucial to design and optimize the cooling system with the double objective of im-

proving the equipment reliability and preserving the aircraft performance. Such prediction requires

a computational method that captures accurately the aerodynamic features of the flow: back flows,

vortex shedding, wakes, cooling jets, interactions, etc. Classical industrial CFD tools using a sta-

tistical (RANS) approach fail to reproduce this type of flows where the unsteady component may

be superior than the main flow due to large eddy turbulent scales and low bulk velocities. However,

the large eddy simulation (LES) approach is a promising method because of its ability to solve

explicitly these large scale motions. The aim of this work is to develop a LES methodology that

can be applied to convective heat transfer problems in industrial configurations. This methodology

must guaranty a given precision at a controlled CPU cost.

For the targeted problems, a special attention must be paid to the near-wall modeling. Using

enough grid resolution and a proper subgrid model, LES can behave like direct numerical simulation

(DNS) when approaching the wall boundary. Thus, a wall-resolved LES should accurately predict

the wall heat flux in any flow configuration without any specific wall treatment. However, its

computational cost may be very expensive for high Reynolds flows because solving the boundary
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layer leads to large computational grids and small time steps. The least expensive way to account

for near-wall effects in LES is to model the boundary layer using a wall-function. Such an approach

has been implemented and tested in a complex geometry LES calculation by Schmitt et al. [1].

Nevertheless, in a typical industrial geometry where flow separation occurs, the validity of this wall-

function is questionable. In the present paper, both the wall-resolved and wall-function approaches

are evaluated.

For most cases of industrial internal flows, the physical domain cannot be meshed using a struc-

tured grid and requires an unstructured grid composed of tetrahedral elements. So, the unstructured

grid technique is retained here. This choice have a strong impact on the numerical approach used to

solve the flow equations. For the same spatial resolution, an unstructured grid calculation is usually

more expensive and less accurate than a calculation on a structured grid. Consequently, conclusions

that are drawn on a LES test case using a structured grid may not be relevant for an unstructured

grid approach. Indeed, the choice of the best LES model, the grid refinement criterion, the type of

wall modeling, etc., depend on the type of grid.

Before being applied to real cases and complex geometries, the present numerical tool must be

validated for heat transfer prediction in a simple well-documented configuration. The flow past a

square cylinder was found to be a good candidate for the validation of turbulent heat transfer by

forced convection. First, extensive unsteady experimental results are available as reference data for

the flow dynamics. Second, this configuration has been used as benchmark case for many isothermal

LES studies in the past. Third, two different experimental studies provide data for the wall heat

flux distribution around the cylinder. Finally, the square cylinder case is typical of the bluff-body

flows encountered in practical configurations (thermal cooling for aeronautics or electronic devices,

for example): flow impingement on the front face and flow separation on the side and rear faces

with alternate vortex shedding and transient reattachment.

On the one hand, Bosch and Rodi [2, 3] have shown that some main dynamics quantities can be

predicted in the square cylinder case using unsteady RANS but they found that such an approach

misses the details of the complex 3D flow, specially the 3D turbulent motion near the wall which

is involved in the heat transfer. On the other hand, several isothermal LES studies on structured

4



grids have been performed based on this flow configuration [4–8]. From the authors knowledge, the

work of Camarri et al. [9] is the only LES of the square cylinder case performed on an unstructured

grid. All these numerical studies compare the LES results with the experimental data of Lyn

and Rodi [10] for the shear layer region and of Lyn et al. [11] for the wake flows (some of them

also compare with former experimental data of Bearman and Obasaju [12] and Durao et al. [13]).

References [10] and [11] provide phase-averaged experimental analyzes in order to investigate the

vortex shedding phenomena. Two LES studies give some comparisons with these phase-averaged

data [4, 7]. Concerning heat transfer, only experimental data are available. Both Igarashi [14] and

Yoo et al. [15] provide the mean profiles of Nusselt number around the cylinder for various Reynolds

numbers. Based on his own results, Igarashi [14] also proposes an empirical correlation for the global

Nusselt number as a function of the Reynolds number. The present LES consider the flow and heat

transfer past an isothermal square cylinder at Reynolds Re = 22 050, a value that corresponds to

the reference experiments [10] and [11] for flow dynamics and that belongs to a range where the

mentioned heat transfer data are available.

The originality of the present work is to evaluate the prediction of both the flow dynamics and

heat transfer from the wall in a well-documented configuration with LES methods using unstructured

grids. Two different approaches are used for the near-wall treatment: an algebraic wall-function

model on a full tetrahedra grid and a wall-resolved technique using a hybrid tetrahedra/prisms grid.

Because wall-resolved computations are expensive in terms of CPU time, the numerical tools is

designed to run on massively parallel architectures. Dealing with practical cases, the real geometries

make the flow topology much more complex than for a single obstacle. For instance, the wake of

an upstream obstacle can strongly influence the flow and heat transfer around a downstream body.

Thus, some of the present study focuses on the capability of the method to predict the near wake

flow dynamics.

The paper is organized as follow. In section II, the LES solver and the near-wall modeling are

presented. The flow configuration is introduced in section III giving a description of the physical

conditions, the reference experimental data, the meshing strategy and the averaging procedure. In

section IV, results are compared with experimental and LES data in order to validate the flow dy-
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namics and thermal predictions. The mechanism of heat transfer from the wall is finally investigated

using an unsteady analysis of the LES results.

II. LES of anisothermal flows

A. LES equations

A summary of the compressible LES equations solved by the code is given below (see Moureau

et al. [16] for detailed description).

∂w

∂t
+∇ · F = 0 (1)

where w is the vector of conservative variables ( denotes the LES filtering) and F is the flux tensor

composed of viscous, inviscid and subgrid scale component. w is given by:

w =
(
ρ,ρũ, ρṽ, ρw̃, ρẼ

)
(2)

In Eq. (2), ρ is the density, (ũ, ṽ, w̃) are the velocity components (˜ denotes the Favre averaging),

Ẽ = ẽs + 1/2ũiũi is the total energy, where ẽs is the sensible energy related to the temperature T̃

through the constant volume heat capacity Cv (des = CvdT ). F contains in particular the resolved

conductive heat flux q which is estimated by the Fourier’s law:

qi = −λ ∂T̃
∂xi

where: λ =
µCp(T̃ )

Pr
(3)

In Eq. (3), λ is the thermal conductivity, Cp is the constant pressure heat capacity, Pr is the Prandtl

number (Pr = 0.71 for air) and µ is the dynamic viscosity given by the Sutherland’s law. Assuming

an eddy diffusivity and using the Reynolds analogy, the subgrid conductive flux qsqs is given by:

qsqsi = −λsgs
∂T̃

∂xi
where: λsgs =

µsgsCp(T̃ )

Prsgs
(4)

where Prsgs is the subgrid Prandtl number (Prsgs = 0.9) and µsgs is the subgrid viscosity provided

by the subgrid model (see section IIC).

In order to simplify the notations and to avoid confusion with the temporal average, LES

quantities are noted without any in the following.
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B. LES solver

The present approach uses the in-house AVBP code to solve the fully compressible LES system

described by Eq. (1) (see Ref. [16]). The cell-vertex unstructured formulation makes it easily ap-

plicable to complex geometries [17]. Centered spatial schemes and explicit time-advancement are

used to control numerical dissipation. For the present case, two numerical schemes have been em-

ployed: a second order finite-volume Lax-Wendroff scheme and a third order finite-element TTGC

scheme [18]. The explicit time step ∆t is imposed by the CFL condition:

CFL =
(U + c)∆t

∆x
≈ 0.7 (5)

where ∆x is the size of the grid cell while U and c are the flow and sound local velocities respectively.

The calculation time step is taken as the minimum of ∆t in Eq. (5) over the whole domain.

To model the subgrid viscosity µsgs, two subgrid scale models have been applied according to the

treatment applied at the wall (see later): the classic Smagorinsky model and the WALE model [19].

Finally, characteristic boundary conditions NSCBC [16, 20] are used for the inlet and the outlet.

Using the MPI library, the LES code offers a very good efficiency on a high number of processors

and can run on today’s largest parallel computors [21]. The present calculation has been run on a

Cray XD1 and on an IBM BladeCenter using 16 to 64 cores. Some computational resources provided

by an IBM BlueGene/L on 512 cores have also been used.

C. Near-wall modelling

Different strategies to model the turbulent boundary layer in the context of LES are reviewed

in Piomelli and Balaras [22]. In the present case, two approaches are compared: a wall-resolved

LES (called LES-WR) and a LES using wall-functions (called LES-WF ). In the wall-resolved case,

the subgrid scale effects are modelled by the WALE model [19] which is notably able to recover the

proper y3 damping scaling for eddy viscosity at the wall without requiring any damping function

nor dynamic procedure. To provide the right viscous stress and heat flux at the wall, the grid cells

adjacent to the wall must be inside the viscous sublayer. This condition requires a high density of

very small grid cells close to the wall, i.e. large grids and small time steps (see Eq. (5)) which leads

to expensive CPU costs. However, this approach is expected to be the most accurate since it solves

7



explicitely the flow and the heat transfer inside the turbulent boundary layer.

A less CPU-consuming approach is to model momentum and heat transfer in the boundary

layer using wall-functions. Compared to more sophisticated methods like zonal approaches or hybrid

LES/RANS approaches, algebraic wall-functions are easier to implement in a unstructured code.

Details on these wall-functions and how they are implemented in the present LES code are given in

Schmitt et al. [1] and only essential informations are given here. The principle of the wall-function

is to model the wall shear stress τwall and the wall heat flux qwall given the following quantities:

• the velocity u2 and the temperature T2 at the first interior grid point,

• the cell height ywall normal to the wall,

• the viscosity νwall, density ρwall, heat capacity Cp,wall and temperature Twall at the wall-face.

The non-dimensional variables wall-distance y+ and velocity u+ of the first interior grid point

are defined by:

y+ =
ywalluτ
νwall

and u+ =
u2
uτ

(6)

where uτ = (τwall/ρwall)
1/2 is the friction velocity. Based on experimental results in channel flows,

the following equations give u+ as a function of y+:

u+ = y+ if y+ ≤ 11.445 (7)

u+ =
1

κ
ln y+ + C if y+ > 11.445 (8)

where κ = 0.41 is the von Karman constant and C = 5.5 is an integration constant. Then, the

non-dimensional temperature is defined by:

T+ =
ρwallCp,walluτ (Twall − T2)

qwall
(9)

Using the Reynolds analogy, the wall heat flux is given by the following model:

T+ = Pry+ if y+ ≤ 11.445 (10)

u+ =
1

κ
ln y+ + CT if y+ > 11.445 (11)
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where CT = 3.9 is an integration constant.

The wall heat flux is used to compute the local Nusselt number:

Nu =
qwallD

λwall(Twall − T∞)
(12)

where:

• qwall is explicitely given by Eq. (9) in the WF approach,

• qwall = qn + qsgsn in the WR approach, n being the wall normal direction and qn and qsgsn the

respective resolved and subgrid normal heat flux given by Eq. (3) and (4). In practice, qsgsn is

close to zero since the subgrid flux predicted by the WALE model tends to zero at the wall

when the boundary is fully resolved. In the present case, qsgsn contributes less than 0.3% of

the mean qwall of the cylinder.

III. Configuration

A. Geometry and physical conditions

The computational domain is described by Fig. 1. The vertical dimension was fixed in order to

match a blockage ratio of h/D = 14. Inlet and outlet boundary conditions were placed sufficiently

far from the cylinder to prevent boundaries from influencing the flow around it and in its near-wake.

To mimic the large spanwise extent of the experiment of Lyn et al. [10] (E/D = 9.75), a periodic

condition was applied to the lateral sides and the spanwise extent was set to E/D = 4, a value

commonly accepted in previous studies and that verifies convergence tests performed here on global

quantities (drag coefficient and Nusselt number). In Lyn et al.’s experiment, the fluid is water and

the upstream Mach number M∞ is very low (M∞ = 3.57 × 10−4). Computing such Mach number

flow with the present compressible approach would be meaningless. Indeed, in the case of low Mach

number flow (U � c), the number of temporal iterations Nite needed to simulate one flow-through

time tc = (D/U∞) in an explicit compressible solver can be expressed by:

Nite ≈
1

M CFL

D

∆x
(13)

where D is a characteristic length scale. Equation (13) shows that Nite → ∞ when M → 0. In

the present case, water is replaced by air and the upstream Mach number is set to M∞ = 0.108
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so that the computational cost remains reasonable and the flow still respects the incompressible

assumption (the maximum local instantaneous Mach number is less than 0.2). Giving that Mach

number scaling, using a compressible formulation for an incompressible anisothermal flow has two

advantages: on one hand, it captures intrinsically the variation of density with temperature, on

the other hand, the problem can be solved by an explicit numerical scheme which is well adapted

to massively parallel computing. Freestream velocity and temperature are imposed at the inlet

while pressure is imposed at the outlet (see Fig. 1) through non reflecting NSBC type boundary

conditions. The blockage effect is applied using slip walls at the top and bottom boundaries.

x
y

z

l = 9D
L = 18D

h = 14D

Outlet

Wall

Inlet

Periodicity

D

E = 4D

Fig. 1 Global view of the computational domain and boundary conditions.

Heat transfer from the square cylinder to the air flow is applied through an isothermal wall

condition with a uniform temperature Twall = 330 K while the upstream flow is at T∞ = 300 K.

Since this temperature jump is quite small, the fluid temperature is expected to behave like a passive

scalar having a negligible effect on the flow hydrodynamics. Note that for industrial applications

where this passive scalar assumption may be not verified, the present method is still valid since

the compressible formulation fully accounts for the variation of density with temperature. In the

present case, the variation of the temperature in the boundary layer induces a variation of the

fluid transport properties. So, the Reynolds number Re = U∞D/ν has been calculated from the

cinematic viscosity ν = µ/ρ taken at the film temperature Tf = 1/2 (T∞ + Twall). Computing ν

from T∞ or Twall instead of Tf would result in 10% error on the Reynolds number. The physical
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parameters of the simulated cases are presented in Table 1. In the following, lengths are normalized

by D, velocities by U∞ and times by tc = D/U∞.

Table 1 Physical parameters of the LES cases.

Upstream velocity: U∞ = 37.7 m.s−1

Upstream temperature : T∞ = 300 K

Upstream Mach number: M∞ = 0.108

Cylinder diameter: D = 1 cm

Cylinder temperature: Twall = 330 K

Film temperature: Tf = 315 K

Reynolds number: Re = 22 050

Outlet pressure: pout = 101 325 Pa

B. Reference experimental and numerical data

As flow dynamics is concerned, various experimental and LES results are available in the lit-

erature. Using laser-Doppler velocimetry (LDV), Lyn and Rodi [10] have investigated the velocity

field in the flapping shear layer region occurring on the close top and bottom faces of the cylinder.

They provide statistics from time-averaged as well as phase-averaged data which can be used to

evaluate how the LES predicts the periodic flow due to the alternate vortex shedding. In a following

paper, Lyn et al. [11] provide the same type of data for the near-wake region where the well-known

von Kármán-Bénart instability develops. These data are used here to validate the prediction of this

instability by the LES. They are completed with some LDV measurements at Re = 14 000 by Durao

et al. [13]. Other velocity data obtained using phase-Doppler anemometry by Fohanno & Martin-

uzzi [23] are also included as a third experimental reference. Dealing with mean and fluctuating

pressure coefficient around the cylinder wall, the present LES results are compared with experimen-

tal profiles of Bearman and Obasaju [12] at Re = 20 000 and of Igarashi [24] at Re = 37 000. In

terms of LES results, the data of Hangan and Kim [25] are utilized for comparison of time-averaged

velocity profiles in the shear layer and near-wake regions. For phase-average profiles in the near

wake, the LES by Liou et al. [7] and Rodi et al. [4] (case KAWAMU which is the best reproduction
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of the experimental results) are referred. For global quantities such as drag coefficient, Strouhal

number and recirculation length, the previously mentioned experimental and numerical results are

used in addition with those of Oudheusden et al. [26], Fureby et al. [6], Barone et al. [8] and Camarri

et al. [9] (see Table 3).

Dealing with heat transfer, Igarashi’s correlation [14] provides a reference for the global Nusselt

number. According to Sparrow et al. [27], it is "the best current representation of the average

Nusselt number results for a square cylinder in cross-flow". This correlation is given below with the

Sieder-Tate correction to account for the variation of viscosity:

Nug = 0.14

(
µ∞
µwall

)0.14

Re0.66 (14)

which is valid for 5 000 6 Re 6 60 000. Igarashi [14] also measured the profiles of local Nusselt

number around the cylinder at given Reynolds numbers using thermocouples. However, none of

these Reynolds values corresponds to the present one (ReLES = 22 050) which has been fixed in

order to match the Lyn and Rodi experiment. Therefore, Igarashi’s correlation has been used to

scale the two Igarashi’s Nusselt profiles corresponding to the closest Reynolds values (Reexp = 18 500

and 29 600):

Nus = Nuexp

(
µ∞
µwall

)0.14 (
ReLES
Reexp

)0.66

(15)

As proved later in the article (Fig. 19), the scaled experimental profiles match closely which justifies

the use of Eq. (15). Using the analogy between heat and mass transfer, the Nusselt profiles can

be deduced from the Sherwood (Sh) profiles measured by Yoo et al. [15] with the naphthalene

sublimation technique. This analogy is expressed by the law: Nu = Sh (Pr/Sc)
1/3, where Pr is

the Prandtl number of air (Pr = 0.71) and Sc is the Schmidt number of Naphatalene (Sc = 2.53,

obtained by the correlation of Cho et al [28] taken at the temperature of Yoo et al.’s experiment

T = 303 K).

C. Meshing strategies and numerical parameters

Tetrahedral elements are suitable for complex geometries because they have the capability to

fill a given volume of arbitrary shape. Moreover, in large eddy simulation, tetrahedral grids makes
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it possible to use coarse cells where only the largest scales are of interest while refining the regions of

high solution gradients and turbulence production. In order to limit the spatial commutation errors

that arise inevitably when using an implicit filtering method, the grid is stretched at a moderate rate

in the region of interest. To mesh the near-wall region, two strategies have been tested according

to the near-wall modelling approach:

A full tetrahedral grid for the wall-function case (case LES-WF): This meshing tech-

nique provides the easiest and fastest way to generate a grid in a complex geometry. Since

tetrahedral elements are not adapted to solve the wall boundary layer, this meshing strategy

is used along with the wall-function approach (see section IIC). As shown by Fig. 2, the

grid is coarse far from the cylinder (∆x = 0.5), moderately refined in the near-wake region

(∆x = 0.1) and strongly refined close to the cylinder (∆x = 0.04, see Fig. 3, case LES-WF ).

This refinement is expected to be sufficient to capture accurately the turbulent flow generated

by the Kelvin-Helmoltz instability in the detached upper and lower shear-layers and by the

von Kármán-Bénart instability in the cylinder wake. On the other hand, the size of the cells

adjacent to the cylinder wall is supposed to be large enough to use the wall-function approach

in the logarithmic region (Eq. (8)). Figure 5 shows the value of the Reynolds number y+ of

the first interior grid point around the cylinder (see section IIID for the description of the

averaging procedure used to obtain y+). Most of y+ values are in the range 20− 30 which is

a little below the condition y+ > 30 for the logarithmic law to be fully valid. However, the

deviation of the u+ and T+ universal profiles from the log law is lower than 10% for y+ = 20.

A hybrid tetrahedral-prismatic grid (case LES-WR): When the boundary layer is ex-

plicetely solved, using prismatic layers close to wall surfaces is more efficient than tetrahedra

(see for example [29, 30]). First, quadrilateral faces normal to the wall provide good orthogo-

nality and grid-clustering capabilities which are suitable to thin boundary layers, whereas the

triangulation in the tangential direction keeps the flexibility in surface modeling. Second, for

a same spatial resolution in the normal direction, the prisms layers use less elements and lead

to a higher minimum cell volume than the full tetrahedral grid approach because prismatic

elements can have a large aspect ratio. For the wall-resolved case (LES-WR), the near-wall
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region has been meshed using five layers of prismatic elements (see Fig. 3) where the height

of the layers, ∆h, is smaller than the size of their triangle basis, ∆x. To avoid numerical

errors, the aspect ratio of the thinnest layer (inner layer adjacent to the wall) was limited to

∆x/∆h = 4 far from the cylinder edges and ∆x/∆h = 3 near the edges. Beyond these limits,

the high velocity gradients (due to the shear layer) in region of strongly stretched cells may

generate numerical instabilities under the form of unphysical cell-to-cell oscillations. The crit-

ical aspect ratio may depend on the flow configuration (i.e. the geometry of the bluff-body) as

well as on the numerical method so the present values should not be considered as universal.

The stretching ratio between the height of an inner layer to the adjacent outer layer was set

to 1.13, leading to 1.83 < ∆x/∆h < 2.45 in the outer layer. The proper height of the inner

prisms layer (∆h) was determined by a mesh convergence study based on the global Nusselt

number Nug compared to the experimental correlation of Igarashi [14] (Eq. (14)). Figure 4

shows that ∆h ≤ 0.002 is required to match the empirical Nusselt number. The corresponding

y+ profile is plotted on Fig. 5. Most of the near-wall resolution is below y+ < 2 but some

regions close to the edges of the cylinder reach higher values. This point is discussed further

in section IVB. Using this mesh constraint in the near-wall region and the same tetrahedral

sizes as case LES-WF in other regions leads to a 3.3 million nodes grid (12.6 million cells). In

comparison, a full tetrahedral grid having the same resolution would feature around 13 million

nodes (60 million cells) with a smaller minimum cell volume requiring a time step four times

shorter. Such a grid would cost 10 times more CPU time than the present hybrid grid. It

is important to note that the benefit of using prismatic layers instead of tetrahedra depends

strongly on the maximum acceptable ∆x/∆h ratio. Indeed, considering that the smallest

height of the prismatic cells is imposed by the y+ ≈ 1 constraint, the number of prismatic

cells scales like (∆x/∆h)
−2 while the time step — which is proportional to the minimum cell

volume — scales like (∆x/∆h)
2. Therefore, assuming that the ratio between the number of

prismatic cells NP and the total number of cells Ntot varies little with ∆x/∆h, we get the fol-

lowing law for the CPU cost dependence: CPUcost ∝
(

1 +NP /Ntot (∆x/∆h)
−2

)
(∆x/∆h)

−2.

In the present case we have NP /Ntot ≈ 1/4 (see Table 2).
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Fig. 2 Side view of the computational grid (valid for both cases).

Case LES−WRCase LES−WF

Fig. 3 Zooms on the side view of the top half of the two unstructured grids: full tetrahedral

grid (case LES-WF) and hybrid prismatic/tetrahedral grid (case LES-WR). Bottom right

image is a zoom on the five layers of prismatic elements.

Both grids were automatically created by the CentaurTM grid generation software, from the

mesh constraints described above. To ensure a perfect symmetry with respect to the plane xz and

to reduce the grid generation time, a shorter domain comprising the upper top of the canal and one

diameter spanwise extent (E = D) was first meshed. This pattern was then extended by mirror

transformation and successive duplication/translation in the z (periodic) direction to produce the full

computational domain (E = 4D) of Fig. 1. The characteristics of the grids obtained are compared in

Table 2. Because the wall-resolved strategy leads to higher CPU costs, a second order Lax-Wendroff

scheme was used for LES-WR whereas the LES-WF is computed with the 2.5 times more expensive
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Fig. 5 Profiles of time-averaged wall Reynolds number of the first fluid node, y+, around the

cylinder.

third order TTGC scheme. One can note that, for a same physical time calculation, the wall-resolved

LES costs 40 times more CPU time than the wall-function case because of a higher number of cells

as well as a shorter time step. Using massively parallel computing, the shortest possible time of

execution becomes more or less independent of the grid size (a larger grid can be calculated within

the same execution time using more CPU cores since the speed-up on a massively parallel machine

is mainly limited by the number of computational cells per parallel process). So, the minimum of

execution time depends mostly on the number of iterations Nite required to achieve one flow time

tc. According to Table 2, a minimum ratio of 5 between the execution time of cases LES-WR and
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LES-WF could be obtained if the runs were not limited by the number of cores available.

Table 2 Characteristics of the two LES cases. Nite/tc and Nite/tsh are the number of time

iterations required to compute a flow time (tc) and a vortex shedding time (tsh) respectively.

tLES and tav are the total physical time of the calculation and the time period used for

averaging respectively.

Cases LES-WF LES-WR

Type of element Tetra Tetra & prisms

Number of nodes 570 000 3 310 000

Number of cells 3 200 000 12 600 000

Number of prismatic cells − 3 000 000

Smallest cell length ∆x 0.04 0.006−0.008

Smallest cell height ∆h 0.04 0.002

Wall treatment wall-function no-slip, isothermal

Numerical scheme TTGC Lax-Wendroff

Nite/tsh 8 500 43 800

tLES/tc (tav/tc) 192 (149) 148 (139)

tLES/tsh (tav/tsh) 27 (20) 20 (18)

Total CPU hours 1 300 38 400

Both numerical scheme used here are centered schemes so they require additional numerical

dissipation to be stabilized: 2nd and 4th order artificial viscosity operators are used (see Lamar-

que [31]). The 2nd order pseudo-Laplacian operator is triggered by a local sensor while the 4th order

hyperviscosity is applied everywhere in the domain (with some limitations). The estimation of the

amount of the total artificial viscosity (not plotted here for brevity) shows that it is much lower

than the physical (laminar + subgrid) viscosity everywhere in the region of interest except at some

nodes close to the cylinder edges.

D. Averaging procedure

In order to extract statistical data from the instantaneous LES solutions, every three-

dimensional field is averaged in the spanwise (z) direction which is statistically homogeneous. As a
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first step, a 2D planar (constant-z) mesh matching the periodic boundaries of the domain is used to

interpolate the 3D solution at 16 different z values. These 16 planar cuts are then summed to pro-

duce z-averaged 2D fields. Two different types of averages are then applied to these instantaneous

fields following the experimental procedure by Lyn and Rodi [10]:

• A time average, noted f in the following, performed by averaging arithmetically any time-

dependent flow variable f(t). The corresponding fluctuation, noted f ′, is the root mean

square value of f .

• A phase average, noted 〈f〉, obtained by averaging over every solution of constant φ, where φ is

a given phase of the periodic vortex shedding. Following Lyn and Rodi [10], φ is defined from

an instantaneous pressure signal p(t) as plotted on Fig. 6.a. Sixteen probes have been regularly

distributed in z at the center of the cylinder top wall to provide a mean pressure signal ("probe

signal" on Fig. 6). This signal is then filtered by a low-pass second order Butterworth filter

whose cutting frequency is equal to the shedding frequency measured by FFT as shown on

Fig. 6.b. Minima and maxima of this filtered signal are used to define every half period of

the vortex shedding which are then divided into 10 separate phase bins, leading to 20 bins

for each full period. The reference phase φ = 0 is taken at the half time between a maximum

and a minimum of the pressure signal (t+ = t+n on Fig. 6.a). Every instantaneous z-averaged

solution – about 40 solutions output per shedding period – is placed in its corresponding phase

bin and an arithmetic averaging is performed for each phase. Phase-averaging f produces also

a root mean square fluctuation noted 〈f ′〉. 〈f〉 contains the contribution of the largest eddy

scales associated with the periodic vortex shedding while 〈f ′〉 is a residual fluctuation due to

a smaller scale turbulence.

IV. Results and discussion

A. Validation of the flow dynamics

A first way to evaluate the accuracy of the present LES methods is to compare the results for

global aerodynamic quantities with experiments and previous LES studies. Table 3 shows that both

cases predicts a Strouhal number very close to the experimental value as well as most other LES. The
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tered pressure fluctuation (after removing the mean value) and low-pass filtered pressure as a

function of the non dimensional time t+ = tLES/tc. (b) FFT of the unfiltered pressure signal.

drag coefficient predicted by case LES-WF is very close to the experiment while it is overpredicted

for case LES-WR due to the underestimation of the pressure level on the rear side of the cylinder

(discussed later). Concerning the length of the recirculation zone, both cases clearly underpredict

the experimental values. According to Oudheusden et al. [26], this length may be quite sensitive to

the freestream conditions. The level of turbulence as well as a non-zero incidence of the flow may

modify the recirculation zone. Indeed, these authors show that an incidence of 5◦ leads to a 60%

increase of the recirculation zone. In the present simulation, the freestream turbulence is zero while

it is around 2% in the experiment by Lyn et al. [11].

Concerning the upstream velocity field at x = −1, Fig. 8 shows that the two present LES are

in good agreement with the experimental results of Fohanno & Martinuzzi [23]: mean and rms

profiles of streamwise and transverse velocity are very well recovered. The differences observed
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Table 3 Global flow dynamics quantities and computational parameters of the two present

LES cases (LES-WF and LES-WR) compared to the experimental results and other LES

studies of the same flow configuration. St is the Strouhal number, CD is the drag coefficient,

lr is the length of the recirculation zone, Ncells is the number of computational cells and y+ is

the mean Reynolds number of the wall computational cells.

St CD lr Ncells (×106) y+

Experiments

Lyn et al. [11] 0.132± 0.004 2.1 1.38 − −

Durao et al. [13] 0.133 − 1.33 − −

Oudheusden et al. [26] − − 1.1 − −

LES on structured grids

Liou et al. [7] 0.133 2.14 0.91 0.37 −

Hangan & Kim [25] 0.134 2.065 1.29 0.107 −

Fureby et al. [6] 0.135 2.1 1.37 0.35 −

Barone et al. [8] 0.125 2.11 1.25 8.5 −

Rodi et al. [4] (KAWAMU) 0.15 2.58 1.25 0.195 −

LES on unstructured grids

Camarri et al. [9] (DM2) 0.128 1.89 1.39 0.56 10− 100

Present study (LES-WF) 0.132 2.21 0.71 3.2 24.5

Present study (LES-WR) 0.130 2.39 0.62 12.6 1.45
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Fig. 7 Definition of the cutting lines used to show the profiles.

for the transverse velocity fluctuation are within the experimental error bars given by the authors
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(which might have been overestimated, though). In this upstream region, the flow is irrotational

and these velocity fluctuations are caused by the vortex shedding downstream the cylinder. This

vortex shedding is evidenced on Fig. 9 thanks to an iso-surface of vorticity. One can see that

the two-dimensional shear layer starting from the top leading edge of the cylinder becomes three-

dimensional and generates the streamwise coherent structures, known as "ribs", that are observed

experimentally [32, 33] and numerically [6]. These structures are very energetic and stay present

in the near and intermediate wake of the cylinder, wrapping around the alternate spanwise rolls

generated by the so-called von Kármán-Bénart instability.
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Fig. 8 Transverse profiles of time-averaged streamwise velocity, u, transverse velocity, v,

streamwise velocity fluctuation, u′, and transverse velocity fluctuation, v′, upstream the cylin-

der at x = −1 (cut X–1 of Fig. 7): experimental results of Fohanno and Martinuzzi [23] (•)

and present numerical results for cases LES-WR ( ) and LES-WF ( ).

Fig. 9 Iso-surface of vorticity colored by temperature (case LES-WF).

The mean and fluctuating pressure fields around the cylinder are strongly influenced by the
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vortex shedding phenomena and the transition from the irrotational to turbulent flow. Figure 10.a

shows that the predicted pressure coefficient profiles agrees fairly well with the experimental data

of Igarashi [24] and Bearman and Obasaju [12]. Discrepancies are observed for the LES-WF case

of the side faces close to the leading edges. These unphysical values are due to the numerical errors

induced by the poor spatial resolution of the separation region and the difficulty to deal with non-

zero velocities on sharp edge nodes induced by the wall-function implementation method [1]. The

pressure coefficient fluctuation C ′p traduces the variation of the pressure field caused by the vortex

shedding and the turbulent motion. Figure 10.b shows that a qualitative agreement is obtained

for C ′p in both LES cases. As for the average pressure coefficient, unphysical values of C ′p are

obtained close to the edges with case LES-WF. On the side faces, the LES results are in better

agreement with experimental data of Igarashi [24] than with those of Bearman and Obasaju [12]. In

particular, case LES-WR captures very well the pressure fluctuation level on the upstream region

of the side faces. However, it overestimates C ′p on the front and rear faces, probably due to some

under-resolution of the boundary layer as shown by the y+ profile of Fig. 5 on the front face and to

the under-prediction of the rear face recirculation length zone (see below). Moreover, as mentioned

by Bearman and Obasaju [12], the level of C ′p on the rear face is quite sensitive to the Reynolds

number for Re < 60 000.

As mentioned in the introduction, an accurate prediction of the wake flow behind a bluff-body

is crucial for pratical configurations where the flow and heat transfer are strongly affected by various

obstacles and their corresponding wakes. In the present wake region of the cylinder (x > 3), Fig. 11.a

shows that the large streamwise and spanwise structures previously mentioned are responsible for

a slow velocity recovery. While many LES studies tend to overpredict this recovery (see Rodi et

al. [4]), both present cases are in a good agreement with the experimental results of Lyn et al. [11] and

those of Fohanno & Martinuzzi [23]. Note that the recovery measured by Durao et al. [13] at lower

Reynolds number is much faster. For (x < 2), both LES cases overpredict the axial velocity leading

to a shorter recirculation length (as noticed before) and a lower backflow velocity, in comparison

to the three experimental data. Figure 11.b shows that axial velocity fluctuations are accurately

reproduced while transverse fluctuations tend to be overestimated by case LES-WR for x < 1.5 and
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Fig. 10 Profiles of time-averaged pressure coefficient, Cp, (a) and fluctuation, C′p, (b) around

the cylinder walls for the two LES cases compared to the experimental data of Igarashi [24]

and Bearman and Obasaju [12].

x > 5. For the transverse profiles (Fig. 12 and 13), a very good agreement is generally obtained

on mean and fluctuating velocity for both axial and transverse components in the two LES cases.

Moreover, both present cases match closely the LES results of Hangan and Kim [25] (cut X1.5 of

each figure). The error on the backflow prediction is visible on cuts X1 and X1.5 of Fig. 12.
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Symbol legend: same as Fig. 12 and experimental results of Durao et al. [13] (�).
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A way to evaluate how the LES captures the von Kármán-Bénart instability is to analyze

the phase-averaged flow in the near wake of the cylinder. Figure 14 exhibits the axial profiles

of transverse and axial phase-averaged velocity for three selected phases of the vortex shedding.

Compared to other LES studies on structured grids, a better agreement is generally obtained with

the transverse velocity for all phases and for both present LES cases. However, for x > 5, the phase

velocity tends to be somewhat overestimated. Concerning the axial velocity, the maximum error

occurs at phase φ = 162◦ for x < 2 where the backflow is strongly underestimated. Otherwise, both

LES cases agree fairly well with the experiment. Phase-averaged turbulent fluctuations traduces

the contribution of the eddy structures whose time scale is smaller than the vortex shedding period.

In the present case, it includes the part from the streamwise "ribs" (see above in this section) as

well as more uncorrelated fluctuations related to smaller scales. Most energy of these fluctuations

is explicitly calculated in the LES. Figure 15 shows that a good agreement is obtained with the

WALE subgrid model (LES-WR) for all phases while the Smagorinsky model (LES-WF) tends to

underestimate the two first peaks. Figure 16 compares the phase-averaged transverse profiles of

axial and transverse velocity at six axial positions of the near wake for two phases of the LES-WR

case only (results are similar for the LES-WF case but not shown here for clarity). As expected, the

velocity field varies strongly with phase due to the alternate vortex shedding. Except for cut X1.5

where little discrepancies are observed, the LES captures accurately these variations by matching

closely the experimental data.

The flow dynamics near the side faces of the cylinder is also of interest because both the flow field

and the heat transfer around the cylinder are strongly influenced by this region where separation

and recirculation occur. Figure 17.a compares the mean streamwise velocity profiles given by the

two present LES with the experimental results of Lyn and Rodi [10] and the LES results of Hangan

and Kim [25]. In both cases, the averaged position and thickness of the shear layer induced by the

flow separation are well reproduced. For 0 ≤ x ≤ 0.5, the velocity intensity in the backflow region

is underpredicted by case LES-WR while it is quite well captured by case LES-WF and Hangan

and Kim. Streamwise velocity fluctuations given by Fig. 17.b traduce the flapping of the shear

layer as well as the turbulence activity in the backflow zone. Results from case LES-WF, which are
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Fig. 14 Longitudinal profiles of phase-averaged transverse velocity, 〈v〉, (a) and streamwise

velocity, 〈u〉, (b) in the wake of the cylinder at three selected phase angles: experimental

results of Lyn et al. [11] (◦), LES results of Liou et al. [7] (········ ), case KAWAMU in Rodi et

al. [4] ( ) and present results for cases LES-WR ( ) and LES-WF ( ).

very close to those of Hangan and Kim, agree quite well with the experimental data although they

overpredict u′ in the backflow. On the other side, case LES-WR tends to overpredict u′ in the shear

layer but gives better results in the backflow zone. One can argue that this overestimation of u′ by

both approaches would be worse if the subgrid scale contribution were added to the plotted resolved

fluctuation. However, the subgrid energy contribution is negligible compared to the resolved energy

in this region where the grid resolution is rather high.
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of the cylinder. See Fig. 14 for symbols legend.

The phase evolution of the backflow is detailed on Fig. 18 by plotting the phase-averaged

streamwise velocity and its fluctuation at six selected vertical locations above the top side wall.

Both LES approaches give similar results and are quite close from the experimental data. However,

the downward motion of the shear layer is in advance in the simulations compared to the experiment

(see plots at y = 0.675, 0.75 and 0.8455) while the upward motion is accurately synchronized.

Similar errors are observed on the fluctuating component 〈u′〉. Moreover, the excessive values of

〈u′〉 observed in the LES at some phases of the vortex shedding are consistent with the overestimation

of the time-averaged fluctuation previously observed on u′ profiles (see Fig. 17.b).

B. Validation of the heat transfer

Now that both wall-treatment approaches have proved to be accurate for the flow dynamics,

their capacity to predict convective heat transfer is evaluated by comparing the computed Nusselt

number with experimental data. Table 4 shows that the wall-function strongly underpredicts the

global Nusselt Nug — obtained by space-averaging the local Nusselt profiles around the square

contour — whereas the wall-resolved approach presents a very good accuracy.

A more detailed comparison is provided by the profiles of the time-averaged Nusselt number
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Fig. 16 Transverse profiles of phase-averaged streamwise velocity, 〈u〉, (a) and transverse

velocity, 〈v〉, (b) in the wake of the cylinder at two selected phase angles: experimental results

of Lyn et al. [11] at φ = 0◦ (◦) and 108◦ (•) and present results for case LES-WR at φ = 0◦

( ) and 108◦ ( ).

Table 4 Global Nusselt number Nug of the two present LES compared to the experimental

correlation of Igarashi [14] (Eq. (14)) for the given Reynolds number Re = 22 050.

Nug Error

Igarashi [14] 103.0 −

LES-WF 46.1 −55%

LES-WR 101.6 −1.36%

Nu around the cylinder walls. Figure 19 shows that all experimental profiles have similar shapes

and levels although the profiles from Yoo et al. [15] present a slightly larger amplitude than those of

Igarashi [14], justifying the scaling of Eq. (15). As expected from the global Nusselt results (Table 4),

the wall-function approach does not predict the right level at any position of the cylinder face. Even
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Fig. 17 Transverse profiles of time-averaged streamwise velocity, u, (a) and fluctuation, u′,

(b) on the top face of the cylinder (cuts X–0.5 to X0.5 of Fig. 7): experimental results of Lyn

and Rodi [10] (◦), LES results of Hangan and Kim [25] (+) and present LES results for cases

LES-WR ( ) and LES-WF ( ).

the shape of the profiles is not properly retrieved. Actually, this bluff-body flow does not verify the

wall-function assumption anywhere around the cylinder: the impinging flow with a stagnation point

on the front face, the flow separation on the side faces and the backflow on the back face that occur

here are not compatible with the constant pressure gradient and steady attached flow assumption

of the wall-function model. Piomelli [34] showed that wall-function cannot predict accurately the

near-wall dynamics and wall stresses of detached flows and oscillating flows. Nevertheless, for the

flow dynamics only, the results of section IVA have shown that good predictions are obtained in

the LES-WF case although the flow breaks the model requirements. In reality, the velocity field

around the cylinder results in flow separation and vortex shedding phenomena that depend slightly

on the wall friction. As a consequence, the wall pressure and the resulting drag force are quite well

predicted (see Fig. 10 and Table 3) because they depend mainly on large eddy motions that are not
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Fig. 18 Evolution of phase-averaged streamwise velocity, 〈u〉, and fluctuation, 〈u′〉, as a function

of the phase at six selected vertical positions above the top side of the cylinder (x = 0.25):

experimental results of Lyn and Rodi [10] (◦) and LES results for cases LES-WR ( ) and

LES-WF ( ).

very sensitive to the viscous near-wall effects. The wall heat flux, however, is directly computed by

the wall-function model that fails to mimic the turbulent heat transfer in the wall boundary layer

when the model assumptions are not verified. Moreover, the Reynolds analogy used in the thermal

wall-function model may not be fully valid for the range of y+ values (20 − 50) obtained in this

calculation.

Contrary to the wall-function approach, the wall-resolved approach is able to reproduce the

experimental data, particularly on the front and rear faces (where the agreement is better with the

data of Yoo et al.). On the side faces, the Nusselt number is slightly underestimated. This error can

be related to the underprediction of the backflow mean velocity mentioned in section IVA, which

may lead to a lower convective flux close to the cylinder walls. One can notice that the Nusselt

error is not correlated to the high value of y+ mentioned in section III C and visible on Fig. 5,

meaning that, though y+ is larger than 2 in some part of the cylinder wall, the space resolution of
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Fig. 19 Profiles of time-averaged local Nusselt number, Nu, around the cylinder walls : exper-

imental results of Igarashi [14] (◦ and •) and of Yoo et al. [15] (+ and ×) scaled using Eq. (15)

and compared to the present LES results ( and ).

the near-wall region is adequate to predict the wall heat flux. Now that the wall-resolved approach

is validated for the prediction of heat transfer, an unsteady analysis of the LES-WR simulation

is performed in the next section to investigate the heat transfer mechanism in the single cylinder

configuration.

C. Analysis of the unsteady heat transfer (case LES-WR)

By superimposing phase-averaged Nusselt profiles, stream lines and temperature field, Fig. 20

highlights how the heat flux from the cylinder wall is coupled to the periodic vortex shedding. Each

face of the cylinder is now commented for four chosen phases φ = 0◦, 36◦, 72◦, 126◦ that illustrate

conveniently the first half-period of vortex shedding (the φ+ 180◦ values are not treated since they

correspond to the second half-period where the flow is symmetric).

Front face: The incoming flow is laminar and presents a stagnation point that oscillates slightly

up and down with the phase. As a consequence, the Nusselt profile is almost steady, with a

minimum around the stagnation point and maxima close to the leading edges due to the flow

acceleration. Though the flow regime is laminar, the near-wall region is continuously blown

by the incoming cold fluid whatever the phase so that the heat flux close to the edges is higher

on the front face than on the side faces where hot fluid recirculation occurs (see below).
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Fig. 20 Phase-averaged quantities taken at four selected phase angles of case LES-WR: Nusselt

number profiles at each side of the cylinder (scales are all identical), velocity stream lines and

flow temperature distribution.

Rear face: Here, no hot fluid can accumulate because the von Kármán-Bénart instability provokes

a "sweep" of the wall by a periodically upward and downward flow whose oscillations are

highlighted by the friction coefficient curve of Fig. 21.a. This oscillating flow features a tran-

sient reattachment of the shear layer on the rear face (see phases φ = 0◦ − 72◦) as observed

experimentally by Igarashi [24]. This guaranties that cold fluid from outside the shear layer

is carried towards the wall at any phase, that is why the mean rear face Nusselt number is

higher than the one of the front face and varies little with phase (see Fig. 21.b). Moreover,

the flow is fully turbulent in this region (see Fig. 9) so the wall heat transfer is also enhanced

by the small turbulent eddies (whose time scale is smaller than the shedding period).

Top and bottom faces: In the leading edge region, mean and fluctuating velocities are quite low

(see Fig. 17 of section IVA) and hot fluid is trapped by recirculation, leading to a low Nusselt
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number at all phases: the temperature field around the cylinder (Fig. 20) shows clearly the

correlation between hot fluid close to the near-wall region and a low wall heat flux. At φ = 0◦

the center of the recirculation region is located upstream and convective effects are rather low

close to the trailing edge. As described in Lyn and Rodi [10], this eddy moves to a downstream

position and stays there from phase φ = 72◦ to 126◦ approximatively (and the corresponding

phases φ = 252◦ to 306◦ for the bottom face). Once located near the trailing edge, it increases

the wall heat flux from the adjacent wall by thinning the boundary layer and carrying some

cold fluid from outside the shear-layer. This is confirmed more quantitatively by Fig. 21 which

shows that the increase in the mean Nusselt number of the top and bottom faces (Fig. 21.b)

just follows the increase in the mean friction coefficient, 〈Cf 〉, due to the downstream eddy

structure (Fig. 21.a, respective curves). The time delay between the maximum wall friction —

i.e. the maximum convective effect — and the maximum of heat flux is probably due to the

time needed by the eddy vortex to bring some fresh fluid close to the wall. One can notice also

that the rear face flow reattachment induces another flow separation on the bottom trailing

edge and a corresponding vortex attached to the bottom face for phases φ = 0◦ − 72◦ (or the

corresponding φ = 180◦ − 252◦ for the top face). Compared to the eddy structure induced by

the upstream flow separation, this vortex rotates in the opposite direction and provides the

side face region with cold fluid coming from the rear region as shown by the streamlines. This

vortex is also responsible for a local Nusselt peak which vanishes gradually as the rear face

flow reattachment is cancelled by the main vortex shedding (see φ = 126◦). As a consequence,

the mean Nusselt number of the bottom face decreases from φ = 0◦ to 180◦ as shown by

Fig. 21.b.

Finally, because the Nusselt variations of the top and bottom faces are out of phase and the

Nusselt of the front and rear faces vary little, the global Nusselt number presents a very low variation

with phase (Fig. 21.b).
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Fig. 21 Space-averaged value of the phase-averaged algebraic friction coefficient, 〈Cf 〉, (a) and

Nusselt number, 〈Nu〉, (b) on different faces of the cylinder as a function of the phase φ.

Conclusion

The flow around a square cylinder is a relevant model for testing a computational method for

turbulent heat transfer because it features the main characteristics of typical industrial flows in

complex geometry: flow separation and recirculation, vortex shedding and wake flow. In this con-

figuration, two approaches of heat transfer prediction by large eddy simulation using unstructured

grids have been compared: 1) a method using a full tetrahedra grid along with an algebraic wall-

function model and a standard Smagorinsky subgrid scale model and 2) a method using a hybrid

tetrahedra/prisms grid along with the WALE subgrid scale model in order to solve explicitely the

wall boundary layer.

Compared to a full tetrahedra approach, the major advantage of using prisms layers to solve the

boundary layer is to reduce the computational cost of the simulation. By increasing the number of

computational cores up the code acceleration limit, the ratio of 40 in CPU time between approach
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2) and 1) may be finally reduced down to a ratio of 5 in terms of execution time. However, the

benefit of using prisms layers depends strongly on the ability of the numerical method to handle

stretched prismatic cells.

In terms of flow dynamics, despite some underestimation of the size and intensity of the recir-

culation zone behind the cylinder, both approaches have successfully reproduced the experimental

results [10, 11] as well as other LES data. In particular, the near-wake predictions have been care-

fully validated by comparing the time- and phase-averaged statistics of the vortex shedding flow.

This is a promising result for simulating real cases where the complex geometry induces multiple

turbulent wakes that have a major influence on the flow and heat transfer. Satisfactory results have

also been obtained for the velocity field near the side faces of the cylinder, excepting some local

errors observed with method 1) very close to the sharp edges. In general, the flow dynamics pre-

dictions have shown a rather low sensitivity to wall-treatment and the subgrid model. Considering

that method 1) is 40 times less expensive in terms of computational time, it seems adequate if only

the flow dynamics is of interest. However, as far as heat transfer is concerned, this algebraic method

fails to predict the local and global Nusselt numbers because the present flow does not verify the

wall-function model assumption of steady attached flow at high wall Reynolds values. The accuracy

of the thermal wall-function model for higher wall Reynolds was not investigated here because such

configurations would not be representative of the typical aeronautical applications targeted in the

present study (see section I). On the contrary, the second method is capable to reproduce with a

good accuracy the experimental data for the Nusselt distribution around the cylinder [14, 15]. The

phase-averaged analysis reveals the unsteady mechanism responsible for this distribution. On the

side faces, the heat flux stays low close the leading edges because of low velocities and hot fluid

recirculation. Close to the trailing edges, however, the heat flux strongly varies with phase and it is

maximum when the vortex shedding produces an eddy structure adjacent to the wall. On the rear

face, the Nusselt number is quite high whatever the phase because of the periodic flow featuring

alternatively reattachment and large eddy vortices.
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