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Interpolation, extrapolation, Morrey spaces and local

energy control for the Navier-Stokes equations.

Under reasonable assumptions, the problem is equivalent to the following integro-differential problem : u = e t∆ u 0 -B( u, u) (t, x) where B( u, v) = t 0 e (t-s)∆ P div ( u ⊗ v) ds

(1)

and P is the Leray projection operator. (See [LR 2, LR 6] for details).

Weak Leray solutions for the Navier-Stokes equations

When u 0 ∈ L 2 , Leray proved existence of solutions u on (0, +∞) × R 3 such that :

• u ∈ L ∞ t L 2 x ∩ L 2 t Ḣ1 x
• lim t→0 + u(t, .) -u 0 2 = 0

• we have the Leray energy inequality

u(t, .) 2 2 + 2 t 0 ∇ ⊗ u 2 2 ds ≤ u 0 2 2
(2) Such solutions are weak solutions : the derivatives in the Navier-Stokes solutions are taken in the sense of distributions. Those solutions (that satisfy the energy inequality (2)) are called Leray weak solutions.

When u 0 ∈ L 2 , Leray's proof of existence of solutions [Le] is based on mollification, energy estimates and compactness arguments :

• he solves ∂ t u ǫ + (ϕ ǫ * u ǫ ). ∇ u ǫ = ∆ u ǫ -∇p ǫ
with div u ǫ = 0 and u ǫ (0, .) = u 0 . Here, ϕ ∈ D, ϕ dx = 1 and ϕ ǫ (x) = 1 ǫ 3 ϕ( x ǫ ). • the solution holds on an interval (0, T ǫ ) where T ǫ depends on ǫ and on u 0 2 and we have the equality

u ǫ (t, .) 2 2 + 2 t 0 ∇ ⊗ u ǫ 2 2 ds = u 0 2 2
• the solution is then global; moreover by Rellich theorem, we find a subsequence that converges strongly in (L 2 t L 2 x ) loc to a Leray solution u

Such solutions (i. e. obtained by this mollification/extraction process) will be called in the following restricted Leray weak solutions.

Restricted Leray solutions satisfy the Leray energy inequality which takes into account the energy on the whole space. But they enjoy as well a pointwise inequality property : for a non-negative locally finite measure µ we have

∂ t (| u| 2 ) + 2| ∇ ⊗ u| 2 = ∆(| u| 2 ) -div ((2p + | u| 2 ) u) -µ (3) 
Leray solutions that enjoy the pointwise energy inequality are called suitable Leray solutions [CKN].

Local weak Leray solutions

The pointwise energy inequality allows one [LR 1, LR 2] to develop a theory of weak solutions with infinite energy. Consider u 0 a divergence-free vector field that is uniformly locally square integrable : sup

x 0 ∈R 3 |x-x 0 |<1 | u 0 (x)| 2 dx < +∞.
A local Leray solution on (0, T ) × R 3 is a solution such that

• u ∈ L ∞ t (L 2 uloc ) ∩ (L 2 t Ḣ1
x ) uloc • for all compact subset K of R 3 , lim t→0 + K | u(t, .) -u 0 | 2 dx = 0

• we have the pointwise energy inequality (3).

Local in time existence of restricted local Leray solutions has been proved for a positive T that depends only on u 0 L 2 uloc (see section 8).

The Prodi-Serrin criterion for weak-strong uniqueness

Based on a compactness criterion, the proof of existence of Leray solutions does not provide any clue on the would-be uniqueness of the solution to the Cauchy initial value problem.

A classical case of uniqueness of Leray weak solutions is Serrin's criterion for weak-strong uniqueness [Pr, Se]. If u 0 ∈ L 2 and if the Navier-Stokes equations has a solution u on (0, T ) such that

u ∈ X T = L p t L q x with 2 p + 3 q = 1 and 2 ≤ p < +∞ then if v is a Leray solution we have u = v on (0, T ).
The proof of the criterion is based on the fact that if v is a Leray solution and if u is the mild solution with u X T < +∞, then the difference w = u-v satisfies a Gronwall estimate :

w(t, .) 2 2 + 2 t 0 ∇ ⊗ w 2 2 ds ≤ 2 T 0 | u.( w. ∇ w) dx| ds.
We have (for

2 p + 3 q = 1) u ⊗ w 2 ≤ C u q w 2 p 2 ∇ ⊗ w 3 q 2 so that | u.( w. ∇ w) dx| ≤ u q w 2 p 2 ∇ ⊗ w 1+ 3 q 2 = u q ( w 2 ) 1 p ( ∇ ⊗ w 2 ) 1-1 p .
Thus, we find

2 T 0 | u.( w. ∇ w) dx| ds ≤ C t 0 u p q w 2 2 ds + t 0 ∇ ⊗ w 2 2 ds.
The facts that w(0, .) 2 2 = 0 and w(t, .) 2 2 ≤ C t 0 u p q w 2 2 ds then gives w = 0 on (0, T ).

We may comment a little further in the case 2 < p < +∞. In that case, the bilinear operator B (given by (1)) is bounded on X T = L p t L q x . Thus, we find that the existence of T > 0 and of a solution in L p L q with 2 p + 3 q is equivalent to the existence of T ′ such that e t∆ u 0 ∈ L p L q on (0, T ′ ) (and on (0, +∞), since u 0 ∈ L 2 ). Using the thermic characterization of Besov spaces, we can see that this is equivalent with

u 0 ∈ Ḃ-1+ 3 q q,p
.

Thus, the initial value is not only in L 2 , but it must belong as well to a Besov space with a better regularity than provided by the embedding

L 2 ⊂ Ḃ-3 2 + 3 q q,2 ⊂ Ḃ-3 2 + 3 q q,p
.

3 The Koch and Tataru theorem and T. Barker's question

We may now wonder how to generalize the Prodi-Serrin criterion. It means : given u 0 ∈ L 2 and weak Leray solutions associated to u 0 , find a space X (as large as possible) such that if moreover u 0 ∈ X then we have a solution u ∈ X T for some space X T of functions on (0, T ) × R 3 and such that the existence of a solution in X T implies that any other weak Leray solution is equal to this solution u for 0 < t < T .

The space BMO -1

First of all, we precise which kind of space X we are going to study. The idea is to look at an initial value which generates a solution in some uniqueness class (where uniqueness holds for small solutions). The setting where to construct such solutions is the setting of mild solutions, as introduced by Kato [Ka] : mild solutions are constructed by the Banach contraction principle.

Due to the symmetries of the equations (if u is a solution for initial value u 0 , then λ u(λ 2 t, λ(x -x 0 )) is a solution for the initial value λ u 0 (λ(x -x 0 ))), we look for spaces with norms invariant through the transforms u 0 (.) → λ u(λ(. -x 0 )) (for λ > 0). Moreover, in order to be able to define

B( u, v) = t 0 e (t-s)∆ P div ( u ⊗ v) ds
at least for u = v = e t∆ u 0 (first step of the Picard iteration to find a fixedpoint to u = e t∆ u 0 -B( u, u)), we ask that [0,1]×B(0,1) |e s∆ u 0 (y)| 2 ds dy < +∞.

Thus, we are lead to introduce the space X of distributions v such that

• sup t>0 √ t e t∆ v ∞ < +∞ • sup 0<t,x 0 ∈R 3 t -3/2 t 0 B(x 0 , √ t) |e s∆ v(y)| 2 dy ds) 1/2
This space X has been identified by Koch and Tataru [KocT] : this is the Triebel-Lizorkin space Ḟ -1 ∞,2 , or equivalently the space BMO -1 = √ -∆ BMO. Moreover, they proved the following theorem :

Theorem 1 For 0 < T ≤ ∞, define u X T = sup 0<t<T √ t u(t, . ∞ + sup 0<t<T,x 0 ∈R 3 (t -3/2 t 0 B(x 0 , √ t) | u(s, y)| 2 dy ds) 1/2
There exists C 0 (which does not depend on T ) such that if T ∈ (0, +∞], if u and v are defined on (0, T ) × R 3 and if

B( u, v) = t 0 e (t-s)∆ P div ( u ⊗ v) ds then B( u, v) X T ≤ C 0 u X T v X T .
Corollary 1 If e t∆ u 0 X T < 1 4C 0 , then the integral Navier-Stokes equations have a solution on (0, T ) such that u X T ≤ 2 e t∆ u 0 X T . This is the unique solution such that u X T ≤ 1 2C 0 .

A special case of initial data that leads to a solution in some X T is given by the subspace VMO -1 of BMO -1 .

Definition 1 VMO -1 is the closure of compactly supported functions in BMO -1 .

If u 0 ∈ VMO -1 , then lim T →0 e t∆ u 0 X T = 0. Remark that we have the embedding Ḃ-1+ 3 q q,p ⊂ VMO -1 for 2 < p < +∞ and 2 p + 3 q = 1. As a matter of fact, we may consider VMO -1 as a limit case for the scale of spaces Ḃ-1+ 3 q q,p . Thus, Barker [Ba] raised the following question :

Question 1 If u 0 belongs to L 2 ∩ VMO -1
, does there exists a positive time T such that every weak Leray solution of the Cauchy problem for the Navier-Stokes equations with u 0 as initial value coincide with the mild solution in X T ?

If u 0 ∈ L 2 ∩VMO -1 and if e t∆ u 0 X T ≤ 1 4C 0 , then if u is a restricted Leray solution of the Navier-Stokes solutions with initial value u 0 , then v X T ≤ 2 e t∆ u 0 X T . In particular, we have uniqueness of restricted Leray solutions on (0, T ).

As a matter of fact, this proof of local uniqueness of restricted weak Leray solutions holds for a slightly more general class :

Definition 2 BMO -1 0 is the space of distributions u 0 in BMO -1 such that lim T →0
e t∆ u 0 X T = 0.

In the following, we will focus on the hypothesis u 0 ∈ L 2 ∩ BMO -1 0 and on the issue of uniqueness for Leray solutions.

The limiting case

Up to now, we don't know how to prove local uniqueness of the Leray solutions when the initial value u 0 belongs to L 2 ∩ BMO -1 0 . What we know for sure is that the mild solution u in X T belongs to L ∞ ((ǫ, T ) × R 3 ) for every positive ǫ ∈ (0, T ). Moreover, u is a weak Leray solution and for every other Leray solution v and for ǫ > 0, we have

∂ t ( u. v) = u.∂ t v + ∂ t u. v which gives for 0 < ǫ < t < T u(t, x). v(t, x) dx = u(ǫ, x). v(ǫ, x) dx -2 t ǫ ∇ ⊗ u. ∇ ⊗ v dx ds - t ǫ u.( v. ∇ v) + v.( u. ∇ u) dx ds From u.( v. ∇ v)+ v.( u. ∇ u) dx = u.( v. ∇( v-u))+( v-u).( u. ∇ u) dx = u ( v-u). ∇( v-u) dx
and letting ǫ go to 0, we get

u(t, x). v(t, x) dx = u 0 2 2 -2 t 0 ∇ ⊗ u. ∇ ⊗ v dx ds -lim ǫ→0 t ǫ u ( v -u). ∇( v -u) dx ds and (letting v = u) u(t, .) 2 2 = u 0 2 2 -2 t 0 ∇ ⊗ u 2 2 ds.
Combining those two equalities with the Leray energy inequality for v

v(t, .) 2 2 + 2 t 0 ∇ ⊗ v 2 2 ds ≤ u 0 2 2
we get the following inequality for w = u -v :

w(t, .) 2 2 + 2 t 0 ∇ ⊗ w 2 2 ds ≤ 2 T 0 | u.( w. ∇ w) dx| ds. (4) 
As a matter of fact, the key ingredient in Prodi-Serrin's criterion is the estimation of the integral

I( u, w) = t 0 u(. w. ∇ w) dx ds but, if w = v -u
with v a Leray solution and u the mild solution in X T , we don't even know whether I( u, w) is finite.

In the limiting case of Prodi and Serrin, (for p = 2 and q = +∞), we write

w(t, .) 2 2 +2 t 0 ∇⊗ w 2 2 ds ≤ 2 t 0 t 0 u(. w. ∇ w) dx ds ≤ 2 t 0 u⊗ w 2 ∇⊗ w 2 ds
and get

w(t, .) 2 2 ≤ t 0 u 2 ∞ w 2 2 ds. (5) 
Of course, we may conclude under the assumption that u ∈ L 2 t L ∞ x . Actually, we shall not be interested in measurabilty issues for functions with values in a non-separable space such as L ∞ (i.e. in Bochner measurability for instance), as we are dealing with locally integrable functions for the Lebesgue measure dt dx on (0, T )×R 3 . Thus, for almost every t the quantity u(t, .) ∞ will be wel-defined as a measurable function of t, and u ∈ L 2 t L ∞ x will simply mean that

T 0 u(t, .) 2 L ∞ (dx) dt < +∞. (See [LR 2] for details.) If u ∈ L 2 t L ∞
x on (0, T ) × R 3 , the Prodi-Serrin criterion proves that every weak Leray solution v on (0, T ) is equal to the mild solution u. (This has even be extended to the case u ∈ L 2 t BMO x by Kozono and Tanyuchi [KozT]). But it is not easy to translate the condition that u ∈ L 2 t L ∞

x into an equivalent assumption on u 0 . The problem comes from the fact that the bilinear operator B is not bounded on L 2 t L ∞ x . On the other hand, if we only assume u 0 ∈ L 2 ∩ BMO -1 0 , we only know the inequality u(t, .) ∞ ≤ u X T o(1) √ t . We find an integrability issue near t = 0. To check that this is actually an issue, consider the following example : take ω a divergence-free vector field in the Schwartz class such that the Fourier transform of ω is compactly supported in the annulus 1 < |ξ| < 2; define

u 0 (x) = +∞ j=0 2 j 1 √ 1 + j ω(2 j x); we have u 0 ∈ L 2 ; u 0 ∈ Ḃ-1+ 3 q q,p ⊂ Ḃ-1 ∞,p (with 2 < p < +∞ and 2 p + 3 q = 1) but u 0 / ∈ Ḃ-1 ∞,2 ; as the bilinear operator B is bounded on L p t L q x ∩ L 2 t L ∞ x , if we assume that the mild solution u ∈ L p t L q x belongs to L 2 t L ∞ x , we would find that e t∆ u 0 ∈ L 2 t L ∞
x , and thus u 0 ∈ Ḃ-1 ∞,2 ; thus, we have

T 0 u 2 ∞ dt = +∞.

Barker's theorem

In this section, we shall sketch the proof of Barker [Ba], as we shall extend it in Section 7 to the case of Besov-Morrey spaces.The main idea in the recent paper of Barker is the following one : if we want to use only the inequality

u(t, .) ∞ ≤ u X T o(1) √ t
to deal with the Gronwall inequality (5), we need to assume more than w ∈ L ∞ t L 2

x . Indeed, we have the easy following lemma :

Lemma 1 Let δ > 0. Let A and B be locally bounded non-negative measurable functions on (0, T ] such that

lim t→0 tA(t) = 0 and sup 0<t<T t -δ B(t) = 0.
If we have moreover, for all t ∈ (0, T ],

B(t) ≤ t 0 A(s)B(s) ds then B = 0.
Proof : We have

B(t) ≤ t δ δ sup 0<s<t sA(s) sup 0<σ<t σ -δ B(σ)
so that B = 0 on (0, T 0 ] as long as sup 0<s<T 0 sA(s) < δ. For t > T 0 , we then write B(t) ≤ sup T 0 <s<T A(s) t T 0 B(s) ds and we find B = 0. ⋄ As w = v -u = ( v -e t∆ u 0 ) -( u -e t∆ u 0 ), the extra information on w 2 will be provided by the following lemma :

Lemma 2 Let u 0 be a divergence-free vector field with u 0 ∈ L 2 and let v be a weak Leray solution of the Navier-Stokes equations with initial value u 0 . If moreover

u 0 ∈ [L 2 , B -γ ∞,∞ ] θ,∞ for some -1 < -γ < 0 and 0 < θ < 1
then there exists δ > 0 such that

sup t>0 t -δ v(t, .
) -e t∆ u 0 2 < +∞.

Proof : Assume u 0 ∈ [L 2 , B -γ ∞,∞ ] θ,∞ . For 0 < ǫ < 1, split u 0 in α ǫ + β ǫ with α ǫ 2 ≤ C 0 ǫ θ and β ǫ Ḃ-γ ∞,∞ ≤ C 0 ǫ θ-1
where C 0 does not depend on ǫ (but depends on u 0 ).

We have a solution U ǫ for the Navier-Stokes equations with initial value

β ǫ such that U ǫ (t, .) ∞ ≤ C 1 t -γ 2 ǫ θ-1 on an interval (0, T ǫ ) with T 1-γ 2 ǫ ǫ θ-1 = C 2 . Moreover β ǫ = u 0 -α ǫ ∈ L 2 and we find that sup 0<t<Tǫ U ǫ 2 ≤ C 3 and that U ǫ -e t∆ β ǫ 2 ≤ C 4 t (1-γ)/2 ǫ θ-1 . Since U ǫ is in L 2 t L ∞
x on every bounded interval, we get

U ǫ (t, x). v(t, x) dx = β ǫ (x). u 0 (x) dx -2 t 0 ∇ ⊗ U ǫ . ∇ ⊗ v dx ds - t 0 U ǫ ( v -U ǫ ). ∇( v -U ǫ ) dx ds and U ǫ (t, .) 2 2 = β ǫ 2 2 -2 t 0 ∇ ⊗ U ǫ 2 2 ds.
Combining those two equalities with the Leray energy inequality for v v(t, .) 2 2 + 2

t 0 ∇ ⊗ v 2 2 ds ≤ u 0 2 2
we get the following inequality for W ǫ = v -U ǫ :

W ǫ (t, .) 2 2 + 2 t 0 ∇ ⊗ W ǫ 2 2 ds ≤ α ǫ 2 2 + 2 T 0 | U ǫ .( W ǫ . ∇ W ǫ ) dx| ds.
Thus, we get

W ǫ (t, .) 2 2 ≤ C 2 0 ǫ 2θ + C 2 1 ǫ 2(θ-1) t 0 s -γ W ǫ (s, .) 2 2 ds so that W ǫ (t, .) 2 2 ≤ C 2 0 ǫ 2θ e C 2 1 ǫ 2(θ-1) t 1-γ 1-γ .
Now, for τ < 1, take ǫ = τ µ with 1-γ 2 + µ(θ -1) > 0. We find that, for 0 < t < T ǫ with

T ǫ = C 2 1-γ 2 ǫ 2(1-θ) 1-γ = C 2 1-γ 2 τ µ 2(1-θ) 1-γ [ where µ 2(1 -θ) 1 -γ < 1],
we have the inequality

v -e t∆ u 0 2 ≤ α ǫ 2 + W ǫ 2 + U ǫ -e t∆ β ǫ 2 ≤C 0 ǫ θ (1 + e C 2 1 2(1-γ) t 1-γ T 1-γ ǫ ) + C 4 t 1-γ 2 ǫ θ-1 If τ is small enough, we have τ < T ǫ and we find v(τ, .) -e τ ∆ u 0 2 ≤ C 0 τ µθ (1 + e C 2 1 2(1-γ ) + C 4 τ 1-γ 2 +µ(θ-1)
The lemma is proved. ⋄ Barker's theorem then reads as :

Theorem 2 Let u 0 be a divergence-free vector field with u 0 ∈ L 2 and let v be a weak Leray solution of the Navier-Stokes equations with initial value u 0 . If moreover

u 0 ∈ BMO -1 0 ∩ Ḃ-s q,∞ with 3 < q < +∞ and -s > -1 + 2 q
then there exists T > 0 such that if v is a Leray solution and if u is the mild solution with u X T < +∞, then u = v on (0, T ).

Remark We have the embeddings

L 2 ⊂ Ḃ-3 2 + 3 q q,2 ⊂ Ḃ-3 2 + 3 q q,
∞ , so that the information conveyed by the hypothesis u 0 ∈ Ḃ-s q,∞ is interesting only for the high frequencies of u 0 . Moreover the embeddings

L 2 = Ḃ0 2,2 and BMO -1 ⊂ Ḃ-1 ∞,∞ gives that L 2 ∩ BMO -1 0 ⊂ Ḃ-1+ 2 q q,q ⊂ Ḃ-1+ 2 q
q,∞ . Thus, the information conveyed by the hypothesis u 0 ∈ Ḃ-s q,∞ is not contained in the assumption

u 0 ∈ L 2 ∩ BMO -1 0 . Finally, if -s > -1 + 3 q = 2 p , then we have L 2 ∩ BMO -1 0 ∩ Ḃ-s q,∞ ⊂ Ḃ-1+ 2 q q,q ∩ Ḃ-s q,∞ ⊂ Ḃ-1+ 3 q q,p .
Thus, the theorem is interesting only in the range -1 + 2 q < -s ≤ -1 + 3 q , which corresponds to the gap between L 2 ∩ BMO -1 0 . (where loca'luniqueness is conjectured to hold) and Ḃ-1+ 3 q q,p (for which the Prodi-Serrin criterion shows that local uniqueness holds).

A further remark is that we have the embedding Ḃ-1+ 3 q q,∞ ⊂ BMO -1 , so that we have a Prodi-Serrin criterion with u ∈ L p t L q x (with 2 p + 3 q = 1) replaced with sup 0<t<T t 1 p u q < +∞ and lim t→0 t 1 p u(t, .) q = 0.

Proof :

The first step is the use of interpolation inequalities in order to be able to check that u 0 fulfills the assuptions of Lemma 2.

• Since u 0 ∈ L 2 = Ḃ0 2,2 and u 0 ∈ BMO -1 ⊂ Ḃ-1 ∞,∞ , we have u 0 ∈ Ḃ-1+ 2 q q,q
.

• Since u 0 ∈ Ḃ-1+ 2 q q,q ∩ Ḃ-s q,∞ , we have for -1 + 2 q < -σ < -s, u 0 ∈ Ḃ-σ q,1 .

• The Besov space Ḃ-σ q,1 is embedded in the Sobolev space Ẇ -σ,q .

• For q < r < ∞, we have Ẇ -σ,q = [L 2 , Ẇ -δ,r ] [θ] with 1 q = 1-θ 2 + θ r and -s = -θδ (complex inteerpolation)

• Since Ẇ -δ,r ⊂ Ḃ-1+ 3 r ∞,∞ , we have [L 2 , Ẇ -δ,r ] [θ] ⊂ [L 2 , Ḃ-δ-3 r ∞,∞ ] θ,∞ with -δ = - s θ = -s 1 2 -1 r 1 2 -1 q = - (-s) -1 + 2 q + O( 1 r )
so that -δ -3 r > -1 for r large enough We may now end the proof : recall that if v is a Leray solution and if u is the mild solution with u X T < +∞, then the difference w = u -v satisfies a Gronwall estimate :

w(t, .) 2 2 ≤ t 0 u 2 ∞ w 2 2 ds.
By Lemma 2, we have v(t, .) -e t∆ u 0 2 = O(t δ ) and u(t, .) -e t∆ u 0 2 = O(t δ ) for some positive δ. On the other hand, we know that u(t, .) ∞ = o( 1 √ t ). Using Lemma 1, we find that w = 0, and v = u.⋄

The Prodi-Serrin criterion for Besov-Morrey spaces

Morrey spaces provide a natural tool for extending the Prodi-Serrin criterion.

Definition 3 For 1 < r ≤ q < +∞, we define the Morrey space Ṁr,q as the space of Lebesgue measurable functions

f on R 3 such that sup R>0,x 0 ∈R 3 R 3 q -3 r ( B(x 0 ,R) |f (x)| r dx) 1/r = f Ṁ r,q < +∞.
Similarly, the space Ṁ1,q is the space of locally finite Borelian (signed) measure µ such that

sup R>0,x 0 ∈R 3 R 3 q -3 ( B(x 0 ,R) d|µ|) = µ Ṁ 1,q < +∞.
Remark : For absolutely continuous measures dµ = f dx with f ∈ L 1 loc , we have

µ Ṁ 1,q = sup R>0,x 0 ∈R 3 R 3 q -3 ( B(x 0 ,R) |f (x)| dx).
The key inequality in the proof of the Prodi-Serrin criterion was the inequality (for all w ∈ H 1 )

uw 2 ≤ C u q w 2 p 2 ∇w 3 q 2 with 2
p + 3 q = 1 and 3 < q < +∞. If we want to replace this inequality by a more general inequality

uw 2 ≤ N(u) w 2 p 2 ∇w 3 q

2

(again with 2 p + 3 q = 1 and 3 < q < +∞), then we proved in [LR 3] that the existence of a finite N(u) is equivalent to the fact that u ∈ Ṁ2,q , and moreover that N(u) ≈ u Ṁ 2,q .

This leads to the following easy extension of the Prodi-Serrin criterion :

Theorem 3 If u 0 ∈ L 2 and if the Navier-Stokes equations has a solution u such that u ∈ L p t Ṁ2,q

x with 2 p + 3 q = 1 and 3 < q < +∞ then if v is a Leray solution we have u = v on (0, T ).

If 3 < q < +∞, the existence of T > 0 and of a solution in L p Ṁ2,q with 2 p + 3 q is equivalent to the existence of T ′ such that e t∆ u 0 ∈ L p Ṁ2;q on (0, T ′ ) (and on (0, +∞), since u 0 ∈ L 2 ), thus with

u 0 ∈ Ḃ-1+ 3 q Ṁ 2,q ,p .
This Besov-Morrey space has been introduced in 1994. by Kozono and Yamazaki [KoY]. It is easy to check that, for 2 < p < +∞ and 2 p + 3 q = 1, we have the inequality e t∆ u 0 X T ≤ C q ( T 0 e t∆ u 0 p Ṁ 2,q dt) 1:p so that we have the embedding Ḃ-1+ 3 q Ṁ 2,q ,p ⊂ BMO -1 0 for 2 < p < +∞ and

2 p + 3 q = 1.

Barker's theorem and Besov-Morrey spaces

We shall extend Barker's theorem.

Theorem 4 If • u 0 ∈ L 2 ∩ BMO -1 0 • 3 < q < +∞, -s > -1 + 2 q and u 0 ∈ Ḃ-s Ṁ 1,q ,∞
then there exists T > 0 such that if v is a suitable Leray solution and if u is the mild solution with u X T < +∞, then u = v on (0, T ).

Proof : As we shall see, the proof is very similar to Barker's proof for Theorem 2 [Ba]. However, we shall meet some technical issues. We sketch the proof :

• u 0 ∈ L 2 = Ḃ0 2,2 and u 0 ∈ BMO -1 ⊂ Ḃ-1 ∞,∞ , thus u 0 ∈ Ḃ-1+ 2 q q,q • u 0 ∈ Ḃ-1+ 2 q q,q ∩ Ḃ-s Ṁ 1,q ,∞ thus u 0 ∈ Ḃ-σ Ṁ p,q ,∞ for 1 < p < q, 1 p = 1 -θ + θ q and -σ = -s(1 -θ) + θ(-1 + 2 q ) > -1 + 2 q .
We shall take p > 2.

• as p < q, we have Ḃ-1+ 2 q q,q ⊂ Ḃ1+ 2 q q,p . Thus, for -1

+ 2 q < -γ < -σ, Ḃ-1+ 2 q q,q ∩ Ḃ-σ Ṁ p,q ,∞ ⊂ Ḃ-γ Ṁ p,q ,1 ⊂ Ẇ -γ, Ṁ p,q .
We now encounter our first problem. We can no longer write W -γ, Ṁ p,q as a subspace of an interpolate space between L 2 and Ḃ-1+δ ∞,∞ . More precisely, let us assume Ḃ-γ

Ṁ p,q ,1 ⊂ [L 2 , Ḃ-1+δ ∞,∞ ] θ,∞
; by homogeneity of the norms, we must have -γ -

3 q = -(1 -θ) 3 2 -θ(1 -δ). We have [L 2 , Ḃ-1+δ ∞,∞ ] θ,∞ ⊂ Ḃ-θ(1-δ) L r,∞ ,∞ with r = 2 1-θ . In particular, for u ∈ [L 2 , Ḃ-1+δ ∞,∞ ] θ,∞
, we have that e ∆ e t∂ 2 3 u goes to 0 in S ′ when t goes to +∞. But if 3p ≤ 2q, if u depends only on (x 1 , x 2 ) and not on x 3 , and if u ∈ Ḃ-γ

Ṁ p, 2q 3 ,1 (R 2 ), then u ∈ Ḃ-γ Ṁ p,q ,1 (R 3
) and e ∆ e t∂ 2 3 u = e ∆ u. Thus, we have a contradiction. We better use complex interpolation and write that

W -γ, Ṁ p,q = [ Ṁ2, 2 p q , Ẇ -ρ, Ṁ r, r p q ] [θ]
for r > p, 1-θ 2 + θ r = 1 p , γ = θρ. (For interpolation of Morrey spaces, see [LR 4, LR 5])

Then, we remark that Ṁ2, 2 p q ⊂ L 2 uloc and write that

[ Ṁ2, 2 p q , Ẇ -ρ, Ṁ r, r p q ] [θ] ⊂ [ Ṁ2, 2 p q , Ẇ -ρ, Ṁ r, r p q ] θ,∞ ⊂ [L 2 uloc , Ḃ-ρ-3p rq ∞,∞ ] θ,∞
In order to finish the proof, we thus need to use the machinery of energy control for suitable local Leray solutions [LR 2,LR 6]. This will be done in the following sections, and we shall finish the proof in Section 10 ⋄

Weak local Leray solutions

We recall basic results for local weak Leray solutions. We endow L 2 uloc with the norm u L 2 uloc = sup

k∈Z 3 uϕ 0 (x -k) 2 ,
where ϕ 0 is a non-negative function in D, suppported in a ball B(0, R 0 ) and such that k∈Z 3 ϕ 0 (x -k) = 1. When u 0 ∈ L 2 uloc , proof of existence of solutions for the Navier-Stokes equations is based on mollification, energy estimates and compactness arguments (for details, see [LR 6], section 14.1) :

• we solve

∂ t u ǫ + (ϕ ǫ * u ǫ ). ∇ u ǫ = ∆ u ǫ -∇p ǫ
with div u ǫ = 0 and u ǫ (0, .) = u 0 . Here, ϕ ∈ D, ϕ dx = 1 and ϕ ǫ (x) = 1 ǫ 3 ϕ( x ǫ ). Here ∇p ǫ is given by the Leray projection :

∇p ǫ = -(ϕ ǫ * u ǫ ). ∇u ǫ + Pdiv ((ϕ ǫ * u ǫ ) ⊗ u ǫ ) .
• the solution holds at least on an interval (0, T ǫ ) where T ǫ depends on ǫ and on u 0 L 2 uloc (T ǫ = min(1, C 0

ǫ 3/2 u 0 2 L 2 uloc
). Moreover, we have the inequalities, for k ∈ Z 3 ,

ϕ 0 (x -k)| u ǫ (t, x)| 2 dx + 2 t 0 ϕ 0 (x -k)| ∇ ⊗ u ǫ (s, x)| 2 dx ds ≤ ϕ 0 (x -k)| u 0 (t, x)| 2 dx + C 1 t 0 |x-k|≤R 0 | u ǫ (s, x)| 2 dx ds + C 2 t 0 |x-k|>5R 0 1 |x -k| 4 | u ǫ (s, x)| 3 dx ds + C 2 t 0 |x-k|<5R 0 | u ǫ (s, x)| 3 dx ds • defining α ǫ (t) = u ǫ (t, .) L 2 uloc and β ǫ (t) = sup k∈Z 3 t 0 ϕ 0 (x -k)| ∇ ⊗ u ǫ (s, x)| 2 dx ds 1/2
, we get the inequality

ϕ 0 (x -k)| u ǫ (t, x)| 2 dx + t 0 ϕ 0 (x -k)| ∇ ⊗ u ǫ (s, x)| 2 dx ds ≤ α ǫ (0) 2 + 1 2 β ǫ (t) 2 + C 3 t 0 α ǫ (s) 2 ds + C 3 t 0 α ǫ (s) 6 ds so that β ǫ (t) 2 ≤ 2α ǫ (0) 2 + 2C 3 t 0 α ǫ (s) 2 ds + 2C 3 t 0 α ǫ (s) 6 ds
and finally

α ǫ (t) 2 ≤ 2α ǫ (0) 2 + 2C 3 t 0 α ǫ (s) 2 ds + 2C 3 t 0 α ǫ (s) 6 ds
Thus, as long as 8C 3 t < 1 and 128 C 3 t u 0 4 L 2 uloc < 1, we find that α ǫ (t) ≤ 2 u 0 L 2 uloc and β ǫ (t) ≤ 2 u 0 L 2 uloc . • the solution is then defined on (0, min( 1 8C 3 ,

1 128 C 3 u 0 4 L 2 loc
) and controlled independently from ǫ. By Rellich theorem, wre find a subsequence that converges strongly in (L 2 t L 2 x ) loc to a suitable local Leray solution u An important point is the following one : assume moreover that u 0 ∈ BMO -1 0 and that e t∆ u 0 X T < 1 4C 0 (where C 0 is the constant of Theorem 1) then u ǫ is defined at least on (0, T ) and u ǫ X T ≤ 2 e t∆ u 0 X T . As T does not depend on ǫ, we see that the local Leray solution u satisfies u ∈ X S with S = min(T, 1 8C 3 ,

1 128 C 3 u 0 4 L 2 loc
) and u X S ≤ 2 e t∆ u 0 X T .

Similarly, if we assume that u 0 ∈ Ḃ-γ ∞,∞ with -1 < -γ < 0, then u ǫ is defined at least on (0, T ) where

T = C u 0 2 1-γ Ḃ-γ ∞,∞
and sup 0<t<T t γ 2 u(t, .) ∞ ≤ 2 sup 0<t<T t γ 2 e t∆ u 0 ∞ . As T does not depend on ǫ, we see that the local Leray solution u satisfies the inequality sup 0<t<S t γ 2 u(t, .) ∞ < +∞ where S = min(T, 1 8C 3 ,

1 128 C 3 u 0 4 L 2 loc
).

Comparison of local weak Leray solutions

If u and v are two local weak Leray solutions, on (0, T ) with initial values u 0 and v 0 , we would like to be able to estimate u(t, .)-v(t, .) from the estimation of u 0 -v 0 . This can be done only when at least one of the solutions is regular enough. We shall assume that u ∈ L 2 t L ∞ x . We sketch the computations described in [LR 6], section 14.4.

Define

w = u -v, α(t) = w(t, .) L 2 uloc and β(t) = sup k∈Z 3 t 0 ϕ 0 (x -k)| ∇ ⊗ w(s, x)| 2 dx ds 1/2
, Using the suitability of v and the regularity of v, we find (for 0 < t < min(1, T ))

ϕ 0 (x -k)| w(t, x)| 2 dx + t 0 ϕ 0 (x -k)| ∇ ⊗ w(s, x)| 2 dx ds ≤ α(0) 2 + 1 2 β(t) + C 1 t 0 α(s) 2 ds + C 2 t 0 α(s) 6 ds + C 3 t 0 u(s, .) 2 ∞ α(s) 2 ds
where the constants C i do not depend on T , u, nor on v. Finally, we find

α(t) 2 ≤2α(0) 2 + 2(C 1 + C 3 ( u L ∞ t L 2 uloc + v L ∞ t L 2 uloc ) 4 ) t 0 α(s) 2 ds + 2C 3 t 0 u(s, .) 2 ∞ α(s) 2 ds. (6) 
We have the same estimate even if u is not intregrable near t = 0. Let us only assume that u ∈ L 2 t L ∞ x on every (ǫ, T ) with ǫ > 0. Considering a time t 0 > 0 which a Lebesgue point for the functions t → ϕ(x -k)| u(t, x)| 2 dx and t → ϕ(x -k)| u(t, x)| 2 dx, we have that u and v are local weak Leray solutions on (t 0 , T ) with initial values u(t 0 , .) and v(t 0 , .). Thus, we shall find that, for t > t 0

ϕ 0 (x -k)| w(t, x)| 2 dx ≤2 ϕ 0 (x -k)| w(t 0 , x)| 2 dx + 2(C 1 + C 3 ( u L ∞ t L 2 uloc + v L ∞ t L 2 uloc ) 4 ) t t 0 α(s) 2 ds + 2C 3 t t 0 u(s, .) 2 ∞ α(s) 2 ds. (7) 
It is then enough to let t 0 go to 0 and then take the supremum with respect to k.

Proof of Theorem 4

We may now finish the proof. We consider two solutions of the Navier-Stokes equations with initial value

u 0 ∈ L 2 ∩ BMO -1 0 ∩ Ḃ-s Ṁ 1,q ,∞ with -s > -1 + 2 q
(and 3 < q < +∞) : we assume that v is a suitable Leray solution and u is the mild solution in X T . As v is suitable, v is a local Leray solution as well and we may estimate the L 2 uloc of u -w : defining

B(t) = u(t, .) -v(t, .) 2 L 2 uloc and A(t) = 2(C 1 + C 3 ( u L ∞ t L 2 uloc + v L ∞ t L 2 uloc ) 4 ) + 2C 3 u(t, .) 2 ∞ ,
we get

B(t) ≤ t 0 A(s)B(s) ds.
As lim t→0 tA(t) = 0, we shall try to apply Lemma 1. Thus, we shall use interpolation estimates to search for a control of B(t) as O(t -δ ), in the spirit of Lemma 2:. Recall that we have introduced the following numbers :

• p such that 2 < p < 2q 3

• 1 -θ the barycentric coordinate of 1 p in [ 1 q , 1] : 1 p = (1 -θ) + θ 1 q

• -σ the corresponding point in [-1+ 2 q , -s] : -σ = (1-θ)(-s)+θ(-1+ 2 q )

• -γ such that -1 + 2 q < -γ < -σ • r such that p < r < +∞ • 1 -η the barycentric coordinate of 1 p in the segment [ 1 r , 1 2 ] : 1 p = 1-η 2 + η r

• -ρ the corresponding point in [-γ, 0] : -ρ = η(-γ)

We have the following embeddings :

• B 0 2,2 ∩ BMO -1 ⊂ Ḃ-1+ 2 q q,q • Ḃ-1+ 2 q q,q ∩ Ḃ-s Ṁ 1,q ,∞ ⊂ Ḃ-σ Ṁ p,q ,∞ • Ḃ-1+ 2 q q,q
∩ Ḃ-σ Ṁ p,q ,∞ ⊂ Ḃ-γ Ṁ p,q ,1 ⊂ Ẇ -γ, Ṁ p,q .

• W -γ, Ṁ p,q = [ Ṁ2, 2 p q , Ẇ -ρ, Ṁ r, r p q ] [η]

• [ Ṁ2, 2 p q , Ẇ -ρ, Ṁ r, r p q ] [η] ⊂ [ Ṁ2, 2 p q , Ẇ -ρ, Ṁ r, r p q ] η,∞ ⊂ [L 2 uloc , Ḃ-ρ-3p Thus far, we have seen that u 0 ∈ [L 2 uloc , Ḃ-λ ∞,∞ ] η,∞ for some η ∈ (0, 1) and some λ ∈ (0, 1). We shall now estimate v -e t∆ u 0 when v is a weak local Leray solution. For 0 < ǫ < 1, split u 0 in α ǫ + β ǫ with α ǫ L 2 uloc ≤ C 0 ǫ η and β ǫ Ḃ-λ ∞,∞ ≤ C 0 ǫ η-1 where C 0 does not depend on ǫ (but depends on u 0 ).

As β ǫ = u 0 -α ǫ , we have β ǫ L 2 uloc ≤ u 0 L 2 uloc + C 0 (an estimation which does not depend on ǫ) and we know that we have a (restricted) weak Leray solution of the Navier-Stokes equations U ǫ with initial value β ǫ such that sup 0<t<T 0 U ǫ (t, .) L 2 uloc ≤ C 1 , where T 0 and C 1 depends only on u 0 L 2 uloc (and not on ǫ).

As β ǫ ∈ Ḃ-λ ∞,∞ ,, we have as well that U ǫ (t, .) ∞ ≤ C 2 t -λ 2 ǫ η-1 on an interval (0, T ǫ ) with T 1-λ 2 ǫ ǫ η-1 = C 3 It is then easy to check that U ǫe t∆ β ǫ L 2 loc ≤ C 4 t (1-λ)/2 ǫ η-1 . Using our results on comparison of suitable local Leray solutions, we find that we get the following inequality for W ǫ = v -U ǫ and A ǫ (t) = sup k∈Z 3 ϕ 0 (x -k)| W ǫ (t, .x)| 2 dx :

A ǫ (t) 2 ≤ 2 α ǫ 2 L 2 uloc + C 5 t 0 A ǫ (s) 2 ds + C 6 t 0 u(s, .) 2 ∞ A ǫ (s) 2 ds. (8) 
Thus, we get A ǫ (t) ≤ C 7 ǫ 2η + C 8 t 0 A ǫ (s) 2 ds + C 9 ǫ 2(η-1) t 0 s -λ A ǫ (s) 2 ds.

so that A ǫ (t) ≤ C 7 ǫ 2η e C 8 t e C 9 ǫ 2(η-1) t 1-λ 1-λ .

  rq ∞,∞ ] η,∞If we take r very large, we have η = 1 -2 p + o(1) and

Now, for τ < 1, take ǫ = τ µ with 1-λ 2 + µ(η -1) > 0. We find that, for 0 < t < min(T ǫ , T 0 ) with

we have the inequality

If τ is small enough, we have τ < T ǫ and we find

The theorem is proved.