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Place Eugène Bataillon, 34095 Montpellier, France
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The interaction energy W [γ ] of the Hubbard model is regarded as a functional of the single-particle density

matrix γ in the framework of lattice density-functional theory. The local character of the Hubbard interaction is

exploited to express W as a sum of local contributions ωi[γ ], for which a simple semilocal scaling approximation

is proposed. The method is applied to the ionic Hubbard model on one- and two-dimensional lattices with

homogeneous and inhomogeneous Coulomb repulsions. Results are given for the kinetic and Coulomb energies,

interatomic charge transfers, local magnetic moments, and charge gaps. Goals and limitations of the functional

are discussed by comparison with exact results.
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I. INTRODUCTION

Density functional theory (DFT) has revolutionized our

perspective to the electronic properties of matter [1]. Replacing

the wave function by the electronic density ρ(�r) as the basic

variable of the many-body problem has been a major practical

and conceptual breakthrough. Local and semilocal approaches

to the interaction-energy functional have been most appealing

from the start, particularly due to their simplicity and flexibil-

ity. Indeed, the local density approximation (LDA) based on

the homogeneous electron gas has been the key to the early

success of DFT [2,3]. In the meantime, the theory has found

an incredibly large number of successful applications in the

most broad variety of fields. Moreover, it has been the subject

of significant methodological clarifications and developments

[4], including generalized-gradient approximations [5], hybrid

functionals [6–10], as well as density-matrix approaches

[11–19]. Nevertheless, a number of open problems prevail,

in particular in the context of strongly correlated systems [20]

(e.g., Mott insulators, narrow-band systems, heavy-fermions

materials, and high-Tc superconductors) where the conven-

tional exchange and correlation functionals fail systematically.

Finding an accurate DFT description of these materials is

therefore challenging [21–25].

The present understanding of strong electron correlations

in condensed-matter physics relies for the most part on lattice

models, which aim to capture the subtle low-energy many-

body physics [26]. Among the most famous and basic exam-

ples in this field, one should mention the Anderson impurity

model [27] and the Hubbard model [28], which pointed the way

to countless extensions of growing richness and complexity

[26]. The central feature of these Hamiltonians is their ability

to describe the interplay between electron delocalization, due

to various hybridizations, and the concomitant fluctuations

of the local charges and Coulomb-repulsion energy. In this

way, subtle many-body effects, such as correlation-induced

localization, local spin and valence fluctuations, and the

separation of spin and charge degrees of freedom can be

understood. Picturing this kind of phenomena on the basis of

the electronic density ρ(�r) seems difficult a priori, despite the

incontestable general validity of the Hohenberg-Kohn (HK)

theorem.
Although many-body lattice models are strongly simplified

in comparison with the first principles Hamiltonian, elucidat-
ing their properties is far from trivial. Only very few exact
analytical results are available [29–33] and straightforward
numerical solutions are rapidly blocked by the exponential
increase of the Hilbert-space dimension with system size.
Consequently, a large variety of approximations has been
developed [26]. Since DFT is a universal theory, it should
be possible to apply it to lattice models. In fact, several
investigations have been done by adapting the concepts of
DFT to lattice Hamiltonians. Some authors have studied the
band gap problem in semiconductors [34], the role of off-
diagonal elements of the density matrix in strongly correlated
systems [35]. Others have proposed and applied density-matrix
energy functionals to the Hubbard and Anderson models
[36–39], or have derived local approximations based on
the exact solutions for one-dimensional (1D) systems [40].
More recently, progress has been made on time-dependent
approaches [41] and on the description of attractive local
interactions [42,43].

The staring point of DFT in the continuum has been

to realize that the single-particle external potential v(�r)

acting on the electrons defines the problem under study,

while the form and parameters involved in the kinetic and

interaction energies of the electronic system are universal. In

lattice models, the single-particle hopping matrix tij defines

the system under consideration, since it defines the lattice

structure, its dimensionality and connectivity matrix. In the

continuum, v(�r) couples to ρ(�r), while in the lattice, tij
couples to the single-particle density matrix γij . Consequently,

γ naturally emerges as the fundamental variable for lattice

density-functional theory (LDFT). In fact, a lattice version of

the HK theorem showing the one-to-one mapping between tij
and the ground-state γij has been demonstrated [36]. A similar

situation is also found in the continuum when one considers

nonlocal pseudopotentials [11]. More recently, functionals of

the single-particle density matrix ρ(�r,�r ′) have been proposed

in order to study problems with local potentials v(�r). Even
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though this is not required by the HK theorem, an improved

performance is expected [12–19].

As in conventional DFT, the central challenge in LDFT is to

find accurate simple approximations to the correlation-energy

functional W [γ ]. In early studies, W [γ ] has been described

by using the Hubbard dimer as a reference system and

by taking advantage of the scaling properties of W under

the assumption of an homogeneous charge distribution γii

[44–47]. Although the scaling ideas have been extended

to bipartite lattices [48,49], the latter assumption appears

as a limitation, since it precludes applications to problems

lacking translational symmetry (e.g., finite clusters, surfaces,

disordered systems, etc.). It is the main purpose of the present

paper to introduce a local formulation of the interaction energy

functional W [γ ], which can be applied to general models

having on-site interactions by keeping the advantages and

simplicity of the scaling approach. In order to quantify the

performance of the method, we apply it to homogeneous and

ionic Hubbard models testing its accuracy by comparison with

various alternative approaches.

The remainder of the paper is organized as follows. In Sec. II

the basic principles of the density functional theory of lattice

models are recalled. The interaction energy of Hubbard-like

models is expressed as a sum of local contributions, which

are functionals of the single-particle density matrix γ . The

self-consistent equations which implement the variational

principle and give access to the ground-state properties

are reproduced. In Sec. II C we propose a simple iterative

algorithm in order to solve the LDFT equations. This numerical

procedure, to be used in our calculations, can also be applied

straightforwardly to density-matrix functional theories in the

continuum [11]. Section III introduces a simple semilocal

scaling approximation to W [γ ] of the ionic Hubbard model.

This functional is then used to determine the ground-state

kinetic and Coulomb energies, interatomic charge transfers,

local magnetic moments, and charge gaps of one- and two-

dimensional systems. In Sec. IV we focus on homogeneous

systems and compare our results with those obtained using

the density-matrix renormalization group (DMRG), quantum

Monte Carlo (QMC), and slave-boson mean-field (SBMF)

approaches [50–52]. The case of inhomogeneous Coulomb

repulsions is discussed in Sec. V. Finally, in Sec. VI we inves-

tigate the crossover from band to Mott insulators in the ionic

Hubbard model. Goals and limitations of the functional are

discussed by comparison with DMRG and QMC calculations.

II. DENSITY-MATRIX FUNCTIONAL

THEORY ON A LATTICE

In the following we recall the basics of LDFT in the context

of the inhomogeneous Hubbard model, giving emphasis to the

local formulation of the interaction-energy functional and to

the variational equations from which the ground-state behavior

is obtained. A general discussion of the density-functional

theory of lattice models and minimal basis Hamiltonians may

be found in Ref. [53].

The ionic Hubbard model is given by [28]

Ĥ =
∑

i,σ

εi n̂iσ +
∑

i,j,σ

tij ĉ
†
iσ ĉjσ +

∑

i

Ui n̂i↓n̂i↑ , (1)

where εi denotes the energy level at site i, tij the nearest

neighbor (NN) hopping integrals, and Ui the local Coulomb

repulsions. As usual, the operator ĉ
†
iσ (ĉiσ ) creates (annihilates)

a spin-σ electron at site i. Thus, n̂iσ = c
†
iσ ciσ is the corre-

sponding number operator. The hopping integrals tij define

the dimensionality and structure of the lattice, as well as the

range of the single-particle hybridizations. The energy levels

εi describe either the distribution of different elements in the

lattice or the effects of inhomogeneous external fields.

The single-particle model parameters εi and tij specify

the system under study and therefore play the role given in

conventional DFT to the external potential vext(�r). They enter

the Hamiltonian Ĥ linearly through a matrix product with the

operators c
†
iσ cjσ . Therefore, the single-particle density matrix

γijσ = 〈�|ĉ†iσ ĉjσ |�〉 (2)

between the lattice sites i and j may be used to replace the wave

function |�〉 as the basic variable of the many-body problem.

Indeed, a lattice version of the Hohenberg-Kohn theorem

has been established, which explicitly demonstrates that the

mapping between |�〉 and the single-particle density matrix

γ is injective and therefore invertible [36]. Consequently, one

may regard the ground-state properties as functionals of γijσ .

The variational principle implies that the energy Egs and

single-particle density-matrix γgs of the ground state can be

obtained by minimizing the energy functional

E[γ ] = K[γ ] + W [γ ] (3)

with respect to γ = ∑

σ γσ . Knowing the kinetic energy

K[γ ] =
∑

i,σ

εi γiiσ +
∑

ij,σ

tij γijσ (4)

explicitly, the challenge in LDFT consists in obtaining accurate

approximations to the interaction energy W [γ ]. This can be

formally expressed by using Levy-Lieb’s constrained search

as

W [γ ] = min
�→γ

[

∑

i

Ui 〈�|n̂i↑n̂i↓|�〉
]

, (5)

where the minimization runs over all many-body states |�〉
yielding the density matrix γ according to Eq. (2). W [γ ]

thus represents the minimum value of the interaction energy,

compatible with a given charge distribution and electron

delocalization throughout the lattice.

A. Local expansion of the interaction energy

of the Hubbard model

Denoting by |�[γ ]〉 the many-body state which actually

minimizes the Coulomb repulsion W in Eq. (5) for the given

γ , we may write

W [γ ] =
∑

i

Ui 〈�[γ ]|n̂i↑n̂i↓|�[γ ]〉 . (6)

Notice that |�[γ ]〉 is a universal functional of γ , which

depends on all Ui and on band filling but not on the structure

or dimensionality of the lattice.

In order to split W [γ ] as a sum of local contributions,

it is useful to regard it as a function of the local Coulomb
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repulsions �U = (U1,U2, . . . UN ) at the different lattice sites for

fixed γ . From this perspective, W is a positive homogeneous

function of degree one, i.e., W [γ,α �U ] = αW [γ, �U ] for all

α > 0. Applying Euler’s theorem we have

W [γ ] =
∑

i

Ui

∂W

∂Ui

. (7)

Since W is stationary with respect to variations of |�[γ ]〉 for

the given γ and �U , we conclude that

∂W

∂Ui

= 〈�[γ ]| n̂i↑n̂i↓ |�[γ ]〉 = ωi[γ ] (8)

is given by the local average number of double occupations

ωi[γ ] at site i in the optimal state |�[γ ]〉. Consequently, the

interaction energy functional

W [γ ] =
∑

i

Ui ωi[γ ] (9)

can be expressed as the sum of local contributions. A further

consequence of Euler’s theorem is that ωi is invariant upon a

uniform scaling of all Coulomb integrals, i.e., ωi[γ,α �U ] =
ωi[γ, �U ] for α > 0. The latter follows more directly from

Eqs. (5) and (8) by noting that |�[γ ]〉 is not affected by

scaling �U . These are fundamental properties to be fulfilled

by any approximation. Notice, however, that ωi depends in

general on all γijσ , so that the functional remains nonlocal, as

physically expected.

B. Variational equations of lattice density-functional theory

The density matrix γ is characterized by its eigenvectors, or

natural spin orbitals |kσ 〉, and by its eigenvalues, or occupation

numbers ηkσ . The Hermiticity of γ implies that the kets

|kσ 〉 form an orthonormal single-particle basis, while the

representability of γ requires 0 � ηkσ � 1 [45]. Denoting by

uikσ = 〈i|kσ 〉 the component of |kσ 〉 at site i we have

γijσ =
N

∑

k=1

uikσ ηkσ u∗
jkσ . (10)

The extrema of E[γ ], subject to the constraints on normaliza-

tion and number of particles, are the stationary points of the

Lagrange function

L[γ ] = E[γ ] − μ
∑

σ

(

∑

k

ηkσ − Nσ

)

−
∑

k,σ

εkσ

(

∑

i

|uikσ |2 − 1

)

, (11)

where μ and εkσ are Lagrange multipliers, and Nσ is

the number of electrons with spin σ (N = N↑ + N↓) [45].

Variation with respect to the natural orbitals yields

∑

i

(

∂E[γ ]

∂γijσ

ηkσ − εkσ δij

)

uikσ = 0 (12)

for all j , k, and σ , where we have used that

∂E[γ ]

∂u∗
jkσ

=
∑

i

∂E[γ ]

∂γijσ

∂γijσ

∂u∗
jkσ

=
∑

i

∂E[γ ]

∂γijσ

uikσ ηkσ .

This defines the hermitic eigenvalue problem

∑

i

∂E[γ ]

∂γijσ

uikσ = λkσ ujkσ , (13)

with λkσ = εkσ /ηkσ for ηkσ 
= 0 [45]. Vanishing ηkσ are

irrelevant here, since in this case γ is independent of ujkσ .

The minimization with respect to the occupation numbers

gives

∂L

∂ηkσ

=
∑

i,j

∂E[γ ]

∂γijσ

uikσ u∗
jkσ − μ = λkσ − μ = 0 , (14)

where the second equality follows from Eq. (13). At the

minimum we must thus have λkσ < μ for ηkσ = 1, λkσ > μ

for ηkσ = 0, and

λkσ = ∂E

∂ηkσ

= μ (15)

for all natural orbitals having nontrivial fractional occupa-

tions 0 < ηkσ < 1 [45]. Self-consistency is implied by the

dependence of ∂W/∂γijσ and λkσ on ηkσ and uikσ . Analogous

relations have been derived in the context of density-matrix

functional theory in the continuum [11]. Notice, however,

the contrast with the usually assumed noninteracting v rep-

resentability, which implies integer occupations [2] (see also

Refs. [4,54]). The importance of fractional occupations to

the description of electron correlations within density-matrix

functional theory has already been stressed by Gilbert [11].

As an example in the context of the Hubbard model,

Fig. 1 shows the ground-state occupation numbers ηkσ in

a periodic 1D ring as a function of the interaction strength

U/t . These results were obtained by performing exact Lanczos

diagonalizations for Na = 14 sites and half-band filling n =
N/Na = 1 [55]. Each curve corresponds to a different value

of k = (2π/a)(ν/Na) with integer ν (0 � |ν| � 7). For fixed

U/t , ηkσ decreases with increasing |k|, since small |k| values

are favored by the kinetic energy (t < 0). As U/t increases,

0.0 0.2 0.4 0.6 0.8 1.0
U/(U+4t)

0.2

0.4

0.6

0.8

1.0

η
k

1D  
N

a
=14

n=1.0

   6π/7

   4π/7

   5π/7

   2π/7

   3π/7

π/7

k = 0

π

FIG. 1. Exact occupation numbers ηk↑ = ηk↓ of the natural

orbitals |kσ 〉 in the ground state of a periodic Hubbard ring, having

Na = 14 sites, homogeneous energy levels εi = 0, and half-band

filling n = 1, as a function of the interaction strength U/t . The

numbers indicate the value of |k| corresponding to each curve

(ηkσ = η−kσ ).
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large |k| antibonding orbitals are occupied at the expense of

small |k| bonding orbitals in order to reduce charge fluctuations

and the average Coulomb repulsion energy. For n = 1, all

occupations are equal in the strongly-correlated localized limit

(U/t → +∞). Notice that all the occupations are fractional,

except for U = 0. Thus, Eq. (15) is the relevant case for

realistic applications of LDFT.

C. Optimizing correlated fractional occupations with an

auxiliary noninteracting finite-temperature system

Before discussing the scaling approximation to ωi[γ ] of

the ionic Hubbard model, we describe in this section an

iterative algorithm in order to solve the LDFT equations, which

extends some ideas of the Kohn and Sham approach [2] to the

case of fractional occupations. As we shall see, the method

could also be applied to reduced-density-matrix functional

theories in the continuum. Our goal is to find an auxiliary

noninteracting N -electron system, whose equilibrium natural-

orbital occupations ηa
kσ are the same as those of the exact

interacting ground state. Since the latter are always fractional,

the auxiliary system must be regarded at some fictitious finite

temperature Ta , even though the exact solution concerns the

ground state. Given a basis of natural orbitals |kσ 〉, the

noninteracting system is characterized by the energy levels

εa
kσ . At equilibrium its occupations minimize the free energy

Fa =
∑

kσ

{

ηkσ εa
kσ + Ta[ηkσ ln(ηkσ ) + (1 − ηkσ ) ln(1 − ηkσ )]

}

(16)

for fixed εa
kσ , subject to the constraint on the total number

of particles. The minimum is of course given by the Fermi

distribution

ηa
kσ = 1

e(εa
kσ −μ)/Ta + 1

. (17)

In order that the auxiliary system leads us to the exact ground-

state occupations, we request that the gradients of Fa and E

coincide: ∂Fa/∂ηkσ = ∂E/∂ηkσ . This provides us with the

explicit form

εa
kσ = ∂E

∂ηkσ

+ Ta ln

(

1 − ηkσ

ηkσ

)

(18)

of the auxiliary energy levels as a function of the occupations

ηkσ . It is easy to verify, by replacing Eq. (18) in (17), that

the self-consistency constraint ηa
kσ = ηkσ for all kσ (Ta 
= 0)

is equivalent to the extremal condition ∂E/∂ηkσ = μ for

all kσ , where the chemical potential μ corresponds to the

total number of particles N (i.e.,
∑

kσ ηkσ = N ). In this

way, the optimal occupations for fixed natural orbitals |kσ 〉
are obtained, as stated in Eq. (15). This shows how the

exact fractional occupations of the correlated problem can

be obtained as the finite-temperature equilibrium values of an

effective noninteracting system.

The previous reformulation suggests the following double-

loop iterative scheme for solving the LDFT equations: (i) Find

a reasonable starting guess for uikσ and ηkσ , for example,

from the ground state of the noninteracting Hamiltonian

(Ui = 0) which has integer occupations but respects the lattice

symmetry. (ii) Optimize the orbital occupations ηkσ by keeping

the current uikσ fixed. To this aim, determine the auxiliary

single-particle levels εa
kσ from Eq. (18), obtain ηa

kσ from (17),

and update with them ηkσ . Iterate until convergence is achieved

(i.e., ηa
kσ = ηkσ ). (iii) Obtain γijσ and ∂E[γ ]/∂γijσ for the

current uikσ and the self-consistent ηkσ from (ii). Find new

natural orbital u′
ikσ by solving the eigenvalue problem (13).

(iv) Compare u′
ikσ with the previous uikσ and exit if conver-

gence has been achieved (i.e., u′
ikσ = uikσ ). Otherwise return

to (ii) after having updated uikσ with u′
ikσ .

This simple iterative algorithm proves to be quite stable

and effective, at least for the applications and functionals

considered in this paper. Nevertheless, extreme values of Ta

are to be avoided, since they result either in steplike or in very

flat Fermi functions. Setting simply Ta ≃ t is already a good

choice in most cases. Moreover, Ta may be tuned to some

extent, depending on the model, band filling n, and interaction

strength U/t , in order to improve the numerical stability and

reduce the number of iterations [56].

III. SEMILOCAL SCALING APPROXIMATION TO W [γ ]

The purpose of this section is to derive a semilocal

approximation to the interaction-energy functional W , which

is based on the local expansion (9) and can be applied to general

Hubbard-like models. For simplicity we restrict ourselves to

non-spin-polarized systems by assuming γij↑ = γij↓ = γij/2

throughout. Given a lattice structure, band filling n, and

charge distribution γii , the ground state γ
gs

ij is bounded by

the system-specific v representability domain γ ∞
ij � γij � γ 0

ij

for i 
= j . The lower bounds γ ∞
ij represent the maximum

hopping rates or bond orders, which are compatible with

the minimum average number of double occupations, and

the upper bounds γ 0
ij represent the largest hopping rates

without any restrictions. The former are reached in the strongly

correlated limit, where the double occupations ωi = ω∞
i are

minimal, while the latter correspond to the noncorrelated limit,

where the double occupations ωi = ω0
i are maximal. In order

to derive transferable functional relations between ωi and γij ,

it is useful to scale these properties within the domain of v

representability of γ . One therefore considers dimensionless

site-dependent quantities, which locally measure the degree

of electron delocalization and the average level of double

occupations.

To be explicit, we first focus on the half-filled Hubbard

dimer. The average local number of double occupations

according to Eqs. (5) and (9) is given by

ωi = 1

2

⎛

⎝γii − γ 2
12

2

1 +
√

γii(2 − γii) − γ 2
12

(1 − γii)2 + γ 2
12

⎞

⎠ (19)

for Ui > 0. The upper and lower bounds on the ground state

γ12 are obtained from the charge distribution γii as

γ 0
12 =

√

γii(2 − γii) (20)

and

γ ∞
12 =

{
√

2γii(1 − γii) for γii � 1√
2(γii − 1)(2 − γii) for γii � 1 ,

(21)
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where 0 � γii � 2. Introducing the degree of electron delo-

calization

g2
i = γ12

2 − γ ∞
12

2

γ 0
12

2 − γ ∞
12

2
, (22)

and the level of double occupations

di = ωi − ω∞
i

ω0
i − ω∞

i

, (23)

it is easy to see that Eq. (19) is equivalent to

di =

(

1 −
√

1 − g2
i

)2

1 − δi

√

1 − g2
i

, (24)

where δi = min{γii,2−γii} is the local number of carriers

(electrons or holes). Notice that Eq. (24) relates di and gi ,

for all δi , without involving any system-specific parameters.

It is therefore reasonable to expect that this relation can be

transferred with good accuracy to arbitrary systems, once a

suitable general form for gi is obtained.

In order to quantify the degree of charge fluctuations from

a local perspective, we consider

Ŵ2
i = 2

γii(2 − γii)

∑

j 
=i,σ

|γijσ |2 . (25)

A similar expression has been proposed in Refs. [36,37]

in the context of the interaction-energy functional of the

single-impurity Anderson model. Ŵ2
i is proportional to the

square of the norm of the column vector γijσ , for fixed i,

excluding the diagonal terms γiiσ . It represents the degree of

electron delocalization around the lattice site i for the given

γij . Although specific to the site i, Ŵ2
i should be regarded as a

semilocal property, since it carries mostly information on the

immediate environment of each atom. Numerical calculations

show that the ground-state value of Ŵi is dominated by the

contributions of the sites j for which tij 
= 0. By definition, Ŵ2
i

is invariant under unitary transformations among the orbitals

j 
= i. Moreover, one can show that 0 � Ŵ2
i � 1 [36,37].

Thus, Ŵi reaches its maximum Ŵ0
i

2 = 1 when the system is

noninteracting and its minimum when there is no electron

delocalization at all (i.e., γij = 0 for all i 
= j ). It should

be however noted, that the electrons are not fully localized

in the ground state away from half-band filling, even in

the strongly interacting limit (U → ∞). In general we have

Ŵi � Ŵ∞
i , where Ŵ∞

i is obtained by replacing γ ∞
ij in Eq. (25).

This corresponds to the minimum average number of double

occupations for the given charge distribution γii .

Scaling Ŵ2
i within the domain of v representability of γij

we obtain

g2
i = Ŵ2

i − Ŵ∞
i

2

Ŵ0
i

2 − Ŵ∞
i

2
. (26)

The present generalized form of g2
i applies to all sites i,

irrespectively of their specific local environment. It reduces

to Eq. (22) in the case of a dimer. Using the dimer expression

(24) for di with the generalized form of g2
i given by Eq. (26),

we obtain a simple universal semilocal scaling approximation

(SLSA) to the interaction-energy functional of Hubbard-like

models. The local contributions entering Eq. (9) are given by

ωi = ω∞
i + di

(

ω0
i − ω∞

i

)

, (27)

where ω0
i and ω∞

i are simple functions of γii . In most

cases, ω0
i = γii,↑γii,↓ = γ 2

ii/4 and ω∞
i = max{γii − 1,0}. In

the following sections Eqs. (24)–(27) will be applied to both

homogeneous and inhomogeneous models.

The accuracy of the present semilocal approximation to W

relies to a large extent on the transferability of the relation (24),

which was originally derived from the exact dimer functional.

In Fig. 2 we show exact results for di as a function of g2
i .

These were obtained by performing Lanczos diagonalizations
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FIG. 2. Average level of double occupations di as a function of the

degree of electron delocalization g2
i for bipartite rings having Na =

4–14 atoms, band-filling n = 1, and different local carrier densities

δi [see Eqs. (23) and (26)]. The symbols are exact results obtained

from Lanczos diagonalizations and the red dashed curves correspond

to the scaled semilocal functional given by Eqs. (24)–(26).
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Ref. 44

1D

FIG. 3. Average level of double occupations di as a function of

the degree of electron delocalization g2
i in homogeneous Hubbard

rings (εi = 0) having Na = 10 sites and different band fillings n. The

symbols show exact Lanczos results, the dashed red curves the present

semilocal scaling approximation [Eqs. (24)–(26)], and the blue plus

signs the Ansatz proposed in Ref. [44].

[55] in a variety of one-dimensional half-filled Hubbard rings

(n = 1) having different numbers of atoms Na and different

local carrier densities δi . One observes that the dependences

of di on g2
i are all remarkably similar and that the scaling

approximation based on the dimer exact solution (dashed red

curves) is quite accurate in general. The largest deviations

are found close to the homogeneous case (δi = 1). This

demonstrates the pertinence of the scaling approach and lets

us expect a good accuracy in the applications.
A further interesting feature of the present approach is

that it takes explicitly into account the dependence of ωi

on the charge density distribution γii , thereby respecting the
electron-hole symmetry. This goes beyond previous scaling
approximations, in which the dependence on gi was assumed
to be the same for all carrier densities [44,46]. In order to
quantify the importance of this contribution, Fig. 3 shows
di as a function of g2

i for an homogeneous Hubbard ring
(εi = 0) having Na = 10 sites and different band fillings n. The
symbols are exact numerical results obtained from Lanczos
diagonalization, while the dashed red curves correspond to
Eq. (24). One observes that the dependence on carrier density is
significant and that the present functional is able to reproduce it
quite correctly. The accuracy is thereby improved with respect
to earlier approximations (blue plus signs) [44,46], to which
the present approach reduces for γii = 1.

IV. HOMOGENEOUS SYSTEMS

As a first application we consider the one-dimensional (1D)

chain and the two-dimensional (2D) square lattice with nearest

neighbor hoppings and a homogeneous charge distribution at

half-band filling (εi = 0 for all i). In particular we would like to

compare the present semilocal functional with highly-accurate

numerical methods, such as density-matrix renormalization

group (DMRG) in one dimension [57] and quantum Monte

Carlo (QMC) in two dimensions [52]. In addition, it is

interesting to analyze the differences between our approach

and other approximate methods, such as slave-boson mean-

field (SBMF) [51] which also aim to describe the interplay

between electron localization and charge fluctuations in a

simple way.

For a homogeneous lattice, having NN hoppings t , coor-

dination number z, and local repulsions U , the ground-state

energy of the Hubbard model can be written as

Egs

Na

= −zqt γ 0
12 + Uω , (28)

where γ 0
12 is the NN density-matrix element in the uncor-

related limit (U = 0), q the renormalization factor yielding

the correlated hopping rate γ12 = qγ 0
12, and ω = 〈ni↑ni↓〉

the average number of double occupations at any site i.

Alternatively one could attach the factor q, which describes

the correlation-induced reduction of the kinetic energy, to an

effective hopping integral t ′ = qt , as it usually done in the

SBMF approach [51]. In order to determine q within LDFT

it is convenient to approximate g2
i ≃ (γ12/γ

0
12)2, which can be

shown to be quite accurate for the ground state [48]. In this

way the SLSA functional yields

q = 1
√

1 + (2U/D)2
, (29)

where D = 8ztγ 0
12 > 0 is proportional to the kinetic energy of

the uncorrelated system, and

ω = 1

4

(

1 −
√

1 − 1

1 + (2U/D)2

)

. (30)

On the other hand, in the spin-restricted slave-boson (SB)

saddle-point approximation [51] one obtains

qSB = 1 −
(

U

D

)2

(31)

and

ωSB = 1
4
(1 − U/D) . (32)

Significant differences between the two approaches are found

even in the weakly correlated limit. Since q = 1 − 2(U/D)2 +
O(U/D)4 and ω = (1 − 2|U/D|)/4 + O(|U/D|)3 for small

U/t > 0 [see Eqs. (29) and (30)] the SLSA yields a smaller

renormalization of the hopping rate q and a larger average

number of local double occupations ω than SBMF. Moreover,

for large U/t , the SB saddle-point approximation predicts that

both qSB and ωSB vanish when U reaches the critical value

Uc = D [51]. This implies full electron localization and has

been interpreted as a Mott transition (t ′ = qt = 0 and ω = 0).

In contrast, in LDFT q and the kinetic energy are never zero

for finite values of U/t , in agreement with the exact solution.

This will be discussed in more detail in the following section.

In order to compare the different methods and to contrast

them with highly accurate numerical calculations, we show

in Fig. 4 the ratio EK/E0
K between the correlated and

uncorrelated kinetic energies of homogeneous 1D and 2D

lattices as a function of the Coulomb repulsion strength U/t .

The results show that the SLSA yields sound results for all

U/t , while spin-restricted SBMF fails for large U/t . However,

the accuracy of SBMF is significantly improved if broken-

symmetry spin-polarized solutions are allowed, particularly

since the blocking of q at large U/t disappears [59]. In
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FIG. 4. Renormalization of the kinetic energy EK/E0
K in the

ground state of one-dimensional (1D, black curves) and two-

dimensional (2D square, red curves) homogeneous Hubbard models.

Lattice density functional theory in the semilocal scaling approx-

imation (SLSA, full curves) is compared with slave-boson mean-

field (SBMF, dashed curves), density matrix renormalization group

(DMRG, crosses [57]) and quantum Monte Carlo (QMC, squares

[52]). The inset highlights the weakly correlated limit.

the weakly correlated limit one observes that LDFT-SLSA

underestimates the kinetic energy renormalization, while

SBMF overestimates it (see inset). This can be partly explained

in terms of the lowest order expansion of q as a function of U/t .

Moreover, higher-order contributions are also important, since

the SLSA functional depends explicitly on the renormalization

of the hopping rate, while in SBMF the average number of

double occupations depends only on the ratio U/D. Finally,

it should be recalled that our semilocal interaction-energy

functional W coincides with the one introduced in Ref. [44]

for the homogeneous models considered in this section. This is

no longer the case for the inhomogeneous situations discussed

in the following.

V. INHOMOGENEOUS COULOMB REPULSIONS

In Sec. II A a local formulation of the interaction-energy

functional W [γ ] of the Hubbard model has been introduced,

which can be applied to arbitrary on-site interactions [see

Eqs. (6)–(9)]. An explicit semilocal scaling approximation

(SLSA) to W , or equivalently to the average number of double

occupations ωi[γ ] at site i, has been proposed in Sec. III.

In order to quantify the performance of the functional in

the case of inhomogeneous interactions, we consider a half-

filled infinite 1D chain having alternating Coulomb integrals

U1 = U − �U/2 on sublattice S1 and U2 = U + �U/2 on

sublattice S2. In Fig. 5 the ground-state properties obtained

with the present semilocal Ansatz are shown for U/t = 4 and

|�U |/t � 2U/t = 8. This covers the range 0 � U1,U2 � 8t

which includes the crossover from weak to strong correlations

at the two sublattices. Particularly interesting are intermediate

values of Ui , where the accuracy of scaling approximations

to LDFT is known to be most delicate [47,48]. The results of

precise numerical DMRG calculations are also given for the

sake of comparison [57].
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(b)
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i =1i =2

i =1i =2

FIG. 5. Ground-state properties of the 1D Hubbard model with

alternating Coulomb repulsions U1 = U − �U/2 and U2 = U +
�U/2 as a function of �U = U2 − U1 for U/t = 4 and band-filling

n = 1 [see subfigure (a)]. Results are given for (b) the ground state

energy Egs , (c) the NN density-matrix element γ12, (d) the average

occupation γii and (e) the average number of double occupations

ωi at the two sublattices. The curves refer to LDFT with the

present semilocal scaling approximation (SLSA), while the symbols

correspond to DMRG calculations [57].

One observes that Egs decreases and that γ12 increases

quadratically as |�U | increases. This can be qualitatively

understood as the result of an enhancement of the effective

exchange coupling between the localized atomic spins in the

strongly correlated limit. Indeed, for Ui/t ≫ 1, the half-filled

Hubbard model on a bipartite lattice with interactions U1 and

U2 can be mapped to an effective spin-1/2 Heisenberg model,

which includes NN exchange interactions J = 2t2(1/U1 +
1/U2) [60]. For not too large �U one then has J ≃
(4t2/U )[1 + (�U/2U )2 + O(�U/U )4]. Thus, increasing the

inhomogeneity enhances the exchange coupling J and lowers

the ground-state energy. A similar argument explains the

enhancement of the density matrix element γ12 with increasing

�U . However, the strong coupling approximation breaks down

when one of the Ui is comparable or smaller than t . In Fig. 5 this

corresponds to |�U |/t � 6. Here one observes a maximum in

γ12, which reflects a change of behavior leading eventually to

electron localization and vanishing γ12 in the limit of �U ≫
U . Notice that the proposed semilocal functional reproduces

the nearly exact numerical DMRG results remarkably well.

The same holds for the charge distribution γii and the average
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number of double occupations ωi at the two sublattices.

Here we observe a charge transfer towards the sublattice

having the smallest Ui , as well as small reduction (important

enhancement) of ωi at the sites having a higher (lower) Ui . A

similar very good accuracy of the SLSA has been also found

in finite 1D and 2D clusters with periodic boundary conditions

by comparison with exact Lanczos diagonalizations.

VI. CROSSOVER FROM BAND TO MOTT INSULATORS

In this section we consider the bipartite ionic Hubbard

model given by

Ĥ =
∑

i,σ

εi n̂iσ + t
∑

〈i,j〉σ
ĉ
†
iσ ĉjσ + U

∑

i

n̂i↓n̂i↑ , (33)

where εi = ε/2 > 0 (εi = −ε/2) for i belonging to the

sublattice S1 (S2). Considerable efforts have already been

devoted to analyze the physics of this Hamiltonian, particularly

at half-band filling, since for finite bipartite potential ε it

undergoes a transition from a band insulator to a Mott insulator

as U/t increases. For some particular systems this transition

involves crossing an intermediate metallic phase. Examples

of this situation are the 2D square lattice, as shown by

using QMC methods [61], or the 2D Bethe lattice, which

has been investigated using dynamical mean-field theory [62].

One-dimensional bipartite systems with NN hopping do not

present a metallic phase in generalized ionic Hubbard models

of the form ABn [63,64]. This phase is expected only when

next NN hoppings are included [65].

In Figs. 6 and 7 results are given for the 1D chain and

the 2D square lattice as a function of the Coulomb repulsion

strength U/t . Representative values of the bipartite potential

ε are considered at half-band filling n = 1. LDFT with the

semilocal scaling functional is compared with our DMRG

calculations on the 1D chain [57], and with variational Monte

Carlo (VMC) and QMC results on the 2D lattice reported in

Refs. [66,67]. In the 1D case the LDFT-SLSA results are in

very good agreement with the DMRG ones in the whole range

of parameters U/t and ε. In the 2D case, the quantitative

comparisons with VMC and QMC concern only Egs for the

homogeneous case (ε = 0). Although this is usually the most

difficult case, the accuracy of the SLSA is also very satisfac-

tory. This is remarkable taking into account that performing

such accurate many-body simulations is quite involved.

The dependence of the ground-state properties on U/t

is qualitatively similar to the one observed in 1D rings

having Na = 14 sites [49]. An advantage of the present local

formulation is that it allows us to discern the average number of

double occupations ωi at different sublattices [see Figs. 6(d)

and 7(d)]. This is an improvement with respect to previous

global approaches. For finite ε an interesting redistribution

of the double occupations ωi is observed as a function of

U/t . On the sublattice S2, having the lower energy level

ε2 = −ε/2 < 0, ω2 decreases with increasing U/t in order

to lower the Coulomb energy. At the same time the electron

density is redistributed. The charge transfer �n becomes

smaller, since an homogeneous charge distribution reduces

the average number of double occupations. See subfigures (b)

and (d) of Figs. 6 and 7, keeping in mind that ω2 has been

plotted along the negative axis for the sake of compactness.
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FIG. 6. Ground-state properties of 1D Hubbard chains at half-

band filling n = 1 as a function of Coulomb repulsion strength U/t

for representative bipartite potentials ε [see Eq. (33)]. Results are

given for (a) the ground states energy Egs , (b) the charge transfer

�n = γ22 − γ11 between the two sublattices, (c) the NN density-

matrix elements γ12, (d) the average number of double occupations

ω1 on sublattice S1 having ε1 = ε/2 > 0 (positive values), −ω2

corresponding to sublattice S2 which has ε2 = −ε/2 < 0 (negative

values), and finally (e) the local spin momentum S2
i . Solid curves

refer to LDFT in the semilocal scaling approximation (SLSA), while

the symbols to DMRG [57].

Notice that the kinetic energy is also lowered by increasing

γ12 [t < 0, see (c)]. On the less favorable sublattice S1, ω1

shows a nonmonotonous dependence on U/t . Starting from
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FIG. 7. Lattice density-functional theory results for the ground-

state properties of the ionic Hubbard model on the 2D square lattice

as in Fig. 6. In the inset of (a) LDFT-SLSA (full curve) is compared

to quantum Monte Carlo simulations (red plus signs, Ref. [67]) and

variational Monte Carlo simulations (blue crosses, Ref. [66]).

the uncorrelated limit, ω1 first increases with increasing U/t

as a result of the increase in local density γ11 (i.e., the decrease

of �n). However, when U/t becomes more important, charge

fluctuations and double occupations start to be suppressed also

on S1, already before a nearly uniform charge distribution is

established [see (b)]. This leads to a decrease of ω1, which

thus shows a maximum at a finite U/t .

The local magnetic moments S2
i = 3

4
〈(n̂i↑ − n̂i↓)2〉 =

3
4
(γii − 2〈n̂i↑n̂i↓〉) at site i, shown in Figs. 6(e) and 7(e),

0
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FIG. 8. Charge gap �Ec in the half-filled ionic Hubbard model

for (a) the 1D chain and (b) the 2D square lattice as a function

of the Coulomb repulsion strength U/t . The curves are obtained

by using LDFT with the semilocal scaling functional (SLSA), for

representative values of the bipartite potential ε/t as indicated. In

the 1D case comparison is made with DMRG calculations (symbols

[57]) and the Bethe ansatz solution (ε = 0, dash-dotted curve).

provide a complementary perspective to the electronic cor-

relations as a function of ε/t and U/t . In the case of half-band

filling, Si is the same on the two sublattices due to electron-

hole symmetry, even in the presence of charge transfer.

The proposed functional fulfills this symmetry condition

strictly. Indeed, using Eqs. (24) and (27) for n = 1, one

obtains ω2 − ω1 = ω∞
2 − ω∞

1 and then S2
2 = 3

4
(γ22 − 2ω2) =

3
4
(γ11 − 2ω1) = S2

1 . In the uncorrelated limit we have n̂i↑n̂i↓ =
γ 2

ii/4 and therefore S2
i depends only on the density distribution

γii . In particular at half-band filling, S2
i decreases with

increasing ε/t , from S2
i = 3/8 for ε/t = 0, to S2

i = 0 for

ε/t = ∞. In the latter case all electrons are paired on one

sublattice. As U/t increases, the charge imbalance is reduced

and S2
i increases for n = 1 [see Figs. 6(e) and 7(e)]. Finally,

for U ≫ t and ε, the largest possible S2
i = 3/4 is obtained,

since all sites are then singly occupied regardless of ε/t .

In Fig. 8 the charge gap

�Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne) (34)

is shown as a function of U/t in half-filled 1D and 2D lattices

for representative energy-level shifts ε/t . It is well known that

no metal-insulator transition occurs at a finite value of U/t in

one- and two-dimensional homogeneous bipartite lattices (ε =
0). In fact, �Ec > 0 already for arbitrary small U/t . Only in
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the absence of interaction and inhomogeneity (U = ε = 0) the

system is metallic (�Ec = 0). On the one side, for U = 0, any

finite ε/t opens a gap in the one-particle spectrum of bipartite

lattices, which behave as a conventional band insulator (n =
1). On the other side, in the strongly correlated limit (U ≫ t

and ε) �Ec increases linearly with U/t for all ε. In this case

all sites are singly occupied (large U/t and n = 1). Therefore,

adding an electron inevitably implies an additional double

occupation, while removing one does not. The gap is thus a

direct consequence of the local interactions, and the system is

said to be a Mott insulator. Finally, when U and ε are both

finite, a transition or crossover from band to Mott regimes

and a nonmonotonous dependence of �Ec are observed as a

function of U/t .

In the absence of interactions we have �Ec = ε for n = 1,

both in 1D and 2D bipartite lattices. Increasing U/t results

in a reduction of �Ec, which initially depends linearly on

U , approximately as �Ec ∼ ε − U for not too small ε (see

Fig. 8). This can be understood by noting that the Coulomb

repulsion on sublattice S2 compensates the single-particle

energy difference ε between the two sublattices, rendering

doubly occupied S2 sites and singly-occupied S1 sites closer

in energy. In this way, as U increases, the delocalization of

the γ11 electrons in S1, as well as the γ22 − 1 extra electrons

on S2, is favored (γ11 < γ22 for ε > 0). Consequently, the

energy difference between adding and removing an electron

decreases until U is of the order of ε. A minimum in �Ec

is reached for U/t somewhat larger but of the order of

ε/t , since for U > ε the tendency inverts itself. Indeed, for

U beyond the minimum, �Ec grows monotonously as the

strongly correlated regime is approached. Notice that the

transition region, where �Ec remains close to its minimum

value, is significantly broader in two dimensions than in one

dimension. This can be ascribed to the stronger kinetic energy

and bandwidth in the former. For these intermediate values

of U/t the system is nearly metallic, since the charge gap

is small. In fact, QMC simulations predicts a metallic phase

in two dimensions [61], which we do not observe with the

present approximated functional. Nevertheless, the minimum

of the charge gap is a useful indication of a transition or

crossover from band to Mott insulator. Finally, when the

Coulomb repulsion energy becomes larger than the kinetic and

charge-transfer energies (U ≫ t and ε) the electrons become

localized on both sublattices. Thus, �Ec increases linearly

with U/t as in the homogeneous case.

Comparing the present LDFT-SLSA results in one di-

mension with the Bethe-Ansatz solution (ε = 0) and DMRG

calculations one observes a very good quantitative agreement,

except in the admittedly most interesting metallic or nearly

metallic regime, where �Ec is significantly overestimated.

Even in the homogeneous case, where the gap correctly van-

ishes at U = 0, the scaling functional predicts �Ec ∝ (U/t)2,

in contrast to the exact exponential dependence obtained with

the Bethe ansatz [29,30] (see Fig. 8). For ε/t 
= 0, the critical

value Uc of the Coulomb repulsion, for which �Ec is minimal,

is somewhat underestimated with our functional. For example,

for ε/t = 4 we obtain ULDFT
c /t ≃ 5.2 while UDMRG

c /t ≃ 5.5.

However, the most important difference between the SLSA

and DMRG results is the overestimation of the gap near the

critical point. This is consistent with the fact that no metallic

phase is found between the band- and Mott-insulator phases

in two dimensions, in contrast to QMC simulations. The

overestimation of �Ec close to the metallic phases is probably

a consequence of extracting the functional dependence of

ωi[γ ] from the dimer or, more generally, it may reflect

difficulties in describing long-range effects. The dimer, having

a discrete spectrum, shows a charge gap proportional to (U/t)2

in the weakly correlated limit. This handicaps the present

scaling approach which uses the dimer as a reference system.

In conclusion, a local formulation of the interaction-energy

functional W [γ ] of the Hubbard model has been introduced,

which can be applied to arbitrary on-site interactions. An

explicit semilocal approximation to the interaction-energy

functional W [γ ] of Hubbard-like models has been proposed

by taking advantage of its scaling behavior and combining

it with exact analytic results for the Hubbard dimer. From

a local perspective, this approach can be regarded as an

effective medium theory, since the effects of the environment

on each site i are mapped into a single additional orbital.

The contribution of site i to the interaction energy is then

calculated within this two-level system, which has the correct

charge density γii and a renormalized effective degree of

electronic delocalization g2
i . Despite its simplicity, the method

captures the main physics of the interplay between electron

delocalization, charge redistribution, and Coulomb repulsion

in the ionic Hubbard model. Important changes in the ground-

state properties are well reproduced for homogeneous and

inhomogeneous single-particle potentials and local Coulomb

interactions, including the crossover from band insulator

(charge density wave) to Mott insulator (homogeneous local-

ized charge). The calculated ground-state energy Egs, NN bond

order γ12, charge transfer between sublattices �n, correlation

energy, and local spin moments are in very good quantitative

agreement with accurate numerical and analytical solutions.

The band gap is, however, significantly overestimated in the

vicinity of the intermediate metallic or nearly metallic regime.

Further developments of the interaction-energy functional are

therefore worthwhile.

The possibility of treating inhomogeneous local interac-

tions opens the way to a number of interesting studies of the

interplay between strong and moderate local interactions in

the framework of LDFT. Using the functional proposed in this

work, one could investigate single-impurity models by taking

into account the effects of nonvanishing Coulomb repulsions in

the conduction band. In addition, one could look into periodic

Anderson-like models including localized and delocalized

orbitals with different local interactions. Finally, one should

examine 1D and 2D interfaces between a strongly correlated

system and a free-electron or weakly correlated metal (e.g.,

wires or thin films deposited on surfaces). This would provide

us with an alternative perspective to the proximity-induced

correlation effects.
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