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Critical sets of eigenfunctions of the Laplacian

Bakri Laurent

Abstract

We give an upper bound for the (n−1)-dimensional Hausdorff mea-
sure of the critical set of eigenfunctions of the Laplacian on compact
analytic n-dimensionnal Riemannian manifolds. This is the analog of a
result on nodal set of eigenfunctions by H. Donnely and C. Fefferman.

1 Introduction and statement of the results

Let (M, g) be a smooth, compact and connected, n-dimensional Riemannian
manifold (n ≥ 2). For u ∈ C1(M), we set

Nu = {x ∈M : u(x) = 0}

and
Cu = {x ∈M : ∇u(x) = 0},

the nodal set of u and the critical set respectively. Our interest in this paper
is to deal with the critical set Cu of the eigenfunctions of the Laplacian :

−∆u = λu, (1.1)

Our main result is the following :

Theorem 1.1. Let M be a n-dimensionnal, real analytic, compact, con-
nected manifold with analytic metric. There exists C > 0 depending only on
M such that for any non-constant solution u to (1.1) one has

Hn−1(Cu) ≤ C
√
λ,

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.

In some way theorem 1.1 gives an anolog upper bound, on the measure
of the critical set Cu, of what was already known on the nodal set Nu. To
enlight this fact let us recall briefly some facts about the zero sets Nu, Cu
and Nu ∩ Cu.
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First it is well kown that if u is a non trivial solution of second order linear
elliptic equation then, in general, all zeros of u are of finite order ([1, 15]), and
then one can prove that the Hausdorff dimension of the nodal set Nu is at
most n−1 (for example, see [3] or [11] for more precise results). Concerning
the nodal set of eigenfuntions of the Laplacian operator, S. T. Yau, [25] has
conjectured, that

Conjecture 1.2.
C1

√
λ ≤ Hn−1(Nu) ≤ C2

√
λ. (1.2)

Here C1, C2 are positives constants depending only upon M . In case
that both the manifold and the metric are real analytic, the problem was
solved by H. Donnelly and C. Fefferman [5, 6]. Their method was based
on Carleman-type inequalities which have proved to be a powerful tool in
strong unique continuation theory ([1, 15, 20, 21, ...]). For smooth metric,
the only known upper bound result (n ≥ 3) is due to R. Hardt and L. Simon
[11]. They proved that

Hn−1(Nu) ≤ (c
√
λ)c
√
λ.

However this result is far from conjecture 1.2 and doesn’t seems to be op-
timal. Recently, several authors [4, 12, 19, 22] obtained some lower bounds
with polynomial decrease in λ.
Another interseting and related question is the description of the singular
set Su = Nu ∩ Cu (some time called critical set or critical zero set) of solu-
tions to partial differential equations. We refer to [2, 8, 9, 10, 18] and the
references therein for further investigations. We only mentionned that S
has, in sufficiently favorable cases [8], Hausdorff dimension not greater than
(n − 2) and that there exists an analog conjecture to (1.2) which can be
stated as follow in the particular case of equation (1.1) (see also [13, 18]) :

Conjecture 1.3.
Hn−2(Su) ≤ Cλ. (1.3)

On the opposite, not much is known about the critical set Cu. We would
like to recall some principal facts. Generically eigenfunctions are Morse
functions [23] and therefore the critical set consits in isolated points. More-
over, D. Jakobson and N. Nadirashvili [16] have shown that there exists in
dimension two a sequence of eigenfunctions for which the number of critical
points is uniformly bounded. An open question is whether the number of
critical points goes to infinity with the eigenvalue for generic metrics [24].
The only known result in this direction (to the knowledge of the author) is
[26] where it is shown that there exists at least one non-trivial critical point.
On the other hand, there exists simple examples for which the critical set
has Hausdorff dimension n− 1 :
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Example 1.4. Let (N, g) be a (n−1)−dimensional manifold and defineM =
T1 × N where T1 is the 1−dimensionnal Torus with standard metric, and
M is equipped with the product metric. The function fk(x, y) = sin(2πkx)
is an eigenfunction of ∆M with eigenvalue λ := 4π2k2. The critical set, Cfk ,
of fk is therefore a set of dimension n− 1.

It is also easy to find some surfaces of revolution with critical set of dimension
(n − 1), see [27] p 35. In the light of the above, it seems interresting to
obtain an upper bound on the (n− 1)−dimensionnal Hausdorff measure of
the critical set, which is achieved with theorem 1.1. One should also notice
that in example 1.4 one has Hn−1(Cfk) ≥ C

√
λ, where C depends only on

M . Therefore the upper bound in theorem 1.1 is sharp.
The framework of this paper is the following. Recall that gradient of

eigenfunctions satisfies a sytem of linear partial differential equations of the
following type

∆V + λV +A · V +B · ∇V = 0,

where ∆ + λ acts diagonally on vector valued functions and A (resp. B)
is a (1, 1) (resp. (2, 1)) tensor which only depend on (M, g) but not on λ.
Then, since Cu is the nodal set of |∇u|, we will adapt the method of strong
uniqueness theory based on Carleman estimates to this system. Indeed
from a Carleman estimate on ∆ + λ we will be able to obtain the main
ingredient in the proof of theorem 1.1 : a doubling inequality on gradient of
eigenfunctions,

‖∇u‖B2r ≤ eC(
√
λ+1)‖∇u‖Br . (1.4)

In the case M is analytic this doubling estimate will lead to theorem 1.1 by
using an argument of Donnely and Fefferman, see [5] theorem 4.1. When
M is only assume to be smooth, we will also be able to give a local upper
bound of the same kind on Hn−1(Cu). To do this we will use a result of C.
Bär (lemma 3.1 of [2]), which gives, for smooth functions, a local control on
the measure of the nodal set by the vanishing order.
The paper is organised as follows. In section 2, we established a Carleman
estimate for the operator ∆ + λ. In section 3 we establish our doubling
inequality (1.4). This relies on compactness of M and standard arguments
of quantitative uniqueness theory. Section 4 is devoted to derive estimates
on the measure of the critical set.
From now on and until the end we will assume that solutions of (1.1) are
non-constants or equivalently that the eigenvalue λ satisfies λ > 0.

Aknowledgement. I would like to thank Christian Bär for pointing out
useful references.
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2 Carleman estimates

Recall that Carleman estimates are weighted integral inequalities with a
weight function eτφ, where the function φ satisfy some convexity properties.
Before proceeding to the proof of our Carleman estimate on the scalar op-
erator ∆ + λ, let us define some standard notations. Fore a fixed point x0

in M , we let : r = r(x) = d(x, x0) the Riemannian distance from x0. We
denote by Br(x0) the geodesic ball centered at x0 of radius r. We will denote
by ‖ · ‖ the L2 norm, on eventually vector-valued functions, with obvious
interpretation. Let us first define the weight function we will use.
For a fixed number ε such that 0 < ε < 1 and T0 < 0, we define the function
f on ] −∞, T0[ by f(t) = t − eεt. One can check easily that, for |T0| great
enough, the function f verifies the following properties:

1− εeεT0 ≤ f ′(t) ≤ 1 ∀t ∈]−∞, T0[,
lim

t→−∞
−e−tf ′′(t) = +∞. (2.1)

Finally we define φ(x) = −f(ln r(x)). Now we can state the main result of
this section:

Theorem 2.1. There exist positive constants R0, C, C1, C2 which depend
only on M and ε, such that, for any λ ≥ 0, any x0 ∈ M , any δ ∈ (0, R0),
any u ∈ C∞0 (BR0(x0) \Bδ(x0)) and any τ ≥ C1

√
λ+ C2, one has

C
∥∥r2eτφ (∆u+ λu)

∥∥ ≥ τ
3
2

∥∥∥r ε2 eτφu∥∥∥
+ τδ

∥∥r−1eτφu
∥∥ + τ

1
2

∥∥∥r1+ ε
2 eτφ∇u

∥∥∥ . (2.2)

Remark 2.2. This Carleman estimate is quite standard. However in this
paper, an estimation including the gradient term in the right hand side is
useful. Though it can be obtained from previous Carleman estimates ([1],
[5] or [17] by example), we choose for the shake of completness to give a
proof.

The most important part to establish Theorem 2.1 is the following :

Lemma 2.3. There exist positive constants R0, C, C1, C2 which depend only
on M and ε, such that, for any λ > 0, x0 ∈ M , u ∈ C∞0 (BR0(x0) \ {x0})
and τ ≥ C1

√
λ+ C2, one has

C
∥∥∥r2eτφ (∆u+ λu)

∥∥∥ ≥ τ 3
2

∥∥∥r ε2 eτφu∥∥∥+ τ
1
2

∥∥∥r1+ ε
2 eτφ∇u

∥∥∥ . (2.3)

proof of Lemma 2.3. Hereafter C, C1, and c denote positive constants de-
pending only upon M , though their values may change from one line to
another. Without loss of generality, we may suppose that all functions are
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real. We now introduce the polar geodesic coordinates (r, θ) near x0. Using
Einstein notation, the Laplace operator takes the form :

r2∆u = r2∂2
ru+ r2

(
∂r ln(

√
γ) +

n− 1

r

)
∂ru+

1
√
γ
∂i(
√
γγij∂ju),

where ∂i =
∂

∂θi
and for each fixed r, γij(r, θ) is a metric on Sn−1 and

γ = det(γij).
Since (M, g) is smooth, we have for r small enough :

∂r(γ
ij) ≤ C(γij) (in the sense of tensors);

|∂r(γ)| ≤ C; (2.4)

C−1 ≤ γ ≤ C.

Set r = et, we have
∂

∂r
= e−t

∂

∂t
. Then the function u has supported in

] −∞, T0[×Sn−1, where |T0| will be chosen large enough. In this new vari-
ables, we can write :

e2t∆u = ∂2
t u+ (n− 2 + ∂tln

√
γ)∂tu+

1
√
γ
∂i(
√
γγij∂ju).

The inequalities (2.4) become

∂t(γ
ij) ≤ Cet(γij) (in the sense of tensors);

|∂t(γ)| ≤ Cet; (2.5)

C−1 ≤ γ ≤ C.

Now we introduce the conjugate operator :

Lτ (u) = e2teτφ∆(e−τφu) + e2tλu
= ∂2

t u+
(
2τf ′ + n− 2 + ∂tln

√
γ
)
∂tu

+
(
τ2f ′

2
+ τf ′′ + (n− 2)τf ′ + τ∂tln

√
γf ′
)
u

+ ∆θu+ e2tλu,

(2.6)

with

∆θu =
1
√
γ
∂i
(√
γγij∂ju

)
.

It will be useful for us to introduce the following L2 norm on ]−∞, T0[×Sn−1:

‖V ‖2f =

∫
]−∞,T0[×Sn−1

V 2√γf ′−3
dtdθ,

where dθ is the usual measure on Sn−1. The corresponding inner product is
denoted by 〈·, ·〉f , i.e

〈u, v〉f =

∫
uv
√
γf ′
−3
dtdθ.
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We will estimate from below ‖Lτu‖2f by using elementary algebra and inte-
grations by parts. We are concerned, in the computation, by the power of
τ and exponenial decay when t goes to −∞. First by triangular inequality
one has

‖Lτ (u)‖2f ≥
1

2
I − II, (2.7)

with

I =
∥∥∥∂2

t u+ 2τf ′∂tu+ τ2f ′
2
u+ λe2tu+ ∆θu

∥∥∥2

f
,

II =
∥∥τf ′′u+ (n− 2)τf ′u+ τ∂tln

√
γf ′u

+ (n− 2)∂tu+ ∂t ln
√
γ∂tu

∥∥2

f
.

(2.8)

We will be able to absorb II later. Then we compute I :

I = I1 + I2 + I3,

with

I1 = ‖∂2
t u+ (τ2f ′

2
+ λe2t)u+ ∆θu‖2f

I2 = ‖2τf ′∂tu‖2f
I3 = 2

〈
2τf ′∂tu, ∂

2
t u+ τ2f ′

2
u+ λe2tu+ ∆θu

〉
f

(2.9)

In order to compute I3 we write it in a convenient way:

I3 = J1 + J2 + J3, (2.10)

where the integrals Ji are defined by :

J1 = 2τ
∫
f ′∂t(|∂tu|2)f ′

−3√
γdtdθ

J2 = 4τ
∫
f ′∂tu∂i

(√
γγij∂ju

)
f ′
−3
dtdθ

J3 =
∫ (

2τ3(f ′)3 + 2λτf ′e2t
)

2u∂tuf
′−3√

γdtdθ.

(2.11)

Now we will use integration by parts to estimate each terms of (2.11). Note
that f is radial and that 2∂tu∂

2
t u = ∂t(|∂tu|2). We find :

J1 =
∫

(4τf ′′) |∂tu|2f ′
−3√

γdtdθ

−
∫

2τf ′∂tln
√
γ|∂tu|2f ′

−3√
γdtdθ.

The conditions (2.5) imply that |∂t ln
√
γ| ≤ Cet. Then properties (2.1) on

f gives, for large |T0| that |∂t ln
√
γ| is small compared to |f ′′|. Then one

has

J1 ≥ −cτ
∫
|f ′′| · |∂tu|2f ′

−3√
γdtdθ. (2.12)

Now in order to estimate J2 we first integrate by parts with respect to ∂i :

J2 = −2
∫

2τf ′∂t∂iuγ
ij∂juf

′−3√
γdtdθ.
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Then we integrate by parts with respect to ∂t. We get :

J2 = −4τ
∫
f ′′γij∂iu∂juf

′−3√
γdtdθ

+
∫

2τf ′∂tln
√
γγij∂iu∂juf

′−3√
γdtdθ

+
∫

2τf ′∂t(γ
ij)∂iu∂juf

′−3√
γdtdθ.

We denote |Dθu|2 = ∂iuγ
ij∂ju. Now using that −f ′′ is non-negative and τ

is large, the conditions (2.1) and (2.5) gives for |T0| large enough:

J2 ≥ 3τ

∫
|f ′′| · |Dθu|2f ′

−3√
γdtdθ. (2.13)

Similarly computation of J3 gives :

J3 = −2τ3
∫
∂tln(

√
γ)u2√γdtdθ

−λτ
∫

(4f ′ − 4f ′′ + 2f ′∂t ln
√
γ)e2tu2f ′

−3√
γdtdθ.

(2.14)

Now we assume that
τ ≥ C1

√
λ+ C2. (2.15)

From (2.1) and (2.5) one can see that if C1, C2 and |T0| are large enough,
then

J3 ≥ −cτ3

∫
et|u|2f ′−3√

γdtdθ. (2.16)

Thus far, using (2.12),(2.13) and (2.16), we have :

I3 ≥ 3τ
∫
|f ′′| |Dθu|2 f ′

−3√
γdtdθ − cτ3

∫
et|u|2f ′−3√

γdtdθ

−cτ
∫
|f ′′| |∂tu|2 f ′

−3√
γdtdθ.

(2.17)

Now we consider I1 :

I1 =
∥∥∥∂2

t u+
(
τ2f ′

2
+ λe2t

)
u+ ∆θu

∥∥∥2

f
.

Let ρ > 0 a small number to be chosen later. Since |f ′′| ≤ 1 and τ ≥ 1, we
have :

I1 ≥
ρ

τ
I ′1, (2.18)

where I ′1 is defined by :

I ′1 =
∥∥∥√|f ′′| [∂2

t u+
(
τ2f ′

2
+ λe2t

)
u+ ∆θu

]∥∥∥2

f
(2.19)

and one has
I ′1 = K1 +K2 +K3, (2.20)
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with

K1 =
∥∥∥√|f ′′| (∂2

t u+ ∆θu
)∥∥∥2

f
,

K2 =
∥∥∥√|f ′′|(τ2f ′

2
+ λe2t

)
u
∥∥∥2

f
,

K3 = 2
〈(
∂2
t u+ ∆θu

)
|f ′′| ,

(
τ2f ′

2
+ λe2t

)
u
〉
f
.

(2.21)

Integrating by parts gives :

K3 = 2
∫
f ′′
(
τ2f ′

2
+ λe2t

)
|∂tu|2f ′

−3√
γdtdθ

+ 2
∫
∂t

[
f ′′
(
τ2f ′

2
+ λe2t

)]
∂tuu

√
γf ′

−3
dtdθ

− 6
∫ (

f ′′
2
f ′
−1
(
τ2f ′

2
+ λe2t

))
∂tuu

√
γf ′

−3
dtdθ

+ 2
∫
f ′′
(
τ2f ′

2
+ λe2t

)
∂tln
√
γ∂tuuf

′−3√
γdtdθ

+ 2
∫
f ′′
(
τ2f ′

2
+ λe2t

)
|Dθu|2f ′

−3√
γdtdθ.

(2.22)

Now since 2∂tuu ≤ u2 + |∂tu|2 and τ ≥ C1

√
λ + C2, we can use conditions

(2.1) and (2.5) to get

K3 ≥ −cτ2

∫
|f ′′|

(
|∂tu|2 + |Dθu|2 + |u|2

)
f ′
−3√

γdtdθ (2.23)

We also have

K2 ≥ cτ4

∫
|f ′′| · |u|2f ′−3√

γdtdθ (2.24)

and since K1 ≥ 0 ,

I1 ≥ −ρcτ
∫
|f ′′|

(
|∂tu|2 + |Dθu|2

)
f ′
−3√

γdtdθ

+ Cτ3ρ
∫
|f ′′||u|2f ′−3√

γdtdθ.
(2.25)

Then using (2.17) and (2.25), we get :

I ≥ 4τ2‖f ′∂tu‖2f + 3τ
∫
|f ′′||Dθu|2f ′

−3√
γdtdθ

+ Cτ3ρ
∫
|f ′′||u|2f ′−3√

γdtdθ − cτ3
∫
et|u|2f ′−3√

γdtdθ

− ρcτ
∫
|f ′′|

(
|u|2 + |∂tu|2 + |Dθu|2

)
f ′
−3√

γdtdθ

− cτ
∫
|f ′′||∂tu|2f ′

−3√
γdtdθ.

(2.26)

Now one needs to check that every non-positive terms in the right hand side
of (2.26) can be absorbed in the first three terms.
First fix ρ small enough such that

ρcτ

∫
|f ′′| · |Dθu|2f ′

−3√
γdtdθ ≤ 2τ

∫
|f ′′| · |Dθu|2f ′

−3√
γdtdθ
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where c is the constant appearing in (2.26). The other terms in the last
integral of (2.26) can then be absorbed by comparing powers of τ (for C2

large enough). Finally since conditions (2.1) imply that et is small compared
to |f ′′|, we can absorb −cτ3et|u|2 in Cτ3ρ|f ′′||u|2.
Thus we obtain :

I ≥ Cτ2
∫
|∂tu|2f ′

−3√
γdtdθ + Cτ

∫
|f ′′||Dθu|2f ′

−3√
γdtdθ

+ Cτ3
∫
|f ′′||u|2f ′−3√

γdtdθ
(2.27)

As before, we can check that II can be absorbed in I for |T0| and τ large
enough. Then we obtain

‖Lτu‖2f ≥ Cτ3‖
√
|f ′′|u‖2f + Cτ2‖∂tu‖2f + Cτ‖

√
|f ′′|Dθu‖2f . (2.28)

Note that, since τ is large and
√
|f ′′| ≤ 1, one has

‖Lτu‖2f ≥ Cτ3‖
√
|f ′′|u‖2f + cτ‖

√
|f ′′|∂tu‖2f + Cτ‖

√
|f ′′|Dθu‖2f , (2.29)

and the constant c can be choosen arbitrary smaller than C. If we set
v = e−τφu, then we have

‖e2teτφ(∆v + λv)‖2f ≥ Cτ3‖
√
|f ′′|eτφv‖2f − cτ3‖

√
|f ′′|f ′eτφv‖2f

+ c
2τ‖
√
|f ′′|eτφ∂tv‖2f + Cτ‖

√
|f ′′|eτφDθv‖2f

.

(2.30)
Finally since f ′ is close to 1, one can absorb the negative term to obtain

‖e2teτφ(∆v + λv)‖2f ≥ Cτ3‖
√
|f ′′|eτφv‖2f

+ Cτ‖
√
|f ′′|eτφ∂tv‖2f + Cτ‖

√
|f ′′|eτφDθv‖2f

. (2.31)

It remains to get back to the usual L2 norm. First note that since f ′ is
close to 1 (2.1), we can get the same estimate without the term (f ′)−3 in
the integrals. Recall that in polar coordinates (r, θ) the volume element is
rn−1√γdrdθ, we can deduce from (2.27) by substitution that :

‖r2eτφ(∆v + λv)r−
n
2 ‖2 ≥ Cτ3‖r

ε
2 eτφvr−

n
2 ‖2

+ Cτ‖r1+ ε
2 eτφ∇vr−

n
2 ‖2. (2.32)

Finally one can get rid of the term r−
n
2 by replacing τ with τ + n

2 . Indeed

from eτφr−
n
2 = e(τ+n

2
)φe−

n
2
rε one can check easily that, for r small enough

1

2
e(τ+n

2
)φ ≤ eτφr−

n
2 ≤ e(τ+n

2
)φ.

This achieves the proof of the first part of lemma 2.3.

Now we can use the additionnal information about how far from the
origin supp(u) is, to proove theorem 2.1. This extra term will be useful in
section 3.

9



proof of Theorem 2.1. Suppose that supp(u) ⊂ BR0(x0) \Bδ(x0) and define
T1 = ln δ.

Cauchy-Schwarz inequality apply to∫
∂t(u

2)e−t
√
γdtdθ = 2

∫
u∂tue

−t√γdtdθ,

gives∫
∂t(u

2)e−t
√
γdtdθ ≤ 2

(∫
(∂tu)2 e−t

√
γdtdθ

) 1
2
(∫

u2e−t
√
γdtdθ

) 1
2

.

(2.33)
On the other hand, integrating by parts gives∫

∂t(u
2)e−t

√
γdtdθ =

∫
u2e−t

√
γdtdθ−

∫
u2e−t∂t(ln(

√
γ))
√
γdtdθ. (2.34)

Now since |∂t ln
√
γ| ≤ Cet for |T0| large enough we can deduce :∫
∂t(u

2)e−t
√
γdtdθ ≥ c

∫
u2e−t

√
γdtdθ. (2.35)

Combining (2.33) and (2.35) gives

c2

∫
u2e−t

√
γdtdθ ≤ 4

∫
(∂tu)2 e−t

√
γdtdθ

≤ 4e−T1

∫
(∂tu)2√γdtdθ.

Finally, droping all terms except τ2
∫
|∂tu|2f ′

−3√
γdtdθ in (2.27) gives :

C ′I ≥ τ2δ2‖e−tu‖2f .

Inequality (2.27) can then be replaced by :

I ≥ Cτ2
∫
|∂tu|2f ′

−3√
γdtdθ + Cτ

∫
|f ′′| · |Dθu|2f ′

−3√
γdtdθ

+ Cτ3
∫
|f ′′| · |u|2f ′−3√

γdtdθ + Cτ2δ2
∫
|u|2f ′−3√γdtdθ.

(2.36)

The rest of the proof follows in a similar way than the proof of Lemma
2.3.

Now we will state a Carleman estimate for the operator ∆ + λ acting
on vector functions, which will be useful in the next section. For U ∈
C∞0 (BR0(x0) \ {x0},Rm), applying (2.3) to each components U i of U and
summing gives :
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Corollary 2.4. There exists non-negative constants R0, C, C1, C2, which
depend only on M and ε, such that :
For any x0 ∈ M , any δ ∈ (0, R0),any U ∈ C∞0 (BR0(x0) \ (Bδ(x0),Rm),and
any τ ≥ C1

√
λ+ C2, one has :

C
∥∥∥r2e−τφ (∆U + λU)

∥∥∥ ≥ τ
3
2

∥∥∥r ε2 e−τφU∥∥∥
+ τδ

∥∥∥r−1eτφU
∥∥∥ + τ

1
2

∥∥∥r1+ ε
2 eτφ∇U

∥∥∥ . (2.37)

3 Doubling inequality

In this section we intend to prove a doubling property for gradient of eigen-
functions. First we establish a three balls theorem :

Proposition 3.1 (Three balls theorem). There exist non-negative constants
R0, c and 0 < α < 1 wich depend only on M such that, if u is a solution to
(1.1) one has :
for any R such that 0 < R < 2R < R0, and any x0 ∈M,

‖∇u‖BR(x0) ≤ ec(
√
λ+1)‖∇u‖αBR

2
(x0)‖∇u‖

1−α
B2R(x0) (3.1)

Proof. Let x0 a point in M and (x1, x2, · · · , xn) local coordinates around x0.
Let u be a solution to (1.1) and define V = ( ∂u∂x1

, · · · , ∂uxn ). Let R0 > 0 as in
theorem (2.3) and R such that 0 < R < 2R < R0. We still denote r(x) the
riemannian distance beetween x and x0. We also denote by Br the geodesic
ball centered at x0 of radius r. If v is a function defined in a neigborhood of
x0, we denote by ‖v‖R the L2 norm of v on BR and by ‖v‖R1,R2 the L2 norm
of v on the set AR1,R2 := {x ∈ M ; R1 ≤ r(x) ≤ R2}. Let ψ ∈ C∞0 (B2R),
0 ≤ ψ ≤ 1, a radial function with the following properties :

• ψ(x) = 0 if r(x) < R
4 or if r(x) > 5R

3 ,

• ψ(x) = 1 if R
3 < r(x) < 3R

2 ,

• |∇ψ(x)| ≤ C
R , |∇2ψ(x)| ≤ C

R2 .

Now, applying ∂k to each side of (1.1) gives

−∆∂ku+ [∆, ∂k]u = λ∂ku

where [∆, ∂k] is the commutator of ∆ and ∂k. It is a second order operator
with no zero order term and with coefficients depending only of M . The
function V = ( ∂u∂x1

, · · · , ∂uxn ) is therefore a solution of the system :

∆V + λV +AV +B · ∇V = 0 (3.2)

11



where A and B depend only on the metric g of M and its derivatives. Now
we apply the Carleman estimate (2.37) to the function ψV , we get :

C
∥∥∥r2eτφ (∆(ψV ) + λψV )

∥∥∥ ≥ τ
3
2

∥∥∥r ε2 eτφψV ∥∥∥
+ τR

∥∥∥r−1eτφψV
∥∥∥ + τ

1
2

∥∥∥r1+ ε
2 eτφ∇(ψV )

∥∥∥ .
Using that V is a solution of (3.2), we have :

C
∥∥∥r2eτφ (ψAV + ψB · ∇V + 2∇V · ∇ψ + ∆ψV )

∥∥∥ ≥ τ
3
2

∥∥∥r ε2 eτφψV ∥∥∥
+ τR

∥∥∥r−1eτφψV
∥∥∥+ τ

1
2

∥∥∥r1+ ε
2 eτφ∇(ψV )

∥∥∥
Now from triangular inequality we get

C
∥∥r2eτφ (∆ψV + 2∇V · ∇ψ)

∥∥ ≥ τ 3
2

∥∥∥r ε2 eτφψV ∥∥∥− C ∥∥r2eτφψAV
∥∥

+ τR
∥∥r−1eτφψV

∥∥+ τ
1
2

∥∥∥r1+ ε
2 e−τφ∇(ψV )

∥∥∥− C ∥∥r2eτφψB · ∇V
∥∥

and

τ
1
2

∥∥∥r1+ ε
2 eτφ∇(ψV )

∥∥∥ ≥ τ
1
2

∥∥∥r1+ ε
2 eτφψ∇V

∥∥∥− τ 1
2

∥∥∥r1+ ε
2 eτφ∇ψV

∥∥∥
≥ τ

1
2

∥∥∥r1+ ε
2 eτφψ∇V

∥∥∥− τ 1
2

∥∥∥r ε2 eτφV ∥∥∥
Then for τ great enough and for sufficient small R0 ,

C
∥∥r2eτφ (∆ψV + 2∇V · ∇ψ)

∥∥ ≥ τ
3
2

∥∥∥r ε2 e−τφψV ∥∥∥
+ τR

∥∥r−1e−τφψV
∥∥ + τ

1
2

∥∥∥r1+ ε
2 e−τφψ∇V

∥∥∥ .
In particular we have :

C
∥∥∥r2eτφ (∆ψV + 2∇V · ∇ψ)

∥∥∥ ≥ τ ∥∥∥eτφψV ∥∥∥
Assume that τ ≥ 1 and use properties of ψ gives :

‖eτφV ‖R
3
, 3R

2
≤ C

(
‖eτφV ‖R

4
,R

3
+ ‖eτφV ‖ 3R

2
, 5R

3

)
+ C

(
R‖eτφ∇V ‖R

4
,R

3
+R‖eτφ∇V ‖ 3R

2
, 5R

3

)
.

(3.3)

Furthermore, since φ is radial and decreasing, one has

‖eτφV ‖R
3
, 3R

2
≤ C

(
eτφ(R

4
)‖V ‖R

4
,R

3
+ eτφ( 3R

2
)‖V ‖ 3R

2
, 5R

3

)
+ C

(
Reτφ(R

4
)‖∇V ‖R

4
,R

3
+Reτφ( 3R

2
)‖∇V ‖ 3R

2
, 5R

3

)
.

(3.4)
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Now we recall the following elliptic estimates : since V satisfies (3.2) then
it is not hard to see that :

‖∇V ‖(1−a)R ≤ C
(

1

(1− a)R
+
√
λ

)
‖V ‖R, for 0 < a < 1 (3.5)

Since ‖eτφ∇V ‖R
4
,R

3
is bounded by ‖eτφ∇V ‖R

3
, using the formula (3.5) gives:

eτφ(R
4

)‖∇V ‖R
4
,R

3
≤ C

(
1

R
+
√
λ

)
eτφ(R

4
)‖V ‖R

2
. (3.6)

Similarly, we also have,

eτφ( 3R
2

)‖∇V ‖ 3R
2
, 5R

3
≤ C

(
1

R
+
√
λ

)
eτφ( 3R

2
)‖V ‖2R. (3.7)

On the other hand, using properties of φ leads to :

‖eτφV ‖R
3
, 3R

2
≥ ‖eτφV ‖R

3
,R ≥ e

τφ(R)‖V ‖R
3
,R. (3.8)

Now using (3.6),(3.7) and (3.8) in (3.3) we get :

‖V ‖R
3
,R ≤ C

√
λ
(
eτ(φ(R

4
)−φ(R))‖V ‖R

2
+ eτ(φ( 3R

2
)−φ(R))‖V ‖2R

)
Let AR = φ(R4 )−φ(R) and BR = −(φ(3R

2 )−φ(R)). Because of the properties
of φ, we have 0 < C1 ≤ AR ≤ C2 and 0 < C1 ≤ BR ≤ C2 where C1 and C2

don’t depend on R. We may assume that C
√
λ ≥ 2. We can add ‖V ‖R

3
to

each member and bound it in the right hand side by C
√
λeτA‖V ‖R

2
, for τ

large enough. Then replacing C by 2C gives :

‖V ‖R ≤ C
√
λ
(
eτA‖V ‖R

2
+ e−τB‖V ‖2R

)
. (3.9)

Now we want to find τ such that

C
√
λe−τB‖V ‖2R ≤

1

2
‖V ‖R

Since τ must satisfy τ ≥ C1

√
λ+ C2, we choose

τ = − 1

B
ln

(
1

2C
√
λ

‖V ‖R
‖V ‖2R

)
+ C1

√
λ+ C2. (3.10)

Inequality (3.9) becomes

‖V ‖R ≤ C
√
λeC1

√
λ+C2e

−A
B

ln
(

1

2C
√
λ

‖V ‖R
‖V ‖2R

)
‖V ‖R

2
,
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wich gives easily

‖V ‖R ≤ e(C1

√
λ+C2) B

A+B ‖V ‖
A

A+B

2R ‖V ‖
B

B+A
R
2

.

Finally define α = A
A+B gives easily

‖V ‖R ≤ eC5

√
λ+C6‖V ‖α2R‖V ‖1−αR

2

.

From now on we assume that M is compact. Thus we can derive from
three balls theorem above uniform doubling estimates on gradient of eigen-
functions.

Theorem 3.2 (doubling estimates). There exists non-negative constants
R0, C1, C2 depending only on M such that : if u is a solution to (1.1) on
M , then for any x0 ∈M and any r > 0,

‖∇u‖B2r(x0) ≤ eC1

√
λ+C2‖∇u‖Br(x0). (3.11)

Remark 3.3. Using standard elliptic theory (see [7]) to bound the L∞ norm
of |V | by a multiple of its L2 norm and rescalling arguments gives for δ > 0:

‖V ‖L∞(Bδ(x0)) ≤ (C1λ+ C2)
n
2 δ−n/2‖u‖L2(B2δ(x0))

Then one can see that the doubling estimate is still true with the L∞ norm

‖V ‖L∞(B2r(x0)) ≤ eC(
√
λ+1)‖V ‖L∞(Br(x0)) (3.12)

To proove the theorem 3.2 we need the following

Proposition 3.4. For any R > 0, there exists CR > 0, such that, for any
x0 ∈M one has :

‖∇u‖BR(x0) ≥ e−CR(
√
λ+1)‖∇u‖L2(M).

Proof. Let R > 0 and assume without loss of generality that R < R0, with
R0 from the three balls theorem (theorem 3.1). Up to multiplication by
a constant, we can assume that ‖∇u‖L2(M) = 1. We denote by x̄ a point
in M such that ‖∇u‖BR(x̄) = supx∈M ‖∇u‖BR(x). This implies that one
has ‖∇u‖BR(x̄)

≥ DR, where DR depend only on M and R. One has from
proposition (3.1) at an arbitrary point x of M :

‖∇u‖BR/2(x) ≥ e−c(
√
λ+1)‖∇u‖

1
α

BR(x) (3.13)
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Let γ be a geodesic curve beetween x and x̄ and define x0 = x, x1, · · · , xm =
x̄ such that xi ∈ γ and BR

2
(xi+1) ⊂ BR(xi), ∀i = 1, · · · ,m. The constant

m depends only on diam(M) and R. Then the properties of (xi)1≤i≤m and
inequality (3.13) give for all i, 1 ≤ i ≤ m :

‖∇u‖BR/2(xi) ≥ e
−ci(
√
λ+1)‖∇u‖

1
α

BR/2(xi+1). (3.14)

The result follows by induction and the fact that ‖∇u‖BR(x̄) ≥ DR.

Corollary 3.5. For any R > 0, there exists a positive constant CR depend-
ing only on M and R such that at any point x0 in M one has

‖∇u‖R
4
,R

8
≥ e−CR(

√
λ+1)‖∇u‖L2(M).

Proof. Let R < R0 where R0 is from the three balls theorem, note that
R0 ≤ diam(M). Recall that we defined locally near a point x0 the set Ar1,r2
by {x ∈ M ; r1 ≤ d(x, x0) ≤ r2)}. As M is geodesically complete, there
exists a point x1 in AR

8
,R

4
such that Bx1( R16) ⊂ AR

8
,R

4
. From proposition 3.4

one has ‖∇u‖B R
16

(x1) ≥ e−CR(
√
λ+1)‖∇u‖L2(M) wich gives the result.

Proof of theorem 3.2. We proceed in a similar way than the proof of three
balls theorem except for the fact that we want now one ball (i.e. δ below)
to be arbitrary small in front of the others. Let R = R0

4 where R0 is from
the three spheres theorems, let δ such that 0 < δ < 2δ < 3δ < R

8 < R
2 < R,

and define a smooth radial function ψ, with 0 ≤ ψ ≤ 1 as follows:

• ψ(x) = 0 if r(x) < δ or r(x) > R,

• ψ(x) = 1 if 5δ
4 < r(x) < R

2 ,

• |∇ψ(x)| ≤ C
δ if r(x) ∈ [δ, 5δ

4 ] and |∇ψ(x)| ≤ C if r(x) ∈ [R2 , R],

• |∇2ψ(x)| ≤ C
δ2 if r(x) ∈ [δ, 5δ

4 ] and |∇2ψ(x)| ≤ C if r(x) ∈ [R2 , R].

Keeping appropriates terms in (3.3) gives :

‖r
ε
2 eτφψV ‖+ τδ‖r−1eτφψV ‖ ≤ C

(
‖r2eτφ∇V · ∇ψ‖+ ‖r2eτφ∆ψV ‖

)
≤ C

δ ‖r
2eτφ∇V ‖δ, 5δ

4
+ C‖eτφ∇V ‖R

2
,R

+ C
δ2 ‖r2eτφV ‖δ, 5δ

4
+ C‖eτφV ‖R

2
,R.

Using properties of ψ we obtain,
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‖r
ε
2 eτφV ‖ 5δ

4
,3δ + ‖r

ε
2 eτφV ‖R

8
,R

4

+ τδ‖r−1eτφV ‖ 5δ
4
,3δ + τδ‖r−1eτφV ‖R

8
,R

4

≤ C
δ ‖r

2eτφ∇V ‖δ, 5δ
4

+ C‖eτφ∇V ‖R
2
,R

+ C
δ2 ‖r2eτφV ‖δ, 5δ

4
+ C‖eτφV ‖R

2
,R.

Now we drop the first and last terms of the left hand side to get :

‖r
ε
2 eτφV ‖R

8
,R

4
+ ‖eτφV ‖ 5δ

4
,3δ ≤ C

(
δ‖eτφ∇V ‖δ, 5δ

4
+ ‖eτφ∇V ‖R

2
,R

)
+ C

(
‖eτφV ‖δ, 5δ

4
+ ‖eτφV ‖R

2
,R

)
.

Since R and ε are both fixed we can replace, up to a change of constant,
‖r

ε
2 eτφV ‖R

8
,R

4
by ‖eτφV ‖R

8
,R

4
. Then using elliptic estimates (3.5) and prop-

erties of φ gives,

‖eτφV ‖R
8
,R

4
+ ‖eτφV ‖ 5δ

4
,3δ ≤ C

√
λ
(
eτφ(δ)‖ V ‖ 2δ

3
, 3δ

2
+ eτφ(R

3
)‖V ‖R

5
, 5R

3

)
+ C

√
λ
(
eτφ(δ)‖V ‖δ, 5δ

4
+ eτφ(R

3
)‖V ‖R

2
,R

)
.

This leads easily to

eτφ(R
4

)‖V ‖R
8
,R

4
+ eτφ(3δ)‖V ‖ 5δ

4
,3δ ≤ C

√
λ
(
eτφ(δ)‖V ‖ 3δ

2
+ eτφ(R

3
)‖V ‖ 5R

3

)
.

Adding eτφ(3δ)‖V ‖ 5δ
4

and absorbing it in the right hand side by eτφ(δ)‖V ‖ 3δ
2

gives

eτφ(R
4

)‖V ‖R
8
,R

4
+ eτφ(3δ)‖V ‖3δ ≤ C

√
λ
(
eτφ(δ)‖V ‖ 3δ

2
+ eτφ(R

3
)‖V ‖ 5R

3

)
.

Now we want to choose τ such that

C
√
λeτφ(R

3
)‖V ‖ 5R

3
≤ 1

2
eτφ(R

4
)‖V ‖R

8
,R

4
.

For the same reasons than before we choose

τ =
1

φ(R3 )− φ(R4 )
ln

(
1

2C
√
λ

‖u‖R
8
,R

4

‖u‖ 5R
3

)
+ C1

√
λ+ C2.

Define A =
(
φ(R3 )− φ(R4 )

)−1
; like before one can assume without loss that

−A is positive and independent of R. Then,

eτφ(R
4

)‖V ‖R
8
,R

4
+ eτφ(3δ)‖V ‖3δ ≤ C

√
λeτφ(δ)‖V ‖ 3δ

2
.
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One can then ignore the first term of the right hand side to get :

eτφ(3δ)‖V ‖3δ ≤ C
√
λ e

Aln

(
1

2C
√
λ

‖V ‖R
8 ,
R
4

‖V ‖ 5R
3

)
+C1

√
λ

‖V ‖ 3δ
2

‖V ‖3δ ≤ eC
√
λ

(
‖V ‖R

8
,R

4

‖V ‖ 5R
3

)A
‖V ‖ 3δ

2
.

Finally from corollary 3.5, define r = 3δ
2 to have :

‖V ‖2r ≤ eC(
√
λ+1)‖V ‖r.

Thus, the theorem is proved for all r ≤ R0
16 . Using proposition 3.4 we have

for r ≥ R0
16 :

‖∇u‖Bx0 (r) ≥ ‖∇u‖
Bx0 (

R0
16

)

≥ e−C0(
√
λ+1)‖∇u‖L2(M) ≥ e−C1(

√
λ+1)‖∇u‖Bx0 (2r).

4 Measure of the Critical set

From here we will follow the method of Donnelly and Fefferman [5] to es-
tablish an upper bound for the (n − 1)-dimensionnal measure of the crit-
ical set of eigenfunctions. We will assume from now, unless stated differ-
ently, that M is analytic and λ is sufficienty large (λ ≥ 1). Recall that
Nu = {x ∈M : u(x) = 0} and Cu = {x ∈M : ∇u(x) = 0}. Define BC(r)
the complex ball :

BC(r) = {z ∈ Cn : |z| < r}

and B(r) the standard ball in Rn centered at 0 of radius r. The main point
to deduce from our doubling inequality (3.11) an estimate on the Hausdorff
measure of the critical set is the following result of Donnelly and Fefferman:

Theorem 4.1 ([5] p. 180). Let F be an, non-zero, holomorphic function on
BC(1) and suppose there exists α > 1, such that

max
BC(1)

|F | ≤ eα max
B( 1

2
)
|F |,

then

Hn−1

(
NF ∩B

(
1

4

))
≤ Cα.

where NF is the zero set of F in Rn and C a constant depending only on
the dimension.
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Let u be a solution to (1.1). Fix x0 in M and consider (x1, · · · , xn) a chart
around x0. We assume that the chart contains the euclidean ball B2. We
define

F (x) =
n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 ,

In this chart the nodal set of F is the critical set of u. One has :

Proposition 4.2. The function F can be extended to an analytic function
on BC(1) and :

‖F‖L∞(BC(1)) ≤ eC
√
λ‖F‖L∞(B( 1

2
))

where C is a constant depending only on M .

Lemma 4.3. Let u be an eigenfunction of the laplace operator on B(1), for
all multi-index β, with |β| ≥ 1 one has :

|Dβu(0)| ≤ β!C |β|
√
λ
|β|
‖∇u‖

L∞
(
B(

C1√
λ

)
) (4.1)

where C1 is a constant small enough.

Proof of lemma 4.3. Like in [5], this result can be obtained by rescaling
the equation and using the hypoellipticity proof ([14], p.178) for an elliptic
operator whose coefficients have uniform bounded derivatives.
Indeed, note first that we may assume ‖∇u‖L∞(M) = 1. Now writing in our

local chart ∆ =
∑

1≤|α|≤2 aαD
α and consider the function uλ(x) = u( C1√

λ
x),

where C1 will be fix below. One can see that uλ is a solution to the elliptic
equation

Pλuλ = uλ

with Pλ =
∑

1≤|α|≤2 bαD
α and

bα(x) =
λ−1+

|α|
2

C
|α|
1

aα

(
C1x√
λ

)
.

A short computation of Dβbα, gives for C1 small enough and any multi-index
β:

sup
B1

|Dβbα(x)| ≤ C2|β|!, ∀1 ≤ |α| ≤ 2

where C2 is a constant depending only on M . Then one can use the hy-
poellipticity proof [14] with simple modifications to get for any multi-index
β with |β| > 1:

|Dβuλ(0)| ≤ A|β|β!.
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Proof of proposition 4.2. Expanding V = ( ∂u∂x1
, · · · , ∂uxn ) in its Taylor series

gives

V (z) =
∑
|α|≥0

zα

α!
DαV (0),

where for α = (α1, · · · , αn) in Nn and z = (z1, · · · , zn) in Cn we have set
zα := zα1

1 zα2
2 · · · zαnn and α! = α1!α2! · · ·αn!. Now using (4.1) and summing

a geometric series gives for a constant ρ small enough

sup
BC(0, ρ√

λ
)

|V (z)| ≤ C sup
B(0,

C1√
λ

)

|V (x)|. (4.2)

Then by translating, in the complex ball BC(1), the equation and iterating
the estimate (4.2) a multiple of

√
λ times one has

∀z ∈ BC(1), |V (z)| ≤ C
√
λ sup
B(2)
|V (x)|

This implies

sup
BC(1)

|F (z)| ≤ eC
√
λ sup
B(2)
|F (x)| (4.3)

which gives proposition 4.2 by using doubling inequality (3.11).

Proof of theorem 1.1. Let u be a solution to (1.1), let r0 > 0 a fixed number
not larger than the injectivity radius of M and p a arbitrary point in M .
Let consider (x1, x2, · · · , xn), a normal chart around p. By proposition 4.2

one has that F =
∑
i=1..n

∣∣∣∣ ∂u∂xi
∣∣∣∣2 satisfy the hypothesis of theorem 4.1. Then

since the nodal set of F is the critical set of u one has

Hn−1 (Cu ∩B(p, r0)) ≤ C
√
λ (4.4)

where C depends only on r0 and M .
The Theorem 1.1 follows by a covering argument since M is compact.

In the case of a smooth manifold, we can obtain a local version of theorem
1.1 :

Theorem 4.4. Let M be a n-dimensionnal, smooth, compact, connected
manifold. There exists C > 0 depending only on M such that for any non-
constant solution u to (1.1), any point x0 in M , there exists r0 such that

Hn−1(Cu ∩B(x0, r)) ≤ C
√
λ, for r ∈ (0, r0)

where Cu is the critical set of u.
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Proof. It is well known that the doubling estimate (3.11) implies that the
vanishing order of gradient of eigenfunctions is everywhere less than C

√
λ.

Then theorem 4.4 follows from lemma 3 of [2] .However there is no control
on the radius r0.

Remark 4.5. It seems natural to assume that the estimates Hn−1(Cu) ≤
c
√
λ is still true for the global measure of the critical set in the case that M

is only smooth.
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