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Quantitative uniqueness for Schrödinger
operator with regular potentials

Bakri Laurent ∗† Casteras Jean-Baptiste

Abstract

We give a sharp upper bound on the vanishing order of solutions
to Schrödinger equation with C1 magnetic potential on a compact
smooth manifold. Our method is based on quantitative Carleman type
inequalities developed by Donnelly and Fefferman [4]. It also extends
the previous work [3] of the first author to the magnetic potential case.

1 Introduction

Let (M, g) be a smooth, compact, connected, n-dimensional Riemannian
manifold. The aim of this paper is to obtain quantitative estimate on the
vanishing order of solutions to

∆u+ V · ∇u+Wu = 0. (1.1)

We are concerned with H1, non-trivial, solutions to (1.1) and C1 potentials
(i.e W is a C1-function on M and V is a C1-vector field). Recall that the
vanishing order at a point x0 ∈M of a L2-function u is

inf

{
d > 0 ; lim sup

r→0

1

rd

(
1

rn

∫
Br(x0)

|u(x)|2dvg(x)

) 1
2

> 0

}
.

With this setting our main result is the following

Theorem 1.1. The vanishing order of solutions to (1.1) is everywhere less
than

C(1 + ‖W‖
1
2

C1 + ‖V ‖C1),

where C is a positive constant depending only on (M, g).
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Before proceeding, we want to point out that this bound is sharp with
respect to the power of the norms of the potentials V andW . Indeed, consider
the function fk(x1, x2, · · · , xn+1) = <e(x1 + ix2)k defined in Rn+1. Setting
uk the restriction of fk to Sn, (uk)k is a sequence of spherical harmonics
and −∆Snuk = k(k + n − 1)uk. The vanishing order at the north pole
N = (0, · · · , 0, 1) of uk is k. Letting Vk = ((n + k − 1)x1, 0, . . . , 0) and
Wk = k(n+ k − 1)x2

1, one can check that uk satisfies

∆uk = Vk · ∇uk +Wkuk.

Since ‖Vk‖C1 ≤ Ck, ‖Wk‖C1 ≤ Ck2, this shows the sharpness.
Now let us discuss briefly our result. We recall that a differential operator
P satisfies the strong unique continuation property (SUCP) if the vanishing
order of any non-trivial solutions to Pu = 0 is finite everywhere. There
has been an extensive literature dealing with (SUCP) for solutions to (1.1)
with singular potentials. We refer to [11] and the references therein for more
details. One of the most useful method to establish (SUCP) is based on
Carleman type estimates, some of the principal contributions to (1.1) can be
found in ([1, 7, 9, 10, 16, 17, 18]).
As can be seen in Theorem 1.1, our goal is to derive a quantitative version
of this unique continuation property. Let us now briefly recall some of the
principal results already known in this field.
In the particular case of eigenfunctions of the Laplacian (W = λ and V = 0),
it is a celebrated result of Donnelly and Fefferman [4] that the vanishing
order is bounded by C

√
λ. In view of this, it seems a natural conjecture (cf

[9, 12]) that for solutions to ∆u+Wu = 0, the vanishing order is uniformly
bounded by

C(1 + ‖W‖
1
2∞).

However, this conjecture is not true when one allows complex valued po-
tentials and solutions. In this complex case, it is known that the optimal
exponent on ‖W‖∞ is 2

3
(see [2, 9]). When W is a real bounded function and

V = 0, Kukavica established in [12] some quantitative results for solutions
to (1.1). His method is based on the frequency function (see also [15]) which
was introduced by Garofalo and Lin in [5] as an alternative to Carleman
estimate for (SUCP). He established that the vanishing order of solutions is
every where less than :

C(1 +
√
‖W‖∞ + (osc (W ))2),

where osc(W ) = supW − inf W and C a constant depending only on (M, g).
If W is C1, the first author established in [3] the upper bound

C(1 + ‖W‖
1
2

C1),
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with ‖W‖C1 = ‖W‖∞ + ‖∇W‖∞ and where the exponent 1
2

is sharp.In the
general case of equation (1.1), it seems that the first algebraic upper bound,
depending on ‖V ‖∞ and ‖W‖∞, is given in [2] where it is shown that it is
everywhere less than

C(1 + ‖V ‖2
∞ + ‖W‖

2
3∞)

For the real case with magnetic potential, I. Kukavica conjectured in [12]
that the vanishing order of solutions is less than

C(1 + ‖V ‖∞ + ‖W‖
1
2∞).

Finally in [14] (see also [13]) quantitative uniqueness is shown for singular
potentials. This means that vanishing order is everywhere bounded by a
constant, which is no longer explicit. Our method is based on L2-Carleman
estimate (Theorem 2.1) in the same spirit as [4] : establish a Carleman
estimate on the involved operator (here : P : u 7→ ∆u+V ·∇u+Wu) which
is only true for great parameter τ , and state explicitly how τ depends on the
C1 norms of the potentials V, W .
Our Carleman estimate will allow us to derive the following doubling inequal-
ity

‖u‖L2(B2r(x0)) ≤ eC(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖L2(Br(x0)). (1.2)

This doubling estimate implies Theorem 1.1.
The paper is organized as follows. In section 2 we establish Carleman

estimates for the operator P : u 7→ ∆u+V ·∇u+Wu. Our method involves
repeated integration by parts in the radial and spherical variables. For the
sake of clarity, a part of the computation is send to the appendix.

In section 3, we deduce, in a standard manner, a three balls property for
solutions to (1.1), then using compactness we derive a doubling inequality
which gives immediately Theorem 1.1.

1.1 Notations.

For a fixed point x0 in M we will use the following standard notations:

• Γ1(TM) will denote the set of C1 vector fields on M .

• r := r(x) = d(x, x0) stands for the Riemannian distance from x0,

• Br := Br(x0) denotes the geodesic ball centered at x0 of radius r,
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• Ar1,r2 := Br2 \Br1 .

• ε stands for a fixed number with 0 < ε < 1.

• R0, R1, c, C, C1, C2 will denote positive constants which depend only on
(M, g). They may change from a line to another.

• ‖ · ‖ stands for the L2 norm on M and ‖ · ‖A the L2 norm on the (mea-
surable) set A. In case T is a vector field (or a tensor), ‖T‖ has to be
understood as ‖ |T |g‖.

2 Carleman estimates

Recall that Carleman estimates are weighted integral inequalities with a
weight function eτφ, where the function φ satisfies some convexity proper-
ties. Let us now define the weight function we will use.
For a fixed number ε such that 0 < ε < 1 and T0 < 0, we define the function
f on ] −∞, T0[ by f(t) = t − eεt. One can check easily that, for |T0| great
enough, the function f verifies the following properties:

1− εeεT0 ≤ f ′(t) ≤ 1 ∀t ∈]−∞, T0[,

lim
t→−∞

−e−tf ′′(t) = +∞. (2.1)

Finally we define φ(x) = −f(ln r(x)). Now we can state the main result
of this section:

Theorem 2.1. There exist positive constants R0, C, C1, which depend only
on M and ε, such that, for any W ∈ C1(M), any V ∈ Γ1(TM), any x0 ∈M ,

any u ∈ C∞0 (BR0(x0) \ {x0}) and any τ ≥ C1(1 + ‖W‖
1
2

C1 + ‖V ‖C1), one has

C
∥∥r2eτφ (∆u+ V · ∇u+Wu)

∥∥ ≥ τ
3
2

∥∥r ε2 eτφu∥∥+ τ
1
2

∥∥r1+ ε
2 eτφ∇u

∥∥ . (2.2)

Under the additional assumption that supp(u) is far enough from x0 we
have the following

Corollary 2.2. Adding to the setting of Theorem 2.1 the supplementary
assumption that

supp(u) ⊂ {x ∈M ; r(x) ≥ δ > 0},
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then we have

C
∥∥r2eτφ (∆u+ V · ∇u+Wu)

∥∥ ≥ τ
3
2

∥∥r ε2 eτφu∥∥
+ τ

1
2 δ

1
2

∥∥∥r− 1
2 eτφu

∥∥∥+ τ
1
2

∥∥r1+ ε
2 eτφ∇u

∥∥ . (2.3)

Remark 2.3. One should note that, contrary to the corresponding result of
Donnelly and Fefferman [4], we are not able to claim that the constants ap-
pearing above depend only on an upper bound of the absolute value of the
sectional curvature. This comes from the fact that, working in polar coor-
dinates, we will have to handle terms containing spherical derivative of the
metric during the proof of Theorem 2.1. See in particular the computation
of I3 in the appendix.

Remark 2.4. We will proceed to the proof with the assumption that all func-
tions are real. However it can be easily seen that the same inequality holds
with hermitian product for complex valued functions

Proof of Theorem 2.1. We now introduce the polar geodesic coordinates
(r, θ) near x0. Using Einstein notation, the Laplace operator takes the form

r2∆u = r2∂2
ru+ r2

(
∂r ln(

√
γ) +

n− 1

r

)
∂ru+

1
√
γ
∂i(
√
γγij∂ju),

where ∂i =
∂

∂θi
and for each fixed r, γij(r, θ) is a metric on Sn−1, and we

write γ = det(γij). Since (M, g) is smooth, we have for r small enough :

∂r(γ
ij) ≤ C(γij) (in the sense of tensors);

|∂r(γ)| ≤ C;

C−1 ≤ γ ≤ C.

(2.4)

Now we set r = et. In these new variables, we write :

e2t∆u = ∂2
t u+ (n− 2 + ∂tln

√
γ)∂tu+

1
√
γ
∂i(
√
γγij∂ju),

e2tV = e2tVt∂t + e2tVi∂i.

Notice that we will consider the function u to have support in ]−∞, T0[×Sn−1,
where |T0| will be chosen large enough. The conditions (2.4) become

∂t(γ
ij) ≤ Cet(γij) (in the sense of tensors);

|∂t(γ)| ≤ Cet;

C−1 ≤ γ ≤ C.
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Now we introduce the conjugate operator :

Lτ (u) = e2teτφ∆(e−τφu) + e2teτφg(V,∇(e−τφu)) + e2tWu, (2.5)

and we compute Lτ (u) :

Lτ (u) = ∂2
t u+

(
2τf ′ + e2tVt + n− 2 + ∂tln

√
γ
)
∂tu+ e2tVi∂iu

+
(
τ 2f ′

2

+ τf ′Vte
2t + τf ′′ + (n− 2)τf ′ + τ∂tln

√
γf ′
)
u

+ ∆θu+ e2tWu,

with

∆θu =
1
√
γ
∂i
(√

γγij∂ju
)
.

It will be useful for us to introduce the following L2 norm on ]−∞, T0[×Sn−1:

‖v‖2
f =

∫
]−∞,T0[×Sn−1

|v|2√γf ′−3
dtdθ,

where dθ is the usual measure on Sn−1. The corresponding inner product is
denoted by 〈·, ·〉f , i.e

〈u, v〉f =

∫
uv
√
γf ′
−3
dtdθ.

We will estimate from below ‖Lτu‖2
f by using elementary algebra and inte-

grations by parts. We are concerned, in the computation, by the power of τ
and exponential decay when t goes to −∞. We point out that we have

et(Vt + Vi + ∂αVt + ∂βVi) ≤ C ‖V ‖C1

with the convention that ∂α, ∂β = {∂t, ∂1, . . . , ∂n−1}. First note that by
triangular inequality one has

‖Lτ (u)‖2
f ≥

1

2
I − II, (2.6)

with

I =
∥∥∥∂2

t u+ ∆θu+ (2τf ′ + e2tVt)∂tu+ e2tVi∂iu

+ (τ 2f ′
2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW )u
∥∥∥2

f
, (2.7)
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and

II = ‖τf ′′u+ τ∂tln
√
γf ′u+ (n− 2)∂tu+ ∂t ln

√
γ∂tu‖2

f . (2.8)

We will be able to absorb II later. Now, we want to find a lower bound for
I. Therefore, we start by computing it :

I = I1 + I2 + I3,

with

I1 =
∥∥∥∂2

t u+ (τ 2f ′
2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW )u+ ∆θu
∥∥∥2

f
,

I2 =
∥∥(2τf ′ + e2tVt)∂tu+ e2tVi∂iu

∥∥2

f
,

I3 = 2
〈
∂2
t u+ (τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW )u+ ∆θu

, (2τf ′ + e2tVt)∂tu+ e2tVi∂iu
〉
f
.

(2.9)

We will split the computation into three parts corresponding to the Ii for
i = 1, 2, 3.

Computation of I1.
Let ρ > 0 be a small number to be chosen later. Since |f ′′| ≤ 1 and τ ≥ 1,
we have :

I1 ≥
ρ

τ
I ′1, (2.10)

where I ′1 is defined by :

I ′1 =
∥∥∥√|f ′′| [∂2

t u+ (τ 2f ′2 + τf ′e2tVt + (n− 2)τf ′ + e2tW )u+ ∆θu
]∥∥∥2

f
.

(2.11)
Now, we decompose I ′1 into three parts

I ′1 = K1 +K2 +K3, (2.12)

with

K1 =
∥∥∥√|f ′′| (∂2

t u+ ∆θu
)∥∥∥2

f
, (2.13)

K2 =
∥∥∥√|f ′′|(τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW
)
u
∥∥∥2

f
, (2.14)

K3 =2
〈(
∂2
t u+ ∆θu

)
|f ′′| ,

(
τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW
)
u
〉
f
.

(2.15)
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We just ignore K1 since it is positive. To estimate K2, we first note that

K2 ≥
τ 4

2

∥∥∥√|f ′′|f ′2u∥∥∥2

f
−
∥∥∥√|f ′′| (τf ′e2tVt + (n− 2)τf ′ + e2tW

)
u
∥∥∥2

f
.

On the other hand, we have∥∥∥√|f ′′| (τf ′e2tVt + (n− 2)τf ′ + e2tW
)
u
∥∥∥2

f

≤ cτ 4
∥∥∥√|f ′′|etu∥∥∥2

f
+ τ 2

∥∥∥√|f ′′|u∥∥∥2

f
.

Therefore using the assumptions on τ , and the exponential decay at −∞, we
have for T0 large enough, that every other term in K2 can be absorbed in
τ 4‖
√
|f ′′|u‖. That is :

K2 ≥ cτ 4

∫
|f ′′||u|2f ′−3√

γdtdθ. (2.16)

Now, we derive a suitable lower bound for K3. Integrating by parts gives :

K3 = 2

∫
f ′′
(
τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW
)
|∂tu|2f ′

−3√
γdtdθ

+ 2

∫
∂t

[
f ′′
(
τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW
)]
∂tuu
√
γf ′

−3

dtdθ

− 6

∫ (
f ′′

2

f ′
−1
(
τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW
))

∂tuu
√
γf ′

−3

dtdθ

+ 2

∫
f ′′
(
τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW
)
∂tln
√
γ∂tuuf

′−3√
γdtdθ

+ 2

∫
f ′′
(
τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW
)
|Dθu|2f ′

−3√
γdtdθ

+ 2

∫
f ′′e2t∂iW · γij∂juuf ′

−3√
γdtdθ

+ 2τ

∫
f ′′f ′e2t∂iVt · γij∂juuf ′

−3√
γdtdθ,

(2.17)

where |Dθu|2 stands for
|Dθu|2 = ∂iuγ

ij∂ju.

The condition τ ≥ C(1 + ‖V ‖C1 + ‖W‖
1
2

C1), the Young’s inequality and the
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fact that f ′ is close to 1 imply∫
|f ′′|e2t|(∂iW + f ′∂iVt)γ

ij∂juu|f ′
−3√

γdtdθ

≤ cτ 2

∫
|f ′′|(|Dθu|2 + |u|2)f ′

−3√
γdtdθ.

Now since 2∂tuu ≤ u2 + |∂tu|2, we can use conditions (2.1) and (2.5) to get

K3 ≥ −cτ 2

∫
|f ′′|

(
|∂tu|2 + |Dθu|2 + |u|2

)
f ′
−3√

γdtdθ. (2.18)

Therefore, inserting (2.16), (2.18) in (2.12) (recall that K1 ≥ 0), we have

I ′1 ≥ −cτ 2

∫
|f ′′|

(
|∂tu|2 + |Dθu|2 + |u|2

)
f ′
−3√

γdtdθ

+ cτ 4

∫
|f ′′||u|2f ′−3√

γdtdθ. (2.19)

From the definition of I ′1 (see (2.10)), we get

I1 ≥ −ρcτ
∫
|f ′′|

(
|∂tu|2 + |Dθu|2

)
f ′
−3√

γdtdθ

+ Cτ 3ρ

∫
|f ′′||u|2f ′−3√

γdtdθ. (2.20)

Computation of I2.
We begin by recalling that

I2 =
∥∥(2τf ′ + e2tVt)∂tu+ e2tVi∂iu

∥∥2

f
.

In the same way as for I1, using that τ ≥ 1, we have

I2 ≥
1

τ
I2.

Using the triangular inequality, one has

I2 ≥
1

2
‖2τf ′∂tu‖2

f −
∥∥e2tVt∂tu+ e2tVi∂iu

∥∥2

f
.

Now, using the assumptions on τ , we note that∥∥e2tVt∂tu+ e2tVi∂iu
∥∥2

f
≤ 2τ 2‖et∂tu‖2

f + 2τ 2‖etDθu|‖2
f .
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From the last three previous inequalities and since et is small for T0 largely
negative, we see that the following estimate holds

I2 ≥ cτ‖∂tu‖2
f − cτ‖etDθu‖2

f . (2.21)

Computation of I3.
Since this computation is quite lengthy, we send it to the Appendix. There,
we show that

I3 ≥ 3τ

∫
|f ′′| |Dθu|2 f ′

−3√
γdtdθ − cτ 3

∫
et|u|2f ′−3√

γdtdθ

− cτ
∫
|f ′′| |∂tu|2 f ′

−3√
γdtdθ − cτ 2

∫
|f ′′| |u|2f ′−3√

γdtdθ.

(2.22)

Lower bound for Lτu.

Now recalling that I = I1 + I2 + I3 and using (2.20), (2.21) and (2.22),
we obtain

I ≥ cτ

∫
|∂tu|2f ′

−3√
γdtdθ + 3τ

∫
|f ′′| |Dθu|2 f ′

−3√
γdtdθ

+ Cτ 3ρ

∫
|f ′′||u|2f ′−3√

γdtdθ − cρτ
∫
|f ′′||Dθu|2f ′

−3√
γdtdθ

− cτ
∫
e2t|Dθu|2f ′

−3√
γdtdθ − cτ 3

∫
et|u|2f ′−3√

γdtdθ

− cτ
∫
|f ′′||∂tu|2f ′

−3√
γdtdθ − cτ 2

∫
|f ′′||u|2f ′−3√

γdtdθ.

Now we want to derive a lower bound for I. Then one needs to check that
every non-positive term in the right hand side of (2.23) can be absorbed.
We first fix ρ small enough (i.e. ρ ≤ 2

c
) such that

ρcτ

∫
|f ′′| · |Dθu|2f ′−3√

γdtdθ ≤ 2τ

∫
|f ′′| · |Dθu|2f ′

−3√
γdtdθ

where c is the constant appearing in (2.23). Now the other negative terms
of (2.23) can then be absorbed by comparing powers of τ and decay rate at
−∞. Indeed conditions (2.1) imply that et is small compared to |f ′′|.
Thus we obtain :

CI ≥ τ

∫
|∂tu|2f ′

−3√
γdtdθ + τ

∫
|f ′′||Dθu|2f ′

−3√
γdtdθ

+ τ 3

∫
|f ′′||u|2f ′−3√

γdtdθ.

(2.23)
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Now we can check that II can be absorbed in I for |T0| and τ large enough.
Indeed from (2.8), using (2.1) and (2.5) (|∂tln

√
γ| ≤ Cet), one gets

II = ‖τf ′′u+ τ∂tln
√
γf ′u+ (n− 2)∂tu+ ∂t ln

√
γ∂tu‖2

f

≤ τ 2

∫
|f ′′|2|u|2f ′−3√

γdtdθ + τ 2

∫
e2t|u|2f ′−3√

γdtdθ

+ C

∫
|∂tu|2f ′

−3√
γdtdθ.

(2.24)

And each term in the right hand side can easily be absorbed in (2.23). Then
we obtain

‖Lτu‖2
f ≥ Cτ 3‖

√
|f ′′|u‖2

f + Cτ‖∂tu‖2
f + Cτ‖

√
|f ′′|Dθu‖2

f . (2.25)

Note that, since
√
|f ′′| ≤ 1, one has

‖Lτu‖2
f ≥ Cτ 3‖

√
|f ′′|u‖2

f + cτ‖
√
|f ′′|∂tu‖2

f + Cτ‖
√
|f ′′|Dθu‖2

f , (2.26)

and the constant c can be chosen arbitrary smaller than C.

End of the proof.
If we set v = e−τφu and use the triangular inequality on the second right-sided
term of (2.26), then we have∥∥e2teτφ(∆v + V · ∇v +Wv)

∥∥2

f
≥ Cτ 3

∥∥∥√|f ′′|eτφv∥∥∥2

f
− cτ 3

∥∥∥√|f ′′|f ′eτφv∥∥∥2

f

+
c

2
τ
∥∥∥√|f ′′|eτφ∂tv∥∥∥2

f
+ Cτ

∥∥∥√|f ′′|eτφDθv
∥∥∥2

f
(2.27)

Finally since f ′ is close to 1 one can absorb the negative term to obtain

∥∥e2teτφ(∆v + V · ∇v +Wv)
∥∥2

f
≥ Cτ 3

∥∥∥√|f ′′|eτφv∥∥∥2

f

+ Cτ
∥∥∥√|f ′′|eτφ∂tv∥∥∥2

f
+ Cτ

∥∥∥√|f ′′|eτφDθv
∣∣∣2
f

(2.28)

It remains to get back to the usual L2 norm. First note that since f ′ is close
to 1, we can get the same estimate without the term (f ′)−3 in the integrals.
Recall that in polar coordinates (r, θ) the volume element is rn−1√γdrdθ, we
can deduce from (2.23) that :

‖r2eτφ(∆v + V · ∇v +Wv)r−
n
2 ‖2 ≥ Cτ 3‖r

ε
2 eτφvr−

n
2 ‖2

+ Cτ‖r1+ ε
2 eτφ∇vr−

n
2 ‖2. (2.29)

11



Finally one can get rid of the term r−
n
2 by replacing τ with τ + n

2
. Indeed,

from eτφr−
n
2 = e(τ+n

2
)φe−

n
2
rε , one can easily check that, for r small enough

1

2
e(τ+n

2
)φ ≤ eτφr−

n
2 ≤ e(τ+n

2
)φ.

This achieves the proof of Theorem 2.1.

Next, we demonstrate the Corollary 2.2.

Proof of Corollary 2.2. Now suppose that supp(u) ⊂ {x ∈M ; r(x) ≥ δ >
0} and define T1 = ln δ.

Cauchy-Schwarz inequality applied to∫
∂t(u

2)e−t
√
γdtdθ = 2

∫
u∂tue

−t√γdtdθ

gives∫
∂t(u

2)e−t
√
γdtdθ ≤ 2

(∫
(∂tu)2 e−t

√
γdtdθ

) 1
2
(∫

u2e−t
√
γdtdθ

) 1
2

.

(2.30)
On the other hand, integrating by parts gives∫

∂t(u
2)e−t

√
γdtdθ =

∫
u2e−t

√
γdtdθ−

∫
u2e−t∂t(ln(

√
γ))
√
γdtdθ. (2.31)

Now since |∂t ln
√
γ| ≤ Cet for |T0| large enough we can deduce :∫
∂t(u

2)e−t
√
γdtdθ ≥ c

∫
u2e−t

√
γdtdθ. (2.32)

Combining (2.30), (2.32) and by the assumption on supp(u), we find

c2

∫
u2e−t

√
γdtdθ ≤ 4

∫
(∂tu)2 e−t

√
γdtdθ

≤ 4e−T1

∫
(∂tu)2√γdtdθ.

Finally, dropping all terms except τ
∫
|∂tu|2f ′

−3√
γdtdθ in (2.23) gives :

CI ≥ τδ

∫
e−t|u|2f ′−3√

γdtdθ.

12



Inequality (2.23) can then be replaced by :

I ≥ Cτ

∫
|∂tu|2f ′

−3√
γdtdθ + Cτ

∫
|f ′′| · |Dθu|2f ′

−3√
γdtdθ

+ Cτ 3

∫
|f ′′| · |u|2f ′−3√

γdtdθ + Cτδ

∫
e−t|u|2f ′−3√

γdtdθ.

(2.33)

The rest of the proof follows in a way similar to the last part of the proof of
Theorem 2.1.

3 Vanishing order

We now proceed to establish an upper bound on the vanishing order of so-
lutions to (1.1), from our Carleman estimate. This is inspired by [4]. We
choose to establish a doubling inequality. We recall that doubling inequality
implies vanishing order estimate. Before proceeding, we would like to em-
phasize that if u ∈ H1(Br(x0)), by standard elliptic regularity theory, one
has that u ∈ H2

loc(Br(x0)) (see by example [6] Theorem 8.8). Therefore, by
density, we see that we can apply inequality (2.3) of Corollary 2.2 to χu for
χ a cut-off function null in a neighborhood of x0

3.1 Three balls inequality

We first want to derive from (2.3), a control on the local behavior of solutions
in the form of an Hadamard three circles type theorem. To obtain such result
the basic idea is to apply Carleman estimate to χu where χ is an appropriate
cut-off function and u a solution of (1.1). This is standard [3, 8] and the
proof adapted to our weight function is given for the sake of completeness.

Proposition 3.1 (Three balls inequality). There exist positive constants R1,
C1, C2 and 0 < α < 1 which depend only on (M, g) such that, if u is a solution
to (1.1) with W ∈ C1(M) and V ∈ Γ1(TM), then for any R < R1, and any
x0 ∈M, one has

‖u‖BR(x0) ≤ eC(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖αBR
2

(x0)‖u‖1−α
B2R(x0). (3.1)

Proof. Let x0 be a point in M . Let u be a solution to (1.1) and R such that
0 < R < R0

2
with R0 as in Corollary 2.1. Let ψ ∈ C∞0 (B2R), 0 ≤ ψ ≤ 1, a

function with the following properties:

• ψ(x) = 0 if r(x) < R
4

or r(x) > 5R
3

,

13



• ψ(x) = 1 if R
3
< r(x) < 3R

2
,

• |∇ψ(x)| ≤ C
R

,

• |∇2ψ(x)| ≤ C
R2 .

First since the function ψu is supported in the annulus AR
3
, 5R

3
, we can apply

estimate (2.3) of theorem 2.1. In particular we have, since the quotient
between R

3
and 5R

3
doesn’t depend on R. :

C
∥∥r2eτφ (∆ψu+ 2∇u · ∇ψ + V · u∇ψ)

∥∥ ≥ τ
1
2

∥∥eτφψu∥∥ . (3.2)

Notice that
‖r2eτφV · u∇ψ‖ ≤ ‖V ‖∞‖r2eτφu∇ψ‖.

Then, from the properties of ψ and since τ ≥ ‖V ‖∞ we get

τ
1
2‖eτφψu‖ ≤ C

(
‖eτφu‖R

4
,R

3
+ ‖eτφu‖ 3R

2
, 5R

3

)
(3.3)

+ C
(
R‖eτφ∇u‖R

4
,R

3
+R‖eτφ∇u‖ 3R

2
, 5R

3

)
(3.4)

+ Cτ‖reτφu‖R
4
,R

3
+ Cτ‖reτφu‖ 3R

2
, 5R

3
(3.5)

Now since r is small, we bound (3.5) and the right hand side of (3.3) from
above by τ‖eτφu‖R

4
,R

3
+ τ‖eτφu‖ 3R

2
, 5R

3
. Then, dividing both sides of the pre-

vious inequality by τ and noticing that τ−
1
2 ≤ 1, one has :

‖eτφu‖R
3
, 3R

2
≤ Cτ

1
2

(
‖eτφu‖R

4
,R

3
+ ‖eτφu‖ 3R

2
, 5R

3

)
+ C

(
R‖eτφ∇u‖R

4
,R

3
+R‖eτφ∇u‖ 3R

2
, 5R

3

)
. (3.6)

Recall that φ(x) = − ln r(x) + r(x)ε. In particular φ is radial and decreasing
(for small r). Then one has,

‖eτφu‖R
3
, 3R

2
≤ Cτ

1
2

(
eτφ(R

4
)‖u‖R

4
,R

3
+ eτφ( 3R

2
)‖u‖ 3R

2
, 5R

3

)
+ C

(
Reτφ(R

4
)‖∇u‖R

4
,R

3
+Reτφ( 3R

2
)‖∇u‖ 3R

2
, 5R

3

)
. (3.7)

Now we recall the following elliptic estimates : since u satisfies (1.1) then :

‖∇u‖aR ≤ C

(
1

(1− a)R
+ ‖W‖1/2

∞ + ‖V ‖∞
)
‖u‖R, for 0 < a < 1. (3.8)
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Moreover since AR1,R2 ⊂ BR2 and τ ≥ 1, multiplying formula (3.8) by eτφ( 3R
2

),
we find

eτφ( 3R
2

)‖∇u‖ 3R
2
, 5R

3
≤ Cτ

1
2

(
1

R
+ ‖W‖1/2

∞ + ‖V ‖∞
)
eτφ( 3R

2
)‖u‖2R.

Using (3.7) and noting that ‖eτφu‖R
3
, 3R

2
≥ eτφ(R)‖u‖R

3
,R, one has :

‖u‖R
3
,R ≤ Cτ

1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)
(
eτAR‖u‖R

2
+ e−τBR‖u‖2R

)
,

with AR = φ(R
4

)− φ(R) and BR = −(φ(3R
2

)− φ(R)). From the properties of
φ we may assume that, we have 0 < A−1 ≤ AR ≤ A and 0 < B ≤ BR ≤ B−1

where A and B don’t depend on R. We may assume that Cτ
1
2 (1 + ‖W‖1/2

∞ +
‖V ‖∞) ≥ 2. Then we can add ‖u‖R

3
to each side and bound it in the right

hand side by Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)eτA‖u‖R
2
. We get :

‖u‖R ≤ Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)
(
eτA‖u‖R

2
+ e−τB‖u‖2R

)
. (3.9)

Now we want to find τ such that

Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)e−τB‖u‖2R ≤
1

2
‖u‖R

which is true for τ ≥ − 2
B

ln
(

1

2C(1+‖W‖1/2∞ +‖V ‖∞)

‖u‖R
‖u‖2R

)
. Since τ must also

satisfy

τ ≥ C1(1 + ‖W‖
1
2

C1 + ‖V ‖C1),

we choose

τ = − 2

B
ln

(
1

2C(1 + ‖W‖1/2
∞ + ‖V ‖∞)

‖u‖R
‖u‖2R

)
+ C1(1 + ‖W‖

1
2

C1 + ‖V ‖C1).

Since, of course, ‖U‖C1 ≥ ‖U‖∞, one has :

‖u‖
B+2(A+1)

B
R ≤ eC(1+‖W‖

1
2
C1

+‖V ‖C1 )‖u‖
2(A+1)
B

2R ‖u‖R
2
, (3.10)

Finally, defining α = 2(A+1)
2(A+1)+B

, we see that (3.10) gives the result.
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3.2 Doubling estimates

Now we intend to show that the vanishing order of solutions to (1.1) is every-

where bounded by C(1+‖W‖
1
2

C1 +‖V ‖C1). This is an immediate consequence
of the following :

Theorem 3.2 (doubling estimate). There exists a positive constant C, de-
pending only on (M, g) such that : if u is a solution to (1.1) on M then for
any x0 in M and any r > 0, one has

‖u‖B2r(x0) ≤ eC(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖Br(x0). (3.11)

To prove Theorem 3.2, we need to use the standard overlapping chains of
balls argument ([4, 8, 12]) to show :

Proposition 3.3. For any R > 0 there exists CR > 0 such that for any
x0 ∈M , any W ∈ C1(M), any V ∈ Γ1(TM), and any solutions u to (1.1) :

‖u‖BR(x0) ≥ e−CR(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖L2(M).

Proof. We may assume without loss of generality that R < R1, with R1 as
in the three balls inequality (Proposition 3.1). Up to multiplication by a
constant, we can assume that ‖u‖L2(M) = 1. We denote by x̄ a point in M
such that ‖u‖BR(x̄) = supx∈M ‖u‖BR(x). This implies that one has ‖u‖BR(x̄)

≥
DR, where DR depends only on M and R. One has (from Proposition 3.1)
at an arbitrary point x of M :

‖u‖BR/2(x) ≥ e−c(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖
1
α

BR(x). (3.12)

Let γ be a geodesic curve between x0 and x̄ and define x1, · · · , xm = x̄
such that xi ∈ γ and BR

2
(xi+1) ⊂ BR(xi), for any i from 0 to m − 1. The

number m depends only on diam(M) and R. Then the properties of (xi)1≤i≤m
and inequality (3.12) give for all i, 1 ≤ i ≤ m :

‖u‖BR/2(xi) ≥ e−c(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖
1
α

BR/2(xi+1). (3.13)

The result follows by iteration and the fact that ‖u‖BR(x̄) ≥ DR.

Corollary 3.4. For all R > 0, there exists a positive constant CR depending
only on M and R such that at any point x0 in M one has

‖u‖R,2R ≥ e−CR(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖L2(M).
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Proof. Recall that ‖u‖R,2R = ‖u‖L2(AR,2R) with AR,2R := {x;R ≤ d(x, x0) ≤
2R)}. Let R < R1 where R1 is from Proposition 3.1, note that R1 ≤
diam(M). Since M is geodesically complete, there exists a point x1 in AR,2R
such that Bx1(R

4
) ⊂ AR,2R. From Proposition 3.3 one has

‖u‖BR
4

(x1) ≥ e−CR(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖L2(M)

which gives the result.

Proof of Theorem 3.2. We proceed as in the proof of three balls inequality
(Proposition 3.1) except for the fact that now we want the first ball to become
arbitrary small in front of the others. Let R = R1

4
with R1 as in the three

balls inequality, let δ such that 0 < 3δ < R
8

, and define a smooth function ψ,
with 0 ≤ ψ ≤ 1 as follows:

• ψ(x) = 0 if r(x) < δ or if r(x) > R,

• ψ(x) = 1 if r(x) ∈ [5δ
4
, R

2
],

• |∇ψ(x)| ≤ C
δ

and |∇2ψ(x)| ≤ C
δ2 if r(x) ∈ [δ, 5δ

4
] ,

• |∇ψ(x)| ≤ C and |∇2ψ(x)| ≤ C if r(x) ∈ [R
2
, R].

Keeping appropriate terms in (2.3) applied to ψu gives :

τ
3
2‖r

ε
2 eτφψu‖+ τ

1
2 δ

1
2‖r−

1
2 eτφψu‖

≤ C
(
‖r2eτφ∇u · ∇ψ‖+ ‖r2eτφ∆ψu‖+ ‖r2eτφV u∇ψ‖

)
. (3.14)

Using properties of ψ and since τ ≥ ‖V ‖∞, one finds

τ
3
2‖r

ε
2 eτφu‖R

8
,R

4
+ τ

1
2‖eτφu‖ 5δ

4
,3δ ≤ C(δ‖eτφ∇u‖δ, 5δ

4
+ ‖eτφ∇u‖R

2
,R)

+ C(‖eτφu‖δ, 5δ
4

+ ‖eτφu‖R
2
,R)

+ C
τ

δ
‖r2eτφu‖δ, 5δ

4
+ Cτ‖r2eτφu‖R

2
,R.

Now, we bound from above the two last terms of the previous inequality by

Cτ
(
‖eτφu‖δ, 5δ

4
+ ‖eτφu‖R

2
,R

)
. Then we divide both sides of (3.15) by τ

1
2 .

Noticing that τ ≥ 1, this yields to

‖r
ε
2 eτφu‖R

8
,R

4
+ ‖eτφu‖ 5δ

4
,3δ ≤ Cτ

1
2

(
δ‖eτφ∇u‖δ, 5δ

4
+ ‖eτφ∇u‖R

2
,R

)
+ Cτ

1
2

(
‖eτφu‖δ, 5δ

4
+ ‖eτφu‖R

2
,R

)
.

(3.15)
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From the elliptic estimate (3.8) and the decreasing of φ, we get

eτφ(R
4

)‖u‖R
8
,R

4
+ eτφ(3δ)‖u‖ 5δ

4
,3δ

≤ Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)
(
eτφ(δ)‖u‖ 3δ

2
+ eτφ(R

3
)‖u‖ 5R

3

)
.

Adding eτφ(3δ)‖u‖ 5δ
4

to each sides and noting that we can bound it from above

by Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)eτφ(δ)‖u‖ 3δ
2

, we find that

eτφ(R
4

)‖u‖R
8
,R

4
+ eτφ(3δ)‖u‖3δ

≤ Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)
(
eτφ(δ)‖u‖ 3δ

2
+ eτφ(R

3
)‖u‖ 5R

3

)
.

Now we want to choose τ such that

Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)eτφ(R
3

)‖u‖ 5R
3
≤ 1

2
eτφ(R

4
)‖u‖R

8
,R

4
.

For the same reasons as before we choose

τ =
2

φ(R
3

)− φ(R
4

)
ln

(
1

2C(1 + ‖W‖1/2
∞ + ‖V ‖∞)

‖u‖R
8
,R

4

‖u‖ 5R
3

)
+ C(1 + ‖W‖

1
2

C1 + ‖V ‖C1).

Define DR = −
(
φ(R

3
)− φ(R

4
)
)−1

; like before one has 0 < E−1 ≤ DR ≤ E,
with E a fixed real number. Dropping the first term in the left hand side
and noting that 0 < φ(δ)− φ(3δ) ≤ C, one has

‖u‖3δ ≤ eC(1+‖W‖
1
2
C1

+‖V ‖C1 )

(
‖u‖R

8
,R

4

‖u‖ 5R
3

)−E
‖u‖ 3δ

2

Finally, from Corollary 3.4, we define r = 3δ
2

to have :

‖u‖2r ≤ eC(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖r.

Thus, the theorem is proved for all r ≤ R1

16
. Using Proposition 3.3 we have

for r ≥ R1

16
:

‖u‖Bx0 (r) ≥ ‖u‖Bx0 (
R0
16

)
≥ e−C0(1+‖W‖

1
2
C1

+‖V ‖C1 )‖u‖L2(M)

≥ e−C1(1+‖W‖
1
2
C1

+‖V ‖C1 )‖u‖Bx0 (2r).

Finally Theorem 1.1 is an easy and direct consequence of this doubling
estimate.
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4 Appendix.

The aim of this appendix is to prove the claim (2.22) we used in the proof of
Theorem 2.1. More precisely, we show the following lemma.

Lemma 4.1. We have

I3 ≥ 3τ

∫
|f ′′| |Dθu|2 f ′

−3√
γdtdθ − cτ 3

∫
et|u|2f ′−3√

γdtdθ

− cτ
∫
|f ′′| |∂tu|2 f ′

−3√
γdtdθ − cτ 2

∫
|f ′′| |u|2f ′−3√

γdtdθ.

(4.1)

Proof. We begin by recalling the definition of I3 :

I3 = 2
〈
∂2
t u+ (τ 2f ′

2

+ τf ′e2tVt + (n− 2)τf ′ + e2tW )u+ ∆θu

, (2τf ′ + e2tVt)∂tu+ e2tVi∂iu
〉
f
.

We also recall the following estimates on the weight and the metric :

1− εeεT0 ≤ f ′(t) ≤ 1 ∀t ∈]−∞, T0[,

lim
t→−∞

−e−tf ′′(t) = +∞, (4.2)

and, ∀ i, j, k ∈ {1, . . . n− 1},

∂t(γ
ij) ≤ Cet(γij) (in the sense of tensors);

∂k(γ
ij) ≤ C(γij) (in the sense of tensors);

|∂t(γ)| ≤ Cet;

C−1 ≤ γ ≤ C.

(4.3)

We will also use the key assumption on τ :

τ ≥ C1(1 +
√
‖W‖C1 + ‖V ‖C1). (4.4)

In order to compute I3 we write it in a convenient way:

I3 =
16∑
i=1

Ji, (4.5)
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where the integrals Ji are defined by :

J1 = 2τ

∫
f ′∂t(|∂tu|2)f ′

−3√
γdtdθ

J2 = 4τ

∫
f ′∂tu∂i

(√
γγij∂ju

)
f ′
−3

dtdθ

J3 =

∫ (
2τ 3 + 2(n− 2)τ 2f ′

−1

+ 2τf ′
−2

e2tW
)
∂t|u|2

√
γdtdθ

J4 = 2τ 2

∫
e2tVt∂t|u|2f ′

−1√
γdtdθ

J5 =

∫
e2tVt∂t(|∂tu|2)f ′

−3√
γdtdθ

J6 = τ 2

∫
e2tVt∂t|u|2f ′

−1√
γdtdθ

J7 = τ

∫
e4tV 2

t ∂t|u|2f ′
−2√

γdtdθ

J8 = (n− 2)τ

∫
e2tVt∂t|u|2f ′

−2√
γdtdθ

J9 =

∫
e4tWVt∂t|u|2f ′

−3√
γdtdθ

J10 = 2

∫
e2tVt∂i(

√
γγij∂ju)∂tuf

′−3

dtdθ

J11 = 2

∫
e2tVi∂iu∂

2
t uf

′−3√
γdtdθ

J12 = τ 2

∫
e2tVi∂i|u|2f ′

−1√
γdtdθ

J13 = τ

∫
e4tViVt∂i|u|2f ′−2√γdtdθ

J14 = (n− 2)τ

∫
e2tVi∂i|u|2f ′−2√γdtdθ

J15 =

∫
e4tViW∂i|u|2f ′

−3√
γdtdθ

J16 = 2

∫
e2tVk∂ku∂i

(√
γγij∂ju

)
f ′−3dtdθ.

Here we noticed that 2∂tu∂
2
t u = ∂t(|∂tu|2) and 2u∂tu = ∂t|u|2. Before we

start the computation, we want to point out that the only positive term of
(4.5) comes from J2. Now we will use integration by parts to estimate each
Ji. Note that f is radial.
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We begin with J1. We find that :

J1 =

∫
(4τf ′′) |∂tu|2f ′

−3√
γdtdθ −

∫
2τf ′∂tln

√
γ|∂tu|2f ′

−3√
γdtdθ.

The conditions (4.3) imply that |∂t ln
√
γ| ≤ Cet. Then properties (4.2) on

f give for large |T0| that |∂t ln
√
γ| is small compared to |f ′′|. Then one has

J1 ≥ −cτ
∫
|f ′′| · |∂tu|2f ′

−3√
γdtdθ. (4.6)

In order to estimate J2 we first integrate by parts with respect to ∂i :

J2 = −2
∫

2τf ′∂t∂iuγ
ij∂juf

′−3√
γdtdθ.

Then we integrate by parts with respect to ∂t. We get :

J2 = −4τ

∫
f ′′γij∂iu∂juf

′−3√
γdtdθ

+

∫
2τf ′∂tln

√
γγij∂iu∂juf

′−3√
γdtdθ

+

∫
2τf ′∂t(γ

ij)∂iu∂juf
′−3√

γdtdθ.

Recall that |Dθu|2 denotes |Dθu|2 = ∂iuγ
ij∂ju. Now using that −f ′′ is non-

negative and τ is large, the conditions (4.2) and (4.3) give for |T0| large
enough:

J2 ≥
7

2
τ

∫
|f ′′| · |Dθu|2f ′

−3√
γdtdθ. (4.7)

Similarly computation of J3 gives :

J3 = −2

∫
(τ 3 + (n− 2)τ 2f ′

−1

)∂tln(
√
γ)u2√γdtdθ

−
∫

(4f ′ − 4f ′′ + 2f ′∂t ln
√
γ)τe2tWu2f ′

−3√
γdtdθ

+ 2

∫
(n− 2)τ 2f ′′f ′|u|2f ′−3√

γdtdθ

−
∫

2τf ′e2t∂tW |u|2f ′
−3√

γdtdθ.

From (4.2) and (4.3) one can see that if C1 and |T0| are large enough, then

J3 ≥ −cτ 3

∫
et|u|2f ′−3√

γdtdθ − cτ 2

∫
|f ′′|u|2f ′−3√

γdtdθ. (4.8)
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We now compute the terms involving only radial derivatives, that is to say
Ji for i = 4, . . . , 9. We have

J4 = 2τ 2

∫
e2tVt∂t|u|2f ′

−1√
γdtdθ

= −2τ 2

∫
u2e2t

(
2Vtf

′2 − Vtf ′′f ′ + f ′2∂tVr + f ′2Vt∂t(ln
√
γ)
)
f ′−3√γdtdθ

J4 ≥ −cτ 3

∫
etu2f ′−3√γdtdθ, (4.9)

and

J5 =

∫
e2tVt∂t(|∂tu|2)f ′−3√γdtdθ

= −
∫
e2t|∂tu|2

(
2Vt + ∂tVt − 3Vtf

′′f ′−1 + Vt∂t(ln
√
γ)
)
f ′−3√γdtdθ

J5 ≥ −cτ
∫
|f ′′||∂tu|2f ′−3√γdtdθ. (4.10)

In the last inequality, we use that et is small compared to |f ′′|. Let’s resume
our computation. We obtain

J6 = τ 2

∫
e2tVt∂t|u|2f ′−1√γdtdθ

= −τ 2

∫
e2tu2

(
2Vtf

′2 + ∂tVtf
′2 − f ′′f ′Vt + Vtf

′2∂t(ln
√
γ)
)
f ′−3√γdtdθ

J6 ≥ −cτ 3

∫
etu2f ′−3√γdtdθ, (4.11)

J7 = τ

∫
e4t|Vt|2∂t|u|2f ′−2√γdtdθ

= −τ
∫
u2e4t

(
4|Vt|2f ′ + 2Vt∂tVtf

′) f ′−3√γdtdθ

+ τ

∫
u2e4t

(
2|Vt|2f ′′ − |Vt|2f ′∂t(ln

√
γ)
)
f ′−3√γdtdθ

J7 ≥ −cτ 3

∫
et|u|2f ′−3√γdtdθ, (4.12)

and

J8 = (n− 2)τ

∫
e2tVt∂t|u|2f ′

−2√
γdtdθ

= −(n− 2)τ

∫
e2t (2Vtf

′ + ∂tVtf
′ − 2f ′′Vt + Vt∂t ln

√
γ) |u|2f ′−3√

γdtdθ
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J8 ≥ −cτ 2

∫
|f ′′||u|2√γf ′−3

dtdθ, (4.13)

where we use once more that et is small compared to |f ′′|. Finally, for J9, we
get

J9 =

∫
e4tVtW∂t|u|2f ′−3√γdtdθ

= −
∫
u2e4t (4VtW + ∂tVtW + Vt∂tW ) f ′−3√γdtdθ

+

∫
u2e4t

(
3f ′′f ′−1VtW − VtW∂t(ln

√
γ)
)
f ′−3√γdtdθ

J9 ≥ −cτ 3

∫
et|u|2f ′−3√γdtdθ. (4.14)

Now, we deal with the terms involving spherical derivative. We recall that

J10 = 2

∫
e2tVt∂tu∂i(

√
γγij∂ju)f ′−3dtdθ.

Integrating by parts in the spherical variables gives

J10 = −2

∫
e2tVt∂i∂tuγ

ij∂juf
′−3√γdtdθ

− 2

∫
e2t∂iVt∂tuγ

ij∂juf
′−3√γdtdθ.

Now, we use the identity ∂t|Dθu|2 = 2γij∂t∂iu∂ju+ ∂tγ
ij∂iu∂ju to find

J10 = −
∫
e2tVt(∂t|Dθu|2 − ∂tγij∂iu∂ju)f ′−3√γdtdθ

− 2

∫
e2t∂iVt∂tuγ

ij∂juf
′−3√γdtdθ.

Finally, integrating by parts with respect to the radial variable,

J10 =

∫
e2t|Dθu|2(2Vt + ∂tVt − 3Vtf

′′f ′−1 + Vt∂t(ln
√
γ))f ′−3√γdtdθ

+

∫
e2tVt∂tγ

ij∂iu∂juf
′−3√γdtdθ

− 2

∫
e2t∂iVt∂tuγ

ij∂juf
′−3√γdtdθ,

we obtain

J10 ≥ −cτ
∫
|f ′′||∂tu|2f ′−3√γdtdθ − cτ

∫
et|Dθu|2f ′−3√γdtdθ. (4.15)
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Integrating by parts the following

J11 = 2

∫
e2tVi∂iu∂

2
t uf

′−3√γdtdθ,

gives

J11 = −2

∫
e2t∂iu∂tu

(
2Vi + ∂tVi − 3f ′′f ′−1Vi + Vi∂t(ln

√
γ)
)
f ′−3√γdtdθ

− 2

∫
e2tVi∂t∂iu∂tuf

′−3√γdtdθ.

Noticing that 2∂t∂iu∂tu = ∂i|∂tu|2, we have

J11 = −2

∫
e2t∂iu∂tu

(
2Vi + ∂tVi − 3f ′′f ′−1Vi + Vi∂t(ln

√
γ)
)
f ′−3√γdtdθ

−
∫
e2tVi∂i(|∂tu|2)f ′−3√γdtdθ,

then integrating by parts the last integral of the right hand side gives

J11 = −2

∫
e2t∂iu∂tu

(
2Vi + ∂tVi − 3f ′′f ′−1Vi + Vi∂t(ln

√
γ)
)
f ′−3√γdtdθ

+

∫
e2t|∂tu|2 (∂iVi + Vi∂i(ln

√
γ)) f ′−3√γdtdθ.

Therefore we can state that

J11 ≥ −cτ
∫
|f ′′||∂tu|2f ′−3√γdtdθ − cτ

∫
et|Dθu|2)f ′−3√γdtdθ. (4.16)

From the definition of J12

J12 = τ 2

∫
e2tVi∂i|u|2f ′2f ′−3√γdtdθ,

integrating by parts with respect to the spherical variables gives

J12 = −τ 2

∫
u2e2tf ′2 (∂iVi + Vi∂i(ln

√
γ)) f ′−3√γdtdθ, (4.17)

therefore we can derive the estimate

J12 ≥ −cτ 3

∫
|u|2etf ′−3√γdtdθ. (4.18)
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In the same way, we have

J13 = τ

∫
e4tViVt∂i|u|2f ′−2√γdtdθ

= −τ
∫
u2e4tf ′ (∂iViVt + Vi∂iVt + ViVt∂i(ln

√
γ)) f ′−3√γdtdθ

J13 ≥ −cτ 3

∫
|u|2etf ′−3√γdtdθ, (4.19)

J14 = (n− 2)τ

∫
e2tVi∂i|u|2f ′−2√γdtdθ

= −(n− 2)τ

∫
e2t(∂iVi + ∂i ln

√
γ)|u|2f ′−2√

γdtdθ

J14 ≥ −cτ 2

∫
|f ′′||u|2f ′−3√

γdtdθ, (4.20)

and

J15 =

∫
e4tViW∂i|u|2f ′

−3√
γdtdθ

= −
∫
e4t(∂iViW + Vi∂iW + ViW∂i ln

√
γ)|u|2f ′−3√

γdtdθ

J15 ≥ −cτ 3

∫
et|u|2f ′−3√

γdtdθ. (4.21)

We now turn to J16

J16 = 2

∫
e2tVk∂ku∂i(

√
γγij∂ju)f ′−3dtdθ.

We first integrate by parts with respect to ∂t

J16 = −2

∫
e2t(∂iVk∂ku+ Vk∂i∂ku)γij∂juf

′−3√γdtdθ,

and use the identity ∂i∂kuγ
ij∂ju = 2(∂k|Dθu|2 − ∂kγij∂iu∂ju) to find

J16 = −2

∫
e2t∂iVk∂kuγ

ij∂juf
′−3√γdtdθ

−
∫
e2tVk(∂k|Dθu|2 − ∂kγij∂iu∂ju)f ′−3√γdtdθ.
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Then an integration by parts with respect to ∂k gives

J16 = −2

∫
e2t∂iVk∂kuγ

ij∂juf
′−3√γdtdθ

+

∫
e2t(∂kVk + Vk∂k(ln

√
γ))|Dθu|2f ′−3√γdtdθ

+

∫
e2tVk∂kγ

ij∂iu∂juf
′−3√γdtdθ.

This yields to :

J16 ≥ −cτ
∫
|Dθu|2etf ′−3√γdtdθ. (4.22)

Therefore, combining all the previous estimates on the Ji (i.e (4.6) to (4.22))
and noticing that

cτ

∫
|Dθu|2etf ′−3√γdtdθ ≤ 1

2
τ

∫
|f ′′| |Dθu|2 f ′

−3√
γdtdθ,

we have established that

I3 ≥ 3τ

∫
|f ′′| |Dθu|2 f ′

−3√
γdtdθ − cτ 3

∫
et|u|2f ′−3√

γdtdθ

− cτ
∫
|f ′′| |∂tu|2 f ′

−3√
γdtdθ − cτ 2

∫
|f ′′| |u|2f ′−3√

γdtdθ.
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