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Introduction and statement of the results

Let (M, g) be an closed, connected, n-dimensional smooth Riemannian manifold, ∆ the (negative) Laplace operator on M , W a bounded function on M and V a bounded vector field on M . Let u be a non trivial solution to ∆u + W u + g(V, ∇u) = 0.

(1.1)

We consider the possible vanishing order, depending on W and V , of u in any point. In the case that W is a constant and V = 0, i.e. when dealing with the eigenfunctions of the Laplacian, it is a well known result of H. Donnelly and C. Fefferman [START_REF] Donnelly | Nodal sets of eigenfunctions on Riemannian manifolds[END_REF] that the vanishing order is everywhere bounded by c √ λ, with c a constant depending only on M . When W is a C 1 function (V = 0), the author has shown in [START_REF] Bakri | Quantitative uniqueness for Schrödinger operator[END_REF] that the vanishing order is bounded by

C 1 W C 1 +C 2 , where W C 1 = sup M |W |+sup M |∇W |
and the norm |∇W | is taken with respect to the metric g. Both results were based on Carleman inequalities. In this paper we give a L 2 Carleman estimate (theorem 2.5) on the operator P defined by

P u = ∆u + W u + g(V, ∇u) (1.2)
which allows to derive quantitative uniqueness results for solutions to (1.1).

Recall that L 2 Carleman estimates are a priori estimates of the following form :

e τ ϕ P u L 2 ≥ C e τ ϕ u L 2 ,
for a great enough parameter τ ≥ τ 0 , where the function ϕ satisfies some convexity properties with respect to the operator P (see [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF][START_REF] Isakov | Carleman estimates and applications to inverse problems[END_REF]). One of the key ideas of Donnelly and Fefferman [START_REF] Donnelly | Nodal sets of eigenfunctions on Riemannian manifolds[END_REF] is to carefully investigate how the parameter τ depends on the eigenvalue λ (i.e. τ ≥ C 1 √ λ + C 2 ). In the same spirit, we will use that a Carleman estimate is valid (theorem 2.2) for

τ ≥ C(1 + W 2 3 ∞ + V 2 ∞ ) (1.3)
This will allows us to derive the following quantitative uniqueness results:

Theorem 1.1. There exists a non-negative constant C depending only on M , such that, for any solution u to (1.1) and for any point x 0 in M , the vanishing order of any non-zero solution to (1.1) is everywhere less than

C(1 + W 2 3 ∞ + V 2 ∞ ).
In the case V = 0 this result was shown by C. E. Kenig [START_REF] Kenig | Some recent applications of unique continuation[END_REF]. The theorem 1.1 is shown via a stronger doubling inequality. We note here that the potentials W, V and the solutions u may take complex values (i.e. W is a complex valued function on M and V is a section of the complexified tangent bundle T M ⊗ C) . This seems to be the first algebraic bound in term of V ∞ . We don't know if this result is sharp with respect to the magnetic potential V. However theorem 1.1 is sharp in the following sense, considering V = 0 and complex valued solutions of (1.1), the exponent 2/3 on W ∞ is the lowest one can obtain in the upper bound on the vanishing order of solutions. Here we show Theorem 1.2. There exists a constant C such that, if N > 0 is an arbitrary great number, there exists a function

W ∈ L ∞ (S 2 , C) with N ≥ C W 2 3
∞ and a solution u ∈ C 2 (S 2 , C) to (1.1) which vanishes with order N in P . Moreover W can be chosen of compact support with supp(W ) ⊂ S 2 \ {P, Q} where the points P, Q are antipodal and such that supp(W ) can be chosen of arbitrary small measure.

The fact that 2/3 is the optimal exponent has already been shown in [START_REF] Kenig | Some recent applications of unique continuation[END_REF], based on Meshkov construction [START_REF] Meshkov | On the possible rate of decrease at infinity of the solutions of second-order partial differential equations[END_REF] (see section 4). However, our example, still based on Meshkov construction, is more precise, since we show that on S 2 the sharp exponent can be reached with a compactly support potential W outside two antipodal points. For the real case, the upper bound

C(1 + W 1 2 ∞ + V ∞ )
is expected (see e.g. [START_REF] Kenig | Some recent applications of unique continuation[END_REF][START_REF] Kukavica | Quantitative uniqueness for second-order elliptic operators[END_REF]). However this seems to be a difficult problem which, to the knowledge author's, has not been solved yet. As mentioned in [START_REF] Bourgain | On localization in the continuous Anderson-Bernoulli model in higher dimension[END_REF], since Carleman estimates do not distinguish between the real and complex case, it seems difficult to obtain such a result with this method.

Finally we should mention that I. Kukavica in [START_REF] Kukavica | Quantitative uniqueness for second-order elliptic operators[END_REF] obtains quantitative results for the vanishing order of solutions to (1.1) when V = 0. He establishes the following upper bound :

C(sup(W -) 1 2 + (osc(W )) 2 + 1).
The method of [START_REF] Kukavica | Quantitative uniqueness for second-order elliptic operators[END_REF] was based on the frequency function [START_REF] Garofalo | Monotonicity properties of variational integrals, A p weights and unique continuation[END_REF][START_REF] Lin | Nodal sets of solutions of elliptic and parabolic equations[END_REF] when ours relies on Carleman estimates [5, 11, 13, 15, 16, 22, 23, ...]. These two methods are the principal way to obtain quantitative uniqueness results for solutions to partial differential equations. One should also notice that, since Lipschitz continuity is the natural assumption on the metric g such that strong unique continuation holds [START_REF] Aronszajn | A unique continuation theorem for exterior differential forms on Riemannian manifolds[END_REF][START_REF] Donnelly | Nodal sets of eigenfunctions: Riemannian manifolds with boundary[END_REF][START_REF] Koch | Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients[END_REF], Theorem 1.1 may be extended to manifolds with only Lipschitz metrics (and to manifolds with boundary [START_REF] Donnelly | Nodal sets of eigenfunctions: Riemannian manifolds with boundary[END_REF]) but we will not be concerned which such refinements here. This paper is organised as follows. In section 2 we derive from standard Carleman estimate on the Laplacian an estimate on P which is only true for great enough parameter τ ≥ τ 0 . Furthermore we state explicitly how τ 0 depends on the potentials V, W (1.3). Then we use this Carleman estimate with a special choice of weight functions to obtain in section 3 a three balls theorem and doubling inequalities on solutions of (1.1). Section 4 is devoted to prove theorem 1.2. We first construct an appropriate sequence (u k , W k ) verifying ∆u k + W k u k = 0, on the two dimensional sphere. Then we show that the sharp upper bound

C 1 W 2 3
∞ + C 2 on the vanishing order can be obtained with W k of small support in the neighbourhood of two antipodal points.

Notations

For a fixed point x 0 in M we will use the following standard notations:

• r := r(x) = d(x, x 0 ) the Riemannian distance from x 0 ,

• B r := B r (x 0 ) the geodesic ball centered at x 0 of radius r.

• A r 1 ,r 2 := B r 2 \ B r 1 .

Furthermore we denote

• v g the volume form induced by g,

• u • v := g(u, v), the inner product between two tangent vectors with respect to the metric g,

• g(V, ∇u) := ∂ V u the directional derivative of u in direction V ,
• • the L 2 norm on M and • A the L 2 norm on the (measurable) set A. In case T is a vector field (or a tensor), • has to be understood as |T | g .

• c, C, c i and C i for i = 1, 2, • • • are generic constants which may depend on (M, g) and other quantities such as the weight functions in Carleman estimates (section 2.1), but not on the potentials or the solution u to (1.1). Their values can change from one line to another.
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Carleman estimate

Recall that Carleman estimates are weighted integral inequalities with a weight function e τ φ , where the function φ satisfies some convexity properties, see by example [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF][START_REF] Isakov | Carleman estimates and applications to inverse problems[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF]. In this section we first state an L 2 , singular weighted, Carleman inequality on the operator u → ∆u + V • ∇u + W u, for some class of weight functions satisfying convenient properties (see (2.1) and (2.2) below). Then we use a particular choice of weight functions which will allows us to derive a doubling estimate on solutions to (1.1) . Let us first define the class of (singular) weight functions we will work with. Let f :] -∞, T [→ R be of class C 3 , and assume that there are constants

µ i > 0, i = 1, • • • , 4, such that : 0 < µ 1 ≤ f (t) ≤ µ 2 µ 3 |f (3) (t)| ≤ -f (t) ≤ µ 4 , ∀t ∈] -∞, T [ lim t→-∞ -e -t f (t) = +∞.
(2.1)

One can check easily the following Example 2.1. The functions defined by f ε (t) = t-e εt , satisfy the conditions (2.1) provided 0 < ε < 1 and T is a large negative number.

Finally we define our weight function as

φ(x) = -f (ln r(x)). (2.2)
Now we can state the main result of this section:

Theorem 2.2. There exist positive constants R 0 , C, C 1 , which depend only on M and f , such that, for any

x 0 ∈ M , any δ ∈ (0, R 0 ), any W ∈ L ∞ (M ), any V ∈ Γ(T M ), any u ∈ C ∞ 0 (B R 0 (x 0 ) \ B δ (x 0 )) and any τ ≥ C 1 (1+ W 2 3 ∞ + V 2 ∞ ), one has C r 2 e τ φ (∆u + W u + g(V, ∇u)) r -n/2 2 ≥ τ 3 |f (ln r)|e τ φ ur -n/2 2 + τ 2 δ r -1 2 e τ φ ur -n/2 2 + τ r |f (ln r)|e τ φ |∇u| 2 r -n/2 2 . (2.3) 
Remark 2.3. Like in [START_REF] Donnelly | Nodal sets of eigenfunctions on Riemannian manifolds[END_REF], the important statement in theorem 2.2 is the assumption on the parameter τ which is related to the vanishing order:

τ ≥ C(1 + W 2 3 ∞ + V 2 ∞ ).
The following lemma, which deals solely with Laplace operator, contains the crucial part of theorem 2.2:

Lemma 2.4. There exist positive constants R 0 , C, C 1 , which depend only on M and f , such that, for any

x 0 ∈ M , any u ∈ C ∞ 0 (B R 0 (x 0 ) \ B δ (x 0 )) and any τ ≥ C 1 , one has C r 2 e τ φ ∆ur -n/2 2 ≥ τ 3 |f (ln r)|e τ φ ur -n/2 2 + τ 2 δ r -1 2 e τ φ ur -n/2 2 + τ r |f (ln r)|e τ φ |∇u| 2 r -n/2 2 .
(2.4)

The main interest of this Carleman estimates is the powers of τ in the right hand side. Such type of estimates, with the corresponding powers on τ , are standard and for this reason we choose to omit a complete proof. We refer to the following : [START_REF] Colombini | Strong unique continuation for products of elliptic operators of second order[END_REF], [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] formula (17.2.11), [START_REF] Koch | Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients[END_REF], [START_REF] Rousseau | Applications to unique continuation and control of parabolic equations[END_REF]. Moreover one should note that lemma 2.4 can be derived from Theorem 1.1 of [START_REF] Bakri | Quantitative uniqueness for Schrödinger operator[END_REF]. Indeed letting W = 0, Theorem 1.1 of [START_REF] Bakri | Quantitative uniqueness for Schrödinger operator[END_REF] is just a special case of Lemma 2.4 with the weight functions of example 2.1. But one can check that the proof is still valid for these weight functions since it only require the properties (2.1).

We can now derive from Lemma 2.4, the Carleman estimate on the Schrödinger operator

P = ∆ + W + g(V, ∇•).
Proof of Theorem 2.5. If V and W are bounded, one has from triangular inequality :

C r 2 e τ φ (∆u + W u + g(V, ∇u)) r -n 2 2 ≥ C 4 r 2 e τ φ ∆ur -n 2 2 - C 2 W 2 ∞ • r 2 e τ φ ur -n 2 2 -V 2 ∞ • r 2 e τ φ ∇ur -n 2 2
Since for R 0 small enough one has r ≤ |f (ln r)| from (2.1), assuming additionally that

τ 3 ≥ C 1 W 2 ∞ and τ ≥ C 1 V 2 ∞
, we can use (2.4) to absorb the negative terms and conclude the proof.

Special choice of weight functions

In this paragraph we derive a special case of theorem 2.2 which will be useful for the remaining of this paper. Let ε be a real number such that 0 < ε < 1. As in previous example we consider on ] -∞, T 0 ] the function defined by

f (t) = t -e εt ,
which satisfies the properties (2.1). Therefore we can apply theorem 2.2 with the weight function φ(x) = -f (ln r) = -ln r + r ε . Now we notice that e τ φ = e -τ ln r e τ r ε .

The point is that we can now obtain a Carleman estimate with the usual L 2 norm. Indeed one has

e τ φ r -n 2 = e (τ + n 2 )φ e -n 2 r ε
and therefore for r small enough

1 2 e (τ + n 2 )φ ≤ e τ φ r -n 2 ≤ e (τ + n 2 )φ .
Then we have Corollary 2.5. There exist positive constants R 0 , C, C 1 , C 2 , which depend only on M and ε, such that, for any

W ∈ L ∞ (M ), x 0 ∈ M , any u ∈ C ∞ 0 (B R 0 (x 0 ) \ B δ (x 0 )) and τ ≥ C 1 ( W 2 3 ∞ + V 2 + 1), one has C r 2 e τ φ (∆u + W u + V • ∇u) 2 ≥ τ 3 r ε 2 e τ φ u 2 + τ 2 δ r -1 2 e τ φ u 2 + τ r 1+ ε 2 e τ φ ∇u 2 . (2.5)
We emphasis that ε is fixed and its value will not have any influence on ours statements as long as 0 < ε < 1. Therefore we may and will omit the dependency of our constants on ε.

Vanishing order

We want to derive from our Carleman estimate, a control on the local behaviour of solutions. We will first give and proove an Hadamard three circles type theorem.

Three balls inequality

It is well-known that one can deduce three balls inequality from carleman estimate, one can see by example the following references [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF][START_REF] Kenig | Some recent applications of unique continuation[END_REF][START_REF] Malinnikova | Quantitative uniqueness for elliptic equations with singular lower order terms[END_REF] To obtain such kind of result, the basic idea is to apply Carleman estimate to χu where χ is an appropriate cut off functions and u a solution of (1.1).

Proposition 3.1 (Three balls inequality).

There exist positive constants R 1 , C 1 and 0 < α < 1 which depend only on (M, g) such that, if u is a solution to (1.1) with W of class L ∞ , then for any R < R 1 , and any x 0 ∈ M, one has

u B R (x 0 ) ≤ e C 1 (1+ W 2/3 ∞ + V 2 ∞ ) u α B R 2 (x 0 ) u 1-α B 2R (x 0 ) . (3.1)
Proof. Let x 0 a point in M . Let u be a solution to (1.1) and R such that 0 < R < R 0 2 with R 0 as in corollary 2.5. We will denote by

v R 1 ,R 2 the L 2 norm of v on the set A R 1 ,R 2 := {x ∈ M ; R 1 ≤ r(x) ≤ R 2 }. Let ψ ∈ C ∞ 0 (B 2R ), 0 ≤ ψ ≤ 1,
a function with the following properties:

• ψ(x) = 0 if r(x) < R 4 or r(x) > 5R 3 , • ψ(x) = 1 if R 3 < r(x) < 3R 2 , • |∇ψ(x)| ≤ C R , • |∇ 2 ψ(x)| ≤ C R 2 .
First since the function ψu is supported in the annulus A R 3 , 5R
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, we can apply estimate (2.5) of theorem 2.5. In particular we have, since the quotient between R 3 and 5R 3 does not depend on R :

C r 2 e τ φ (∆ψu + 2∇u • ∇ψ + V • u∇ψ) ≥ τ e τ φ ψu . (3.2)
First note that for a solution u to (1.1) one can apply Carleman estimate (2.5) and, keeping appropriate term in the right hand side, one gets

C r 2 e τ φ (∆ψu + 2∇u • ∇ψ + V • u∇ψ) ≥ τ e τ φ ψu . (3.3) Noticing that τ ≥ C(1 + W 2 3 ∞ + V 2 ∞ ) ≥ 1, the estimate (3.3) leads to e τ φ ψu ≤ r 2 e τ φ (∆ψu + 2∇u • ∇ψ) + r 2 e τ φ u∇ψ (3.4) Now recall |D α ψ| ≤ c R |α| and r 2 ≤ r.
Then from properties of ψ and triangular inequality one gets :

e τ φ u R 3 , 3R 2 ≤ C e τ φ u R 4 , R 3 + e τ φ u 3R 2 , 5R 3 + C R e τ φ ∇u R 4 , R 3 + R e τ φ ∇u 3R 2 , 5R 3 .
Recall that φ(x) = -ln r(x) + r(x) ε . In particular φ is radial and decreasing (for small r). Then one has,

e τ φ u R 3 , 3R 2 ≤ C e τ φ( R 4 ) u R 4 , R 3 
+ e τ φ( 3R 2 ) u 3R 2 , 5R 3 
+ C Re τ φ( R 4 ) ∇u R 4 , R 3 
+ Re τ φ( 3R 2 ) ∇u 3R 2 , 5R 3 . (3.5) 
Now we state a standard elliptic estimate to absorb the terms involving gradients (Caccioppoli estimates) : for solutions to (1.1) one has

∇u aR ≤ C 1 (1 -a)R + W 1/2 ∞ + V ∞ u R , for 0 < a < 1, (3.6) Moreover since A R 1 ,R 2 ⊂ B R 2 , using formula (3.6
) and properties of φ gives

e τ φ( R 4 ) ∇u R 4 , R 3 ≤ C 1 R + W 1/2 ∞ + V ∞ e τ φ( R 4 ) u R 2 , and 
e τ φ( 3R 2 ) ∇u 3R 2 , 5R 3 
≤ C 1 R + W 1/2 ∞ + V ∞ e τ φ( 3R 2 ) u 2R .
Using (3.6) one has :

u R 3 ,R ≤ C(1 + W 1/2 ∞ + V ∞ ) e τ (φ( R 4 )-φ(R)) u R 2 + e τ (φ( 3R 2 )-φ(R)) u 2R . Let A R = φ( R 4 ) -φ(R) and B R = -(φ( 3R 2 ) -φ(R)).
From the definition of φ, we have 0 < A -1 ≤ A R ≤ A and 0 < B ≤ B R ≤ B -1 where A and B do not depend on R. We may assume that C(1

+ W 1/2 ∞ + V ∞ ) ≥ 2.
Then we can add u R 3 to each side and bound it in the right hand side by

C(1 + W 1/2 ∞ + V ∞ )e τ A u R 2 . We get : u R ≤ C(1 + W 1/2 ∞ + V ∞ ) e τ A u R 2 + e -τ B u 2R . (3.7) 
Now we want to find τ such that

C(1 + W 1/2 ∞ + V ∞ )e -τ B u 2R ≤ 1 2 u R which is true for τ ≥ -1 B ln 1 2C(1+ W 1/2 ∞ + V ∞) u R u 2R . Since τ must also satisfy τ ≥ C 1 (1 + W 2/3 ∞ + V 2 ) we choose τ = - 1 B ln 1 2C(1 + W 1/2 ∞ + V ∞ ) u R u 2R + C 1 (1 + W 2/3 ∞ + V 2 ∞ ).
(3.8) Up to a change of constant we may assume that C(1

+ W 1/2 ∞ + V ∞ ) ≤ C 1 (1 + W 2/3 ∞ + V 2
∞ ) then we can deduce from (3.7) that :

u B+A B R ≤ e C 1 (1+ W 2/3 ∞ + V 2 ∞ ) u A B 2R u R 2 , (3.9) 
Finally define α = A A+B and taking exponent B A+B of (3.9) gives the result.

Doubling estimates

Now we intend to show that the vanishing order of solutions to (1.1) is everywhere bound by C(1

+ W 2 3 ∞ + V 2 ∞ )
. This is an immediate consequence of the following : Theorem 3.2 (doubling estimate). There exists a positive constant C, depending only on M such that : if u is a solution to (1.1) on M with V, W bounded, then for any x 0 in M and any r > 0, one has 

u B 2r (x 0 ) ≤ e C(1+ W 2/3 ∞ + V 2 ∞ ) u Br(x 0 ) . ( 3 
u L ∞ (B 2r (x 0 )) ≤ e C(1+ W 2/3 ∞ + V 2 ∞ ) u L ∞ (Br(x 0 )) . (3.11) 
To prove theorem 3.2 we need to use the standard overlapping chains of balls argument ( [START_REF] Donnelly | Nodal sets of eigenfunctions on Riemannian manifolds[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF][START_REF] Kukavica | Quantitative uniqueness for second-order elliptic operators[END_REF]) to show : Proposition 3.4. For any R > 0 there exists C R > 0 such that for any x 0 ∈ M , any W ∈ C 1 (M ) and any solutions u to (1.1) :

u B R (x 0 ) ≥ e -C R (1+ W 2/3 ∞ + V 2 ∞ ) u L 2 (M ) .
Proof. We may assume without loss of generality that R < R 0 , with R 0 as in the three balls inequality (proposition 3.1). Up to multiplication by a constant, we can assume that u L 2 (M ) = 1. We denote by x a point in M such that u B R (x) = sup x∈M u B R (x) . This implies that one has u B R(x) ≥ D R , where D R depend only on M and R. One has from proposition (3.1) at an arbitrary point x of M :

u B R/2 (x) ≥ e -c(1+ W 2/3 ∞ + V 2 ∞ ) u 1 α B R (x) . (3.12) 
Let γ be a geodesic curve between x 0 and x and define

x 1 , • • • , x m = x such that x i ∈ γ and B R 2 (x i+1 ) ⊂ B R (x i ), for any i from 0 to m -1.
The number m depends only on diam(M ) and R. Then the properties of (x i ) 1≤i≤m and inequality (3.12) give for all i, 1 ≤ i ≤ m :

u B R/2 (x i ) ≥ e -c(1+ W 2/3 ∞ + |V 2 ∞ ) u 1 α B R/2 (x i+1 ) .
(3.13)

The result follows by iteration and the fact that u B R (x) ≥ D R .

Similarly one also has, Now, we bound from above the two last terms of the previous inequality by Cτ e τ φ u δ, 5δ 4 + e τ φ u R 2 ,R . Then we divide both sides of (3.15) by τ e τ φ u δ, 5δ
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+ e τ φ u R 2 ,R . (3.15) 
From the elliptic estimate (3.6) and the decreasing of φ, we get

e τ φ( R 4 ) u R 8 , R 4 + e τ φ(3δ) u 5δ 4 ,3δ ≤ Cτ 1 2 (1 + W 1/2 ∞ + V ∞ ) e τ φ(δ) u 3δ 2 + e τ φ( R 3 ) u 5R 3
.

Adding e τ φ(3δ) u 5δ 4

to each side and noting that we can bound it from above by Cτ

1 2 (1 + W 1 2 ∞ + V ∞ )e τ φ(δ) u 3δ 2
, we find that

e τ φ( R 4 ) u R 8 , R 4 + e τ φ(3δ) u 3δ ≤ Cτ 1 2 (1 + W 1/2 ∞ + V ∞ ) e τ φ(δ) u 3δ 2 + e τ φ( R 3 ) u 5R 3 .
Now we want to choose τ such that

Cτ 1 2 (1 + W 1/2 ∞ + V ∞ )e τ φ( R 3 ) u 5R 3 ≤ 1 2 e τ φ( R 4 ) u R 8 , R 4 
.

For the same reasons as before we choose

τ = 2 φ( R 3 ) -φ( R 4 ) ln 1 2C(1 + W 1/2 ∞ + V ∞ ) u R 8 , R 4 u 5R 3 + C(1 + W 2 3 ∞ + V 2 ∞ ). Define D R = -φ( R 3 ) -φ( R 4 ) -1 ; like before, one has 0 < E -1 ≤ D R ≤ E,
with E a fixed real number. Dropping the first term in the left hand side and noting that 0 < φ(δ) -φ(3δ) ≤ C, one has

u 3δ ≤ e C(1+ W 2 3 ∞ + V 2 ∞ ) u R 8 , R 4 u 5R 3 -E u 3δ 2 
Finally, from Corollary 3.5, we define r = 3δ 2 to have :

u 2r ≤ e C(1+ W 2 3 ∞ + V 2 ∞ ) u r .
Thus, the theorem is proved for all r ≤ R 1 16 . Using Proposition 3.4 we have for r ≥ R 1 16 :

u Bx 0 (r) ≥ u Bx 0 ( R 0 16 ) ≥ e -C 0 (1+ W 2 3 ∞ + V 2 ∞ ) u L 2 (M ) ≥ e -C 1 (1+ W 2 3 ∞ + V 2 ∞ ) u Bx 0 (2r) .
Finally theorem 1.1 is an easy and direct consequence of this doubling estimates.

Possible vanishing order for solutions

The aim of this is section is to prove theorem 1.2 which states that our exponent 2 3 on W ∞ in theorem 1.1 is sharp. More precisely, we will construct a sequence (u k , W k ) verifying ∆u k + W k u k = 0 and such that :

• At the north pole N of S 2 , the function u k vanishes at an order at least

C 1 W k 2 3
∞ +C 2 , where C 1 and C 2 are fixed numbers which don't depend on k.

• lim k→+∞ W k ∞ = +∞.
• The potential W has (arbitrary small) compact support in S 2 \({N, S}), with S the south pole of S 2 .

Our construction will be inspired by the previous work of Meshkov. In [START_REF] Meshkov | On the possible rate of decrease at infinity of the solutions of second-order partial differential equations[END_REF], he has shown that one can find non trivial, complex valued, solutions of (1.1) in R n (n ≥ 2), with the following exponential decay at infinity : 3 . This gives an negative answer to a question of Landis, [START_REF] Lin | Nodal sets of solutions of elliptic and parabolic equations[END_REF]. He has also shown that 4 3 is the greatest exponent for which one can hope find non trivial solutions to (1.1) in R n . Our main point is to construct on R 2 a solution u to ∆u + W u = 0 with appropriate decay at infinity with respect to the L ∞ norm of W . Then, we use stereographic projection to obtain theorem 1.2. This suggests in particular that we not only need the function W to be bounded, since we have to pull it back to the sphere, but we need the stronger condition

|u(x)| ≤ e -C|x| 4
|W (x, y)| ≤ C 1 + |x| 2 + |y| 2 .
It actually appears that we can obtain W with compact support. We recall that our construction relies crucially on the fact that W and u are complex valued functions.

From now on, we will denote by (r, ϕ) polar coordinates of a point in R 2 and by [a, b] the annulus [a, b] := {(r, ϕ) ∈ R + × [0, 2π[, a ≤ r ≤ b}. We have the following on R 2 : Proposition 4.1. Let ρ > 0 a real number and N an integer. For ρ and N great enough their exits u and W verifying ∆u + W u = 0 on R 2 such that :

• |u(x)| = C|x| -N for |x| ≥ ρ + 6 • W L ∞ ≤ CN 3 2 • W has support in ] ρ 4 , ρ + 6]
Proof.

Let ρ ≥ 1, without loss of generality we suppose that N is the square of an integer. Let define δ = 1 √ N . For j an integer from 10 to √ N , we note n j = j 2 and k j = 2j + 1 and ρ j = ρ + 6(j -1)δ. On each annulus A j = [ρ j , ρ j+1 ] we construct a solution of ∆u + W u = 0 such that |u| = a j r -n j on the sphere {ρ j } and |u| = a j+1 r -n j -k j = a j+1 r -n j+1 on the sphere {ρ j+1 }. We set a 10 = 1, the numbers a j , for j > 10, still have to be defined. When working in the annulus A j , we will write a, n, k, ρ instead of a j , n j , k j , ρ j . Before proceeding to the proof it is useful to notice that

k ≤ C 1 √ n ≤ C 1 √ N n k ≤ C 2 √ N 1 δ = √ N kδ ≤ 3 (4.1)
To build (u, W ) in A j , it is convenient to divide the construction into four steps corresponding to the four annulus

[ρ, ρ + 2δ], [ρ + 2δ, ρ + 3δ], [ρ + 3δ, ρ + 4δ], [ρ + 4δ, ρ + 6δ].
Step I. Construction on the annulus [ρ, ρ + 2δ] Define u 1 = ar -n e -inϕ , and u 2 = -br -n+2k e iF (ϕ) , with b = a(ρ + δ) -2k such that u 2 (ρ+δ) u 1 (ρ+δ) = 1, the function F (ϕ) will be made explicit later. For m from 0 to 2n + 2k -1, we set ϕ m = 2πm 2n+2k and T = π n+k . We will need the following Lemma 4.2 ([21] p. 350). Their exists a real function h of class C 2 , periodic of period T , with the following properties :

• |h(ϕ)| ≤ 5kT, ∀ϕ ∈ R, (4.2) 
• |h (ϕ)| ≤ 5k, ∀ϕ ∈ R, (4.3) 
• |h (ϕ)| ≤ Ckn, ∀ϕ ∈ R, (4.4) 
• h(ϕ) = -4k(ϕ -ϕ m ), for ϕ m - T 5 ≤ ϕ ≤ ϕ m + T 5 . (4.5) 
Let now choose F as follows

F (ϕ) = (n + 2k)ϕ + h(ϕ). (4.6) 
We also consider two radial functions ψ 1 , ψ 2 with the following properties :

• 0 ≤ ψ i ≤ 1, (4.7) 
• |ψ

(p) i | ≤ Cδ -p , (4.8) 
•

ψ 1 = 1 on [ρ, ρ + 5 3 δ] and ψ 1 = 0 on [ρ + (2 - 1 10 )δ, ρ + 2δ], (4.9) 
•

ψ 2 = 0 on [ρ, ρ + 1 10 δ] and ψ 2 = 1 on [ρ + 1 3 δ, ρ + 2δ]. (4.10) 
Finally we set u = ψ 1 u 1 + ψ 2 u 2 . The estimate on [ρ, ρ + 2δ] is divided among four cases.

Step I.a. The set [ρ, ρ

+ δ 3 ]
We have u = u 1 + ψ 2 u 2 , and

| u 2 u 1 | = r ρ+δ 2k
. Then we introduce α as an upper bound of | u 2 u 1 | :

u 2 u 1 ≤ ρ + δ 3 ρ + δ 2k := α < 1.
We notice that

|u| ≥ |u 1 | -|ψ 2 u 2 | ≥ |u 1 | -|u 2 | ≥ 1 -α α |u 2 |,
Since α = e 2k ln(1-2δ 3(ρ+δ) ) , a computation of α 1-α leads to the following inequality:

|u 2 | ≤ 3(ρ + δ) 4kδ |u|. (4.11) 
Now we compute ∆u :

∆u = ψ 2 ∆u 2 + 2 dψ 2 dr ∂u 2 ∂r + 1 r dψ 2 dr + d 2 ψ 2 dr 2 u 2 . (4.12) 
First we estimate ∆u 2 . One has

∆u 2 = 1 r 2 (-n + 2k) 2 + iF -(F ) 2 u 2 .
From the definition of F (4.6) this gives : (4.17)

∆u 2 = 1 r 2 -8kn + ih -2(n + 2k)h -(h ) 2 u 2 . ( 4 
Step I.b.

[ρ + 5 3 δ, ρ + 2δ]
We want to estimate |∆u| |u| , with u = u 2 + ψ 1 u 1 . First since, 

|u 2 | |u 1 | = b a r 2k ≥ ρ + 5 3 δ ρ + δ 2k = β > 1, we have |u| ≥ |u 2 | -|ψ 1 u 1 | ≥ |u 2 | -|u 1 | ≥ β -1 β |u 2 | > 0. ( 4 
|∆u 2 | ≤ Ckn r 2 |u 2 | ≤ Ckn β β -1 |u|. (4.20) 
Then we estimate β β-1 . On the real set [0, 4 3 ], we have :

(3/4) ln(4x/3) ≤ ln(1 + x) ≤ x 1 + x ≤ e x ≤ 1 + 3/4(e 4/3 -1)x
Now from the definition of β and since kδ ≤ 3 this estimates gives,

β β -1 ≤ C kδ ,
then from (4.20) we have : Similarly we have, Step

|∆u 2 | ≤ C n δ |u|. ( 4 
d 2 ψ 1 dr 2 + 1 r dψ 1 dr |u 1 | ≤ C 1 δ 2 + 1 δ |u 1 | ≤ C 1 δ 2 |u 1 | ≤ CN
I.d) {r ∈ [ρ + 1 3 δ, ρ + 5 3 δ], |ϕ -ϕ m | < T 5 }
Here we just need to notice that u 2 = -br -n+2k e i(n-2k)ϕ e 4kϕm is harmonic and that ψ 1 = ψ 2 = 1. Then u is harmonic and we simply set W = 0.

Step II. Construction on the annulus [ρ + 2δ, ρ + 3δ].

Recall that u 2 = -br -n+2k e iF (ϕ) . We now define u 3 = -br -n+2k e i(n+2k)ϕ .

To pass from u 2 to u 3 , we consider a smooth, radial function ψ on [ρ + 2δ, ρ + 3δ] with the following properties :

• 0 ≤ ψ(r) ≤ 1 (4.26) • ψ(r) = 1 if r ≤ ρ + 7 3 δ (4.27) • ψ(r) = 0 if r ≥ ρ + 8 3 δ (4.28) • |ψ (p) (r)| ≤ C δ p (4.29) Then we set on [ρ + 2δ, ρ + 3δ], u = -br -n+2k e i[ψ(r)h(ϕ)+(n+2k)ϕ]
with h, the function of lemma 4.2. Now we prepare the computation of ∆u, one has:

∂u ∂r = -n + 2k r + iψ (r)h(ϕ) u ∂ 2 u ∂r 2 = (-n + 2k)(-n + 2k -1) r 2 u + 2i -n + 2k r ψ (r)h(ϕ)u + iψ (r)h(ϕ)u -ψ (r) 2 h(ϕ) 2 u ∂ 2 u ∂ϕ 2 = iψ(r)h (ϕ)u + iψ(r)h (ϕ) + (n + 2k) 2 u ∆u = (-n + 2k)(-n + 2k -1) r 2 + 2i -n + 2k r ψ (r)h(ϕ) u + -n + 2k r 2 + iψ (r)h(ϕ) r + iψ (r)h(ϕ) -ψ (r) 2 h(ϕ) 2 u + iψ(r)h (ϕ) r 2 + iψ(r)h (ϕ) + (n + 2k) 2 r 2 u We get ∆u = -n + 2k r + iψ (r)h(ϕ) 2 + ih(r) ψ (r) r + ψ (r) u + iψ(r)h (ϕ) r 2 - n + 2k + ψ(r)h (φ) 2 r 2 u
After simplification, the main point is that there is no term of order n 2 left, we obtain :

|∆u| ≤ C(kn + k 2 + |ψ h| 2 + n|ψ h| + +|hψ | + |ψh | + n|ψ||h | + |ψ 2 ||h | 2 )u
A computation of f (r) and f (2) (r) leads to the following estimates:

|f (r)| ≤ C |ψ (r)| + |ψ (r)g(r)| + |ψg | , |f (r)| ≤ C δ + Ck ≤ C δ , and |f (r)| ≤ C δ 2 .
We finally set u = u 3 f , which implies that |u| > 0 and |u 3 | ≤ C|u|. To compute ∆u 3 we observe that

∂u 3 ∂r = -n + 2k r u 3 , ∂ 2 u 3 ∂r 2 = (-n + 2k)(-n + 2k -1) r 2 u 3 , and 
∂ 2 u 3 ∂ϕ 2 = -(n + 2k) 2 u 3 .
Then we have :

∆u 3 = 1 r 2 (-n + 2k)(-n + 2k -1) + (-n + 2k) -(n + 2k) 2 u 3
Thus we have the following estimates Step IV.c [ρ + 4δ, ρ + (4 + 1 3 )δ] This step is similar to step IV.b and therefore the estimation is omitted.

|∆u 3 | ≤ Ckn|u 3 | ≤ Ckn|u| ( 4 
Then, defining a j+1 = c with c from (4.31) and(4.32), recall that n j+1 = n j + k j = j 2 + 2j + 1, and define u(r, ϕ) = u j (r, ϕ) for ρ j ≤ r ≤ ρ j+1 we have construct on the set . Now we extend our construction to the whole R 2 in the following way: On [ρ + 6δ, +∞[ we just keep the harmonic function u obtained on the last annulus A √ N : u = a N r -N e -iN ϕ . On [0, ρ + 54δ] we define g(r) a smooth radial function such that

I N =
• g(r) = r n 1 in [0, ρ 4 ] • g(r) = r -n 1 in [ 3 4 ρ, ρ + 54δ] • |g (p) (r)| ≤ Cρ -1 , for all r in [0, ρ + 54δ]
The constant C in the last point does not depend on N ( the gap from n 1 to -n 1 is fixed since n 1 = 10). Now define u = g(r)e -in 1 ϕ . On the compact set [0, ρ + 10δ] on easily get ∆u u ≤ C with C independent on N . Finally we have constructed on R 2 a solution of ∆u + W u = 0 with W L ∞ ≤ CN Now we can proceed to the proof on theorem 1.2.

Proof of theorem 1.2. Then we consider the inverse of the stereographic projection :

π : R 2 → S 2 \ N (x, y) → 1

x 2 +y 2 +1 (2x, 2y, x 2 + y 2 -1) In the Chart (S 2 \ (0, 0, 1), π -1 ), the canonical metric is written

g S 2 = 4 (x 2 +y 2 +1) 2 0 0 4 (x 2 +y 2 +1) 2
On S 2 \ N, we have

∆ S 2 = 1 4 (x 2 + y 2 + 1) 2 ∆ R 2
Let W and ū two real valued functions defined on S 2 \ (0, 0, 1) and C a positive constant. We consider u = ū • π -1 and W = W • π -1 , So we have

∆ S 2 ū = W ū | W (x)| ≤ C ⇐⇒ ∆ R 2 u = W u |W (x, y)| ≤ C (1+x 2 +y 2 ) 2
Since the function W we have constructed is compactly supported with |W (x)| ≤ CN It follows that the function ū is a solution of ∆ S 2 ū = W ū on S 2 , with ū vanishing at order N at the north pole and with N ≥ W 2/3 ∞ . Finally note that with our construction the potential W in R 2 has support in [ ρ 4 , ρ + 6] where ρ can be chosen arbitrary large. The measure of the image of this set under the inverse of the stereographic projection clearly goes to zero as ρ goes to infinity. This conclude the proof of theorem 1.2

4 + e τ φ u 5δ 4 ,3δ ≤ Cτ 1 2 δ e τ φ ∇u δ, 5δ 4 + e τ φ ∇u R 2
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 55 Step I.c {(r, ϕ); r ∈ [ρ +1 3 δ, ρ+ 5 3 δ], ϕ m + T 5 ≤ ϕ ≤ ϕ m + 4TOn this set we have u = u 1 + u 2 and|u| = |u 2 | e i(F (ϕ)+nϕ) -a br 2k . (4.23) Let S(ϕ) = F (ϕ) + nϕ, we have S(ϕ m ) = 2πm and S (ϕ) = 2n + 2k + h (ϕ) Since |h (ϕ)| ≤ 5k we have S (ϕ) ≥ 2n -3k Now since n = j 2 and k = 2j + 1, the condition j ≥ 10 force S (ϕ) > n for ϕ ∈ [ϕ m , ϕ m+1 ]. Then for ϕ m + T 5 ≤ ϕ ≤ ϕ m+1 -T 5 we have S(ϕ) ≥ S(ϕ m + T ≥ S(ϕ m ) + nT 5 Using the same argument to get an upper bound on S(ϕ) we can state that 2πm + nT 5 ≤ S(ϕ) ≤ 2π(m + 1) -nT 5 This can be written 2πm + nπ 5(n + k) ≤ S(ϕ) ≤ 2π(m + 1) -nπ 5(n + k) Now since j ≥ 10, we clearly have nπ 5(n+k) ≥ π 7 . Then we can state that e iS(ϕ) -λ ≥ sin( ∆u = ∆u 2 , (4.14) and (4.24) we have |∆u| = |∆u 2 | ≤ Ckn|u 2 | ≤ ckn|u|

  6(j -1)δ, ρ + 6jδ] = [ρ + 54δ, ρ + 6[, a solution of ∆u+W u = 0 with |W | ≤ CN 3 2

3 2 , 3 2

 23 their exists C such that 4 (1 + x 2 + y 2 ) |W (x, y)| ≤ C N , ∀(x, y) ∈ R 2 .

  .10) Remark 3.3. Using standard elliptic theory to bound the L ∞ norm of |u| by a multiple of its L 2 norm on a greater ball (see by example[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] Theorem 8.17 and problem 8.3), show that the doubling estimate is still true with the L ∞ norm :

2 and |u(x)| = |x| -N for |x| ≥ ρ + 6. This end the proof of proposition

4.1. 

Corollary 3.5. For all R > 0, there exists a positive constant C R depending only on M and R such that at any point x 0 in M one has

Proof. Recall that u R,2R = u L 2 (A R,2R ) with A R,2R := {x; R ≤ d(x, x 0 ) ≤ 2R)}. Let R < R 0 where R 0 is from proposition 3.5, note that R 0 ≤ diam(M ). Since M is geodesically complete, there exists a point

wich gives the result.

Proof of theorem 3.2. We proceed as in the proof of three balls inequality (proposition 3.5) except for the fact that now the radius of the first ball become arbitrary small in front of the others. Let R = R 0 4 with R 0 as in the three balls inequality, let δ such that 0 < 3δ < R 8 , and define a smooth function ψ, with 0 ≤ ψ ≤ 1 as follows:

Keeping appropriates terms in (2.5) applied to ψu gives :

Using properties of ψ and since τ ≥ V ∞ , one finds

Now using (4.1), the properties of ψ (4.26-4.29) and of h (4.2-4.5), we have

Step III. Construction on the annulus [ρ + 3δ, ρ + 4δ].

Recall that u 3 = -br -n+2k e i(n+2k)ϕ .

In this step, we want to pass from u 3 to the harmonic function:

We have 0 ≤ δ ρ+4δ ≤ 1 4 and ln(1 -x) ≥ 4 ln( 3 4 )x for x in the real set [0, 1 4 ], then g(r) ≥ e -16k ln( 43 ) kδ ρ+4δ ≥ e -16 ln 4 3 ≥ e -5

We know consider a smooth radial function ψ, with the following properties:

We let f (r) = ψ(r) + (1 -ψ(r))g(r) so one has

Step IV. Construction on the annulus [ρ + 4δ, ρ + 6δ] Recall that

and let

We choose c such that

Like step I we consider two smooth radial functions ψ 4 and ψ 5 with the following properties Let C 1 such that ln(1 + x) ≥ C 1 x on [0, 2 15 ]. Then we get