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Nguyen,2 Wolfgang Wernsdorfer,2 Jean-Pierre Cleuziou,2, 3 and Milena Grifoni*1

1Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
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Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum
dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conduct-
ing singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon
nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-
body correlations with a gate voltage. Here we show an undiscovered side of Kondo correlations,
which counterintuitively tend to block conduction channels: inelastic cotunneling lines in the mag-
netospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering
the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances in-
volving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures
and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation
of entangled many-body states with no net pseudospin.

The ubiquity of Kondo resonances in quantum dots
relies on the fact that their occurrence requires only the
presence of degenerate dot states, whose degeneracy is as-
sociated to degrees of freedom which are conserved dur-
ing the tunneling onto and out of the dot [1]. Finite
magnetic fields can be used to break time-reversal sym-
metry related degeneracies and unravel the deep nature
of the Kondo state by tracking the magnetic field evolu-
tion of split Kondo peaks [2–11]. In a recent work [12],
the striking report was made that specific transport reso-
nances were not observable in nonlinear magnetoconduc-
tance measurements of split Kondo peaks in carbon na-
notubes (CNTs), despite being expected from theoretical
predictions [13–15]. Even more intriguing is that those
resonances were recorded in inelastic cotunneling mea-
surements in the weak coupling regime [16]. Because in
[12] no comparative measurement for the weak-coupling
regime was reported, the missing of resonances could not
be unambigously interpreted as a signature of the Kondo
effect. From a closer inspection of other experimental re-
ports for the Kondo regime [5, 7, 10, 17], we notice that
the absence of some resonances seems systematic.

In the following we study the low-temperature non-
linear electron transport in a very clean CNT quantum
dot [18]. By simply sweeping a gate voltage [8, 19],
we could tune the same CNT device from a weak cou-
pling regime, where Coulomb diamonds and inelastic co-
tunneling are observed, to a Kondo regime with strong
many-body correlations to the leads. Then, using non-
linear magnetospectroscopy, transport resonances have
been measured. The two regimes have been described
using accurate transport calculations based on perturba-
tive and nonperturbative approaches in the coupling, re-
spectively. The missing resonances in the Kondo regime
have been clearly identified, and their suppression fully
taken into account by the transport theory. Accounting
for both spin and orbital degrees of freedom, we discuss a
global SU(2) ⊗ SU(2) symmetry related to the presence

of two Kramers pairs in realistic carbon nanotube devices
with spin-orbit coupling (SOC) [20–23] and valley mixing
[16, 21, 24–26]. In virtue of an effective exchange inter-
action, virtual transtions which flip the Kramers pseu-
dospins yield low-energy many-body singlet states with
net zero Kramers pseudospin. This result in turn re-
veals that the transport resonances suppressed in the
deep Kondo regime are associated to virtual processes
which do not flip the Kramers pseudospin.

Results

Measurement and modelling of transport
regimes. The device under study consists of a semi-
conducting CNT, grown in-situ on top of two platinum
contacts, used as normal metal source and drain leads.
Details of the device fabrication were reported previously
[17] (see also the Methods). The CNT junction is sus-
pended over an electrostatic gate and can be modelled
as a single semiconducting quantum dot of size imposed
by the contact separation (≈ 200 nm). All the measure-
ments were performed at a mixing chamber temperature
of about Texp= 30 mK, which sets a lower bound to the
actual electronic temperature. The set-up includes the
possibility to fully rotate an in-plane magnetic field up
to 1.5 T.

The CNT level spectrum is depicted in Figs. 1a and
1b. Transverse bands, represented by the coloured hyper-
bolae in Fig. 1a, emerge from the graphene Dirac cones
as a consequence of the quantization of the transverse
momentum k⊥. Bound states (bullets) are due to the
quantization of the longitudinal momentum k‖. Four-fold
spin-valley degeneracy yields the exotic spin plus orbital
SU(4) Kondo effect [5, 6, 8, 13, 17, 27, 28]. The SOC
removes the spin degeneracy of the transverse bands in
the same valley (red and blue hyperbolae), and hence the
SU(4) symmetry [6, 10, 12, 14, 15, 17, 28, 29]. Due to
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time reversal symmetry, for each k‖ a quartet of states
consisting of two Kramers pairs splitted by the energy
∆ = ∆SO arises. When also valley mixing is present,
with the energy scale ∆KK’, orbital states are formed
which are superpositions of valley states. A quartet now
consists of two Kramers doublets at energies εd = ±∆/2,

with ∆ =
√

∆SO
2 + ∆KK’

2, see Fig. 1b.
By sweeping the gate voltage, the chemical potential

is moved from above (electron sector) to below (hole sec-
tor) the charge neutrality point and quadruplets of states
are thus successively emptied. This pattern is visible
in a typical measurement of the differential conductance
dI/dV versus the bias voltage Vsd and the gate voltage
Vg, Figs. 1c, 1d, which exhibits a characteristic four-fold
periodicity. Figure 1c displays such a stability diagram
for the electron sector, where Coulomb diamonds and in-
elastic cotunneling excitation lines are visible. Owing to
significantly different ratios Γ/U of the tunnel coupling
to the charging energy in the valence and conduction
regimes, Kondo physics dominates for odd hole number
in the hole sector shown in Fig. 1d.

In order to investigate the dominant transport mecha-
nisms, we have performed transport calculations for both
regimes, using a standard minimal model for a longi-
tudinal mode of a CNT quantum dot with SOC and
valley mixing terms [16, 18]. The explicit form of the

model Hamiltonian ĤCNT and the parameters used for
the transport calculations are provided in the Methods.
The transport calculations in the electron regime imple-
ment a perturbation theory (PT) which retains all tun-
neling contributions to the dynamics of the CNT reduced
density matrix up to second order in the tunnel coupling
Γ. This approximation thus accounts for Coulomb block-
ade (first order in Γ) and leading order cotunneling pro-
cesses (second order in Γ), and it is expected to give ac-
curate results for small ratios Γ/kBT and Γ/U [30]. The
results of the calculations for the differential conductance
are shown in Fig. 1g; a gate trace in Fig. 1e. The per-
turbative theory reproduces the position of the inelastic
cotunneling thresholds (panels 1c and 1g). In the gate
trace of Fig. 1e the experimental peaks are wider than
the theoretical ones. Because in the latter the broad-
ening is solely given by the temperature, this indicates
that higher order terms are responsible for a broadening
of the order Γ and for a Lamb shift of the experimental
peaks [31–33]. In this work we are interested only in the
evolution of the cotunneling resonances in magnetic field,
which is well captured by the perturbative approach as
long as Kondo ridges have not yet formed.

This situation radically changes in the hole sector
where the gate trace reveals Kondo ridges for odd hole
numbers. The theoretical trace in Fig. 1f is the out-
come of a nonperturbative numerical DM-NRG calcula-
tion [34] which uses the same model Hamiltonian but
with slightly different parameters. The strong suppres-
sion of the conductance in the valley with even hole oc-
cupancy is an indication of the breaking of the SU(4)
symmetry in the presence of SOC and valley mixing to

an SU(2) ⊗ SU(2) one [29, 35]. In the DM-NRG cal-
culations the two-particles exchange J was not included
due to high computational costs. The latter further re-
duces the symmetry in the 2h valley (see e.g the spectrum
in Fig. 2b), and hence the experimental conductance is
more rapidly suppressed in that valley than as predicted
by our simulations. On the other hand, J is not relevant
for describing the spectrum in the 3h and 1h cases (Figs.
2a, 2c), which is the focus of the present work.

In the DM-NRG calculations the fit to the experiment
was done assuming a temperature of T = 30 mK. From
the so extracted parameters we evaluate the temperature
dependence of the conductance at −εd = U/2−∆/2, and
−εd = 5U/2 + ∆/2, corresponding to gate voltage values
located roughly in the middle of the 1h and 3h valleys,
respectively, and extract the Kondo temperatures, see
Fig. 1h. At such values of εd the Kondo temperature
takes its minimal value in a given valley, which sets a
lower bound for TK [35]. We find TK = 84 mK and
TK = 160 mK for the 1h and 3h valleys, respectively.
Correspondingly, 0.1 < Texp/TK < 1, suggesting that the
experiment is in the so-called Kondo crossover regime
[1] also for the actual electronic and Kondo temperatures.

Virtual transitions revealed by magnetospec-
troscopy. Having set the relevant energy scales for both
the electron and hole sectors, we proceed now with the
investigation of magnetotransport measurements at fi-
nite source-drain bias, which have been performed for
different fillings. A magnetic field B breaks time reversal
symmetry and thus the Kramers degeneracies. By per-
forming inelastic cotunneling spectroscopy, we can get
information on the lowest lying resonances of our inter-
acting system. The magnetospectrum corresponding to
electron filling ne = 1, 2, 3 of a longitudinal quadruplet,
as expected for the perturbative regime, is shown in Figs.
2a - 2c. For the case of odd occupancies, we call T tran-
sitions processes within a Kramers pair; C and P op-
erations are associated to inter-Kramers transitions, as
shown in Figs. 2a and 2c. Panels 2d-2f and 2g-2i show
magnetotransport measurements and theoretical predic-
tions for the electron and hole regimes, respectively. In
these panels the current second derivative d2I/dV 2 is re-
ported. We have preferred this quantity over the more
conventional dI/dV (shown in the Supplementary Fig-
ures 4 and 5 and discussed in the Supplementry Note
4) to enhance eye visibility of the excitation spectra. In
panels 2d-2f as well as 2h we have used our perturbative
approach [30]. The calculations in Figs. 2g, 2i, in con-
trast, are based on the Keldysh effective action (KEA)
method [36, 37] and are non-perturbative. The nature of
the dominant inelastic transitions is clearly identified by
simply looking at the excitation spectrum (dashed lines
in Figs. 2d-2i). All inelastic transitions from the ground
state are resolved in the cotunneling spectroscopy per-
formed in the low coupling electron regime, similar to
previous reports [16]. When inspecting the hole regime,
though, it is clear that only for the 2h case, panel 2h,
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the experimental data can be interpreted by means of a
simple cotunneling excitation spectrum; moreover, the 2e
and 2h cotunneling spectra are very similar. In the 1h
and 3h cases shown in panels 2g, 2i Kondo correlations
dominate the low energy transport, and differences with
respect to the electron sector are seen. The zero-bias
Kondo peak does not immediately split as the field is ap-
plied; rather the splitting occurs at a critical field such
that the energy associated to the inelastic T transition is
of the order of the Kondo temperature [1]. In the 1h val-
ley the lowest pair of levels merges again for values of the
field of about 1.2 Tesla, yielding a Kondo revival [5, 29].
Bias traces of the differential conductance highlighting
the revival are shown in the Supplementary Figure 3 and
analyzed in the Supplementary Note 3. Striking here is
the observation that, in contrast to the 1e and 3e cases,
only one of the two inter-Kramers transitions is resolved
in the experimental data for the 3h and 1h valley. How-
ever, in particular for the 1h case, the P and C excitation
lines as expected from the excitation spectrum should be
separated enough to be experimentally distinguishable,
similar to the 3e case. By comparing with the excitation
spectrum (dashed lines in panels 2g, 2i), we conclude
that it is the P transition which is not resolved. Our
KEA transport theory qualitatively reproduces these ex-
perimental features.
Magnetotransport measurements performed for other
quadruplets both in the conduction and valence regimes
exhibit qualitatively similar features (see Supplementary
Figures 6-8, Supplementary Table 1 and Supplementary
Note 5), and hence confirm the robustness of the suppres-
sion of P transitions in the Kondo regime. Our results
naturally reconcile the apparently contradictory observa-
tions in Refs. [12] and [16]. Furthermore, they suggest
that the inhibition of selected resonances in the Kondo
regime is of fundamental nature.

Fundamental symmetries of correlated CNTs.
To understand the experimental observations microscop-
ically, we have analyzed those symmetries of an isolated
CNT which also hold in the presence of on-site Coulomb
repulsion typical of Anderson models.

In the absence of a magnetic field, one finds a U(1)⊗
U(1)⊗SU(2)⊗SU(2) symmetry related to the existence
of two pairs of time-reversal degenerate doublets, see
Fig. 1b, called in the following upper (u) and lower (d)
Kramers channels. The U(1) symmetries reflect charge

conservation in each Kramers pair with generators Q̂κ =
1
2

∑
j∈κ(n̂j− 1

2 ) which measure the charge of the pair with

respect to the half-filling. Here is j = (1, 2) or (3, 4) for
κ = u or d. The SU(2) symmetries are generated by the

spin-like operators Ĵκ = 1
2

∑
j,j′∈κ d̂

†
jσj,j′ d̂j′ . Here σ is

the vector of Pauli matrices. Physically, Ĵzu = (n̂1−n̂2)/2

and Ĵzd = (n̂4 − n̂3)/2 account for the charge unbal-
ance within the Kramers pair. Thus, an isolated CNT
with one electron or a hole only in the quadruplet has
a net Kramers pseudospin (and charge). Fig. 3a shows
the two degenerate groundstate configurations | ⇓;−〉,

| ⇑;−〉 of the isolated CNT with an unpaired effective
spin (⇓ or ⇑) in the lowest Kramers pair and no occupa-
tion (symbol ”-”) of the upper Kramers pair. In the weak
coupling regime, a perturbative approach to linear trans-
port accounts for elastic cotunneling processes involving
the doubly degenerate groundstate pair [38]. These vir-
tual transitions are denoted I or T when they involve the
same state or its Kramers partner, respectively, see Fig.
3a. A finite magnetic field breaks the SU(2) symmetries.
However, former degenerate CNT states can still be char-
acterized according to the eigenvalues of the Q̂κ and Ĵzκ
operators, since they commute with the single-particle
CNT Hamiltonian which has in the Kramers basis the
form (see Methods):

Ĥ0 =
∑

κ=±

(
ε̄(B) + κ

∆̄(B)

2

)
N̂κ+(2δε(B)+κδ∆(B))Ĵzκ ,

(1)

where u/d= +/−, N̂κ = 2Q̂κ + 1, and at zero field is
∆̄(B = 0) = ∆, ε̄(B = 0) = εd, δε = δ∆ = 0. Hence our
finite-bias and finite magnetic field spectroscopy allows us
to clearly identify the relevant elastic and inelastic virtual
processes according to the involved Kramers charge and
spin. As illustrated in Fig. 3b, in the weak tunneling
regime only energy differences matter, and hence both
intra-Kramers (I, T ) and inter-Kramers (P, C) transi-
tions are expected in transport. In the Kondo regime
this picture changes. As we shall demonstrate, emerg-
ing Kondo correlations lead to the progressive screening
of the Kramers pseudospin of the dot by the conduction
electrons.

To this aim we observe that, when a sizeable tunnel
coupling to the leads is included, the CNT charge and
pseudospin operators Q̂κ and Ĵκ are no longer symme-
tries of the coupled system, since the tunneling does not
conserve the dot particle number. The occurrence of the
Kondo effect, however, suggests that the CNT quantum
numbers j = 1, 2, 3, 4 are carried also by the conduction
electrons and conserved during tunneling [13]. This is the
case when the dot is only a segment of the CNT (see Sup-
plementary Figure 1). Following [35], we hence introduce

charge, Q̂κ = Q̂κ+Q̂L,κ, and pseudospin, Ĵ κ=Ĵκ+ ĴL,κ,
operators of the coupled CNT plus leads (L) system.
Under the assumption that the tunneling couplings are
the same within each Kramers channel κ = u,d, the to-
tal Hamiltonian (see Supplementary Methods) commutes

with the charge and pseudospin operators Q̂κ and Ĵ κ,
which hence generate a U(1) ⊗ U(1) ⊗ SU(2) ⊗ SU(2)
symmetry of the coupled system. As a consequence,
many-body states can be characterized by the quadru-
plet of eigenvalues (Qd,Qu;Jd,Ju), where the highest

eigenvalue Jκ of Ĵ zκ is indicated in the quadruplet. This
notation gives direct access to the eigenvalues Jκ(Jκ+1)

of Ĵ
2

κ. Such quadruplets can be numerically calculated
within our scheme for the Budapest DM-NRG code [39],
and yield (for the valleys with one electron or one hole)
a singlet ground state characterized by the quadruplet
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(0, 0; 0, 0). Thus ”0” is also eigenvalue of Ĵ
2

u and Ĵ
2

d.
I.e., we find a unique ground state with no net pseu-
dospin. This situation is illustrated in Fig. 3c: due
to Qκ = 0, the Kramers channels are half-filled (two
charges per channel), whereby one charge arises from the
electron trapped in the CNT itself. For ∆ = 0 this CNT
charge is equally distributed among the two channels,
while for large values of ∆/TK(∆), as in our calculation
(see Fig. 1h), it is mainly in the lowest Kramers channel.
Thus at zero temperature the localized CNT pseudospin
is fully screened by an opposite net pseudospin in the
leads. In the orthonormal basis {|m〉 ⊗ |n〉L} spanned
by the pseudospin eigenstates of CNT and leads this
ground state is characterized by the entangled configura-
tion 1√

2
[| ⇑;−〉 ⊗ | ⇓;⇓,⇑〉L − | ⇓;−〉 ⊗ | ⇑;⇓,⇑〉L] of dot

and leads pseudospins.

In the standard spin-1/2 Kondo effect the appearance
of a unique singlet ground state with no net spin is the
result of the screening of the quantum impurity spin by
the conduction electrons spins, due to the antiferromag-
netic character of the coupling constant between such de-
grees of freedom [1]. Triplets are (highly) excited states
of the system. To interpret the spin 1/2 Kondo effect
in quantum dots, it is possible to derive from an Ander-
son model an effective Kondo Hamiltonian [40] given by
the product of the quantum dot spin and the conduction
electrons spin. The coupling constant for this product is
positive and thus antiferromagnetic. Also for the more
complex case of a CNT effective Kondo Hamiltonians
have been derived, with positive coupling constants for
Kramers channels identified by orbital and spin degrees
of freedom [13, 41]. The antiferromagnetic character of
the coupling constants remains also when, as in our case,
the more abstract Kramers pseudospin is used.

A natural consequence of the antiferromagnetic nature
of the correlations is that at low temperatures and zero
bias elastic virtual transitions which flip the pseudospin,
i.e., T transitions, are favoured, as depicted in Fig. 3c.
Similarly, C transitions are inelastic processes which flip
the pseudospin and become accessible at finite bias, as
shown in Fig. 3d. They connect the singlet ground state
to an excited state where the CNT charge is located in
the upper Kramers channel. Our results suggest that
P transitions are inhibited because they involve virtual
transitions which conserve the pseudospin.

Entanglement of Kramers pseudospins. To
further confirm that it is the Kramers pseudospins and
not distinct spin or orbital degrees of freedom which
should be considered in the most general situations,
we report results for the differential conductance as a
function of the angle θ formed by the magnetic field and
the CNT’s axis. The combined action of SOC, valley
mixing and non collinear magnetic field mixes spin
and valley degrees of freedom which, in general, are no
longer good quantum numbers to classify CNTs states.
Nevertheless, the three discrete T , P and C operations
still enable us to identify the inelastic transitions in

the 1h and 3h case, independent of the direction of
the magnetic field. The angular dependence of both
energy and excitation spectrum for a fixed magnetic
field amplitude is shown in Figs. 4a, 4b for the 3h and
1h fillings, respectively. The corresponding transport
spectra are shown in Figs. 4c, 4d, respectively. A
perpendicular magnetic field almost restores (for our
parameter set) Kramers degeneracy, thus revitalizing
the Kondo resonance for this angle. As the field is more
and more aligned to the CNT’s axis, the degeneracy is
removed, which also enables us to distinguish between
P and C transitions. As in the axial case of Fig. 2,
only the inelastic resonance associated to the C transi-
tion is clearly resolved in both the experiment and theory.

Entropy and specific heat. Usually, quantum en-
tanglement suffers from decoherence effects [42, 43]. The
Kondo-Kramers singlets, however, are associated to a
global symmetry of the quantum dot-plus lead com-
plex, and are robust against thermal fluctuations or fi-
nite bias effects as long as the impurity is in the Fermi
liquid regime [1] (T < 0.01 TK for our experiment).
For larger energy scales, 0.01 < T/TK < 1 the impu-
rity is not fully screened, but Kondo correlations per-
sist yielding universal behavior of relevant observables,
as seen e.g. in Fig. 1h at the level of the linear con-
ductance. In order to further investigate the impact of
thermal fluctuations on Kondo correlations, we have cal-
culated the temperature dependence of the impurity en-
tropy SCNT = Stot−SL, where the Si are thermodynamic
entropies, and of the impurity specific heat [44] (see Sup-
plementary Note 1 and Supplementary Figure 2). The
conditional entropy SCNT(T ) remains close to zero up to
temperatures T ≈ 0.01 TK, indicating that the system
is to a good approximation in the singlet ground state.
At higher temperatures the impurity entropy grows, but
universality is preserved up to temperatures close to TK,
at which the entropy approaches the value kB log 2.

Discussion

Our results show that specific low-energy inelas-
tic processes, observed in the perturbative cotunneling
regime, tend to be blocked in the Kondo regime due to
antiferromagnetic-like correlations, which at zero tem-
perature yield a many-body ground state with net zero
Kramers pseudospin. This signature of the Kondo effect
is universal, in the sense that it does not depend on the
degree of the spin-orbit coupling or valley mixing specific
to a given CNT. As such, it is also expected for SU(4)
correlated CNTs, which explains the missing inelastic res-
onance in the seminal work [5]. Furthermore, we believe
that such pseudospin selective suppression should be de-
tectable also in a variety of other tunable quantum dot
systems with emergent SU(4) and SU(2)⊗ SU(2) Kondo
effects [4, 11, 45–48].
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Because the screening is progressively suppressed by
increasing the temperature or the bias voltage, it should
be possible to recover such inelastic transitions by con-
tinuosly tuning those parameters. Indeed, signatures of
the re-emergence of the P transition are seen in the KEA
calculations and experimental traces at fields around 0.9
T in the form of an emerging shoulder, see Supplemen-
tary Figure 3. Experiments at larger magnetic fields, not
accessible to our experiment, are required to record the
evolution of this shoulder, and thus the suppression of
(non-equilibrium) Kondo correlations by an applied bias
voltage.

Methods

Experimental fabrication. Devices were fabricated
from degenerately doped silicon Si/SiO2/Si3N4 wafers
with a 500 nm thick thermally grown SiO2 layer and 50
nm Si3N4 on top. Metal leads separated by 200 nm were
first defined by electron-beam lithography and deposited
using electron-gun evaporation. A thickness of 2 nm Cr
followed by 50 nm Pt was used. A 200 nm deep trench
was created using both dry-etching and wet-etching. A
second step of electron-beam lithography was used to
design a 50 nm thin metallic local gate at the bottom of
the trench. Catalyst was then deposited locally on top
of the metal leads. Carbon nanotubes were then grown
by the CVD technique to produce as clean as possible
devices. Only devices with room temperature resistances
below 100 kΩ were selected for further studies at very
low temperature. A scanning electron microscopy of a
device similar to the one measured in this work is shown
in the Supplementary Figure 1.

Transport methods. For the transport calculations,
three different approaches have been used: the density-
matrix numerical renormalization group (DM-NRG)
method, a real time diagrammatic perturbation theory
(PT) for the dynamics of the reduced density, and the
analytical Keldysh effective action (KEA) approach.
Further details are discussed in the Supplementary Note
2.

Model CNT Hamiltonian. In our calculations we
have used the standard model Hamiltonian for the longi-
tudinal mode of a CNT accounting for spin-orbit coupling
(SOC), valley mixing, onsite and exchange Coulomb in-
teractions, and an external magnetic field [18]. Regard-
ing both SOC and the valley mixing as perturbations
breaking the SU(4) symmetry of the single particle CNT
Hamiltonian, it has the general form

ĤCNT = Ĥd + ĤSO + ĤKK′ + ĤU + ĤJ + ĤB, (2)

where Ĥd+ĤU is the SU(4) invariant component. In the
basis set {K ′ ↑,K ′ ↓,K ↑,K ↓} indexed by the valley and

spin degrees of freedom τ = K ′,K = ± and σ =↑, ↓= ±,
respectively, it reads

Ĥd + ĤU = εd
∑

τ,σ=±
d̂†τ,σd̂τ,σ +

U

2

∑

(τ,σ)6=(τ ′,σ′)

n̂τ,σn̂τ ′,σ′ ,

(3)
with εd the energy of the quantized longitudinal mode,
which can be tuned through the applied gate voltage,
and U accounting for charging effects. Valley mixing and
SOC break the SU(4) symmetry with characteristic en-
ergies ∆KK’ and ∆SO, respectively. The corresponding
contributions read:

ĤKK′+ĤSO =
∆KK’

2

∑

τ,σ=±
d̂†τ,σd̂−τ,σ+

∆SO

2

∑

τ,σ=±
στn̂τ,σ.

(4)
The SOC term is a result of the atomic spin-orbit interac-
tion in carbon, and thus exists also for ideally infinitely
long CNTs [20]. The valley mixing, in contrast, is ab-
sent in long and defect free CNTs. It only arises due
to scattering off the boundaries in finite length CNTs or
due to disorder [21, 25, 26]. It is expected to be zero in
disorder-free CNTs of the zig-zag class, due to angular
momentum conservation rules, and finite in CNTs of the
armchair class [26]. In our experiments, according to Ta-
ble I, the valley mixing is very small, which suggests a
tube of the zig-zag class.

Similar to the SOC and valley mixing, the exchange
interaction preserves time reversal symmetry. Its micro-
scopic form is not known for abritrary chiral angles. It
has been evaluated so far for the case of pure armchair
tubes [49], and for the zig-zag class [18, 50] CNTs. Be-
cause the experiments suggest that our tube is of the
zig-zag class, we choose in the following a form suitable
to describe this case. It reads

ĤJ = −J
2

∑

σ=±
{n̂K,σn̂K′,σ + d̂†K,σd̂

†
K′,−σd̂K,−σd̂K′,σ},

(5)
with J < 0 the exchange coupling. Finally, contributions
arising from a magnetic field B contain both Zeeman and
orbital parts. Decomposing B into components parallel
and perpendicular to the tube axis, B‖ = B cos θ and
B⊥ = B sin θ, respectively, one finds:

ĤB = ĤZ
B + Ĥorb

B

= B‖
∑

τ,σ=±

(gs
2
µBσ + µorbτ

)
d̂†τ,σd̂τ,σ

+
gs
2
µBB⊥

∑

τ,σ=±
d̂†τ,σd̂τ,−σ. (6)

Notice that the spin and valley remain good quantum
numbers in the presence of an axial field (θ = 0, π),
while a perpendicular component flips the spin degrees
of freedom. The parameters of the CNT Hamiltonian
used to fit the experimental data shown in Figs. 1, 2
and 4 are listed in Table I.
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Kramers charge and pseudospin representation.
We call Kramers basis the quadruplet {|i〉}, i = 1, 2, 3, 4
(shown in Fig. 1b ) which diagonalizes the single particle

part Ĥ0 = Ĥd + ĤKK’ + ĤSO + ĤB of the CNT Hamil-
tonian. For magnetic fields parallel or perpendicular to
the CNT axis, this Hamiltonian is easily diagonalized,
see e.g. [12]. For other orientations of the field, because
of the combined action of SOC and valley mixing, such
states are a linear superposition of all the basis states
{|τ, σ〉}, such that neither the spin nor the valley are in
general good quantum numbers any more. One has to
resort to numerical tools to find both the eigenvectors
{|i〉} and the eigenvalues εi, i = 1, 2, 3, 4. The angular
dependence of these eigenenergies is sketched in Fig. 4.

Despite the complexity inherent in the Hamiltonian
Ĥ0, a closer inspection reveals the existence of conjuga-
tion relations among the quadruplet of states i = 1, 2, 3, 4
generated by the time-reversal operator T̂ , as well as
by the particle-hole like and chirality operators P̂ and
Ĉ = P̂T̂ −1, respectively [12]. Specifically, the states are
ordered such that (1, 2) and (3, 4) are time-reversal part-
ners, while (1, 4) and (2, 3) are particle-hole partners. In
the {|τ, σ〉} basis the operators read

T̂ = κ̂
∑

τ,σ

σd̂†−τ,−σd̂τ,σ, (7)

P̂ = κ̂
∑

τ,σ

στd̂†−τ,σd̂τ,σ, (8)

Ĉ =
∑

τ,σ

(−τ)d̂†τ,−σd̂τ,σ, (9)

where κ̂ stands for the complex conjugation operator.
In the absence of a magnetic field T̂ commutes with
the total CNT Hamiltonian, yielding a single-particle
spectrum with two degenerate Kramers doublets (1,2)
and (3,4) separated by the inter-Kramers splitting ∆ =√

∆2
SO + ∆2

KK′ (see Fig. 1b). As far as the P̂ and Ĉ
operators are concerned, at zero magnetic field they are
symmetries only in the absence of SOC and valley mix-
ing. Since both anticommute with ĤSO + ĤKK′ , it holds
for P-conjugated pairs, ε1,2(∆) = ε4,3(−∆). A mag-
netic field breaks the time-reversal symmetry; however,
because ĤB anticommutes with T̂ , formerly degenerate
Kramers states are still related to each other by Kramers
conjugation. For an arbitrary magnetic field B time-
reversal conjugation and particel-hole conjugation imply
[12]:

ε1,4(B) = ε(B)± 1

2
∆(B), (10)

ε2,3(−B) = ε1,4(B), (11)

where ε(B) and ∆(B) reduce to the longitudinal energy
and Kramers splitting εd and ∆, respectively, at zero
field.

These relations clearly suggest the introduction of aux-
iliary charge N̂ij := n̂i + n̂j and pseudospin Ĵzij =
(n̂i − n̂j)/2 operators, in terms of which we can write

Ĥ0 = ε(B)N̂14 + ∆(B)Ĵz14 + ε(−B)N̂23 + ∆(−B)Ĵz23.

Introducing the average quantities ∆̄(B) := (∆(B) +
∆(−B))/2, ε̄(B) := (ε(B) + ε(−B))/2, as well as the
differences δ∆(B) := (∆(B) − ∆(−B))/2, δε(B) :=
(ε(B) − ε(−B))/2, the CNT Hamiltonian can be eas-
ily recast in terms of total charge and pseudospin of a
Kramers pair. It reads:

Ĥ0 =

(
ε̄(B) +

∆̄(B)

2

)
N̂12 + [2δε(B) + δ∆(B)]Ĵz12

+

(
ε̄(B)− ∆̄(B)

2

)
N̂43 + [2δε(B)− δ∆(B)]Ĵz43.

Such equation is Eq. (1) in the main part of the

manuscript upon calling Ĵz43 = Ĵzd , Ĵz12 = Ĵzu , and

similarly N̂43 = N̂d, N̂12 = N̂u.

Data availability The data that support the main
findings of this study are available from the correspond-
ing author upon request.
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Figure 1. Transport regimes and bound states of a CNT quantum dot. a, A CNT with spin-orbit coupling is
characterized by spin (blue, red) and valley (K,K’) resolved transverse modes (blue and red hyberbolae). The CNT chemical
potential (upper limit of the shaded regions of the Dirac cones) is adjusted by sweeping the gate voltage from positive values
(electron regime) to negative values (hole regime). Quantum confinement yields the quantization of the longitudinal momentum
k‖ (empty/solid bullets denote empty/filled bound states). b, A generic quadruplet of bound states is composed of two Kramers
doublets separated by the inter-Kramers splitting ∆. c and d, Experimental stability diagrams demonstrating the successive
filling of a quadruplet with electrons (panel c), and holes (panel d). On the electron side, sequential transport is exponentially
suppressed inside the Coulomb valleys; the dominant mechanism is cotunneling (panel c). The appearance of high conductance
ridges at zero bias (panel d) in valleys with odd holes is a signature of the Kondo effect. e and f, Experimental gate traces
at zero bias are compared with theoretical predictions obtained with perturbative (panel e) and non-perturbative DM-NRG
(panel f) approaches. g, Theoretical stability diagram for the electron side reproducing the experiment of panel c. h, Scaling
behaviour of the linear conductance in the middle of the valleys with odd hole numbers, G0 ≈ 2e2/h. The system lies in the
crossover regime (0.1 < Texp/TK(∆) < 1), as pointed out by the arrows. TK is the Kondo temperature determined from the
DM-NRG calculation according to G(TK) = G0/2.
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holes electrons

(shell Nh=6) (shell Ne=6)

∆SO(meV) -0.21 -0.4

∆KK’(meV) 0.08 0.04

µorb(meV/T) 0.51 (3h), 0.51 (2h), 0.55 (1h) 0.43

U (meV) PT 26,5

U (meV) NRG 4,7

U (meV) KEA ∞ (3h, 1h)

J (meV) PT -1.35 -1.4

∆µB‖ (meV/T) -0.05 -0.06

e∆Vsd (meV) 0.12 0.28

TABLE I. Parameter set. The table shows the parameters used to fit the electronic transport spectra of the CNT in the gate
voltage region shown in the main text. It corresponds to the valence quadruplet Nh=6 (hole transport), and the conduction
quadruplet Ne =6 (electron transport), counting the Coulomb diamonds from the band gap. The abbreviations PT, NRG and
KEA refer to the three theoretical methods used in our calculations (see text). The experimental data for each Coulomb valley
are offset by ∆Vsd, and tilted in the magnetic field by ∆µB‖, resulting in an asymmetry between the measurement in fields
parallel and antiparallel to the CNT axis. In all the plots presented in the work both the offset and the tilt have been removed.


