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Non-stability of Paneitz-Branson type
equations in arbitrary dimensions.

Laurent Bakri ∗† Jean-Baptiste Casteras ‡§

Abstract

Let (M, g) be a compact riemannian manifold of dimension n ≥ 5.
We consider a Paneitz-Branson type equation with general coefficients

∆2
gu− divg(Agdu) + hu = |u|2∗−2−εu on M, (E)

whereAg is a smooth symmetric (2, 0)-tensor, h ∈ C∞(M), 2∗ =
2n

n− 4
and ε is a small positive parameter. Assuming that there exists a pos-
itive nondegenerate solution of (E) when ε = 0 and under suitable
conditions, we construct solutions uε of type (u0−BBlε) to (E) which
blow up at one point of the manifold when ε tends to 0 for all dimen-
sions n ≥ 5.

Keywords: Paneitz-Branson type equations, blow up solutions, Liapunov-
Schmidt reduction procedure.

Mathematics Subject Classification (2010) : 35J30, 35J60, 35B33,
35B35.

1 Introduction and statements of the results
The existence of conformally covariant operators and the study of their as-
sociated curvature invariants have attracted a lot of attention these last
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decades. In 1983, Paneitz in [22] introduced a fourth order operator, con-
formally covariant, on 4-dimensional manifold. A few years later, Branson
[2] generalized this operator to all n-dimensional manifolds for n ≥ 5. In
analogy with the conformal laplacian, a curvature called the Q-curvature has
been associated to this operator (see [4]). It turns out that this curvature
appears in a lot of geometric and physic problems. For instance, it is worth
pointing out that, in dimension 4, the integrand of the Chern-Gauss-Bonnet
formula for the Euler characteristic is the Q-curvature (up to the conformally
invariant Weyl’s tensor). The Q-curvature also appears in the study of fully
nonlinear equations involving the symmetric functions of the Schouten ten-
sor and in the zeta function determinant. The Q-curvature is also linked
to the scattering theory of conformally compact manifolds whose study was
initiated by Fefferman and Graham. We refer to the articles of Branson and
Gover [3], Chang [5], [6], Chang and Yang [7], and Gursky [13] (and the refer-
ences therein) for more details and very interesting material on the geometric
and physic aspects associated to the notion of Q-curvature.

In what follows we let (M, g) be a compact riemannian manifold of di-
mension n ≥ 5. We will be interested in solutions u ∈ C4,θ(M), θ ∈ (0, 1), of
the following equation

Pgu := ∆2
gu− divg(Agdu) + hu = |u|2∗−2u, (1.1)

where Ag is a smooth symmetric (2, 0)-tensor, h ∈ C∞(M) and 2∗ =
2n

n− 4
.

Following the terminology introduced in [9], the operator Pg has been referred
to as a Paneitz-Branson type operator with general coefficients. When Ag is
given by

Ag = Apaneitz :=
(n− 2)2 + 4

2(n− 1)(n− 2)
Rgg −

4

n− 2
Ricg, (1.2)

where Rg (resp. Ricg) stands for the scalar curvature (resp. Ricci curvature)

with respect to the metric g, and h =
n− 4

2
Qg where Qg is the Q-curvature

with respect to the metric g which is defined by

Qg =
1

2(n− 1)
∆gRg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
R2
g −

2

(n− 2)2
|Ricg|2g,

then Pg is the so-called Paneitz-Branson operator and equation (1.1) is re-
ferred to as the Paneitz-Branson equation. It is well known that the Paneitz
operator is conformally invariant, i.e. if g̃ = ϕ

4
n−4 g then, for all u ∈ C∞(M),

we have
P n
g (uϕ) = ϕ

n+4
n−4P n

g̃ (u).
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We also point out that if (M, g) is Einstein (Ricg = λg, λ ∈ R), then the
Paneitz-Branson operator takes the form

Pgu = ∆2
gu+ b∆gu+ cu, (1.3)

where b =
n2 − 2n− 4

2(n− 1)
λ and c =

n(n− 4)(n2 − 4)

16(n− 1)2
λ. More generally, when

b and c are two real numbers, the operator Pg defined in (1.3) is referred
to as a Paneitz-Branson type operator with constant coefficients. Existence,
compactness and stability of solutions to (1.1) when Pg is a Paneitz-Branson
type operator with constant coefficients, have been widely investigated this
last decade (see for example [11, 14, 15, 24, 27] and the references therein).
However, less is known for solutions of (1.1) in the case where Pg is a Paneitz-
Branson type operator with general coefficients. Esposito and Robert [10]
proved the existence of a non trivial solution to (1.1) under the hypothesis
that n ≥ 8 and min

M
Trg(Ag − Apaneitz) < 0. In [26], Sandeep studied the

stability of equation (1.1) in the following sense : he considered sequences of
positive solutions (uα)α of

∆2
guα − divg(Aαduα) + aαuα = u2

∗−1
α , uα ∈ C4,θ,

where Aα are smooth (2, 0) symmetric tensors and aα are smooth functions.
Sandeep proved that if Aα converges in C1(M) to a smooth symmetric tensor
Ag, aα converges in C0(M) to a smooth positive function a and uα converges
weakly in H2(M) to a function u0, then u0 is nontrivial provided that Ag −
Apaneitz is either positive or negative definite (generalizing a result of [16]).
Recently, Pistoia and Vaira [23] studied the stability of (1.1) when it is the
Paneitz-Branson equation, namely they considered the following equation

∆2
gu− divg((Apaneitz + εB)du) +Qgu = |u|2∗−2u, (1.4)

where ε is a small positive parameter and B is a smooth symmetric (2, 0)
tensor. They proved that if (M, g) is not conformally flat, n ≥ 9 and there
exists ξ0 ∈ M a C1 stable critical point (see below for the definition) of the

function ξ → TrgB(ξ)

|Weylg(ξ)|g
, such that TrgB(ξ0) > 0, then equation (1.4) is

not stable, i.e. there exists ε0 > 0 such that, for any ε ∈ (0, ε0), equation
(1.4) admits a solution uε such that uε(ξ0) −→

ε→0+
+∞.

The aim of this paper is to investigate the stability in the sense of Deng-
Pistoia of (1.1). We say that (1.1) is stable if, for any sequences of real
positive numbers (εα)α such that εα −→

α→∞
0 and for any sequences of solutions

(uα)α ∈ C4,θ(M), θ ∈ (0, 1), of

∆2
guα − divg(Agduα) + huα = |uα|2

∗−2−εαuα, (1.5)
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bounded in H2(M), then up to a subsequence, uα converges in C4(M) to
some smooth function u solution of (1.1). Deng and Pistoia [8] proved that
(1.1) is not stable if

a. n ≥ 7, Trg(Ag−Apaneitz) is not constant and min
M

Trg(Ag−Apaneitz) > 0,

b. or n ≥ 8 and ξ0 ∈ M a C1 stable critical point of Trg(Ag − Apaneitz)
such that Trg(Ag − Apaneitz)(ξ0) > 0.

Our main result shows that under suitable assumptions, equation (1.1) is not
stable for any n ≥ 5. In fact, inspired by the recent result of Robert and
Vétois [25] on scalar curvature type equations, we investigate the existence
of families (uε)ε ∈ C4,θ(M) of blow-up solutions to (1.5) of type (u0−BBlε).
Following the terminology of Robert and Vétois, we say that a blow-up se-
quence (uε)ε is of type (u0−BBlε) if there exists u0 ∈ C4,θ(M) and a bubble

BBlε(x) = [n(n− 4)(n2 − 4)]
n−4
8

(
µε

µε + dg(x, xε)2

)n−4
2

, where x, xε ∈M and

µε ∈ R+ is such that µε −→
ε→0

0, such that

uε = u0 −BBlε + o(1),

where o(1) −→
ε→0

0. Before stating more precisely the results, we would like
to recall that a solution of (1.5) is called nondegenerate if the kernel of the
linearization of the equation is trivial (see (2.3)). Let φ ∈ C1(M), we also
recall that a critical point ξ0 of φ is said C1 stable if there exists an open
neighborhood Ω of ξ0 such that, for any point ξ ∈ Ω̄, there holds ∇gφ(ξ) = 0
if and only if ξ = ξ0 and such that the Brower degree deg(∇gφ,Ω, 0) 6= 0.
We obtain :

Theorem 1.1. Let (M, g) be a compact riemannian manifold of dimension
n, Ag and h be such that Pg is coercive. Let u0 ∈ C4,θ, θ ∈ (0, 1), be a
positive nondegenerate solution of (1.1). Assume in addition that one of the
following condition holds:

a. 5 ≤ n < 7,

b. 8 ≤ n ≤ 13 and there exists ξ0 ∈M a C1 stable critical point of

ϕ(ξ) =
(n− 1)

(n− 6)(n2 − 4)
(Trg(Ag − Apaneitz))(ξ)

+
2nu0(ξ)ωn−1

(n+ 2)(n(n− 4)(n2 − 4))
n−4
8 ωn

1n=8, ξ ∈M,

(1.6)

such that ϕ(ξ0) > 0,
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c. n > 13 and min
M

Trg(Ag − Apaneitz) > 0,

then, for any ε > 0, there exists a solution uε of type u0 − BBlε to (1.5). In
particular, (1.5) is not stable.

Let us notice that in the geometric case i.e. when Ag = Apaneitz, the pre-
vious theorem only applies if 5 ≤ n ≤ 8. However, with a small modification
of the proof, we can construct a solution of type u0 − BBlε to (1.5) when
5 ≤ n ≤ 11 and Ag = Apaneitz. More precisely, we prove the following result :

Theorem 1.2. Let (M, g) be a compact riemannian manifold of dimension
n, Ag and h be such that Pg is coercive. Let u0 ∈ C4,θ, θ ∈ (0, 1), be a positive
nondegenerate solution of (1.1). Assume that Ag = Apaneitz. Then, for any
5 ≤ n ≤ 11 and any ε > 0, there exists a solution uε of type u0 − BBlε to
(1.5). In particular, (1.5) is not stable.

The proof of the theorems relies on a well known Lyapunov-Schmidt re-
duction procedure which permits to reduce the problem to a finite dimen-
sional one for which we defined a reduced energy. The solutions to (1.5) will
then be obtained as critical points of this reduced energy. We refer to [1]
and the references therein for more information on the Lyapunov-Schmidt
reduction procedure. We would like to emphasize that the proof of Theorem
1.1 is inspired by the previous work of Robert and Vétois [25]. Thus we will
keep their notations. We also want to point out that we use without proof
computations done in Deng and Pistoia [8] (for more details on these compu-
tations, see their paper). The plan of the paper is the following : in section
2 we introduce notations and perform the finite dimensional reduction. In
section 3 we study the reduced problem and prove Theorem 1.1. The error
estimate and the C1 uniform asymptotic expansion of the reduced energy are
done in the appendix.
Acknowledgements : The authors would like to thank F. Robert for his
comments and suggestions on a preliminary version of this paper. Addition-
ally, the authors would like to thank the anonymous referee for pointing out
relevant references.

2 Finite dimensional reduction.
Let (ξα)α be a sequence of points of M . In all the following, we will suppose
up to extracting a subsequence that, for α large enough, all the points ξα
belong to a small open set Ω of M in which there exists a smooth orthogonal
frame. Thus, we will identify the tangent spaces TξM with Rn for all ξ ∈ Ω.
We recall that we suppose that Pg is coercive.
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In all the following, we will denote by 〈., .〉Pg , the scalar product, for
u, v ∈ H2(M),

〈u, v〉Pg =

∫
M

∆gu∆gvdV +

∫
M

Ag(∇gu,∇gv)dV +

∫
M

huvdV,

where here and in the following dV stands for the volume element with
respect to the metric g, and ‖.‖Pg , for the associated norm which is then

equivalent to the standard norm of H2(M). We denote by i∗ : L
2n
n+4 (M) →

H2(M) the adjoint operator of the embedding i : H2(M) → L
2n
n−4 (M), i.e.

for all ϕ ∈ L
2n
n+4 (M), the function u = i∗(ϕ) ∈ H2(M) is the unique solution

of ∆2
gu − divg(Agdu) + hu = ϕ. Using this notation, we see that equation

(1.5) can be rewritten as, for u ∈ H2(M),

u = i∗(fε(u)),

where fε(u) = |u|2∗−2−εu. Before proceeding we recall some basic facts. It is
well known (see [18]) that all solutions u ∈ H2(Rn) of the equation

∆2
euclu = u2

∗−1 = u
n+4
n−4 in Rn

are given by
Uδ,y(x) = δ

4−n
2 U(

x− y
δ

), δ > 0, y ∈ Rn

where

U(x) = [n(n− 4)(n2 − 4)]
n−4
8

(
1

1 + |x|2

)n−4
2

= αn

(
1

1 + |x|2

)n−4
2

. (2.1)

It is also well known (see [19]) that all solutions v ∈ H2(Rn) of

∆2
euclv = (2∗ − 1)U2∗−2v

are linear combinations of

V0(x) = αn
n− 4

2

|x|2 − 1

(1 + |x|2)n−2
2

and
Vi(x) = αn(n− 4)

xi

(1 + |x|2)n−2
2

, i = 1, . . . , n.

Let χ : R → R be a smooth cutoff function such that 0 ≤ χ ≤ 1, χ(x) = 1

if x ∈ [−r0
2
,
r0
2

] and χ(x) = 0 if x ∈ R\(−r0, r0). We define, for any real δ
strictly positive, ξ ∈M and x ∈M ,

Wδ,ξ(x) = χ(dg(x, ξ))δ
4−n
2 U(δ−1 exp−1ξ (x)),
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where dg(x, ξ) stands for the distance from x to ξ with respect to the metric
g and expξ is the exponential map with respect to the metric g. We also
define, for any real δ strictly positive, ξ ∈M and x ∈M ,

Zδ,ξ(x) = χ(dg(x, ξ))δ
n−4
2

d(x, ξ)2 − δ2

(δ2 + d(x, ξ)2)
n−2
2

,

and, for ω ∈ TξM ,

Zδ,ξ,ω(x) = χ(dg(x, ξ))δ
n−2
2

〈
exp−1ξ x, ω

〉
g

(δ2 + d(x, ξ)2)
n−2
2

.

We denote by Πδ,ξ respectively Π⊥δ,ξ the projection of H2(M) onto

Kδ,ξ = span {Zδ,ξ, (Zδ,ξ,ei)i=1..n}

respectively

K⊥δ,ξ =
{
φ ∈ H2(M)/ 〈φ, Zδ,ξ〉Pg = 0 and 〈φ, Zδ,ξ,ω〉Pg = 0, ∀ω ∈ TξM

}
.

(2.2)
We recall that a solution u0 of (1.5) is nondegenerate if the linearization of
the equation has trivial kernel, that is

K =
{
ϕ ∈ C4,θ(M)/Pgϕ = (2∗ − 1)|u0|2

∗−2ϕ
}

= {0} . (2.3)

We are looking for solution u to (1.5) of the form

u = u0 −Wδε(tε),ξε + φδε(tε),ξε ,

where u0 is a nondegenerate positive solution of (1.5), φδε(tε),ξε ∈ K⊥δε(tε),ξε
and

δε(tε) =

{ √
tεε if n ≥ 8

(tεε)
2

n−4 if 5 ≤ n ≤ 8
, tε > 0. (2.4)

It is easy to see that equation (1.5) is equivalent to the following system

Πδε(t),ξ(u0 −Wδε(t),ξ + φδε(t),ξ − i∗(fε(u0 −Wδε(t),ξ + φδε(t),ξ))) = 0, (2.5)

and

Π⊥δε(t),ξ(u0 −Wδε(t),ξ + φδε(t),ξ − i∗(fε(u0 −Wδε(t),ξ + φδε(t),ξ))) = 0. (2.6)

We begin by solving (2.6).
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Proposition 2.1. Let u0 ∈ C4,θ(M) be a nondegenerate positive solution of
(1.5). Given two real numbers a < b, there exists a positive constant Ca,b
such that for ε small, for any t ∈ [a, b] and any ξ ∈M , there exists a unique
function φδε(t),ξ ∈ K⊥δε(t),ξ which solves equation (2.6) and satisfies∥∥φδε(t),ξ∥∥Pg ≤ Ca,bε| ln ε|. (2.7)

Moreover, φδε(t),ξ is continuously differentiable with respect to t and ξ.

In order to prove the previous proposition, we set, for ε small, for any
positive real number δ and ξ ∈ M , the map Lε,δ,ξ : K⊥δ,ε → K⊥δ,ε defined by,
for φ ∈ K⊥δ,ε,

Lε,δ,ξ(φ) = Π⊥δ,ξ(φ− i∗(f ′ε(u0 −Wδ,ξ)φ)).

We will first prove that this map is inversible for δ and ε small.

Lemma 2.1. There exists a positive constant Ca,b such that for ε small, for
any t ∈ [a, b], any ξ ∈M and any φ ∈ K⊥δ,ε, we have∥∥Lεα,δεα (tα),ξα(φ)

∥∥
Pg
≥ Ca,b ‖φ‖Pg .

Proof. Assume by contradiction that there exist two sequences of positive real
numbers (εα)α and (tα)α such that εα −→

α→+∞
0 and a ≤ tα ≤ b, a sequence of

points (ξα))α of M and a sequence of functions (φα)α such that

φα ∈ K⊥δεα (tα),ξα , ‖φα‖Pg = 1 and
∥∥Lεα,δεα (tα),ξα(φα)

∥∥
Pg
−→
α→∞

0. (2.8)

To simplify notations, we set Lα = Lεα,δεα (tα),ξα , Wα = Wδεα (tα),ξα , Z0,α =
Zδεα (tα),ξα and Zi,α = Zδεα (tα),ξα,ei for i = 1, . . . , n where ei is the i-th vector
in the canonical basis of Rn. By definition of Lα, there exist real numbers
λi,α, i = 0, . . . , n such that

φα − i∗(f ′εα(u0 −Wα)φα)− Lα(φα) =
n∑
i=0

λi,αZi,α. (2.9)

Standard computations give

〈Zi,α, Zj,α〉Pg −→α→∞ ‖∆euclVi‖2L2(Rn) δij, (2.10)

where δij stands for the Kronecker symbol. Therefore, taking the scalar
product of (2.9) with Zi,α, using the previous limit and recalling that φα and
Lα(φα) belong to K⊥δεα (tα),ξα , we deduce that∫

M

f ′εα(u0 −Wα)φαZi,αdV = −λi,α ‖∆euclVi‖2L2(Rn) +

(
n∑
i=0

|λi,α|

)
o(1),

(2.11)
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where, here and in the following, o(1) −→
α→+∞

0. It is easy to see using the
definition of Wα and Zi,α and a change of variables that, for α large enough,∫

M

f ′εα(u0 −Wα)φαZi,αdV

=

∫
M

f ′εα(Wα)φαZi,αdV + o(1) (2.12)

= (2∗ − 1− εα)δεα(tα)εα
n+4
2

∫
Rn
χ2∗−2−εα
α U2∗−2−εαViφ̃αdVg̃α + o(1),

where χα = χ(δεα(tα)|x|), φ̃α(x) = δεα(tα)
n−4
2 χαφα(expξα(δεα(tα)x)) and

g̃α(x) = exp∗ξα g(δεα(tα)x). Since (φα)α is bounded in H2(M), passing to
a subsequence if necessary, we can assume that (φ̃α)α converges weakly to a
function φ̃ ∈ H2(Rn). Letting α→ +∞ in (2.12), we deduce that∫

M

f ′εα(u0 −Wα)φαZi,αdV −→
α→∞

(2∗ − 1)

∫
Rn
U2∗−2Viφ̃dVgeucl = 0, (2.13)

where we used that Vi is solution of ∆2
euclVi =

n+ 4

n− 4
U2∗−2Vi in Rn and

φα ∈ K⊥δεα (tα),ξα to obtain the last equality. Therefore, from (2.11) and (2.13),
we have

λi,α = o(1) + o(
n∑
i=0

|λi,α|).

From (2.9), this implies

φα − i∗(f ′εα(u0 −Wα)φα)− Lα(φα) −→
α→∞

0.

Since by assumption
∥∥Lεα,δεα (tα),ξα(φα)

∥∥
Pg
−→
α→∞

0, we finally obtain that∥∥φα − i∗(f ′εα(u0 −Wα)φα)
∥∥
Pg
−→
α→∞

0. (2.14)

Since (φα)α is bounded inH2(M), up to taking a subsequence, we can assume
that φα converges weakly in H2(M) to a function φ ∈ H2(M). Then, using
(2.14), we get, for any ϕ ∈ H2(M),∣∣∣∣〈ϕ, φα〉Pg − ∫

M

f ′εα(u0 −Wα)ϕφαdV

∣∣∣∣ =
∣∣∣〈ϕ, φα − i∗(f ′εα(u0 −Wα)φα)

〉
Pg

∣∣∣
≤ ‖ϕ‖Pg

∥∥φα − i∗(f ′εα(u0 −Wα)φα)
∥∥
Pg

= o(‖ϕ‖Pg). (2.15)
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We deduce from this that φ is a weak solution of Pgφ = (2∗−1)u2
∗−2

0 φ. Since
u0 is a nondegenerate solution of (1.5), we obtain that φ = 0. Therefore,
φα ⇀

α→∞
0 weakly in H2(M). Now we will show that φ̃α ⇀

α→∞
0 weakly in

H2(Rn). Let ϕ̃ be a smooth function with compact support in Rn, we will
use (2.15) with, for x ∈M ,

ϕ(x) = χ(dgξα (x, ξα))δεα(tα)
4−n
2 ϕ̃(δεα(tα)−1 exp−1ξα (x)).

Thus, applying (2.15) to the previous ϕ and using a change of variable, we
have, ∫

Rn
∆g̃αφ̃α∆g̃αϕ̃dVg̃α + δεα(tα)2

∫
Rn
Ag̃α(∇g̃αφ̃α,∇g̃αϕ̃)dVg̃α

+ δεα(tα)4
∫
Rn
h(expξα(δεα(tα)x))φ̃αϕ̃dVg̃α (2.16)

= δεα(tα)4
∫
Rn
f ′εα(u0,α −Wα(expξα(δεα(tα)x)))φ̃αϕdVg̃α + o(1),

where u0,α(.) = u0(expξα(δεα(tα).)). Now it is easy to see that, letting α→∞
in (2.16), ∫

Rn
∆euclφ̃∆euclϕ̃dVgeucl = (2∗ − 1)

∫
Rn
U2∗−2φ̃ϕ̃dVgeucl .

Thus φ̃ is a weak solution of ∆2
euclφ̃ =

n+ 4

n− 4
U2∗−2φ̃. So, from [19], we

know that there exists λi ∈ R, i = 0, . . . , n, such that φ̃ =
∑n

i=0 λiVi. Since
φα ∈ K⊥δεα (tα),ξα , using the same argument as in (2.13), we deduce that φ̃ ≡ 0.
Using one more time (2.15) with ϕ = φα, a change of variables and since
φα ⇀

α→∞
0 weakly in H2(M) and φ̃α ⇀

α→∞
0 weakly in H2(Rn), we get

‖φα‖2Pg = (2∗ − 1− εα)

∫
M

|u0 −Wα|2
∗−2−εαφ2

αdV + o(1)

≤ C

∫
M

φ2
αdV + C

∫
M

|Wα|2
∗−2−εαφ2

αdV + o(1)

≤ C

∫
M

φ2
αdV + C

∫
M

|U |2∗−2−εαφ̃2
αdVg̃α + o(1) −→

α→∞
0.

This yields to a contradiction with (2.8).
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Proof of Proposition 2.1. It is easy to see that equation (2.6) is equivalent to

Lε,δε(t),ξ(φ) = Nε,δε(t),ξ(φ) +Rε,δε(t),ξ,

where

Nε,δε(t),ξ(φ) = Π⊥δε(t),ξ(i
∗(fε(u0 −Wδε(t),ξ + φ))− fε(u0 −Wδε(t),ξ)

− f ′ε(u0 −Wδε(t),ξ)φ),

and

Rε,δε(t),ξ = Π⊥δε(t),ξ(i
∗
ε(fε(u0 −Wδε(t),ξ))− u0 +Wδε(t),ξ).

Let Tε,δε(t),ξ : K⊥δεα (tα),ξα → K⊥δεα (tα),ξα be the application defined by

Tε,δε(t),ξ(φ) = L−1ε,δε(t),ξ(Nε,δε(t),ξ(φ) +Rε,δε(t),ξ),

and
Bε,δε(t),ξ(γ) =

{
φ ∈ K⊥δεα (tα),ξα | ‖φ‖Pg ≤ γ

∥∥Rε,δε(t),ξ

∥∥
Pg

}
,

where γ is a positive constant which will be chosen later in order to apply the
fixed point theorem for Tε,δε(t),ξ restricted to Bε,δε(t),ξ(γ). Since, from Lemma
2.1, the map Lε,δε(t),ξ is inversible and has a continuous inverse, we have∥∥Tε,δε(t),ξ(φ)

∥∥
Pg
≤ C(

∥∥Nε,δε(t),ξ(φ)
∥∥
Pg

+
∥∥Rε,δε(t),ξ

∥∥
Pg

), (2.17)

and ∥∥Tε,δε(t),ξ(φ1)− Tε,δε(t),ξ(φ2)
∥∥
Pg
≤ C

∥∥Nε,δε(t),ξ(φ1)−Nε,δε(t),ξ(φ2)
∥∥
Pg
.

(2.18)
Since i∗ : L

2n
n+4 (M)→ H2(M) is continuous, we get∥∥Nε,δε(t),ξ(φ)
∥∥
Pg
≤

C
∥∥fε(u0 −Wδε(t),ξ + φ))− fε(u0 −Wδε(t),ξ)− f ′ε(u0 −Wδε(t),ξ)φ

∥∥
L

2n
n+4

,

where, here and in the following, ‖.‖Lp = ‖.‖Lp(M), p ∈ R+. Using the mean
value theorem, Hölder and Sobolev inequalities, we have, for τ ∈ (0, 1),∥∥Nε,δε(t),ξ(φ)

∥∥
Pg
≤ C

∥∥[f ′ε(u0 −Wδε(t),ξ + τφ)− f ′ε(u0 −Wδε(t),ξ)
]

(φ)
∥∥
L

2n
n+4

≤C
∥∥f ′ε(u0 −Wδε(t),ξ + τφ)− f ′ε(u0 −Wδε(t),ξ)

∥∥
L
n
4
‖φ‖L2∗ .

We will use here and through the paper the following easy consequences of
Taylor’s expansion [17, lemma 2.2], for all α > 0, β ∈ R,

||α + β|θ − αθ| ≤
{
Cθ min

{
|β|θ, αθ−1|β|

}
if 0 < θ ≤ 1,

Cθ(α
θ−1|β|+ |β|θ) if θ > 1,

(2.19)
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and

||α+β|θ(α+β)−αθ+1− (1+θ)αθβ| ≤
{
Cθmin

{
|β|θ+1, αθ−1|β|2

}
if θ < 1,

Cθmax{|β|θ+1, αθ−1|β|2} if θ ≥ 1.
(2.20)

Thus, we obtain

∥∥Nε,δε(t),ξ(φ)
∥∥
Pg
≤

{
C ‖φ‖2

∗−1−ε
Pg

if n ≥ 12,

C(‖u0 −W‖2
∗−3−ε
L2∗ ‖φ‖2Pg + ‖φ‖2

∗−1−ε
Pg

) if 5 ≤ n < 12.

(2.21)
From the mean value theorem, Hölder and Sobolev inequalities, and (2.19),
we also get, for some τ ∈ (0, 1),∥∥Nε,δε(t),ξ(φ1)−Nε,δε(t),ξ(φ2)

∥∥
Pg

(2.22)

≤ C
∥∥fε(u0 −Wδε(t),ξ + φ1)− fε(u0 −Wδε(t),ξ + φ2)

− f ′ε(u0 −Wδε(t),ξ)(φ1 − φ2)
∥∥
L

2n
n+4

≤ C
∥∥[f ′ε(u0 −Wδε(t),ξ + τφ2 + (1− τ)φ1)

−f ′ε(u0 −Wδε(t),ξ)
]

(φ1 − φ2)
∥∥
L

2n
n+4

≤ C
∥∥f ′ε(u0 −Wδε(t),ξ + τφ2 + (1− τ)φ1)− f ′ε(u0 −Wδε(t),ξ)

∥∥
L
n
4

× ‖φ1 − φ2‖L2∗

≤


C(‖φ1‖2

∗−2−ε
Pg

+ ‖φ2‖2
∗−2−ε
Pg

) ‖φ1 − φ2‖Pg if n ≥ 12,

C(
∥∥u0 −Wδε(t),ξ

∥∥
L2∗ (M)

+ ‖φ1‖Pg + ‖φ2‖Pg)
2∗−3−ε

×(‖φ1‖Pg + ‖φ2‖Pg) ‖φ1 − φ2‖Pg if 5 ≤ n < 12

Since
∥∥u0 −Wδε(t),ξ

∥∥
L2∗ = O(1), it follows from (2.17), (2.18), (2.21) and

(2.22), that, for all φ, φ1, φ2 ∈ Bε,δε(t),ξ(γ),

∥∥Tε,δε(t),ξ(φ)
∥∥
Pg
≤


C(γ2

∗−1−ε
∥∥Rε,δε(t),ξ

∥∥2∗−1−ε
Pg

+
∥∥Rε,δε(t),ξ

∥∥
Pg

) if n ≥ 12

C(γ2
∥∥Rε,δε(t),ξ

∥∥2
Pg

+ γ2
∗−1−ε

∥∥Rε,δε(t),ξ

∥∥2∗−1−ε
Pg

+
∥∥Rε,δε(t),ξ

∥∥
Pg

) if 5 ≤ n < 12

and∥∥Tε,δε(t),ξ(φ1)− Tε,δε(t),ξ(φ2)
∥∥
Pg
≤ Cγ2

∗−2−ε ∥∥Rε,δε(t),ξ

∥∥2∗−2−ε
Pg

‖φ1 − φ2‖Pg ,

where C stands for positive constants not depending on γ, ε, ξ, t, φ, φ1

and φ2. Thus from Lemma 5.1, if γ is fixed large enough, for ε small, for any
t ∈ [a, b] and any ξ ∈ M , Tε,δε(t),ξ is a contraction mapping from Bε,δε(t),ξ(γ)
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onto Bε,δε(t),ξ(γ). Therefore, using the fixed point theorem, there exists a
function φδε(t),ξ ∈ K⊥δε(t),ξ which solves equation (2.6). Now, (2.7) follows
from Lemma 5.1. The fact that φδε(t),ξ is continuously differentiable with
respect to t and ξ is standard.

3 The reduced problem.
For ε > 0 small enough, we defined the energy associated to (1.5) by, for
u ∈ H2(M),

Jε(u) =
1

2

∫
M

(∆gu)2 +
1

2

∫
M

Ag(∇gu,∇gu)dV +
1

2

∫
M

hu2dV −
∫
M

Fε(u)dV,

where Fε(u) =

∫ u

0

fε(s)ds. We set Iε(t, ξ) = Jε(u0−Wδε(t),ξ+φδε(t),ξ), t ∈ R∗+
and ξ ∈M where φδε(t),ξ ∈ K⊥δε(t),ξ is the function defined in Proposition 2.1.
In the next proposition, we give the expansion of Iε with respect to ε.

Proposition 3.1. Let u0 ∈ C4,θ(M), θ ∈ (0, 1) be a nondegenerate positive
solution of (1.5). Then there exist constants ci(n, u0), i = 2, 5 depending on
n and u0 and ci(n), i = 1, 3, 4, depending on n such that

Iε(t, ξ) = c5(n, u0) + c2(n, u0)ε+ c3(n)ε ln ε− c4(n)ε ln(t) + c1(n)ϕ(ξ)εt+ o(ε)
(3.1)

as ε → 0 C0 uniformly with respect to t in compact subsets of R∗+ and with
respect to ξ ∈ M and C1 uniformly if 8 ≤ n ≤ 13. Moreover, we have that

c4(n) > 0, c1(n) =
2

n
K
−n

4
n and

ϕ(ξ) =

(
(n− 1)

(n− 6)(n2 − 4)
(Trg(Ag − Apaneitz)(ξ)1n≥8

+
2nu0(ξ)ωn−1

(n+ 2)(n(n− 4)(n2 − 4))
n−4
8 ωn

1n≤8

)
,

where ωn stands for the volume of Sn and Kn is the sharp constant for the

embedding of H2(Rn) into L2∗(Rn) given by K−1n =
n(n− 4)(n2 − 4)ω

4
n
n

16
.

Proof. We begin by proving that

Iε(t, ξ) = Jε(u0 −Wδε(t),ξ) + o(ε), (3.2)
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as ε → 0, uniformly with respect to t in compact subsets of R∗+ and points
ξ ∈ M (we will show in Lemma 5.2 that, when 8 ≤ n ≤ 13, this estimate
holds C1 uniformly with respect to t and ξ). Indeed, we have

Iε(t, ξ)− Jε(u0 −Wδε(t),ξ)

=
〈
u0 −Wδε(t),ξ − i∗(fε(u0 −Wδε(t),ξ)), φδε(t),ξ

〉
Pg

+O(
∥∥φδε(t),ξ∥∥2Pg) (3.3)

when ε→ 0. Using Lemma 5.1 and Proposition 2.1, we get〈
u0 −Wδε(t),ξ − i∗(fε(u0 −Wδε(t),ξ)), φδε(t),ξ

〉
Pg

+O(
∥∥φδε(t),ξ∥∥2Pg) = O(ε2| ln ε|2) = o(ε).

Now, the proposition is reduced to estimate Jε(u0 −Wδε(t),ξ). We will focus
on C0-estimates. The C1-estimates can be obtained using the same argument
as in Lemma 4.1 of [21]. Since u0 is a solution of (1.5), we have

Jε(u0 −Wδε(t),ξ) =
1

2

∫
M

u2
∗

0 dV +
1

2

∫
M

(∆gWδε(t),ξ)
2dV

+
1

2

∫
M

Ag(∇gWδε(t),ξ,∇gWδε(t),ξ)dV +
1

2

∫
M

hW 2
δε(t),ξdV

−
∫
M

fε(u0)Wδε(t),ξdV −
∫
M

Fε(u0 −Wδε(t),ξ)dV.

Using a Taylor expansion with respect to ε, we get

1

2

∫
M

u2
∗

0 dV −
1

2∗ − ε

∫
M

u2
∗−ε

0 dV

=
1

2

∫
M

u2
∗

0 dV −
1

2∗
(1 +

ε

2∗
)

∫
M

u2
∗

0 (1− ε lnu0)dV +O(ε2)

= (
1

2
− 1

2∗
)

∫
M

u2
∗

0 dV +
ε

2∗

∫
M

u2
∗

0 (lnu0 −
1

2∗
)dV +O(ε2)

Thus from the two previous equalities, we obtain

Jε(u0 −Wδε(t),ξ) = (
1

2
− 1

2∗
)

∫
M

u2
∗

0 dV +
ε

2∗

∫
M

u2
∗

0 (lnu0 −
1

2∗
)dV

+ I1,ε,t,ξ + I2,ε,t,ξ + I3,ε,t,ξ +O(ε2),
(3.4)

where

I1,ε,t,ξ =
1

2

∫
M

(∆gWδε(t),ξ)
2dV +

1

2

∫
M

Ag(∇gWδε(t),ξ,∇gWδε(t),ξ)dV

+
1

2

∫
M

hW 2
δε(t),ξdV −

∫
M

Fε(Wδε(t),ξ)dV,
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I2,ε,t,ξ =

∫
M

fε(Wδε(t),ξ)u0dV,

and
I3,ε,t,ξ = −

∫
M

Fε(u0 −Wδε(t),ξ)− Fε(u0)− Fε(Wδε(t),ξ)

+ fε(u0)Wδε(t),ξ + fε(Wδε(t),ξ)u0dV.
(3.5)

We begin by estimating I3. Using Taylor expansion (cf (2.20)) and rough
estimations, we have

|I3,ε,t,ξ| ≤
∥∥∥(Fε(u0 −Wδε(t),ξ)− Fε(Wδε(t),ξ) + fε(Wδε(t),ξ)u0)1B(

√
δε(t))

∥∥∥
L1

+
∥∥∥(Fε(u0 −Wδε(t),ξ)− Fε(u0) + fε(u0)Wδε(t),ξ)1M\B(

√
δε(t))

∥∥∥
L1

+
∥∥∥Fε(u0)1B(

√
δε(t))

∥∥∥
L1

+
∥∥∥fε(u0)Wδε(t),ξ1B(

√
δε(t))

∥∥∥
L1

+
∥∥∥Fε(Wδε(t),ξ)1M\B(

√
δε(t))

∥∥∥
L1

+
∥∥∥u0fε(Wδε(t),ξ)1M\B(

√
δε(t))

∥∥∥
L1

≤
∥∥∥u20W 2∗−2−ε

δε(t),ξ
1
B(
√
δε(t))

∥∥∥
L1

+
∥∥∥u2∗−2−ε0 W 2

δε(t),ξ1M\B(
√
δε(t))

∥∥∥
L1

+
∥∥∥Fε(Wδε(t),ξ)1M\B(

√
δε(t))

∥∥∥
L1

+
∥∥∥u0fε(Wδε(t),ξ)1M\B(

√
δε(t))

∥∥∥
L1

+
∥∥∥Fε(u0)1B(

√
δε(t))

∥∥∥
L1

+
∥∥∥fε(u0)Wδε(t),ξ1B(

√
δε(t))

∥∥∥
L1

≤ C
∥∥∥u20W 2∗−2−ε

δε(t),ξ
1
B(
√
δε(t))

∥∥∥
L1

+ C
∥∥∥u2∗−2−ε0 W 2

δε(t),ξ1M\B(
√
δε(t))

∥∥∥
L1

+O(δε(t)
n
2 )

Therefore estimating the last two terms and using the definition of δ, we
obtain

|I3,ε,t,ξ| ≤

 O(δε(t)
n
2 ) = O(ε

n
4 ) = o(ε2) if n > 8

O(δε(t)
4| ln δ|) = O(ε2| ln ε|) if n = 8

O(δε(t)
n−4) = O(ε2) if n < 8.

(3.6)

Now, let us estimate I2,ε,t,ξ. We recall that the Cartan expansion of the
metric gives√

|g|(x) = 1− 1

6
Ricijx

ixj − 1

12
∇kRicijx

ixjxk +O(|x|4), (3.7)

where |g| stands for the determinant of the metric g in geodesic normal
coordinates. Then, using a change of variables, Taylor expansion and by
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symmetry, we have

I2,ε,t,ξ = u0(ξ)ωn−1α
n+4
n−4
−ε

n δε(t)
n−4
2

(1+ε)

×
∫ r0

2δε
(t)

0

rn−1

(1 + r2)
n+4
2
−εn−4

2

(1 +O(δ2r2))dr

+O(δε(t)
n
2 + ε2| ln δε(t)|)

=
2u0(ξ)ωn−1α

n+4
n−4
n δε(t)

n−4
2

n(n+ 2)
+O(δε(t)

n
2 + ε2| ln δε(t)|)

=
2n+1u0(ξ)K

−n
4

n ωn−1δε(t)
n−4
2

n(n+ 2)αnωn
+O(δε(t)

n
2 + ε2| ln δε(t)|), (3.8)

where αn is defined in (2.1). Finally, we use the computations of section
4 of [10] and the estimate (4.2) of [8] to estimate I1,ε,t,δ. We notice, using
(3.7) and by symmetry, that the remaining in equation (4.2) of [8] (namely
o(δε(t)

2) ) is actually in O(δε(t)
4). We thus have

I1,ε,t,δ =
2

n
K
−n

4
n

(
1− Cnε−

(n− 4)2

8
ε ln δ

+
(n− 1)

(n− 6)(n2 − 4)
(Trg(Ag − Apaneitz)δε(t)21n≥8)

+ o(ε) +O(δε(t)
4)

)
,

(3.9)

where

Cn = 2n−4(n− 4)2
ωn−1
ωn

∫ ∞
0

r
n−2
2 ln(1 + r)

(1 + r)n
dr

+
(n− 4)2

8(n− 2)
(1− 1

2
ln
√
n(n− 4)(n2 − 4)).

(3.10)

Thus, combining (3.4), (3.6), (3.8) and (3.9), we obtain

Jε(u0 −Wδε(t),ξ) = (
1

2
− 1

2∗
)

∫
M

u2
∗

0 +
ε

2∗

∫
M

u2
∗

0 (lnu0 −
1

2∗
)dV

+
2

n
K
−n

4
n

(
1− Cnε−

(n− 4)2

8
ε ln δε(t)

+
(n− 1)

(n− 6)(n2 − 4)
(Trg(Ag − Apaneitz)δε(t)2

)
+

2n+1u0(ξ)K
−n

4
n ωn−1δε(t)

n−4
2

n(n+ 2)αnωn
+ o(ε). (3.11)
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The lemma follows from (3.2) and (3.11).

The next proposition shows that, in order to construct a solution to (1.5),
we only need to find a critical point for the reduced energy Iε.

Proposition 3.2. Given two positive real numbers a < b, for ε small, if
(tε, ξε) ∈ (a, b)×M is a critical point of Iε, then the function u0−Wδε(tε),ξε +
φδε(tε),ξε is a solution of (1.5).

Proof. Let (ξα)α be a sequence of points of M and suppose that (tα)α and
(εα)α are two sequences of real numbers such that εα −→

α→∞
0, a ≤ tα ≤ b and

(tα, ξα) is a critical point of Iεα for all α ∈ N. To simplify notations, we set,
for i = 1, . . . , n,

Z0,α = Zδεα (tα),ξα and Zi,α = Zδεα (tα),ξα,ei .

Since φδεα (tα),ξα is a solution of (2.6) by Proposition 2.1, there exist real
numbers λi,α, i = 0, . . . , n such that

DJεα(u0 −Wδεα (tα),ξα + φδεα (tα),ξα) =
n∑
i=0

λi,α 〈Zi,α, .〉Pg . (3.12)

Using the previous equality, we see that

∂Iεα
∂t

(tα, ξα) =
n∑
i=0

λi,α

〈
Zi,α,

∂

∂t
(−Wδεα (tα),ξα + φδεα (tα),ξα)

〉
Pg

. (3.13)

A simple computation gives

∂

∂t
(Wδεα (tα),ξα)|t=tα =

C̃n
tα
Z0,α, (3.14)

where C̃n = αn if n < 8 and C̃n =
αn(n− 4)

4
if n ≥ 8 (see (2.1) for the

definition of αn). Taking the derivative of
〈
Zδεα (tα),ξα , φδεα (tα),ξα

〉
Pg

= 0 with
respect to t, we obtain〈

∂

∂t
Zδεα (tα)|t=tα ,ξα , φδεα (tα),ξα

〉
Pg

= −
〈
Zδεα (tα),ξα ,

∂

∂t
φδεα (tα),ξα|t=tα

〉
Pg

.

(3.15)

Since a straight forward computation gives
∥∥∥∥ ∂∂tZδεα (tα),ξα|t=tα

∥∥∥∥
Pg

= O(1),

from (2.7), (3.13), (3.14) and (3.15), we deduce that

∂Iεα
∂t

(tα, ξα) = −C̃n
tα
λ0,α ‖∆euclV0‖2L2(Rn) + o(

n∑
i=0

λi,α), (3.16)
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where o(1) −→
α→+∞

0. Arguing the same way and noting that

∂

∂yi
(Wδεα (tα),expξα (y)

)|y=0 =
αn(n− 4)

δεα(tα)
Zi,α +Ri,α

where Ri,α −→
α→+∞

0 in H2(M), and∥∥∥∥ ∂

∂yi
Zj,δεα (tα),expξα (y)|y=0

∥∥∥∥
Pg

= O(
1

δεα(tα)
),

we obtain

δεα(tα)
∂Iεα
∂yi

(tα, expξα(y))|y=0 = −λi,α ‖∆euclVi‖2L2(Rn) + o(
n∑
i=0

λi,α). (3.17)

Therefore, from (3.12), (3.16) and (3.17), it follows that if (tα, ξα) is a critical
point of Iεα then u0 −Wδεα (tα),ξα + φδεα (tα),ξα is a solution of (1.5).

We are now in position to prove the theorems.

4 Proof of the theorems.
We begin by proving Theorem 1.1.

Proof of Theorem 1.1. We set G : R∗+ ×M → R the function defined by

G(t, ξ) = −c4(n) ln t+ c1(n)ϕ(ξ)t,

where c4(n), c1(n) and ϕ(ξ) are defined in (3.1). From Proposition 3.1, we
have

lim
ε→0

1

ε
(Iε(t, ξ)− c5(n, u0)− c2(n, u0)ε− c3(n)ε ln ε) = G(t, ξ), (4.1)

C1 uniformly with respect to ξ ∈M and t in compact subset of R∗+. We will
consider two cases depending on the dimension of the manifold.

First case : 8 ≤ n ≤ 13.

We argue as in [21]. Let ξ0 be the C1 stable critical point of ϕ such that
ϕ(ξ0) > 0 and set

t0 =
c4(n)

c1(n)ϕ(ξ0)
> 0.
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Identifying the tangent space at ξ with Rn we define the map H from [0, 1]×
R+ × Rninto Rn+1 by

H(s, t, ξ) = s

(
∂G(t, expξ(y))

∂t
,
∂G(t, expξ(y))

∂y1
|y=0, . . . ,

∂G(t, expξ(y))

∂yn
|y=0

)
+(1− s)

(
t− t0,

∂(ϕ ◦ expξ(y))

∂y1
|y=0, . . . ,

∂(ϕ ◦ expξ(y))

∂yn
|y=0

)
.

By the invariance of the Brower degree via homotopy, we have that (t0, ξ0) is
a C1 stable critical point of G. From Proposition 3.1 and standard properties
of the Brower degree (see e.g. [12]), there exists a couple (tε, ξε) of critical
points of Iε converging to (t0, ξ0).

Second case : 5 ≤ n < 8 and n > 13.

Since c4(n) and c1(n) are positive, we have

lim
t→0+

G(t, ξ) = lim
t→∞

G(t, ξ) = +∞,

uniformly in ξ ∈ M . Therefore, from (4.1) we deduce that, for ε small
enough,there exists a couple (tε, ξε) which is a minimum for the functional
Iε in (a, b) ×M where a, b are positive constants not depending on ε. This
implies from Proposition 3.2 that u0 − Wδε(tε),ξε − φδε(tε),ξε is a solution of
(1.5). Thus Theorem 1.1 is established.

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. The proof of Theorem 1.2 will follow closely the proof
of Theorem 1.1 therefore we will only sketch it. We restrict ourselves to the
case where 9 ≤ n ≤ 11 (the case 5 ≤ n ≤ 8 is contained in Theorem
1.1). The main difference is that here we will take δε(tε) = (tεε)

2
n−4 , for

9 ≤ n ≤ 11. We will only point out the impact of this choice in the two key
estimates, namely the estimate of φδε(t),ξ in Proposition 2.1 (given in Lemma
5.1) and the estimate of the reduced energy (see Proposition 3.1). Let us first
consider the error estimate i.e. Lemma 5.1. With our new choice of δ(tε), it
is immediate to check that the leading term in the expansion of Lemma 5.1
will be given by the term ‖f0(Wδε(t),ξ)− P (Wδε(t),ξ)‖L 2n

n+4
. This implies that

Lemma 5.1 will rewrite as

‖i∗(fε(u0 −Wδε(t),ξ))− u0 +Wδε(t),ξ‖Pg = 0(δε(t)
2) = 0(ε

4
n−4 ). (4.2)

Therefore we deduce that

‖φδε(t),ξ‖Pg = 0(ε
4

n−4 ), (4.3)
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where φδε(t),ξ is the function defined in Proposition 2.1. Now, let us consider
the changes that occur in Proposition 3.1. Using (3.3), (4.2) and (4.3), we
obtain that, for 9 ≤ n ≤ 11,

Iε(t, ξ)− Jε(u0 −Wδε(t),ξ) = 0(‖φδε(t),ξ‖2Pg)0(δ4ε(t)) = 0(ε
8

n−4 ) = o(ε).

Then, it only remains to compute Jε(u0 −Wδε(t),ξ). Being a bit careful with
the different remainings apppearing in the proof of Proposition 3.1 and using
that Ag = Apaneitz, we see that

Jε(u0 −Wδε(t),ξ) = (
1

2
− 1

2∗
)

∫
M

u2
∗

0 +
ε

2∗

∫
M

u2
∗

0 (lnu0 −
1

2∗
)dV

+
2

n
K
−n

4
n

(
1− Cnε−

(n− 4)

4
ε ln(tε)

)
+

2n+1u0(ξ)K
−n

4
n ωn−1tε

n(n+ 2)αnωn
+ o(ε).

Using this last estimate, we can argue exactly as in the case 5 ≤ n < 8 of
the proof of Theorem 1.1. This concludes the proof of Theorem 1.2.

5 Appendix.
In this section, we will give an estimate of the error Rε,δε(t),ξ (see Proposition
2.1) and complete the proof of Proposition 3.1 by showing that (3.2) holds
C1 uniformly with respect to t in compact subsets of R∗+ and ξ ∈ M when
8 ≤ n ≤ 13. Let us begin with the estimate of the error.

Lemma 5.1. Given two positive real numbers a < b, there exists a positive
constant C ′a,b such that for ε small, for any real number t ∈ [a, b] and any
point ξ ∈M , there holds∥∥i∗(fε(u0 −Wδε(t),ξ))− u0 +Wδε(t),ξ

∥∥
Pg
≤ C ′a,bε| ln ε|

Proof. All the estimates will be uniform in t, ξ and ε. Since i∗ is continuous,
we have ∥∥i∗(fε(u0 −Wδε(t),ξ))− u0 +Wδε(t),ξ

∥∥
Pg

= O
(∥∥(fε(u0 −Wδε(t),ξ))− Pg(u0 −Wδε(t),ξ)

∥∥
L

2n
n+4

) (5.1)
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where fε(u) = |u|2∗−2−εu. The triangular inequality yields to∥∥i∗(fε(u0 −Wδε(t),ξ))− u0 +Wδε(t),ξ

∥∥
Pg

≤ C
∥∥fε(u0 −Wδε(t),ξ)− fε(u0) + fε(Wδε(t),ξ)

∥∥
L

2n
n+4

+ C ‖fε(u0)− Pg(u0)‖
L

2n
n+4

+ C
∥∥fε(Wδε(t),ξ)− Pg(Wδε(t),ξ)

∥∥
L

2n
n+4

≤ C(I1 + I2 + I3). (5.2)

We first estimate I1. By triangular inequality we get

I1 ≤
∥∥∥(fε(u0 −Wδε(t),ξ) + fε(Wδε(t),ξ))1Bξ(

√
δε(t))

∥∥∥
L

2n
n+4

+
∥∥∥(fε(u0 −Wδε(t),ξ)− fε(u0))1M\Bξ(

√
δε(t))

∥∥∥
L

2n
n+4

+
∥∥∥fε(Wδε(t),ξ)1M\Bξ(

√
δε(t))

∥∥∥
L

2n
n+4

+
∥∥∥fε(u0)1Bξ(√δε(t))

∥∥∥
L

2n
n+4

. (5.3)

From Taylor expansion (e.g. using (2.20)) and Young inequality, we obtain∥∥∥(fε(u0 −Wδε(t),ξ) + fε(Wδε(t),ξ))1Bξ(
√
δε(t))

∥∥∥
L

2n
n+4

≤ C
∥∥∥u0W 2∗−2−ε

δε(t),ξ
1
Bξ(
√
δε(t))

∥∥∥
L

2n
n+4

+ C
∥∥∥u2∗−1−ε0 1

Bξ(
√
δε(t))

∥∥∥
L

2n
n+4

,

as well as∥∥∥(fε(u0 −Wδε(t),ξ)− fε(u0))1M\Bξ(
√
δε(t))

∥∥∥
L

2n
n+4

≤ C
∥∥∥u2∗−2−ε0 Wδε(t),ξ1M\Bξ(

√
δε(t))

∥∥∥
L

2n
n+4

+ C
∥∥∥W 2∗−1−ε

δε(t),ξ
1
M\Bξ(

√
δε(t))

∥∥∥
L

2n
n+4

.

Using polar coordinates and a change of variables we deduce that:

I1 =


O(δ

n+4
4

ε (t)) = O(ε
n+4
8 ) if n > 12,

O(δ4ε(t)| ln δε(t)|
2
3 ) = O(ε2| ln ε| 23 ) if n = 12,

O(δ
n−4
2

ε (t)) = O(ε) if n < 12.

Concerning I2 we easily get from Taylor’s expansion that

I2 = ‖fε(u0)− f0(u0)‖
L

2n
n+4

= O(ε).

We now estimate I3. First we recall that with the help of the exponential map
we can identify Bξ(R0) with a neighborhood of the origin in Rn. Therefore
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with this chart we may define χξ,δε(t)(.) := χ(d(.δε(t), ξ)). Using triangular
inequality and a change of variables, we then get

I3 ≤ Cδ
n−4
2
ε
∥∥∥χ2∗−1−ε

ξ,δε(t)
(U2∗−1−ε − U2∗−1)

∥∥∥
L

2n
n+4

+ C
∥∥∥(δ

n−4
2
εχ2∗−1−ε

ξ,δε(t)
− χ2∗−1

ξ,δε(t)
)U2∗−1

δε(t),ξ

∥∥∥
L

2n
n+4

+
∥∥f0(Wδε(t),ξ)− Pg(Wδε(t),ξ)

∥∥
L

2n
n+4

.

Following the computation in the proof of lemma 2.3 of [8] we obtain these
three estimates: ∥∥∥χ2∗−1−ε

ξ,δε(t)
(U2∗−1−ε − U2∗−1)

∥∥∥
L

2n
n+4

= O(ε),

∥∥∥(δ
n−4
2

ε (t)χ2∗−1−ε
ξ,δε(t)

− χ2∗−1
ξ,δε(t)

)U2∗−1
∥∥∥
L

2n
n+4

= O(ε| ln δε(t)|),

and

∥∥f0(Wδε(t),ξ)− Pg(Wδε(t),ξ)
∥∥
L

2n
n+4
≤ C


δ2ε(t) = O(ε) if n > 8,
δ2ε(t)| ln δε(t)| = O(ε| ln ε|) if n = 8,

δ
n−4
2

ε (t) = O(ε) if n < 8.

This concludes the proof.

Finally, let us prove that (3.2) holds C1 uniformly with respect to t in
compact subsets of R∗+ and ξ ∈M when 8 ≤ n ≤ 13.

Lemma 5.2. If 8 ≤ n ≤ 13, we have

Iε(t, ξ) = Jε(u0 −Wδε(t),ξ) + o(ε)

C1 uniformly with respect to t in compact subsets of R∗+ and ξ ∈M .

Proof. To simplify notations, we set, for i = 1, . . . , n,

Z0 = Zδε(t),ξ and Zi = Zδε(t),ξ,ei .

We recall that
∂

∂t
(Wδε(t),ξ) =

C̃n
t
Z0,

22



where C̃n =
αn(n− 4)

4
(see (2.1) for the definition of αn). Taking the deriva-

tive with respect to t to Iε(t, ξ)− Jε(u0 −Wδε(t),ξ), we obtain

∂Iε
∂t

(t, ξ)− ∂Jε
∂t

(u0 −Wδ(t),ξ)

=

∫
M

Pg(φδε(t),ξ)
∂

∂t
Wδε(t),ξdV

−
∫
M

(fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ))
∂Wδε(t),ξ

∂t
dV

+DJε(u0 −Wδε(t),ξ + φδε(t),ξ)[
∂φδε(t),ξ
∂t

]

=
C̃n
t

(∫
M

(Pg(Z0)− f ′ε(u0 −Wδε(t),ξ)Z0)φδε(t),ξdV

−
∫
M

(
fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ)

− f ′ε(u0 −Wδε(t),ξ)φδε(t),ξ
)
Z0dV

)
+DJε(u0 −Wδε(t),ξ + φδε(t),ξ)[

∂φδε(t),ξ
∂t

]

= I1 + I2 + I3, (5.4)

where

I1 =
C̃n
t

∫
M

(Pg(Z0)− f ′ε(u0 −Wδε(t),ξ)Z0)φδε(t),ξdV, (5.5)

I2 = −C̃n
t

∫
M

(fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ)

− f ′ε(u0 −Wδε(t),ξ)φδε(t),ξ)Z0dV, (5.6)

I3 = DJε(u0 −Wδε(t),ξ + φδε(t),ξ)[
∂φδε(t),ξ
∂t

]. (5.7)

In the same way, recalling that

∂

∂yi
(Wδε(t),expξ(y))|y=0 =

αn(n− 4)

δε(t)
Zi +Rδε(t),ξ,
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where
∥∥Rδε(t),ξ

∥∥
Pg

= O(δε(t)
2) (see (6.13) of [20]) and using (2.7), we find

∂Iε
∂yi

(t, expξ(y))|y=0 −
∂Jε
∂yi

(u0 −Wδ(t),expξ(y))|y=0

=
αn(n− 4)

δε(t)

(∫
M

(Pg(Zi)− f ′ε(u0 −Wδε(t),ξ)Zi)φδε(t),ξdV

−
∫
M

(
fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ)

− f ′ε(u0 −Wδε(t),ξ)φδε(t),ξ
)
ZidV

)
+DJε(u0 −Wδε(t),ξ + φδε(t),ξ)[

∂φδε(t),expξ(y)

∂yi
]|y=0

+O(
∥∥Rδε(t),ξ

∥∥
Pg

∥∥φδε(t),ξ∥∥Pg)
= I4 + I5 + I6 + o(ε), (5.8)

where

I4 =
αn(n− 4)

δε(t)

∫
M

(Pg(Zi)− f ′ε(u0 −Wδε(t),ξ)Zi)φδε(t),ξdV,

I5 = − αn(n− 4)

δε(t)

∫
M

(fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ)

− f ′ε(u0 −Wδε(t),ξ)φδε(t),ξ)ZidV,

I6 = DJε(u0 −Wδε(t),ξ + φδε(t),ξ)[
∂φδε(t),expξ(y)

∂yi
]|y=0.

We begin by estimating the terms I3 and I6. We recall that

DJε(u0 −Wδε(t),ξ + φδε(t),ξ)[.] =
n∑
i=0

λi 〈Zi, .〉Pg .

Arguing the same way as in Proposition 3.2, we have

DJ(u0 −Wδε(t),ξ + φδε(t),ξ)[
∂φδε(t),ξ
∂t

] = O

(∥∥φδε(t),ξ∥∥L 2n
n+4

n∑
i=0

|λi|

)
,

and

DJε(u0−Wδε(t),ξ+φδε(t),ξ)[
∂φδε(t),expξ(y)

∂yi
]|y=0 = O

(∥∥φδε(t),ξ∥∥L 2n
n+4

∑n
i=0 |λi|

δε(t)

)
.
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We claim that |λi| = O(ε ln ε), for all i = 0, . . . , n. Using (2.10), to prove the
claim, we just need to show that DJ(u0 −Wδε(t),ξ + φδε(t),ξ)[Zi] = O(ε ln ε),
for all i = 0, . . . , n. Since φδε(t),ξ ∈ K⊥δε(t),ξ, using Hölder inequality, (2.7),
Lemma 5.1 and rough estimates, we have

DJε(u0 −Wδε(t),ξ + φδε(t),ξ)[Z
i]

=

∫
M

Pg(u0 −Wδε(t),ξ)ZidV −
∫
M

fε(u0 −Wδε(t),ξ + φδε(t),ξ)ZidV

=

∫
M

(Pg(u0 −Wδε(t),ξ)− fε(u0 −Wδε(t),ξ))ZidV

−
∫
M

(fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ))ZidV

≤
∥∥Pg(u0 −Wδε(t),ξ)− fε(u0 −Wδε(t),ξ)

∥∥
L

2n
n+4
‖Zi‖L2∗

+
∥∥fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ)

∥∥
L

2n
n+4
‖Zi‖L2∗

≤ O(
∥∥Pg(u0 −Wδε(t),ξ)− fε(u0 −Wδε(t),ξ)

∥∥
L

2n
n+4

)

+O(
∥∥φδε(t),ξ∥∥L 2n

n−4
(
∥∥Wδε(t),ξ

∥∥2∗−2−ε
L

2n
n−4

+
∥∥φδε(t),ξ∥∥2∗−2−εL

2n
n−4

))

≤ O(ε ln ε).

Combining the previous estimates, we get

DJε(u0 −Wδε(t),ξ + φδε(t),ξ)

[
∂φδε(t),ξ
∂t

]
= O(ε2(ln ε)2), (5.9)

and

DJε(u0 −Wδε(t),ξ + φδε(t),ξ)

[
∂φδε(t),expξ(y)

∂yi

]
|y=0 = O(ε

3
2 (ln ε)2). (5.10)

Now let us estimate I2 and I5. Noticing that, if 8 ≤ n ≤ 13,∥∥(u0 −Wδε(t),ξ)
2∗−3−εZi

∥∥
L
n
4

= O(ε−
1
4 ),
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we obtain, using (2.19), for i = 0, . . . , n,∫
M

(fε(u0 −Wδε(t),ξ + φδε(t),ξ)− fε(u0 −Wδε(t),ξ)− f ′ε(u0 −Wδε(t),ξ)φδε(t),ξ)ZidV

≤ C


∫
M

(u0 −Wδε(t),ξ)
2∗−3−εφ2

δε(t),ξZidV if 12 ≤ n ≤ 13,∫
M

((u0 −Wδε(t),ξ)
2∗−3−εφ2

δε(t),ξ + φ2∗−1−ε
δε(t),ξ

ZidV ) if 8 ≤ n < 12,

≤ C


∥∥(u0 −Wδε(t),ξ)

2∗−3−εZi
∥∥
L
n
4

∥∥φδε(t),ξ∥∥2L 2n
n−4

if 12 ≤ n ≤ 13,∥∥φδε(t),ξ∥∥2L 2n
n−4

∥∥(u0 −Wδε(t),ξ)
2∗−3−εZi

∥∥
L
n
4

+ ‖Zi‖
L

2n
n−4

∥∥φδε(t),ξ∥∥2∗−1−εL
2n
n−4

if 8 ≤ n < 12,

≤ O(ε2−
1
4 (ln ε)2)) when 8 ≤ n ≤ 13. (5.11)

Finally, let us estimate I1 and I4. Since
∥∥Pg(Zi)− f ′ε(Wδε(t),ξ)Zi

∥∥
L

2n
n+4

=

O(ε ln ε) (see [8], inequality (4.17)) and since, using rough estimates,∥∥u2∗−2−ε0 Zi
∥∥
L

2n
n+4

+
∥∥∥W 2∗−3−ε

δε(t),ξ
Zi

∥∥∥
L

2n
n+4

= O(ε ln ε),

we obtain∫
M

(Pg(Zi)− f ′ε(u0 −Wδε(t),ξ)Zi)φδε(t),ξdV

≤ C
(∥∥Pg(Zi)− f ′ε(Wδε(t),ξ)Zi

∥∥
L

2n
n+4

+
∥∥(f ′ε(u0 −Wδε(t),ξ)− f ′ε(Wδε(t),ξ))Zi

∥∥
L

2n
n+4

)∥∥φδε(t),ξ∥∥L2∗

≤ Cε ln ε(ε ln ε+
∥∥u2∗−2−ε0 Zi

∥∥
L

2n
n+4

+
∥∥∥W 2∗−3−ε

δε(t),ξ
Zi

∥∥∥
L

2n
n+4

)

≤ O(ε2 ln ε2). (5.12)

The lemma now follows from (5.4), (5.8), (5.9), (5.10), (5.11) and (5.12).

References
[1] Antonio Ambrosetti and Andrea Malchiodi. Perturbation methods and

semilinear elliptic problems on Rn, volume 240 of Progress in Mathe-
matics. Birkhäuser Verlag, Basel, 2006.

[2] Thomas P. Branson. Group representations arising from Lorentz con-
formal geometry. J. Funct. Anal., 74(2):199–291, 1987.

26



[3] Thomas P. Branson and A. Rod Gover. Origins, applications and gen-
eralisations of the Q-curvature. Acta Appl. Math., 102(2-3):131–146,
2008.

[4] Thomas P. Branson and Bent Ørsted. Explicit functional determinants
in four dimensions. Proc. Amer. Math. Soc., 113(3):669–682, 1991.

[5] Sun-Yung Alice Chang. Non-linear elliptic equations in conformal ge-
ometry. Zurich Lectures in Advanced Mathematics. European Mathe-
matical Society (EMS), Zürich, 2004.

[6] Sun-Yung Alice Chang. Conformal invariants and partial differential
equations. Bull. Amer. Math. Soc. (N.S.), 42(3):365–393, 2005.

[7] Sun-Yung Alice Chang and Paul C. Yang. Non-linear partial differential
equations in conformal geometry. In Proceedings of the International
Congress of Mathematicians, Vol. I (Beijing, 2002), pages 189–207.
Higher Ed. Press, Beijing, 2002.

[8] Shengbing Deng and Angela Pistoia. Blow-up solutions for Paneitz-
Branson type equations with critical growth. Asymptot. Anal.,
73(4):225–248, 2011.

[9] Zindine Djadli, Emmanuel Hebey, and Michel Ledoux. Paneitz-type
operators and applications. Duke Math. J., 104(1):129–169, 2000.

[10] Pierpaolo Esposito and Frédéric Robert. Mountain pass critical points
for Paneitz-Branson operators. Calc. Var. Partial Differential Equa-
tions, 15(4):493–517, 2002.

[11] Veronica Felli, Emmanuel Hebey, and Frédéric Robert. Fourth order
equations of critical Sobolev growth. Energy function and solutions of
bounded energy in the conformally flat case. NoDEA Nonlinear Differ-
ential Equations Appl., 12(2):171–213, 2005.

[12] Irene Fonseca and Wilfrid Gangbo. Degree theory in analysis and ap-
plications, volume 2 of Oxford Lecture Series in Mathematics and its
Applications. The Clarendon Press Oxford University Press, New York,
1995. Oxford Science Publications.

[13] Matthew J. Gursky. Conformal invariants and nonlinear elliptic equa-
tions. In International Congress of Mathematicians. Vol. III, pages 203–
212. Eur. Math. Soc., Zürich, 2006.

27



[14] Emmanuel Hebey and Frédéric Robert. Coercivity and Struwe’s com-
pactness for Paneitz type operators with constant coefficients. Calc.
Var. Partial Differential Equations, 13(4):491–517, 2001.

[15] Emmanuel Hebey and Frédéric Robert. Asymptotic analysis for fourth
order Paneitz equations with critical growth. Adv. Calc. Var., 4(3):229–
275, 2011.

[16] Emmanuel Hebey, Frédéric Robert, and Yuliang Wen. Compactness and
global estimates for a fourth order equation of critical Sobolev growth
arising from conformal geometry. Commun. Contemp. Math., 8(1):9–65,
2006.

[17] Yan Yan Li. On a singularly perturbed equation with Neumann bound-
ary condition. Comm. Partial Differential Equations, 23(3-4):487–545,
1998.

[18] Chang-Shou Lin. A classification of solutions of a conformally invariant
fourth order equation in Rn. Comment. Math. Helv., 73(2):206–231,
1998.

[19] Guozhen Lu and Juncheng Wei. On a Sobolev inequality with remainder
terms. Proc. Amer. Math. Soc., 128(1):75–84, 2000.

[20] Anna Maria Micheletti and Angela Pistoia. The role of the scalar cur-
vature in a nonlinear elliptic problem on Riemannian manifolds. Calc.
Var. Partial Differential Equations, 34(2):233–265, 2009.

[21] Anna Maria Micheletti, Angela Pistoia, and Jérôme Vétois. Blow-up
solutions for asymptotically critical elliptic equations on Riemannian
manifolds. Indiana Univ. Math. J., 58(4):1719–1746, 2009.

[22] Stephen M. Paneitz. A quartic conformally covariant differential oper-
ator for arbitrary pseudo-Riemannian manifolds (summary). SIGMA
Symmetry Integrability Geom. Methods Appl., 4:Paper 036, 3, 2008.

[23] Angela Pistoia and Giusi Vaira. On the stability for Paneitz-type equa-
tions. Int. Math. Res. Not. IMRN, (14):3133–3158, 2013.

[24] Jie Qing and David Raske. Compactness for conformal metrics with
constant Q curvature on locally conformally flat manifolds. Calc. Var.
Partial Differential Equations, 26(3):343–356, 2006.

28



[25] Frédéric Robert and Jérôme Vétois. Sign-changing blow-up for scalar
curvature type equations. Communications in Partial Differential Equa-
tions, 38(8):1437–1465, 2013.

[26] K. Sandeep. A compactness type result for Paneitz-Branson operators
with critical nonlinearity. Differential Integral Equations, 18(5):495–508,
2005.

[27] Juncheng Wei and Chunyi Zhao. Non-compactness of the prescribed Q-
curvature problem in large dimensions. Calc. Var. Partial Differential
Equations, 46(1-2):123–164, 2013.

29


	Introduction and statements of the results
	Finite dimensional reduction.
	The reduced problem.
	Proof of the theorems.
	Appendix.

