
HAL Id: hal-01981180
https://hal.science/hal-01981180

Submitted on 14 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Carleman Estimates for the Schrödinger Operator.
Applications to Quantitative Uniqueness

Laurent Bakri

To cite this version:
Laurent Bakri. Carleman Estimates for the Schrödinger Operator. Applications to Quanti-
tative Uniqueness. Communications in Partial Differential Equations, 2013, 38 (1), pp.69-91.
�10.1080/03605302.2012.736912�. �hal-01981180�

https://hal.science/hal-01981180
https://hal.archives-ouvertes.fr


Carleman estimates for the
Schrödinger operator. Applications to

quantitative uniqueness

Bakri Laurent

E-mail : laurent.bakri@gmail.com

Abstract

On a closed manifold, we give a quantitative Carleman estimate
on the Schrödinger operator. We then deduce quantitative unique-
ness results for solutions to the Schrödinger equation using doubling
estimates. Finally we investigate the sharpness of this results with
respect to the electric potential.

1 Introduction and statement of the results

Let (M, g) be an closed, connected, n-dimensional smooth Riemannian man-
ifold, ∆ the (negative) Laplace operator on M , W a bounded function on M
and V a bounded vector field on M . Let u be a non trivial solution to

∆u+Wu+ g(V,∇u) = 0. (1.1)

We consider the possible vanishing order, depending on W and V , of u in any
point. In the case that W is a constant and V = 0, i.e. when dealing with
the eigenfunctions of the Laplacian, it is a well known result of H. Donnelly
and C. Fefferman [5] that the vanishing order is everywhere bounded by
c
√
λ, with c a constant depending only on M . When W is a C1 function

(V = 0), the author has shown in [2] that the vanishing order is bounded by
C1

√
‖W‖C1+C2, where ‖W‖C1 = supM |W |+supM |∇W | and the norm |∇W |

is taken with respect to the metric g. Both results were based on Carleman
inequalities. In this paper we give a L2 Carleman estimate (theorem 2.5) on
the operator P defined by

Pu = ∆u+Wu+ g(V,∇u) (1.2)
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which allows to derive quantitative uniqueness results for solutions to (1.1).
Recall that L2 Carleman estimates are a priori estimates of the following
form :

‖eτϕPu‖L2 ≥ C‖eτϕu‖L2 ,

for a great enough parameter τ ≥ τ0, where the function ϕ satisfies some
convexity properties with respect to the operator P (see [9, 10]). One of the
key ideas of Donnelly and Fefferman [5] is to carefully investigate how the
parameter τ depends on the eigenvalue λ (i.e. τ ≥ C1

√
λ+C2). In the same

spirit, we will use that a Carleman estimate is valid (theorem 2.2) for

τ ≥ C(1 + ‖W‖
2
3∞ + ‖V ‖2

∞) (1.3)

This will allows us to derive the following quantitative uniqueness results:

Theorem 1.1. There exists a non-negative constant C depending only on
M , such that, for any solution u to (1.1) and for any point x0 in M , the
vanishing order of any non-zero solution to (1.1) is everywhere less than

C(1 + ‖W‖
2
3∞ + ‖V ‖2

∞).

In the case V = 0 this result was shown by C. E. Kenig [13]. The theorem 1.1
is shown via a stronger doubling inequality. We note here that the potentials
W,V and the solutions u may take complex values (i.e. W is a complex
valued function on M and V is a section of the complexified tangent bundle
TM ⊗C) . This seems to be the first algebraic bound in term of ‖V ‖∞. We
don’t know if this result is sharp with respect to the magnetic potential V.
However theorem 1.1 is sharp in the following sense, considering V = 0 and
complex valued solutions of (1.1), the exponent 2/3 on ‖W‖∞ is the lowest
one can obtain in the upper bound on the vanishing order of solutions. Here
we show

Theorem 1.2. There exists a constant C such that, if N > 0 is an arbitrary

great number, there exists a function W ∈ L∞(S2,C) with N ≥ C‖W‖
2
3∞ and

a solution u ∈ C2(S2,C) to (1.1) which vanishes with order N in P . Moreover
W can be chosen of compact support with

supp(W ) ⊂
(
S2 \ {P,Q}

)
where the points P,Q are antipodal and such that supp(W ) can be chosen of
arbitrary small measure.
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The fact that 2/3 is the optimal exponent has already been shown in [13],
based on Meshkov construction [21] (see section 4). However, our example,
still based on Meshkov construction, is more precise, since we show that on
S2 the sharp exponent can be reached with a compactly support potential
W outside two antipodal points. For the real case, the upper bound

C(1 + ‖W‖
1
2∞ + ‖V ‖∞)

is expected (see e.g. [13, 17]). However this seems to be a difficult problem
which, to the knowledge author’s, has not been solved yet. As mentioned
in [3], since Carleman estimates do not distinguish between the real and
complex case, it seems difficult to obtain such a result with this method.

Finally we should mention that I. Kukavica in [17] obtains quantitative
results for the vanishing order of solutions to (1.1) when V = 0. He estab-
lishes the following upper bound :

C(sup(W−)
1
2 + (osc(W ))2 + 1).

The method of [17] was based on the frequency function [7, 19] when ours
relies on Carleman estimates [5, 11, 13, 15, 16, 22, 23, ...]. These two methods
are the principal way to obtain quantitative uniqueness results for solutions
to partial differential equations. One should also notice that, since Lipschitz
continuity is the natural assumption on the metric g such that strong unique
continuation holds [1, 6, 14], Theorem 1.1 may be extended to manifolds with
only Lipschitz metrics (and to manifolds with boundary [6]) but we will not
be concerned which such refinements here.
This paper is organised as follows. In section 2 we derive from standard
Carleman estimate on the Laplacian an estimate on P which is only true
for great enough parameter τ ≥ τ0. Furthermore we state explicitly how τ0

depends on the potentials V,W (1.3). Then we use this Carleman estimate
with a special choice of weight functions to obtain in section 3 a three balls
theorem and doubling inequalities on solutions of (1.1). Section 4 is devoted
to prove theorem 1.2. We first construct an appropriate sequence (uk,Wk)
verifying ∆uk + Wkuk = 0, on the two dimensional sphere. Then we show

that the sharp upper bound C1‖W‖
2
3∞ + C2 on the vanishing order can be

obtained with Wk of small support in the neighbourhood of two antipodal
points.

Notations
For a fixed point x0 in M we will use the following standard notations:

• r := r(x) = d(x, x0) the Riemannian distance from x0,

3



• Br := Br(x0) the geodesic ball centered at x0 of radius r.

• Ar1,r2 := Br2 \Br1 .

Furthermore we denote

• vg the volume form induced by g,

• u · v := g(u, v), the inner product between two tangent vectors with
respect to the metric g,

• g(V,∇u) := ∂V u the directional derivative of u in direction V ,

• ‖ · ‖ the L2 norm on M and ‖ · ‖A the L2 norm on the (measurable) set
A. In case T is a vector field (or a tensor), ‖ · ‖ has to be understood
as ‖|T |g‖.

• c, C, ci and Ci for i = 1, 2, · · · are generic constants which may depend
on (M, g) and other quantities such as the weight functions in Carleman
estimates (section 2.1), but not on the potentials or the solution u to
(1.1). Their values can change from one line to another.

Acknowledgement: I would like to thank the anonymous referee for sev-
eral helpful remarks that permit to significantly improve the presentation of
the paper.

2 Carleman estimate

Recall that Carleman estimates are weighted integral inequalities with a
weight function eτφ, where the function φ satisfies some convexity proper-
ties, see by example [9, 10, 12]. In this section we first state an L2, singular
weighted, Carleman inequality on the operator u 7→ ∆u+ V · ∇u+Wu, for
some class of weight functions satisfying convenient properties (see (2.1) and
(2.2) below). Then we use a particular choice of weight functions which will
allows us to derive a doubling estimate on solutions to (1.1) .

Let us first define the class of (singular) weight functions we will work
with.
Let f :] − ∞, T [→ R be of class C3, and assume that there are constants
µi > 0, i = 1, · · · , 4, such that :

0 < µ1 ≤ f ′(t) ≤ µ2

µ3|f (3)(t)| ≤ −f ′′(t) ≤ µ4 , ∀t ∈]−∞, T [
lim
t→−∞

−e−tf ′′(t) = +∞.
(2.1)
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One can check easily the following

Example 2.1. The functions defined by fε(t) = t−eεt, satisfy the conditions
(2.1) provided 0 < ε < 1 and T is a large negative number.

Finally we define our weight function as

φ(x) = −f(ln r(x)). (2.2)

Now we can state the main result of this section:

Theorem 2.2. There exist positive constants R0, C, C1, which depend only
on M and f , such that, for any x0 ∈M , any δ ∈ (0, R0), any W ∈ L∞(M),

any V ∈ Γ(TM), any u ∈ C∞0 (BR0(x0) \Bδ(x0)) and any τ ≥ C1(1+‖W‖
2
3∞+

‖V ‖2
∞), one has

C
∥∥r2eτφ (∆u+Wu+ g(V,∇u)) r−n/2

∥∥2

≥ τ 3
∥∥∥√|f ′′(ln r)|eτφur−n/2∥∥∥2

+ τ 2δ
∥∥∥r− 1

2 eτφur−n/2
∥∥∥2

+ τ
∥∥∥r√|f ′′(ln r)|eτφ|∇u|2r−n/2∥∥∥2

. (2.3)

Remark 2.3. Like in [5], the important statement in theorem 2.2 is the
assumption on the parameter τ which is related to the vanishing order:

τ ≥ C(1 + ‖W‖
2
3∞ + ‖V ‖2

∞).

The following lemma, which deals solely with Laplace operator, contains the
crucial part of theorem 2.2:

Lemma 2.4. There exist positive constants R0, C, C1, which depend only on
M and f , such that, for any x0 ∈ M , any u ∈ C∞0 (BR0(x0) \Bδ(x0)) and
any τ ≥ C1, one has

C
∥∥r2eτφ∆ur−n/2

∥∥2 ≥ τ 3
∥∥∥√|f ′′(ln r)|eτφur−n/2∥∥∥2

+ τ 2δ
∥∥∥r− 1

2 eτφur−n/2
∥∥∥2

+ τ
∥∥∥r√|f ′′(ln r)|eτφ|∇u|2r−n/2∥∥∥2

.
(2.4)

The main interest of this Carleman estimates is the powers of τ in the
right hand side. Such type of estimates, with the corresponding powers on
τ , are standard and for this reason we choose to omit a complete proof. We
refer to the following : [4], [9] formula (17.2.11), [14], [18]. Moreover one
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should note that lemma 2.4 can be derived from Theorem 1.1 of [2]. Indeed
letting W = 0, Theorem 1.1 of [2] is just a special case of Lemma 2.4 with
the weight functions of example 2.1. But one can check that the proof is still
valid for these weight functions since it only require the properties (2.1).

We can now derive from Lemma 2.4, the Carleman estimate on the Schrödinger
operator P = ∆ +W + g(V,∇·).

Proof of Theorem 2.5. If V and W are bounded, one has from triangular
inequality :

C
∥∥r2eτφ (∆u+Wu+ g(V,∇u)) r−

n
2

∥∥2 ≥ C

4

∥∥r2eτφ∆ur−
n
2

∥∥2

− C

2
‖W‖2

∞ ·
∥∥r2eτφur−

n
2

∥∥2 − ‖V ‖2
∞ ·
∥∥r2eτφ∇ur−

n
2

∥∥2

Since for R0 small enough one has r ≤
√
|f ′′(ln r)| from (2.1), assuming

additionally that τ 3 ≥ C1‖W‖2
∞ and τ ≥ C1‖V ‖2

∞, we can use (2.4) to absorb
the negative terms and conclude the proof.

2.1 Special choice of weight functions

In this paragraph we derive a special case of theorem 2.2 which will be useful
for the remaining of this paper. Let ε be a real number such that 0 < ε < 1.
As in previous example we consider on ]−∞, T0] the function defined by

f(t) = t− eεt,

which satisfies the properties (2.1). Therefore we can apply theorem 2.2 with
the weight function φ(x) = −f(ln r) = − ln r + rε. Now we notice that

eτφ = e−τ ln reτr
ε

.

The point is that we can now obtain a Carleman estimate with the usual L2

norm. Indeed one has
eτφr−

n
2 = e(τ+n

2
)φe−

n
2
rε

and therefore for r small enough

1

2
e(τ+n

2
)φ ≤ eτφr−

n
2 ≤ e(τ+n

2
)φ.

Then we have
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Corollary 2.5. There exist positive constants R0, C, C1, C2, which depend
only on M and ε, such that, for any W ∈ L∞(M), x0 ∈M , any

u ∈ C∞0 (BR0(x0) \Bδ(x0)) and τ ≥ C1(‖W‖
2
3∞ + ‖V ‖2 + 1), one has

C
∥∥r2eτφ (∆u+Wu+ V · ∇u)

∥∥2 ≥ τ 3
∥∥r ε2 eτφu∥∥2

+ τ 2δ
∥∥∥r− 1

2 eτφu
∥∥∥2

+ τ
∥∥r1+ ε

2 eτφ∇u
∥∥2
.

(2.5)

We emphasis that ε is fixed and its value will not have any influence on
ours statements as long as 0 < ε < 1. Therefore we may and will omit the
dependency of our constants on ε.

3 Vanishing order

We want to derive from our Carleman estimate, a control on the local be-
haviour of solutions. We will first give and proove an Hadamard three circles
type theorem.

3.1 Three balls inequality

It is well-known that one can deduce three balls inequality from carleman
estimate, one can see by example the following references [12, 13, 20] To
obtain such kind of result, the basic idea is to apply Carleman estimate to
χu where χ is an appropriate cut off functions and u a solution of (1.1).

Proposition 3.1 (Three balls inequality). There exist positive constants R1,
C1 and 0 < α < 1 which depend only on (M, g) such that, if u is a solution
to (1.1) with W of class L∞, then for any R < R1, and any x0 ∈M, one has

‖u‖BR(x0) ≤ eC1(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖αBR
2

(x0)‖u‖1−α
B2R(x0). (3.1)

Proof. Let x0 a point in M . Let u be a solution to (1.1) and R such that
0 < R < R0

2
with R0 as in corollary 2.5. We will denote by ‖v‖R1,R2 the L2

norm of v on the set AR1,R2 := {x ∈M ; R1 ≤ r(x) ≤ R2}. Let ψ ∈ C∞0 (B2R),
0 ≤ ψ ≤ 1, a function with the following properties:

• ψ(x) = 0 if r(x) < R
4

or r(x) > 5R
3

,

• ψ(x) = 1 if R
3
< r(x) < 3R

2
,

• |∇ψ(x)| ≤ C
R

,

• |∇2ψ(x)| ≤ C
R2 .
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First since the function ψu is supported in the annulus AR
3
, 5R

3
, we can apply

estimate (2.5) of theorem 2.5. In particular we have, since the quotient
between R

3
and 5R

3
does not depend on R :

C
∥∥r2eτφ (∆ψu+ 2∇u · ∇ψ + V · u∇ψ)

∥∥ ≥ τ
∥∥eτφψu∥∥ . (3.2)

First note that for a solution u to (1.1) one can apply Carleman estimate
(2.5) and, keeping appropriate term in the right hand side, one gets

C
∥∥r2eτφ (∆ψu+ 2∇u · ∇ψ + V · u∇ψ)

∥∥ ≥ τ
∥∥eτφψu∥∥ . (3.3)

Noticing that τ ≥ C(1 + ‖W‖
2
3∞ + ‖V ‖2

∞) ≥ 1, the estimate (3.3) leads to∥∥eτφψu∥∥ ≤ ∥∥r2eτφ (∆ψu+ 2∇u · ∇ψ)
∥∥+ ‖r2eτφu∇ψ‖ (3.4)

Now recall |Dαψ| ≤ c
R|α| and r2 ≤ r. Then from properties of ψ and trian-

gular inequality one gets :

‖eτφu‖R
3
, 3R

2
≤ C

(
‖eτφu‖R

4
,R

3
+ ‖eτφu‖ 3R

2
, 5R

3

)
+ C

(
R‖eτφ∇u‖R

4
,R

3
+R‖eτφ∇u‖ 3R

2
, 5R

3

)
.

Recall that φ(x) = − ln r(x) + r(x)ε. In particular φ is radial and decreasing
(for small r). Then one has,

‖eτφu‖R
3
, 3R

2
≤ C

(
eτφ(R

4
)‖u‖R

4
,R

3
+ eτφ( 3R

2
)‖u‖ 3R

2
, 5R

3

)
+ C

(
Reτφ(R

4
)‖∇u‖R

4
,R

3
+Reτφ( 3R

2
)‖∇u‖ 3R

2
, 5R

3

)
.

(3.5)

Now we state a standard elliptic estimate to absorb the terms involving
gradients (Caccioppoli estimates) : for solutions to (1.1) one has

‖∇u‖aR ≤ C

(
1

(1− a)R
+ ‖W‖1/2

∞ + ‖V ‖∞
)
‖u‖R, for 0 < a < 1, (3.6)

Moreover since AR1,R2 ⊂ BR2 , using formula (3.6) and properties of φ gives

eτφ(R
4

)‖∇u‖R
4
,R

3
≤ C

(
1

R
+ ‖W‖1/2

∞ + ‖V ‖∞
)
eτφ(R

4
)‖u‖R

2
,

and

eτφ( 3R
2

)‖∇u‖ 3R
2
, 5R

3
≤ C

(
1

R
+ ‖W‖1/2

∞ + ‖V ‖∞
)
eτφ( 3R

2
)‖u‖2R.

8



Using (3.6) one has :

‖u‖R
3
,R ≤ C(1 +‖W‖1/2

∞ +‖V ‖∞)
(
eτ(φ(R

4
)−φ(R))‖u‖R

2
+ eτ(φ( 3R

2
)−φ(R))‖u‖2R

)
.

Let AR = φ(R
4

) − φ(R) and BR = −(φ(3R
2

) − φ(R)). From the definition
of φ, we have 0 < A−1 ≤ AR ≤ A and 0 < B ≤ BR ≤ B−1 where A and
B do not depend on R. We may assume that C(1 + ‖W‖1/2

∞ + ‖V ‖∞) ≥ 2.
Then we can add ‖u‖R

3
to each side and bound it in the right hand side by

C(1 + ‖W‖1/2
∞ + ‖V ‖∞)eτA‖u‖R

2
. We get :

‖u‖R ≤ C(1 + ‖W‖1/2
∞ + ‖V ‖∞)

(
eτA‖u‖R

2
+ e−τB‖u‖2R

)
. (3.7)

Now we want to find τ such that

C(1 + ‖W‖1/2
∞ + ‖V ‖∞)e−τB‖u‖2R ≤

1

2
‖u‖R

which is true for τ ≥ − 1
B

ln
(

1

2C(1+‖W‖1/2∞ +‖V ‖∞)

‖u‖R
‖u‖2R

)
. Since τ must also

satisfy
τ ≥ C1(1 + ‖W‖2/3

∞ + ‖V ‖2)

we choose

τ = − 1

B
ln

(
1

2C(1 + ‖W‖1/2
∞ + ‖V ‖∞)

‖u‖R
‖u‖2R

)
+ C1(1 + ‖W‖2/3

∞ + ‖V ‖2
∞).

(3.8)

Up to a change of constant we may assume that C(1 + ‖W‖1/2
∞ + ‖V ‖∞) ≤

C1(1 + ‖W‖2/3
∞ + ‖V ‖2

∞) then we can deduce from (3.7) that :

‖u‖
B+A
B

R ≤ eC1(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖
A
B
2R‖u‖R

2
, (3.9)

Finally define α = A
A+B

and taking exponent B
A+B

of (3.9) gives the result.

3.2 Doubling estimates

Now we intend to show that the vanishing order of solutions to (1.1) is every-

where bound by C(1 + ‖W‖
2
3∞ + ‖V ‖2

∞). This is an immediate consequence
of the following :

9



Theorem 3.2 (doubling estimate). There exists a positive constant C, de-
pending only on M such that : if u is a solution to (1.1) on M with V,W
bounded, then for any x0 in M and any r > 0, one has

‖u‖B2r(x0) ≤ eC(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖Br(x0). (3.10)

Remark 3.3. Using standard elliptic theory to bound the L∞ norm of |u|
by a multiple of its L2 norm on a greater ball (see by example [8] Theorem
8.17 and problem 8.3), show that the doubling estimate is still true with the
L∞ norm :

‖u‖L∞(B2r(x0)) ≤ eC(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖L∞(Br(x0)). (3.11)

To prove theorem 3.2 we need to use the standard overlapping chains of balls
argument ([5, 12, 17]) to show :

Proposition 3.4. For any R > 0 there exists CR > 0 such that for any
x0 ∈M , any W ∈ C1(M) and any solutions u to (1.1) :

‖u‖BR(x0) ≥ e−CR(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖L2(M).

Proof. We may assume without loss of generality that R < R0, with R0 as
in the three balls inequality (proposition 3.1). Up to multiplication by a
constant, we can assume that ‖u‖L2(M) = 1. We denote by x̄ a point in M
such that ‖u‖BR(x̄) = supx∈M ‖u‖BR(x). This implies that one has ‖u‖BR(x̄)

≥
DR, where DR depend only on M and R. One has from proposition (3.1) at
an arbitrary point x of M :

‖u‖BR/2(x) ≥ e−c(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖
1
α

BR(x). (3.12)

Let γ be a geodesic curve between x0 and x̄ and define x1, · · · , xm = x̄
such that xi ∈ γ and BR

2
(xi+1) ⊂ BR(xi), for any i from 0 to m − 1. The

number m depends only on diam(M) and R. Then the properties of (xi)1≤i≤m
and inequality (3.12) give for all i, 1 ≤ i ≤ m :

‖u‖BR/2(xi) ≥ e−c(1+‖W‖2/3∞ + |V ‖2∞)‖u‖
1
α

BR/2(xi+1). (3.13)

The result follows by iteration and the fact that ‖u‖BR(x̄) ≥ DR.

Similarly one also has,
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Corollary 3.5. For all R > 0, there exists a positive constant CR depending
only on M and R such that at any point x0 in M one has

‖u‖R,2R ≥ e−CR(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖L2(M).

Proof. Recall that ‖u‖R,2R = ‖u‖L2(AR,2R) with AR,2R := {x;R ≤ d(x, x0) ≤
2R)}. Let R < R0 where R0 is from proposition 3.5, note that R0 ≤
diam(M). Since M is geodesically complete, there exists a point x1 in AR,2R
such that Bx1(R

4
) ⊂ AR,2R. From proposition 3.4 one has

‖u‖BR
4

(x1) ≥ e−CR(1+‖W‖2/3∞ +‖V ‖2∞)‖u‖L2(M)

wich gives the result.

Proof of theorem 3.2. We proceed as in the proof of three balls inequality
(proposition 3.5) except for the fact that now the radius of the first ball
become arbitrary small in front of the others. Let R = R0

4
with R0 as in

the three balls inequality, let δ such that 0 < 3δ < R
8

, and define a smooth
function ψ, with 0 ≤ ψ ≤ 1 as follows:

• ψ(x) = 0 if r(x) < δ or if r(x) > R,

• ψ(x) = 1 if r(x) ∈ [5δ
4
, R

2
],

• |∇ψ(x)| ≤ C
δ

and |∇2ψ(x)| ≤ C
δ2 if r(x) ∈ [δ, 5δ

4
] ,

• |∇ψ(x)| ≤ C and |∇2ψ(x)| ≤ C if r(x) ∈ [R
2
, R].

Keeping appropriates terms in (2.5) applied to ψu gives :

τ
3
2‖r

ε
2 eτφψu‖+ τ

1
2 δ

1
2‖r−

1
2 eτφψu‖

≤ C
(
‖r2eτφ∇u · ∇ψ‖+ ‖r2eτφ∆ψu‖+ ‖r2eτφV u∇ψ‖

)
. (3.14)

Using properties of ψ and since τ ≥ ‖V ‖∞, one finds

τ
3
2‖r

ε
2 eτφu‖R

8
,R

4
+ τ

1
2‖eτφu‖ 5δ

4
,3δ ≤ C(δ‖eτφ∇u‖δ, 5δ

4
+ ‖eτφ∇u‖R

2
,R)

+ C(‖eτφu‖δ, 5δ
4

+ ‖eτφu‖R
2
,R)

+ C
τ

δ
‖r2eτφu‖δ, 5δ

4
+ Cτ‖r2eτφu‖R

2
,R.

11



Now, we bound from above the two last terms of the previous inequality by

Cτ
(
‖eτφu‖δ, 5δ

4
+ ‖eτφu‖R

2
,R

)
. Then we divide both sides of (3.15) by τ

1
2 .

Noticing that τ ≥ 1, this yields to

‖r
ε
2 eτφu‖R

8
,R

4
+ ‖eτφu‖ 5δ

4
,3δ ≤ Cτ

1
2

(
δ‖eτφ∇u‖δ, 5δ

4
+ ‖eτφ∇u‖R

2
,R

)
+ Cτ

1
2

(
‖eτφu‖δ, 5δ

4
+ ‖eτφu‖R

2
,R

)
.

(3.15)

From the elliptic estimate (3.6) and the decreasing of φ, we get

eτφ(R
4

)‖u‖R
8
,R

4
+ eτφ(3δ)‖u‖ 5δ

4
,3δ

≤ Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)
(
eτφ(δ)‖u‖ 3δ

2
+ eτφ(R

3
)‖u‖ 5R

3

)
.

Adding eτφ(3δ)‖u‖ 5δ
4

to each side and noting that we can bound it from above

by Cτ
1
2 (1 + ‖W‖

1
2∞ + ‖V ‖∞)eτφ(δ)‖u‖ 3δ

2
, we find that

eτφ(R
4

)‖u‖R
8
,R

4
+ eτφ(3δ)‖u‖3δ

≤ Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)
(
eτφ(δ)‖u‖ 3δ

2
+ eτφ(R

3
)‖u‖ 5R

3

)
.

Now we want to choose τ such that

Cτ
1
2 (1 + ‖W‖1/2

∞ + ‖V ‖∞)eτφ(R
3

)‖u‖ 5R
3
≤ 1

2
eτφ(R

4
)‖u‖R

8
,R

4
.

For the same reasons as before we choose

τ =
2

φ(R
3

)− φ(R
4

)
ln

(
1

2C(1 + ‖W‖1/2
∞ + ‖V ‖∞)

‖u‖R
8
,R

4

‖u‖ 5R
3

)
+ C(1 + ‖W‖

2
3∞ + ‖V ‖2

∞).

Define DR = −
(
φ(R

3
)− φ(R

4
)
)−1

; like before, one has 0 < E−1 ≤ DR ≤ E,
with E a fixed real number. Dropping the first term in the left hand side
and noting that 0 < φ(δ)− φ(3δ) ≤ C, one has

‖u‖3δ ≤ eC(1+‖W‖
2
3∞+‖V ‖2∞)

(
‖u‖R

8
,R

4

‖u‖ 5R
3

)−E
‖u‖ 3δ

2

Finally, from Corollary 3.5, we define r = 3δ
2

to have :

‖u‖2r ≤ eC(1+‖W‖
2
3∞+‖V ‖2∞)‖u‖r.

12



Thus, the theorem is proved for all r ≤ R1

16
. Using Proposition 3.4 we have

for r ≥ R1

16
:

‖u‖Bx0 (r) ≥ ‖u‖Bx0 (
R0
16

)
≥ e−C0(1+‖W‖

2
3∞+‖V ‖2∞)‖u‖L2(M)

≥ e−C1(1+‖W‖
2
3∞+‖V ‖2∞)‖u‖Bx0 (2r).

Finally theorem 1.1 is an easy and direct consequence of this doubling
estimates.

4 Possible vanishing order for solutions

The aim of this is section is to prove theorem 1.2 which states that our expo-
nent 2

3
on ‖W‖∞ in theorem 1.1 is sharp. More precisely, we will construct

a sequence (uk,Wk) verifying ∆uk +Wkuk = 0 and such that :

• At the north pole N of S2, the function uk vanishes at an order at least

C1‖Wk‖
2
3∞+C2, where C1 and C2 are fixed numbers which don’t depend

on k.

• limk→+∞ ‖Wk‖∞ = +∞.

• The potential W has (arbitrary small) compact support in S2\({N,S}),
with S the south pole of S2.

Our construction will be inspired by the previous work of Meshkov. In
[21], he has shown that one can find non trivial, complex valued, solutions
of (1.1) in Rn (n ≥ 2), with the following exponential decay at infinity :

|u(x)| ≤ e−C|x|
4
3 . This gives an negative answer to a question of Landis, [19].

He has also shown that 4
3

is the greatest exponent for which one can hope
find non trivial solutions to (1.1) in Rn.
Our main point is to construct on R2 a solution u to ∆u + Wu = 0 with
appropriate decay at infinity with respect to the L∞ norm ofW . Then, we use
stereographic projection to obtain theorem 1.2. This suggests in particular
that we not only need the function W to be bounded, since we have to pull
it back to the sphere, but we need the stronger condition

|W (x, y)| ≤ C

1 + |x|2 + |y|2
.

13



It actually appears that we can obtain W with compact support. We recall
that our construction relies crucially on the fact that W and u are complex
valued functions.

From now on, we will denote by (r, ϕ) polar coordinates of a point in R2

and by [a, b] the annulus [a, b] := {(r, ϕ) ∈ R+× [0, 2π[, a ≤ r ≤ b}. We have
the following on R2:

Proposition 4.1. Let ρ > 0 a real number and N an integer. For ρ and N
great enough their exits u and W verifying ∆u+Wu = 0 on R2 such that :

• |u(x)| = C|x|−N for |x| ≥ ρ+ 6

• ‖W‖L∞ ≤ CN
3
2

• W has support in ]ρ
4
, ρ+ 6]

Proof.
Let ρ ≥ 1, without loss of generality we suppose that N is the square of an
integer. Let define δ = 1√

N
. For j an integer from 10 to

√
N , we note nj = j2

and kj = 2j + 1 and ρj = ρ + 6(j − 1)δ. On each annulus Aj = [ρj, ρj+1]
we construct a solution of ∆u + Wu = 0 such that |u| = ajr

−nj on the
sphere {ρj} and |u| = aj+1r

−nj−kj = aj+1r
−nj+1 on the sphere {ρj+1}. We

set a10 = 1, the numbers aj, for j > 10, still have to be defined. When
working in the annulus Aj, we will write a, n, k, ρ instead of aj, nj, kj, ρj.
Before proceeding to the proof it is useful to notice that

k ≤ C1

√
n ≤ C1

√
N

n
k
≤ C2

√
N

1
δ

=
√
N

kδ ≤ 3

(4.1)

To build (u,W ) in Aj, it is convenient to divide the construction into four
steps corresponding to the four annulus [ρ, ρ+ 2δ], [ρ+ 2δ, ρ+ 3δ], [ρ+ 3δ, ρ+
4δ], [ρ+ 4δ, ρ+ 6δ].

Step I. Construction on the annulus [ρ, ρ+ 2δ]

Define
u1 = ar−ne−inϕ,

and
u2 = −br−n+2keiF (ϕ),

14



with b = a(ρ+ δ)−2k such that
∣∣∣u2(ρ+δ)
u1(ρ+δ)

∣∣∣ = 1, the function F (ϕ) will be made

explicit later. For m from 0 to 2n+ 2k− 1, we set ϕm = 2πm
2n+2k

and T = π
n+k

.
We will need the following

Lemma 4.2 ([21] p. 350). Their exists a real function h of class C2, periodic
of period T , with the following properties :

• |h(ϕ)| ≤ 5kT, ∀ϕ ∈ R, (4.2)

• |h′
(ϕ)| ≤ 5k, ∀ϕ ∈ R, (4.3)

• |h′′
(ϕ)| ≤ Ckn, ∀ϕ ∈ R, (4.4)

• h(ϕ) = −4k(ϕ− ϕm), for ϕm −
T

5
≤ ϕ ≤ ϕm +

T

5
. (4.5)

Let now choose F as follows

F (ϕ) = (n+ 2k)ϕ+ h(ϕ). (4.6)

We also consider two smooths radial functions ψ1, ψ2 with the following
properties :

• 0 ≤ ψi ≤ 1, (4.7)

• |ψ(p)
i | ≤ Cδ−p, (4.8)

• ψ1 = 1 on [ρ, ρ+
5

3
δ] and ψ1 = 0 on [ρ+ (2− 1

10
)δ, ρ+ 2δ], (4.9)

• ψ2 = 0 on [ρ, ρ+
1

10
δ] and ψ2 = 1 on [ρ+

1

3
δ, ρ+ 2δ]. (4.10)

Finally we set u = ψ1u1 +ψ2u2. The estimate on [ρ, ρ+ 2δ] is divided among
four cases.

Step I.a. The set [ρ, ρ+ δ
3
]

We have u = u1 + ψ2u2, and |u2

u1
| =

(
r
ρ+δ

)2k

. Then we introduce α as an

upper bound of |u2

u1
| :

∣∣∣∣u2

u1

∣∣∣∣ ≤
(
ρ+ δ

3

ρ+ δ

)2k

:= α < 1.

15



We notice that

|u| ≥ |u1| − |ψ2u2| ≥ |u1| − |u2| ≥
1− α
α
|u2|,

Since α = e2k ln(1− 2δ
3(ρ+δ)

), a computation of α
1−α leads to the following inequal-

ity:

|u2| ≤
3(ρ+ δ)

4kδ
|u|. (4.11)

Now we compute ∆u :

∆u = ψ2∆u2 + 2
dψ2

dr

∂u2

∂r
+

(
1

r

dψ2

dr
+
d2ψ2

dr2

)
u2. (4.12)

First we estimate ∆u2. One has

∆u2 =
1

r2

(
(−n+ 2k)2 + iF ′′ − (F ′)2

)
u2.

From the definition of F (4.6) this gives :

∆u2 =
1

r2

[
−8kn+ ih′′ − 2(n+ 2k)h′ − (h′)2

]
u2. (4.13)

Using properties of h , we obtain

|∆u2| ≤
1

r2

(
8kn+ Ckn+ C2k

2
)
|u2| (4.14)

Then from inequality (4.11) we have ,

|∆u2| ≤
1

r2
Ckn

3(ρ+ δ)

kδ
|u|,

Now (4.1) and ρ+δ
r2 ≤ 1 gives:

|∆u2| ≤ C
n

δ
|u| ≤ N3/2|u|

Now we estimate the other terms in the right and side of (4.12). The condi-
tions on ψ (4.8) and estimate of u2 (4.11) lead to∣∣∣∣∂ψ2

∂r

∂u2

∂r

∣∣∣∣ ≤ Cn

kδ2
|u|. (4.15)

Similarly, we have ∣∣∣∣(dψ2

dr
+
d2ψ2

dr2

)
1

r
u2

∣∣∣∣ ≤ C
1

δ3
|u| (4.16)
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Finally,

|∆u| ≤ C(
n

δ
+

n

kδ2
+

1

δ3
)|u|.

Then we have shown, using relations (4.1) between k, n, δ and N that :

|∆u| ≤ CN
3
2 |u|. (4.17)

Step I.b. [ρ+ 5
3
δ, ρ+ 2δ]

We want to estimate |∆u||u| , with u = u2 + ψ1u1. First since,

|u2|
|u1|

=
b

a
r2k ≥

(
ρ+ 5

3
δ

ρ+ δ

)2k

= β > 1,

we have

|u| ≥ |u2| − |ψ1u1| ≥ |u2| − |u1| ≥
(
β − 1

β

)
|u2| > 0. (4.18)

One also has

∆u = ∆u2 + 2
dψ1

dr

∂u1

∂r
+

(
1

r

dψ1

dr
+
d2ψ1

dr2

)
u1. (4.19)

First since r ≥ ρ ≥ 1 one has from (4.18)

|∆u2| ≤
Ckn

r2
|u2| ≤ Ckn

β

β − 1
|u|. (4.20)

Then we estimate β
β−1

. On the real set [0, 4
3
], we have :

(3/4) ln(4x/3) ≤ ln(1 + x) ≤ x
1 + x ≤ ex ≤ 1 + 3/4(e4/3 − 1)x

Now from the definition of β and since kδ ≤ 3 this estimates gives,

β

β − 1
≤ C

kδ
,

then from (4.20) we have :

|∆u2| ≤ C
n

δ
|u|. (4.21)
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Moreover we also have ∣∣∣∣∂u1

∂r

dψ1

dr

∣∣∣∣ ≤ C

δ

∣∣∣∣∂u1

∂r

∣∣∣∣ ,
with ∣∣∣∣∂u1

∂r

∣∣∣∣ ≤ Cn|u1| ≤ C
n

β − 1
|u| ≤ Cn

kδ
|u|,

thus ∣∣∣∣∂u1

∂r

dψ1

dr

∣∣∣∣ ≤ C
n

kδ2
|u|.

This also gives ∣∣∣∣∂u1

∂r

dψ1

dr

∣∣∣∣ ≤ CN
3
2 |u|. (4.22)

Similarly we have,∣∣∣∣d2ψ1

dr2
+

1

r

dψ1

dr

∣∣∣∣ |u1| ≤ C

(
1

δ2
+

1

δ

)
|u1|

≤ C
1

δ2
|u1|

≤ CN
3
2 |u|.

Here again we have shown

|∆u| ≤ CN
3
2 |u|.

Step I.c {(r, ϕ); r ∈ [ρ+ 1
3
δ, ρ+ 5

3
δ], ϕm + T

5
≤ ϕ ≤ ϕm + 4T

5
}

On this set we have u = u1 + u2 and

|u| = |u2|
∣∣∣ei(F (ϕ)+nϕ) − a

br2k

∣∣∣ . (4.23)

Let S(ϕ) = F (ϕ) + nϕ, we have S(ϕm) = 2πm and

S ′(ϕ) = 2n+ 2k + h′(ϕ)

Since |h′(ϕ)| ≤ 5k we have

S ′(ϕ) ≥ 2n− 3k

18



Now since n = j2 and k = 2j + 1, the condition j ≥ 10 force S ′(ϕ) > n for
ϕ ∈ [ϕm, ϕm+1]. Then for

ϕm +
T

5
≤ ϕ ≤ ϕm+1 −

T

5

we have

S(ϕ) ≥ S(ϕm +
T

5
) ≥ S(ϕm) +

nT

5

Using the same argument to get an upper bound on S(ϕ) we can state that

2πm+
nT

5
≤ S(ϕ) ≤ 2π(m+ 1)− nT

5

This can be written

2πm+
nπ

5(n+ k)
≤ S(ϕ) ≤ 2π(m+ 1)− nπ

5(n+ k)

Now since j ≥ 10, we clearly have nπ
5(n+k)

≥ π
7
. Then we can state that∣∣eiS(ϕ) − λ

∣∣ ≥ sin(
π

7
),

for any real number λ. This leads to

|u| ≥ sin(
π

7
)|u2|. (4.24)

Finally using that ∆u = ∆u2, (4.14) and (4.24) we have

|∆u| = |∆u2| ≤ Ckn|u2| ≤ ckn|u|
|∆u| ≤ CN

3
2 |u| (4.25)

Step I.d) {r ∈ [ρ+ 1
3
δ, ρ+ 5

3
δ], |ϕ− ϕm| < T

5
}

Here we just need to notice that u2 = −br−n+2kei(n−2k)ϕe4kϕm is harmonic
and that ψ1 = ψ2 = 1. Then u is harmonic and we simply set W = 0.

Step II. Construction on the annulus [ρ+ 2δ, ρ+ 3δ].

Recall that u2 = −br−n+2keiF (ϕ). We now define

u3 = −br−n+2kei(n+2k)ϕ.

To pass from u2 to u3, we consider a smooth, radial function ψ on [ρ+2δ, ρ+
3δ] with the following properties :
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• 0 ≤ ψ(r) ≤ 1 (4.26)

• ψ(r) = 1 if r ≤ ρ+ 7
3
δ (4.27)

• ψ(r) = 0 if r ≥ ρ+ 8
3
δ (4.28)

• |ψ(p)(r)| ≤ C

δp
(4.29)

Then we set on [ρ+ 2δ, ρ+ 3δ],

u = −br−n+2kei[ψ(r)h(ϕ)+(n+2k)ϕ]

with h, the function of lemma 4.2.
Now we prepare the computation of ∆u, one has:

∂u

∂r
=

(
−n+ 2k

r
+ iψ

′
(r)h(ϕ)

)
u

∂2u

∂r2
=

(−n+ 2k)(−n+ 2k − 1)

r2
u

+ 2i
−n+ 2k

r
ψ′(r)h(ϕ)u+ iψ

′′
(r)h(ϕ)u− ψ′

(r)2h(ϕ)2u

∂2u

∂ϕ2
= iψ(r)h

′′
(ϕ)u+

(
iψ(r)h

′
(ϕ) + (n+ 2k)

)2

u

∆u =

(
(−n+ 2k)(−n+ 2k − 1)

r2
+ 2i
−n+ 2k

r
ψ′(r)h(ϕ)

)
u

+

(
−n+ 2k

r2
+
iψ

′
(r)h(ϕ)

r
+ iψ

′′
(r)h(ϕ)− ψ′

(r)2h(ϕ)2

)
u

+

(
iψ(r)h

′′
(ϕ)

r2
+

(
iψ(r)h

′
(ϕ) + (n+ 2k)

)2

r2

)
u

We get

∆u =

[(
−n+ 2k

r
+ iψ

′
(r)h(ϕ)

)2

+ ih(r)

(
ψ

′
(r)

r
+ ψ

′′
(r)

)]
u

+

[
iψ(r)h

′′
(ϕ)

r2
−
(
n+ 2k + ψ(r)h

′
(φ)
)2

r2

]
u

After simplification, the main point is that there is no term of order n2 left,
we obtain :

|∆u| ≤ C(kn+ k2 + |ψ′
h|2 + n|ψ′

h|+ +|hψ′′ |+ |ψh′′|+ n|ψ||h′ |+ |ψ2||h′|2)u
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Now using (4.1), the properties of ψ (4.26-4.29) and of h (4.2-4.5), we have

|∆u| ≤ CN
3
2 |u|.

Step III. Construction on the annulus [ρ+ 3δ, ρ+ 4δ].

Recall that
u3 = −br−n+2kei(n+2k)ϕ.

In this step, we want to pass from u3 to the harmonic function:

u4 = −b1r
−n−2kei(n+2k)ϕ.

Let d = (ρ+ 3δ)4k, b1 = bd and

g(r) = dr−4k =

(
ρ+ 3δ

r

)4k

.

Then |gp(r)| ≤ Cpkp, furthermore

g(r) ≥
(
ρ+ 3δ

ρ+ 4δ

)4k

≥ e4k ln(1− δ
ρ+4δ

)

We have 0 ≤ δ
ρ+4δ

≤ 1
4

and ln(1 − x) ≥ 4 ln(3
4
)x for x in the real set [0, 1

4
],

then
g(r) ≥ e−16k ln( 4

3
) kδ
ρ+4δ ≥ e−16 ln 4

3 ≥ e−5

We know consider a smooth radial function ψ, with the following properties:

• 0 ≤ ψ ≤ 1

• |ψ(p)| ≤ C
δp

• ψ(r) = 1 if r ∈ [ρ+ 3δ, ρ+ (3 + 1
3
)δ]

• ψ(r) = 0 if r ∈ [ρ+ (3 + 2
3
)δ]

We let f(r) = ψ(r) + (1− ψ(r))g(r) so one has

e−5 ≤ f(r) ≤ 1.
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A computation of f ′(r) and f (2)(r) leads to the following estimates:

|f ′
(r)| ≤ C

(
|ψ′

(r)|+ |ψ′
(r)g(r)|+ |ψg′|

)
,

|f ′
(r)| ≤ C

δ
+ Ck ≤ C

δ
,

and

|f ′′
(r)| ≤ C

δ2
.

We finally set u = u3f , which implies that |u| > 0 and |u3| ≤ C|u|. To
compute ∆u3 we observe that

∂u3

∂r
=

−n+ 2k

r
u3,

∂2u3

∂r2
=

(−n+ 2k)(−n+ 2k − 1)

r2
u3,

and
∂2u3

∂ϕ2
= −(n+ 2k)2u3.

Then we have :

∆u3 =
1

r2

(
(−n+ 2k)(−n+ 2k − 1) + (−n+ 2k)− (n+ 2k)2

)
u3

Thus we have the following estimates

|∆u3| ≤ Ckn|u3| ≤ Ckn|u| (4.30)

From

∣∣∣∣∂u3

∂r

∣∣∣∣ ≤ Cnu3, and

∣∣∣∣dpfdrp
∣∣∣∣ ≤ C

δp
one can deduce that:

2

∣∣∣∣dfdr ∂u3

∂r

∣∣∣∣ ≤ C
n

δ
u3 ≤ C

n

δ
u,

and ∣∣∣∣d2f

dr2
+

1

r

df

dr

∣∣∣∣ |u3| ≤
C

δ2
|u3| ≤

C

δ2
|u|.

We then have the following estimate on ∆u :

|∆u| ≤ C

(
n

δ
+ kn+

1

δ2

)
|u|

|∆u| ≤ CN
3
2 |u|
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Step IV. Construction on the annulus [ρ+ 4δ, ρ+ 6δ]
Recall that

u4 = −b1r
−(n+2k)ei(n+2k)ϕ

and let
u5 = cr−n−ke−i(n+k)ϕ. (4.31)

We choose c such that ∣∣∣∣u5(ρ+ 5δ)

u4(ρ+ 5δ)

∣∣∣∣ = 1 (4.32)

then ∣∣∣∣u5

u4

∣∣∣∣ =
rk

(ρ+ 5δ)k
.

Like step I we consider two smooth radial functions ψ4 and ψ5 with the
following properties

• ψ4 = 1 on [ρ+ 4δ, ρ+ (4 + 5
3
)δ] and ψ4 = 0 on [ρ+ (5, 9)δ, ρ+ 6δ]

• ψ5 = 0 on [ρ+ 4δ, ρ+ (4, 1)δ] and ψ5 = 1 on [ρ+ (4 + 1
3
)δ, ρ+ 6δ]

We let
u = ψ4u4 + ψ5u5.

Now we estimate ∆u. Here again it is convenient to divide this into three
steps:

Step IV.a [ρ+ (4 + 1
3
)δ, ρ+ (4 + 5

3
)δ]

We just have ψ4 = ψ5 = 1 then ∆u = 0 and we set W = 0.

Step IV.b [ρ+ (4 + 5
3
)δ, ρ+ 6δ]

We have u = ψ4u4 + u5, then |u| ≥ |u5| − |u4|.∣∣∣∣u5

u4

∣∣∣∣ =
rk

(ρ+ 5δ)k
≥
(
ρ+ (4 + 5

3
)δ

ρ+ 5δ

)k
≥ ek ln(1+ 2δ

3(ρ+5δ)
)

Let C1 such that ln(1 + x) ≥ C1x on [0, 2
15

].
Then we get ∣∣∣∣u5

u4

∣∣∣∣ ≥ eC1
2kδ

3(ρ+5δ) ≥ 1 + C1
2kδ

3(ρ+ 5δ)
,

since |u| ≥ |u5| − |u4| this gives

|u| ≥ C1
2kδ

3(ρ+ 5δ)
|u4|
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and then

|u4| ≤
C

kδ
|u|. (4.33)

We also have

∆u = 2
dψ1

dr

∂u4

∂r
+

(
∂2ψ4

∂r2
+

1

r

ψ4

∂r

)
u4.

Since |∂u4

∂r
| ≤ Cn|u4|, we get

|∆u| ≤ C
n

δ
|u4|+

C

δ2
|u4|+

C

δ
|u4|.

Here again we have obtain from (4.33)

|∆u| ≤ CN
3
2 |u|.

Step IV.c [ρ+ 4δ, ρ+ (4 + 1
3
)δ]

This step is similar to step IV.b and therefore the estimation is omitted.

Then, defining aj+1 = c with c from (4.31) and(4.32), recall that nj+1 =
nj + kj = j2 + 2j+ 1, and define u(r, ϕ) = uj(r, ϕ) for ρj ≤ r ≤ ρj+1 we have
construct on the set

IN =
⋃

10≤j≤
√
N

Aj =
⋃

10≤j≤
√
N

[ρ+ 6(j − 1)δ, ρ+ 6jδ] = [ρ+ 54δ, ρ+ 6[,

a solution of ∆u+Wu = 0 with |W | ≤ CN
3
2 . Now we extend our construction

to the whole R2 in the following way: On [ρ + 6δ,+∞[ we just keep the
harmonic function u obtained on the last annulus A√N : u = aNr

−Ne−iNϕ.
On [0, ρ+ 54δ] we define g(r) a smooth radial function such that

• g(r) = rn1 in [0, ρ
4
]

• g(r) = r−n1 in [3
4
ρ, ρ+ 54δ]

• |g(p)(r)| ≤ Cρ−1, for all r in [0, ρ+ 54δ]

The constant C in the last point does not depend on N ( the gap from n1

to −n1 is fixed since n1 = 10). Now define u = g(r)e−in1ϕ. On the compact
set [0, ρ+ 10δ] on easily get

∣∣∆u
u

∣∣ ≤ C with C independent on N . Finally we

have constructed on R2 a solution of ∆u + Wu = 0 with ‖W‖L∞ ≤ CN
3
2

and |u(x)| = |x|−N for |x| ≥ ρ+ 6. This end the proof of proposition 4.1.
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Now we can proceed to the proof on theorem 1.2.

Proof of theorem 1.2. Then we consider the inverse of the stereographic pro-
jection :

π : R2 → S2 \ N
(x, y) 7→ 1

x2+y2+1
(2x, 2y, x2 + y2 − 1)

In the Chart (S2 \ (0, 0, 1), π−1), the canonical metric is written

g
S2

=

(
4

(x2+y2+1)2 0

0 4
(x2+y2+1)2

)
On S2 \ N, we have

∆S2 =
1

4
(x2 + y2 + 1)2∆R2

Let W̄ and ū two real valued functions defined on S2 \ (0, 0, 1) and C a pos-
itive constant. We consider u = ū ◦ π−1 and W = W̄ ◦ π−1, So we have{

∆S2ū = W̄ ū
|W̄ (x)| ≤ C

⇐⇒
{

∆R2u = Wu
|W (x, y)| ≤ C

(1+x2+y2)2

Since the function W we have constructed is compactly supported with
|W (x)| ≤ CN

3
2 , their exists C

′
such that

4

(1 + x2 + y2)
|W (x, y)| ≤ C

′
N

3
2 , ∀(x, y) ∈ R2.

It follows that the function ū is a solution of ∆S2ū = W̄ ū on S2, with ū
vanishing at order N at the north pole and with N ≥ ‖W̄‖2/3

∞ .
Finally note that with our construction the potential W in R2 has support

in [ρ
4
, ρ+6] where ρ can be chosen arbitrary large. The measure of the image

of this set under the inverse of the stereographic projection clearly goes to
zero as ρ goes to infinity. This conclude the proof of theorem 1.2
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