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Abstract An overview is given of micromechanical approaches to
the rheology of granular materials, from solidlike granular packs to
large plastic strains and dense inertial flows, which essentially re-
lies on the numerical simulation (by the “discrete element method”
or DEM) of simple model systems. The main features of contact
laws are presented, and then it is insisted on the importance of the
geometry of disordered granular assemblies, such that some details
of contact interactions are in fact often irrelevant. Some salient
results, as obtained from DEM studies over the last decades, are
presented about the variety of microstructures and internal states,
depending on assembling processes; on elasticity and its (limited)
role in quasistatic granular behavior; on plastic strains and the fon-
damental concept of critical states, and on its recent applications
to the rheology of dense granular flows and suspensions.

1 Introduction

A wide variety of materials used in different engineering applications are
granular assemblies (Andreotti et al., 2013), made of solid particles of dif-
ferent sizes: sands, or, more generally, soils (Mitchell and Soga, 2005), pow-
ders used in pharmaceutical industries and food processing, building mate-
rials... Grain sizes range from micrometers for very fine powders (Castel-
lanos, 2005), verging on the colloidal realm, to meters for rockfill ma-
terials (Deluzarche and Cambou, 2006), or even larger for some aster-
oids (Sánchez et al., 2017). As grains are brought into contact by confining
external forces, possibly supplemented by mutual attraction, solid materi-
als are formed, which may turn into liquidlike systems depending on the
applied forces. Strongly agitated systems tend to form so-called granular
gases (Jaeger et al., 1996).
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At the continuum level the most sophisticated modeling attempts for the
behavior of solid materials were proposed in the fields of geomechanics and
geotechnique (Wood, 1990; Mitchell and Soga, 2005), in which quite elab-
orate experimental characterizations have also been exploited (Tatsuoka,
2001; di Benedetto et al., 2003). The modeling of dense granular flows has
known significant progress over the past 15 years (GDR MiDi, 2004; Jop
et al., 2006; Andreotti et al., 2013).

The micromechanics and micromorphology of granular assemblies have
recently gained considerable interest (Radjäı et al., 2017), and attract nowa-
days a large research effort, for which the practice of the numerical simula-
tion techniques known as “discrete element methods” (DEM), the granular
analog of molecular dynamics for collections of molecules or atoms, is now
an essential, widespread tool (Radjäı and Dubois, 2011; O’Sullivan, 2011).

The present contribution intends to supply a short, admittedly incom-
plete, review of some recent advances in the understanding of some essen-
tial features of granular mechanics, in connection with their microscopic
origins, at the scale of solid grains and their interactions. It essentially
relies on DEM results on model materials, with occasional illustrations in
two-dimensional (2D) systems; most cited results, though, pertain to three-
dimensional (3D) assemblies of spherical beads, with indications on the
behavior of more general grain shapes, such as polyhedra.

Despite recent progress, our understanding of the rheophysics of granular
materials is still considerably less advanced than in crystalline solids like
metals and alloys. Describing the microscopic interactions, defining the
material state, identifying such basic features of solid materials as an elastic
range... all these essential operations carried out in the mechanical modeling
of materials in relation to their elementary constituents are considerably
more difficult with granular materials. Some of the most advanced attempts
in micromechanics are not presented here. The aim of this chapter is, rather,
to describe the landscape of current investigations, with some of its main
landmarks, identifying constraints for future research and supplying possible
guidelines.

It is organized as follows. First, Sec. 2 discusses the basis of mechanical
modeling of granular materials, the contact interactions that derive from
their geometric specificity, and some essential features of their macroscopic
behavior that one wishes to relate to micromechanics. Sec. 3 introduces
important tools needed to connect grain-level to macroscopic mechanics;
among them statistical descriptors of material state, structural mechanics
notions applied to contact networks. The following parts review some results
on model systems that lead to a better understanding of the material state,
as resulting from the assembling process (Sec. 4); of its properties as a solid
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material in quasistatic conditions (Sec. 5, dealing with the influence of the
initial state, the role of elasticity, the “critical state” at large strains), and in
dense flows (Sec. 6, about microstructure and constitutive modeling). Note
that granular gases are not dealt with here. Sec. 7 is a brief conclusion.

2 Specificities of granular material modeling

2.1 Contact interactions and discrete degrees of freedom

One essential characteristic of granular materials, as dealt with in me-
chanical models, which enables their treatment by such numerical methods
as DEM, involving a finite set of degrees of freedom, is that solid grains
interact in contact regions which remain very small compared to their size.
This is schematically illustrated in Fig. 1: solid objects only get deformed
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Figure 1. 3 grains, with contacts between 1 and 2, and between 1 and 3.
Material strains are only notable within darker contact regions (the size of
which is exaggerated to ensure visibility on the picture).

in regions close to the contacts. Outside those regions the material strains
remain negligible. Those regions, shown as shaded areas in the figure, can
safely be assumed to be very much smaller than the grains, and to be dis-
joint. The grains may thus be described as rigid, undeformable solid objects.
They are merely sensitive to the total force and torque exerted on them by
applied force fields (e.g., gravity) and other grains in contact with them. In
Fig. 1, the force transmitted in the contact between grains 1 and 2 is only
dependent on the motion of the same grains away from the contact region,
where rigid body kinematics applies. It is, in particular, independent of
the stress or strain fields within the region near the contact between grains
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1 and 3. Denoting the grain diameter (or typical grain size) as a, contact
regions, of typical (linear) size l, with l � a, may be dealt with as points.
Interactions between a pair of contacting grains involve some surface force
density over the contacting parts of their surfaces. The total force F and the
total torque Γ should be obtained on integrating this density. If the torque
is evaluated at the centre of the contact region, then ||Γ|| is of order ||F||.l,
which may be neglected as the evaluation of global torques on grains involve
terms of order ||F||.a. In most applications the local scale interaction law
used in granular material modeling is a contact law, i.e. a relation between
the motion of the pair of grains in contact and the contact force, regarded
as a point force exerted on the surface of each grain.

One remarkable consequence of the scale separation between contact
regions and grains is the validity of the effective stress principle (Mitchell
and Soga, 2005), for fluid-saturated granular materials. Considering (Fig. 2)

Figure 2. Two different surfaces through which stresses can be evaluated in-
side a saturated granular material, a flat one (dashed line) crossing through
the grains, and another one (solid line), with hills and troughs, entirely
comprised within pore space, except for very small contact regions.

a granular material with its pore space filled with a fluid at pressure Pl,
the global stress tensor in such a medium, assumed homogeneous and in
equilibrium, may be deduced from the force density transmitted through
a fictitious cutting surface. As illustrated by Fig. 2, this surface may be
placed entirely within the interstitial fluid-filled space, except for very small
intergranular contact regions. The stress tensor, σ, may thus be written as
a sum:

σ = σcont + Pf1, (1)

in which Pf is the fluid pressure and σcont is the stress tensor associated
with the contact forces (we adopt the soil mechanics convention, according
to which compressive stresses are positive). As every grain is, in good ap-
proximation, entirely embedded within the fluid, the net force and torque
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due to the fluid pressure, which is uniform at equilibrium, vanish. Conse-
quently, neglecting the compression of the solid grains caused by the sur-
rounding pressure, the granular system with its contact network is in the
same situation as in the absence of interstitial fluid, with contact forces bal-
anced on each grain corresponding to stress σcont, as if this effective stress
were applied to the dry material.

A counterexample of a system which should not, a priori, be dealt with as
an ordinary granular material in the preceding sense, is illustrated in Fig. 3.
Such objects with flat or conforming surfaces as shown in Fig. 3 may contact

B

C
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Figure 3. Brick-shaped grains may contact their neighbours through a
notable part of their surface.

one another through a significant part of their periphery. Consequently
the strains caused by contact stresses will extend through large domains
inside the solid grains. Different contacts of the same grain may interfere
with one another, as in the case (Fig. 3) of contact A-D, which should
be affected, because of the Poisson effect, by the stresses in contacts A-B
and B-C. Such systems should in principle require continuum mechanics
boundary value problems to be dealt with in each solid grain, as opposed
to granular systems in the sense of Fig. 1, for which the contact mechanics
treatment of interactions usually regards each grain of a given pair as a
(semi-infinite) half space. Obviously, the arguments used in connection with
Fig. 2 justifying the effective stress principle in saturated granular materials
do not necessarily apply in this case.

However, apparently conforming surfaces, or flat ones, enabling large
contact areas, may not actually exist in the presence of smaller scale rough-
ness, as sketched in Fig. 4. In such a case, the granular modelling approach
may be salvaged, because the strain will tend to be confined to a thin re-
gion, of a thickness similar to the size of the asperities. Note also that the
effective stress principle might apply, since the saturating liquid will invade
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Figure 4. Schematic blown-up view of a contact between two nominally
flat grain surfaces, showing their small scale roughness. Contact actually
takes place via isolated points.

the interstitial region, save for the isolated asperities in contact. The prac-
tice of DEM modeling of polygonal grains (Azéma et al., 2012, 2013) may
be justified thanks to this implicit assumption of roughness and contacts
through isolated nearly punctual regions.

2.2 Contact laws

From the separation of scales and the resulting possibility of a formula-
tion of granular mechanics with the discrete degrees of freedom associated
with a collection of rigid objects, as discussed in Sec. 2.1, the contact law is
an essential input of a granular model at the microscopic scale. In general,
contact behaviors differs significantly from bulk material behaviors, being
influenced by the fine details of the surface geometry– such a basic property
as the intergranular friction angle is not a property of the material which
the grains are made of.

Contact mechanics is a complicated field, because local problems to be
dealt with in the contact region between two grains involve boundary condi-
tions on an a priori unknown part of the surfaces, where both objects contact
each other. The treatise by Johnson (1985) deals with many aspects of con-
tact mechanics, but some difficulties related to surface roughness are hardly
addressed. The presentation given here evokes the most consequential (for
granular mechanics) features of contact mechanics and stresses the frequent
use of simplified model, which hopefully contain the most important ingre-
dients.

Fortunately, it is usually observed that the global, collective behavior
of granular assemblies is not sensitively dependent on many features of the
contact law. The relevance of contact models is often only evaluated a
posteriori, on comparing numerical results to laboratory measurements on
similar systems.
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Friction. Coulomb friction is the most important mechanical property
of intergranular contacts. While tribologists keep investigating realistic,
complex, history-dependent models involving “third bodies” in the contact
region (Richard et al., 2007), in the presence of a large number of grains and
contacts as in a granular material sample, it is a common practice to stick to
the simplest model for friction, the Coulomb model, with a constant friction
coefficient µ in all contacts between similar bodies. The physical origin of
friction is generally accepted to reside in the plasticity of small asperities
through which the two bodies are contacting each other, because of their
small scale roughness, despite the apparent smooth surfaces on the scale of
the grain diameter or radius of curvature (Bowden and Tabor, 1950). As
the stress in such asperities coincides then with the plastic threshold σc in
normal indentation, the real contact area Ac has to increase proportionally
to the total normal force FN = Acσc transmitted in the contact region.
The plastic shear resistance τc then yields the total tangential force FT in
sliding as FT = Acτc, whence the Coulomb friction coefficient µ = τc/σc,
independent of the normal load and of the apparent area of the contact.
Many additional sophistications, involving aging and/or dynamic instabili-
ties may affect the frictional behavior (Baumberger and Caroli, 2006), but
the simplest friction as defined by

||FT || < µFN no sliding

||FT || = µFN sliding,
(2)

is most often deemed sufficient to provide a satisfactory description of gran-
ular material behavior. Friction is said to be fully mobilized in the contact
in the second case (equality).

Elasticity. The elastic response of a contact region is of course strongly
dependent on its shape, and differs for sharp edges, pointed corners or
smooth surfaces with a well-defined curvature. In the latter case, for grains
made of an elastic material with Young modulus E and Poisson ratio ν the
normal elastic force FN in the contact relates to the normal deflection, h,
by the Hertz law, which reads for spherical beads of diameter a:

FN =
Ẽ

3
a1/2h3/2, (3)

in which notation Ẽ = E/(1−ν2) is adopted. The non-linearity stems from
the growth with h of the contact region, a disk with radius b proportional
to
√
ah. Johnson (1985) gives a detailed derivation of (3) and other contact

laws, based on the assumption, adequate for small enough deflections, that
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each contacting object might be locally dealt with as an infinite half space.
Relation (3) is easily generalized (Johnson, 1985) to beads of different di-
ameters (just use a = 2a1a2

a1+a2
for diameters a1, a2), or to objects with two

different (positive) radii of curvature. Note that exponent 3/2 may be ob-
tained from a simple scaling argument: first, b ∝

√
ah may be deduced from

the contact geometry (the contact region radius being of the order of the
“interpenetrated region” of non-deformed spherical balls); then a strain of
order h/b is assumed to be distributed over a volume of order b3, whence an
elastic energy scaling as Ea1/2h5/2 and a force scaling as Ea1/2h3/2. Other
contact shapes could result in different forms of normal elastic forces, e.g.
scaling as h2 for a sharp angular edge (Johnson, 1985). The Hertz law (3)
does not apply for sands, but proves quite robust as model materials made
of beads or smooth shapes are tested, for which elastic moduli might be
measured (Jia et al., 1999; Kuwano and Jardine, 2002). Anticipating that
elastic contact deflections play a minor role in granular material mechan-
ics, contact elasticity is also often assumed linear in DEM calculations: a
constant stiffness KN = dFN

dh (possibly dependent on particle radii) is as-
sumed to relate force and deflection as FN = KNh, instead of the Hertz law
implying

KN =
Ẽ

2
a1/2h1/2 =

31/3

2
a1/3Ẽ2/3F

1/3
N . (4)

Such a simplification is adopted with the assumption that a certain limit of
rigid grains, in which contact deflections are irrelevant, is approached.

The normal law relating FN and h should be supplemented by a tangen-
tial contact law relating the variations of the tangential component of the
contact force, FT , to the variation of tangential relative displacements. The
modeling of such laws is quite complicated, because of the interplay of elas-
ticity and friction. Friction is modeled locally, as a condition similar to (2)
applying to the force density, i.e. to stress vector T = σ·n within the contact
surface, n denoting the normal unit vector. The situation of two spherical
objects pressed against each other by a constant normal force FN , the con-
tact being subjected to a varying relative tangential displacement δUT , as
investigated by Mindlin and Deresiewicz (1953) reveals a history-dependent
distribution of sliding regions within the contact surface. As δUT increases
from zero, sliding (relative tangential motion, where ||TT || = µTN ) takes
place in an outer annulus of increasing width (Fig. 5), until all the contact
may slide as the Coulomb equality applies everywhere to force density T
and, consequently, to the global contact force. However, upon reversing the
direction of the relative tangential motion, before this global sliding thresh-
old is reached, a second annulus appears at the periphery of the contact
region, within which sliding takes place in the opposite direction (Fig. 6).
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Figure 5. Left: initiation of a slip annulus at the periphery of the contact
region as relative tangential displacement δUT is imposed. Right: tangential
force FT versus δUT .

Accurate modeling of contact elasticity in a granular sample with many

Figure 6. Left: appearance of a second slip annulus at the periphery as
relative tangential displacement δUT starts to decrease. Right: tangential
force FT versus δUT (note beginning of unloading path)..

contacts thus seems to become almost hopelessly complicated, as records of
all past changes in relative motion directions in the contacts should appar-

9



ently be kept. This is not, however, the whole story: one should be able
to predict the variations of contact forces for arbitrary relative motions of
contacting grains. Elata and Berryman (1996) pointed out that, even if the
Coulomb threshold is reached nowhere in the contact (as in the hypothetical
situation of an infinite friction coefficient µ) different stress and force den-
sity patterns in the contact region, and a different global tangential contact
force FT , may be obtained for the same values of deflection h and relative
tangential displacement δUT , depending on the past history of those vari-
ables. This is visualized in Fig. 7, reproduced from this paper. The results

Figure 7. Different paths leading to the same final values of relative dis-
placements (with notations un for h and ut for δUT ), normal (qn = TN ) and
tangential (qt = TT ) force densities across disk-shaped contact region.

of three different contact loading paths are shown, all ending at the same
point in plane (un = h, ut = δUT ): (a) increase un and ut proportionally
(1), along a straight line, so that ut reaches its final value, but not yet for
un, then increase only un (2) ; (b) increase both un and ut proportionnally
to their final values; (c) proceed as along path (a), but reversing the roles
of un and ut. Although the normal force density is the same, tangential
force distributions are path-dependent. Elata and Berryman (1996) show
this suprising conclusion to hold even in the absence of friction mobilization
(i.e. in the limit of very large friction coefficient µ). Strictly speaking, the
contact never behaves elastically, even in the absence of friction effects.

Facing such difficulties, a widely accepted approximation consists in
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keeping a tangential stiffness KT =
dFT
d(δUT )

independent of δUT , and coin-

ciding with its value K
(0)
T for δUT = 0:

KT = K
(0)
T =

2− 2ν

2− ν KN = αTKN =
2− 2ν

2− ν
Ẽ

2
a1/2h1/2, (5)

for identical beads of diameter a – thus a function of deflection h or normal
elastic force FN . Specific caution should however be exercised, requesting
a suitable rescaling of KT when h decreases – as suggested by Elata and
Berryman (1996).

General relative motion, objectivity issues. Furthermore, it should
be specified how the contact force evolves as the pair of grains move with
arbitrary combinations of translations and rotations while maintaining the
contact. While there appears to be no exact general solution, based on the
detailed treatment of the problem of the contact between moving objects, in
the available literature, adopted solutions should abide by the objectivity
principle (Kuhn and Chang, 2006), i.e., be such that if both contacting
grains move as one non-deforming solid, then the contact force should follow
this rigid body motion. Such a solution is described, e.g., by Agnolin and
Roux (2007a).

Adhesion. All identical particles are attracted to one another by surface
forces of different origins (Israelashvili, 1991; Maugis, 2000), among which
van der Waals ones are the most universal type. Such attractive interac-
tions introduce a characteristic force scale F0 and a range, some length
D0 (on the nanometric scale for van der Waals interactions). This corre-
sponds to some adhesion energy of order F0D0. For ideal spherical particles
of diameter a, F0 is of order Γa, Γ denoting the interfacial energy of the
grain surface. Comparing F0 to other forces in a granular material (say,
gravity, scaling as a3 or applied pressure, resulting in contact forces scaling
as a2), it is usually observed that adhesive forces are quite negligible for
grains sizes above the 10 µm range – this is the reason why cohesion effects
are notable in fine powders, such as flour, or fine soils like silts, but not
in sands. Furthermore, adhesive forces, given their extremely small range,
are most frequently dominated by roughness effects, and turn out to be
of order Γd, with d � a corresponding to some asperity size (Castellanos,
2005). Exact calculations combining adhesive forces and Hertz elasticity are
available – in the so-called Johnson-Kendall-Roberts (JKR) and Deriaguin-
Muller-Toporov (DMT) cases (Maugis, 2000), corresponding to small or
large values of the ratio (sometimes termed Tabor number, with definitions
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varying by factors of order 1) of elastic deflection under force F0 to range
D0. Interpolation schemes (Castellanos, 2005) are available in intermediate
cases. In practice such ideal calculations do not quantitatively apply to
experimental systems in which grains have irregular surfaces, and, in order
to simulate large collections of grains, simplified models are adopted, in-
troducing a force law with some maximum attraction F0 and some range
D0.

h

Figure 8. Liquid bridge joining two identical spherical beads.

One situation in which an accurate model might be used is that of wet
grains, as liquid bridges form at contacts, or join pairs separated by a small
distance, as sketched in Fig. 8. The contact law should then be replaced
by an interaction law in which the grains are attracted to each other by
a capillary force, which can be computed from Laplace’s law (Lian et al.,
1993; Pitois et al., 2000) (which states that the pressure within the liquid is
lower than the external one, with difference γ( 1

r1
− 1

r2
), using the notations

of Fig. 8, γ being the surface tension). Assuming simple rules might be
identified to identify the spatial distribution of the liquid, such interactions
can be dealt with in DEM (Radjäı and Richefeu, 2009; Khamseh et al.,
2015). The maximum attractive force F0 is observed for small bridge vol-
umes (filling angle φ � 1 on the figure), at contact (h = 0), is then, for
wetting angle θ and bead radius R = a/2:

F0 = 2πRγ cos θ. (6)

In the presence of attractive forces, which act at a small distance, the
Coulomb condition characterizing the contact surface behavior applies to
the repulsive elastic component of the normal force. Fig. 9, from a DEM
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study of a model system by Gilabert et al. (2007), displays the Coulomb cone
within which the point of coordinates Nij , Tij (the normal and tangential
force components in contact between grains i and j) should remain. Nij is

FIG. 1: Graphical representation of the model for the adhesive elastic contact force as a function of the distance between
the surfaces of particles i and j, hij . (a) The elastic normal force consists of a repulsive Hookean part Ne

ij plus a linearized
attractive part Na

ij . (b) The elastic tangential force is limited by the Coulomb cone (adhesion shifting its tip to −F0 on the
normal force axis).

cial energy, l the typical size of asperities [47] and D0 is
in the nanometer range.

In the case of contacting disks (hij < 0), the attractive
term Na

ij is kept constant, equal to −F0, while strains in
the contact region result in normal (Ne

ij) and tangential
(Tij) elastic forces. It is also assumed that a viscous
normal term Nv

ij opposes relative normal displacements.
One thus writes:

F⃗ij = (Ne
ij + Nv

ij − F0) n̂ij + Tij t̂ij (5)

The different terms introduced in Eqn. (5) are defined
according to the following models. First,

Ne
ij = −KNhij

is the linear elastic unilateral repulsion, due to the normal
deflection −hij in the contact as the disks are pressed
against each other. KN is the normal stiffness coefficient,
related to the elastic moduli of the material the grains
are made of.

The viscous normal force opposes the normal relative
receding velocity δvN

ij = n̂ij · (v⃗j − v⃗i) as long as the
contact persists. The relative normal motion of two disks
i and j in contact is that of an oscillator with viscous
damping, and ηij is the damping coefficient. We choose
its value as a constant fraction ζ of the critical damping
coefficient,

ηij = ζ

√
4KNmimj

mi + mj
. (6)

This is equivalent to the choice of a constant restitution
coefficient in normal collisions if F0 = 0. In the presence
of attractive forces the apparent restitution coefficient in
a collision will depend on the initial relative velocity, and
will be equal to zero for small values, when the receding
velocity after the collision will not be able to overcome
the attraction and separate the particles. The minimum

receding velocity for two particles of unit mass (i.e., of

maximum diameter a) to separate is V ∗√2, with

V ∗ =
√

F0D0. (7)

The elastic tangential force in contact i, j is linearly
related to the elastic part δuT

ij of the total relative tan-

gential displacement ∆uT
ij , as

Tij = KT δuT
ij ,

and is subject to the Coulomb inequality. KT is the
tangential stiffness coefficient. ∆uT

ij can be updated for
all closed contacts according to

d∆uT
ij

dt
= (v⃗ij · t̂ij)

and vanishes as soon as the contact opens. Its elastic
part satisfies

dδuT
ij

dt
= H

(
µNe

ij

KT
− |δuT

ij |
)

(v⃗ij · t̂ij)

in which H denotes the Heaviside function. This last
equation introduces the friction coefficient µ. It is im-
portant to note that the Coulomb inequality,

|Tij | ≤ µNe
ij , (8)

applies to the sole repulsive elastic component of the nor-
mal force (see Fig. 1b). We chose not to implement any
tangential viscous force.

The moment that disk i exerts onto its contacting
neighbor j, of radius Rj , in its center, is denoted by Γij

in Eqn. (2). It is first due to the tangential contact force,
then to a possible moment Γ r

ij of the force density dis-
tribution within the contact region. One thus writes:

Γij = −TijRj + Γ r
ij . (9)

Figure 9. Coulomb condition in the presence of attractive force −F0 in
contact between grains i and j.

the sum of the adhesive contribution Na
ij = −F0 and the repulsive elastic

one Ne
ij The tip is no longer at the origin of coordinates. The tangential

force may reach intensities as large as µF0 when the total tangential force
vanishes because the elastic repulsion compensates attraction −F0.

Resistance to rolling. It might be necessary in some cases to account
for a finite lateral extension l of the contact region (yet small compared to
diameter a), which causes a local torque Γ. Physical motivations of existing
models for rolling and pivoting resistance should involve surface asperities
such that grain pairs interact through several contact points separated by
distance l. A rolling friction coefficient, µR, and a pivoting friction coeffi-
cient µP are often introduced, such that inequalities analogous to (2) apply
to normal and tangential components of Γ, as follows.

|ΓN | ≤ µPFN (pivoting)

||ΓT || ≤ µRFN (rolling).
(7)

By definition, both coefficients µR and µP hav the dimension of a length.
They should be of order l. Below the threshold, torque components should
vary more or less elastically with the relative rotation of both objects i and
j, i.e., nij denoting the unit normal vector, for small rotation vectors ~ωi and
~ωj , ΓN relates to the pivoting angle, nij · (~ωi−~ωj), while ΓT is linked to the
rolling motion, involving the tangential component (1−nij⊗nij) ·(~ωi−~ωj).
This model of rolling and pivoting friction is thus analogous to the classical
model of sliding friction.
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The implementation of rolling resistance with spherical or circular grains
can be deemed analogous to the modeling of non-spherical shapes, especially
angular ones, for which contacts may extend to parts of faces or edges on the
grain periphery. Such a correspondance has been proposed in quantitative
form for two-dimensional grains by Estrada et al. (2011).

In the presence of adhesive forces, analogously to the Coulomb condition
for the tangential force, inequalities (7) apply with the sole elastic repulsive
component of normal force FN in the right-hand side. Thus, in contacts

FIG. 7: Typical configurations of 1400 disk samples of series A with (left) and without (right) rolling resistance, at P ∗ = 0 (a)
and P ∗ = 0.01 (b). Note the difference in local structure of thin “beams” joining dense regions with or without RR.

Another important parameter is the initial velocity of
agitation, V0. Its influence has been assessed on one 1400
disks sample, with ΦI = 0.36. The changes of coordina-
tion number with V0 at P ∗ = 0 are presented on Fig. 8.

Low velocity values produce more tenuous aggregates
(z ∼ 2), since even a small level of RR is able to slow
down local rearrangements and stabilize tree-like struc-
tures (i.e., devoid of flops) immediately after the colli-

FIG. 8: Final coordination number z versus initial quadratic
average velocity in agitation stage of method 2, normalized
by characteristic velocity V ∗. The arrow points to the value
most often used in our calculations.

sions between particles or small clusters.
A large kinetic energy cannot be absorbed by the RR,

and as a result disks are able to rotate, which leads to
better connected structures (z ∼ 3). In a sense, a large
V0 kills the effects of RR, and packings are similar to
those made without RR in such cases.

We therefore conclude that the connectivity of loose
samples with RR assembled by aggregation depends on
the initial magnitude of velocity fluctuations and on the
level of rolling friction.

As figure 8 shows, the same trend was found on reduc-
ing contact stiffness parameter κ, as a larger translational
and rotational compliance creates more contacts.

V0 is analogous to the particle fluctuating velocity in
experiments on gas-fluidized beds of xerographic toners
under gravity [67]. Such velocities are larger than the gas
velocity by two orders of magnitude. Typically, one has
vgas ∼ 1 − 4 mm/s, while V ∗, deduced from the contact
parameters with relation (7) is about 1 cm/s. Such a
value is therefore comparable to the particle fluctuation
velocity.

Of course, such a comparison is only indicative, be-
cause the influence of V0 on packing structures depends
on µr, and is also very likely to be affected to some extent
by the viscous dissipation model we have adopted. Both
rolling resistance and viscous forces are micromechanical
features for which no accurate physical identification is
available. Yet, it seems plausible that powder packings,
because of their initial agitated states, stabilize in better
connected states than predicted by geometric aggregation
models.

Figure 10. Aspect of cohesive grain clusters in a simple 2D model, with
(left) and without (right) rolling friction. Blown-up details (a) show elon-
gated parts joining denser regions (Gilabert et al., 2007).

where the total normal force vanishes, a finite torque µRF0 (−F0 denot-
ing the adhesive force as before), or µPF0 in the normal direction, might be
transmitted. This has important consequences on the possible morphologies
of assemblies of adhesive grains, as illustrated in Fig. 10, from Gilabert et al.
(2007). These disk-shapes grains are assembled here under small external
stress, and form rigid structures in equilibrium. Some resistance to rolling is
necessary for the single particle strands to remain stable and rigidly trans-
mit forces. In the absence of rolling friction, thin “arms” (rigid elongated
structures) are made of at least two grains in the transverse direction.

Viscoelastic or plastic dissipation in collisions. In addition to elastic
and frictional forces (and, possibly, to adhesive ones), grains in contact
exert onto one another viscous, dissipative force depending on their relative
velocity. Typically, one writes normal and tangential forces proportional to
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corresponding relative velocities, and opposing the relative motion:

F vN = αN
dh

dt

FvT = αT
d(δUT )

dt
,

(8)

with damping coefficients αN , αT , possibly dependent on relative displace-
ments h, δUT (or the elastic part of the latter). One physical origin of
such viscous forces is the viscoelasticity of the grains (Ramirez et al., 1999;
Brilliantov and Pöschel, 2004), which always exists on small time scales. In
practice, the choice of a damping model seldom relies on a true physical
analysis of the microscopic origins of viscous dissipation. Damping coef-
ficients are related to coefficients of restitution in binary collisions (Maw
et al., 1976), which in general (and in particular in the case of viscoelastic
effects in Hertzian contacts) depend on the initial relative velocity. The
normal coefficient of restitution, eN is defined by the ratio, equal to −eN ,
of the receding relative velocity in the normal direction after the collision to
the approaching relative velocity in the normal direction before the collision.
Its counterpart eT is defined analogously with tangential relative velocities.
In the simplest case of linear unilateral elasticity, without adhesive forces,
a constant coefficient αN corresponds to a constant normal coefficient of
restitution eN , which is readily obtained on solving for the motion of a
damped linear oscillator. For a pair of identical beads of mass m, the “crit-
ical” value of αN , separating the oscillating from the overdamped regimes
is αcN =

√
2mKN and eN depends on ratio ζ = αN/α

c
N , assumed below 1,

as

eN = exp

[
πζ

2
√

1− ζ2

]
. (9)

With Hertzian contact elasticity, viscous damping may be chosen in ref-
erence to the critical damping of a linear contact with stiffness KN equal
to the instantaneous deflection-dependent value. Such a choice results in a
velocity-independent coefficient of restitution.

2.3 Collective behavior and contact behavior

The contact behavior may be represented as a combination of rheolog-
ical elements, as shown in Fig. 11, (for a contact without adhesive forces,
no resistance to rolling or pivoting, and no viscous force in the tangential
direction). In an upscaling procedure, leading to macroscopic behavior, the
characteristics of those elements, as well as the geometry of the grains and
the contact network, are the microscopic inputs. We now recall some basic
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Matériaux modèles : paramètres micromécaniques

KN

ηN

KT

µ

KN ,KT , ηN dépendent des forces élastiques FN , FT

Peut-on décrire le comportement du matériau comme celui d’un réseau
d’éléments rhéologiques ?

Figure 11. Rheological elements schematizing contact behavior: normal
force (left) combines a spring (possibly nonlinear, with KN depending on
elongation), a viscous dashpot, and a no-tension joint (no adhesion here).
The tangential law (right) involves a plastic slider.

aspects of macroscopic granular mechanics and confront them to micro-
scopic features, to get some insights on the feasability of such an upscaling
procedure and the relative importance of the different inputs.

Classical quasistatic stress-strain behavior: triaxial compression.
The quasistatic stress-strain behavior of cohesionless granular materials is
commonly measured in tests as triaxial compression, as schematized in
Fig. 12. Starting from an equilibrated pack under isotropic stresses, one
principal stress, σ1 gradually increases, along with the conjugate strain ε1,
while the lateral stresses, and thus the other two principal stresses, σ2 = σ3,
are maintained fixed. Results are traditionally expressed in terms of devia-
tor stress q = σ1−σ3 and volumetric strain εv = 1− (1− ε1)(1− ε3)(1− ε3)
plotted versus axial strain εa = ε1. These curves differ according to the
solid fraction Φ in the initial isotropically loaded state. q steadily increases
to an asymptotic value qc at large axial strain in the loose case, while it
first passes through a maximum (the “deviator peak”) in the dense case,
before decreasing to the same large strain plateau value qc, in initially dense
systems. Meanwhile, loose systems contract, and dense systems, after some
initial contraction, dilate, until some asymptotic value Φc of solid fraction
is approached, which turns out to be the same whatever the initial density.
A loose initial state is therefore defined by Φ < Φc, a dense one by Φ > Φc.
This large strain state reached after the material has been monotonically
deformed in the same direction is known as the critical state (Wood, 1990)
– we shall return, in Sections 5 and 6, to the important role of the critical
state in granular material rheology.

The maximum value of q (either at the peak or at the final plateau) is
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ϵ̇1, σ1

σ3 σ3

q = σ1 − σ3

ϵa

peak

ϵv

Figure 12. Left: schematic view of an axisymmetric triaxial compression
test. Right: typical results in dense and loose systems. Deviator stress q
(solid lines) and volumetric strain εv (dotted lines) versus axial strain ε1.
Note the deviator peak in the dense case.

associated to the internal friction coefficient ϕ of the material as:

q

σ3
=

2 sinϕ

1− sinϕ
. (10)

A familiar notion, the internal friction angle should coincide with the max-
imum slope angle of a free surface of the material under gravity or angle
of repose (Nedderman, 1992), provided the plastic failure associated with
the deviator peak (dense case) or the critical plateau (loose case) satisfies
the Coulomb criterion – the yield criterion given as a function of principal
stresses σ1 ≥ σ2 ≥ σ3 ≥ 0 by

f(σ) =
σ1 − σ3

2
− σ1 + σ3

2
sinϕ ≤ 0 (11)

In practice, the yield properties of simple materials, such as sands or as-
semblies of spherical beads (Suiker and Fleck, 2004; Peyneau and Roux,
2008b), are better described by other forms of the yield criterion (Lade and
Duncan, 1975), and the apparent value of ϕ as identified from (10) might
be slightly different from the one applicable to a shear test (which is more
directly the angle of repose).

(Over)simplified laws, similarity with contact behavior. For sim-
plicity (e.g., in engineering practice, for lack of very detailed information on
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ϵ1

q

σ3
2 sinϕ

1 − sinϕ

slope E

−ϵv

ϵ1

slope 1 − 2ν

slope
2 sinψ

1 − sinψ

Figure 13. Simplified elastoplastic law for triaxial compression: deviator
stress (left) and volumetric strain (right) versus axial strain.

a certain granular soil) the behavior as measured in a triaxial compression
test of a cohesionless dense granular material might be described as shown
in Fig. 13, assuming linear isotropic elasticity to apply up to the deviator
peak, with a macroscopic Young modulus E and Poisson ratio ν, and then
a constant slope (or dilatancy) −dεvdεa

, as the maximum deviator (confused
here with the final plateau) is reached.

This is of course quite a gross simplification, unlikely to accurately de-
scribe a situation in which the softening after the peak (shown in Fig. 12,
ignored in the simplified version of Fig. 13) plays an important role. Fur-
thermore, the prepeak behavior is not elastic (as indicated in the sketch of
an unloading curve in Fig. 12).

But, at first sight, the first graph of Fig. 13 is quite similar to the sim-
plified version of the tangential contact law of Fig. 5, in which the slope is

taken constant (equal to K
(0)
T in Eq. 5) and variations are assumed elastic

before the Coulomb threshold µFN is reached. Both describe similar elasto-
plastic behaviors, and the analogy is strengthened by the use of a common
vocabulary (“Coulomb threshold”, “friction”...). Should one regard the in-
crease of q with εa as a macroscopic consequence of the contact behavior and
internal friction as a reflection of intergranular friction? As shown below,
such a näıve view is however misleading.

Dilatancy. One qualitative difference between microscopic and macro-
scopic behaviors is the existence of macroscopic dilatancy (or contractancy
for loose systems). Dilatancy may be described as a flow rule, which for the
volumetric strain behavior shown in Fig. 13 is associated with plastic po-
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tential g(σ) written below (i.e., the plastic strains are given by εP = λ
∂g(σ)

∂σ

with λ > 0):

g(σ) =
σ1 − σ3

2
− σ1 + σ3

2
sinψ, (12)

where a dilatancy angle, ψ, is introduced.
After Reynolds (1885), who coined the word “dilatancy”, this property

is usually interpreted as the result of deformation mechanisms on the scale
of local grain arrangements (Goddard and Didwania, 1998), in which grains
or rows of grains slide onto one another, as depicted in an elementary 2D
example in Fig. 14. Although rather simplistic, such an approach stresses
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FIG. 1. (Color online) A classical representation of dilatancy
mechanism in quasistatic simple shear test: Some expansion in
direction y is necessary for adjacent layers to flow past one another.

of friction µs introduced in the contacts, which causes a
strong dilatancy [6,21,23,28]. But different observations are
made if spherical rigid grains are kept frictionless as the
shear response is probed [19]. As the internal friction is
(monotonically) growing with shear strain to its critical state
value (ϕ = 5.76 ± 0.22◦ [18,29]) no appreciable change in
solid fraction is observed. The material is therefore constantly
devoid of dilatancy (ψ = 0) [18,19]. The RCP density is
thus observed in shear zones in frictionless bead assemblies
[30]. Two-dimensional (2D) assemblies of frictionless rigid
disks also exhibit a finite macroscopic friction angle [14,31],
and various observations suggest that they are devoid of
dilatancy (no clear-cut dilating or contracting tendency in [14],
smaller and smaller dilatancy in the limit of µs → 0 in [6]).
With frictionless spherical grains, or circular ones in 2D, no
density change—no dilatancy—occurs while ϕ monotonically
increases to its plateau value. Dilatancy angle ψ , for beads
or disks, thus depends on contact friction coefficient µs , and
vanishes for µs = 0, rather unexpectedly, given that the simple
picture of Fig. 1 ignores the role of intergranular friction.

We tested for the generality of such conclusions by
investigating the internal friction and dilatancy properties of
rigid, frictionless angular particles, in the simple case of
a polydisperse collection of rigid pentagons in 2D. Unlike
circular objects, any pair of polygons in side-to-side contact
will exhibit some kind of “local dilatancy,” causing their
centers to move further apart, if a relative rotation occurs,
as sketched in Fig. 2. A “local dilatancy” angle might thus be

(a) (b)

FIG. 2. (a) A polygon rolling on another polygon in side-to-side
contact, whence (b) an effective dilatancy angle ψloc.

FIG. 3. A simple (vertex-side) contact and a double (side-side)
one between polygonal grains, with corresponding normal forces.

identified as ψloc = π
2ns

in an assembly of regular polygons
with ns sides [32]. One might therefore wonder whether a
macroscopic nonvanishing dilatancy angle ensues, and how
the internal friction angle is affected by such angularity effects.

We addressed these issues by means of simulations using
the contact dynamics (CD) method, which is suitably applica-
ble to large assemblies of undeformable particles [10,33– 35],
in inertial flow [36], as well as in quasistatic evolution
[7]. In this method, the rigid-body equations of motion are
integrated and the kinematic constraints due to contacts are
taken into account, using an implicit time-stepping scheme
to simultaneously update the contact forces and the particle
velocities. Contact interactions are characterized by three
parameters: the coefficient of friction and the coefficients
of normal and tangential restitution. The CD method has
repeatedly been applied to the simulation of assemblies
of angular grains, polygons in two dimensions [32,37] or
polyhedra in three dimensions [27,38]. A small tolerance
on grain overlaps enables contact detection (resulting in
relative error on ν of order 10−4), and polygons might
interact by vertex-side or side-side contacts (vertex-vertex
contacts are statistically irrelevant). A side-vertex contact is a
“simple” contact, as between disks, and corresponds to a single
unilateral constraint, with the normal direction orthogonal to
the side (Fig. 3). A side-side contact is a “double” contact
in the sense that it can be represented by two unilateral
constraints. It is equivalent to two simple contacts between
the same polygons, and the normal direction is the normal to
their common side, as shown in Fig. 3. In practice, two forces
are calculated at each side-side contact, but only the resulting
total force and torque are physically meaningful [39].

The packings of frictionless pentagons or disks dealt with
in the present study comprise 15 000 objects. Particle sizes
are randomly chosen according to a uniform distribution in
surface area, the diameter dof the circumscribed circle varying
between Dmin and Dmax = 2Dmin = ⟨d⟩/ ln(2), ⟨d⟩ denoting
the average value of d. First loosely arranged, with random
orientations, in a laterally periodic (i.e., along the x axis)
rectangular box, particles are then compressed between the
smooth walls parallel to direction x . The normal restitution
coefficient is equal to zero (no tangential forces or momentum

010202-2

Figure 14. A simple example of alleged mechanism for dilatancy with 2D
rows of disks sliding past one another in shear flow.

the collective origins of dilatancy, as an effect of steric hindrance in relative
grain motion. It will be questioned below in Sec. 5.

Granular disorder: forces and displacements. Attempts at averag-
ing the local behavior to obtain macroscopic laws are confronted with the
characteristic disorder of granular materials. As shown in Fig. 15, force
patterns comprise typical alignments of strongly loaded contacts (the force
chains), while some regions (involving 5 to 10 grains in this case) carry lit-
tle stress. Some grains (the rattlers) are not involved in the force-carrying
contact network and are left free to move in the “cage” formed by their load-
carrying neighbours. Many studies have been devoted to the statistical dis-
tribution of force values (Coppersmith et al., 1996; Radjäı, 2015). The prob-
ability distribution function often decreases exponentially for large values,
but forces, say, 4 times as large as the average represent a small, but notable
fraction of the total number (say, of order 10−3). The role and the persis-
tence of the stronger force chains, carrying stress anisotropy, while smaller
forces prevent them from buckling, was also discussed (Radjäı et al., 1998).
As to displacements, Fig. 16 evidences equally disordered patterns (Kuhn,
1999; Roux and Combe, 2002; Radjäı and Roux, 2002), involving many
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Figure 15. Equilibrium contact forces, balancing externally applied
isotropic pressure, in 2D sample of disks. Stroke thickness is proportional
to normal force intensity.

vortex structures of large scale, comparable to the sample size. The fig-
ure actually shows the “non-affine part” of the displacements, i.e., for each
grain i, the displacement ui of its centre, positioned in ri, minus its value
in a homogeneous continuum subjected to the same (small) strain ε, i.e.,
for a certain choice of the origin and in the absence of macroscopic rotation
(the sign being due to our convention that strains are positive for shrinking
lengths):

ũi = ui + ε · ri. (13)

Fig. 16 corresponds to ε1, ε2 of order 10−3, while ε12 = 0. The importance
of non-affine displacements might be assessed on evaluating, in a sample of
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Figure 16. Non-affine part of grain displacements (arbitrary scale) corre-
sponding to strain interval 10−3 in 2D disk assembly in biaxial compression.

N grains of average diameter a the following ratio:

∆ =
1

Na2||ε||2
N∑

i=1

||ũi||2. (14)

Values of ∆ of order 10 or 100 are quite common.

The role of geometric rearrangements of contact networks. Since
the contact laws rule the mechanical properties at the grain scale, it may be
tempting to expect that the macroscopic behavior could be retrieved on suit-
ably averaging the contact behavior, as in homogenization approaches to the
macroscopic properties of microscopically heterogeneous materials (Nemat-
Nasser and Hori, 1993). Can one regard the granular sample as a net-
work of rheological elements as shown in Fig. 11? The following simple
example (Roux, 2000) shows that the deformation corresponding to certain
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changes in the applied load may not result from contact mechanics aver-
aged on a larger scale. Consider the set of four rigid frictionless disks shown

Figure 17. Left: simple model system. One mobile disk (1) , in contact
with fixed ones (2, 3 and 4), and subjected to external force with compo-
nents Fx, Fy. All disks are rigid and frictionless. Two possible equilibrium
positions: light grey disk, dashed contour. Right: equipotentials (dotted
lines) and regions of plane forbidden to centre of disk 1 by steric exclusion
(hashed zones). A and B mark equilibrium positions with two contacts.

in Fig. 17 (left graph), with only one mobile grain (disk 1), subjected to
an external force. Depending on the orientation of F, disk 1 might find an
equilibrium position (grey disk) with contacts with disks 2 and 3, or another
one in contact with 3 and 4 (disk outlined with dashed perimeter). With no
friction and no contact elasticity, the potential energy W = −Fx.x− Fy.y,
constant on lines orthogonal to vector F, is to be minimized at equilibrium,
under the constraint that disks do not overlap.These are the two possible
equilibrium positions marked A and B (right graph). As the direction of
F gradually changes, the disk will move from one equilibrium position to
the other, as soon as the steric exclusion constraints enable a motion with
decreasing W . The concavity of the boundary of the accessible region for
coordinates x, y (the intersection of the exterior parts of circles) entails that
the relation between Q = Fx/Fy and the equilibrium position x of mobile
disk 1 takes the form shown in Fig. 18. Position x change from xA to xB
by sudden jumps, and corresponding values of Q are associated with desta-
bilizations of equilibrium points A and B, as the equipotential line in the
second graph of Fig. 18 becomes tangent to the excluded region (hashed
zone).

One thus obtains a hysteretic relation, analogous to some effective fric-
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Figure 18. Hysteretic variations of equilibrium position x of mobile disk 1
of Fig. 17 (with possible values xA and xB corresponding to points A and
B) with force parameter Q = Fx/Fy.

tion law, between x – an analog of strain – and Q – an analog of stress
ratio. But the “strain” is entirely geometric, corresponding to a change in
the contact list, and has no relation to the contact law (here reduced to its
bare minimum: the grains cannot interpenetrate).

It should thus be expected that the macroscopic features of granular
material mechanics stem from the geometry of granular packings and of
their rearranging contact networks, as much as from contact laws.

3 Collective properties of granular assemblies

We now introduce important tools for the description of granular materials
from a micromechanical point of view.

3.1 State variables

Solid fraction. The first variable characterizing the state of a granular
material is its density or the solid fraction, Φ defined as the ratio of the vol-
ume of the grains to the volume occupied by the material sample (geotech-
nical practice tends to favour the void ratio, defined as e = −1 + 1/Φ).
Everyday experience with sand, ground coffee or potatoes shows that, as
already recalled in connection with the behavior under deviatoric load (see
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Fig. 12), solid objects can be assembled in stable, solidlike packs with differ-
ent solid fractions. Identical disks in 2D achieve their densest arrangement
if their centres are placed on the sites of a regular triangular lattice with
spacing equal to their diameter, reaching area fraction Φ = π/(2

√
3) ' 0.91.

The densest possible structure of identical (3D) spherical balls are obtained
on stacking such 2D lattices on top of one another, as shown in Fig. 19.
Such a dense stacking should alternate between 3 possible horizontal place-
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Figure 19. Regular lattices achieving maximum solid fraction. Left: tri-
angular lattice for disks. Middle: building 3D maximum density lattices for
beads on stacking such layers. Right: fcc lattice.

ments, and may result in the face-centered cubic lattice (fcc), the hexagonal
compact one, or hybrids thereof. The achieved solid fraction in all cases is
Φ = π/(3

√
2) ' 0.74. Although such lattice structures are important in

solid-state physics (Ashcroft et al., 2016) and the search for maximum den-
sity structures is a time-honoured endeavour for which mathematical proofs
were only recently obtained (Aste and Weaire, 2000; Szpiro, 2003), they are
certainly not representative of the generic disorder in granular materials.

More relevant (see Fig. 20) is the classical concept of random close pack-
ing (RCP), referring to a disordered state of maximum solid fraction Φ∗

with no ordering, no “germ” of incipient crystallisation. The corresponding
solid fraction, as observed both in experiments and simulations, is Φ∗ ' 0.64
for spherical balls. The absence of crystalline nuclei can be checked with
suitable order parameters (Volkov et al., 2002; Agnolin and Roux, 2007a).
2D assemblies of monodisperse disks crystallize very easily, and thus should
be avoided as a model material. 3D packs of equal-sized beads, on the
other hand, are easily maintained in disordered states. DEM studies have
revisited the RCP, which may be defined (Agnolin and Roux, 2007a) as an
equilibrium state of rigid frictionless grains under isotropic pressure. Such
states in which confining force are balanced by steric repulsion between
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6
CUT BY A PLANE

• difficult to measure z directly (even with sophisticated tomographic
techniques, cf. Aste et al.)

• Here Φ ≃ 0.639 or 0.64 = random close packing (RCP)solid fraction,
maximum value for disordered systems. “Order parameters” characterize
evolution to crystal patterns on applying repeated shakes or large numbers
of shear cycles.

Figure 20. Spherical balls in RCP state: aspect of cubic sample (left), cut
parallel to a face (right). Grey particles are within the periodic cell used in
simulations.

hard objects are often referred to as jammed states in the recent physics
literature (O’Hern et al., 2003; Somfai et al., 2007). Minimizing the poten-
tial energy of an applied isotropic pressure amounts to maximizing density,
and normal contact forces play the role of Lagrange multipliers correspond-
ing to impenetrability constraints. Compacting procedures thus appear as
strategies to avoid the effects of friction. Some studies have shown that
the RCP state is not unique – some larger densities might be obtained,
even in systems that cannot crystallize because of the diameter distribu-
tion (Chaudhuri et al., 2010). RCP states, though, may still be defined
as the disordered “jammed states” forming in the limit of fast assembling
procedures. By construction, such states are local solid fraction maxima
in configuration space. Fastly assembled ones turn out to be statistically
similar and share the same solid fraction.

Coordination numbers. The coordination number, z, is defined as the
average number of force-carrying contacts per grain. Thus, if Nc is the
number of contacts and N the number of grains, one has z = 2Nc/N .
As visible in Fig. 15, a proportion x0 of “rattlers” carry no force.x0 is
about 1.5% in frictionless RCP states, and tends to vary with the friction
coefficient. For µ of order 0.1-0.5, it may reach 10 to 15% in equilibrated
frictional monosized sphere packs under uniform stress. Excluding those
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rattlers from the averaging of contact numbers, one may define a corrected
coordination number for the force-carrying structure (sometimes called the
backbone):

z∗ =
z

1− x0
. (15)

The coordination numbers of the lattices of Fig. 19, z = 6 for disks and z =
12 for spheres, are unrealistically high compared to generically disordered
granular materials, for which, as shown in Sec. 3.3 below, z∗ is bounded for
rigid, undeformable grains, to much lower values. Thus z∗ = 6, obtained
with rigid frictionless beads, is an upper bound in the presence of friction.
As may be inferred from Fig. 20, a measurement of coordination numbers is
difficult, even with sophisticated tomography techniques (Aste et al., 2005).
Furthermore, the increase of pair correlation functions near contact (O’Hern
et al., 2003; Somfai et al., 2007; Agnolin and Roux, 2007a) enhances the
difficulty to distinguish really contacting pairs.

Fabric and force anisotropy. The contact network will influence the
material behavior by its density (number of contacts per unit volume), con-
veniently expressed as

nc =
zΦ

2v1
, (16)

in which v1 denotes the average grain volume. It is also characterized by
the statistics of contact orientations, as expressed by the distribution P(n)
of normal unit vectors on the unit sphere Σ, such that

∫
Σ
P(n)d2n = 1,

and P(−n) = P(n) since n and −n play the same role. P(n) may be
expressed with spherical coordinates θ, ϕ and expanded on the basis of
spherical harmonics. P(θ, ϕ), its density with respect to the uniform mea-
sure 1

4π sin θ dθ dϕ, reduces to a function of θ for axisymmetric states (no
dependence on ϕ), which is in fact an even function of cos θ, expressible as
a linear combination of Legendre polynomials of even order, as follows:

p(cos θ) = 1 + b2
3 cos2 θ − 1

2
+ b4

35 cos4 θ − 30 cos2 θ + 3

8
+ . . . , with

b2 =
15

4

[
〈cos2 θ〉 − 1

3

]
;

b4 =
9

16

{
35

[
〈cos4 θ〉 − 1

5

]
− 30

[
〈cos2 θ〉 − 1

3

]}
;

. . . . . .
(17)

Such forms are adequate in systems assembled under gravity and/or subject
to an axisymmetric compression process (e.g., triaxial, Fig. 12). Isotropic
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systems are such that | cos θ| is uniformly distributed between 0 and 1,
whence 〈cos2k θ〉 = 1/(2k + 1) for any k ≥ 1, and all coefficients b2k in (17)
vanish. The few first terms are often sufficient for a good representation
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Figure 1.17. Constitution d’échantillons par pluviation contrôlée de sphères. Simulation par
Dynamique Moéculaire. (i) Points carrés gris et blancs : répartition des contraintes

horizontale σx et verticale σz en fonction de la profondeur z/a où a est le diamètre moyen des
grains. Courbe en trait gras : répartition de la compacité en fonction de la coordonnée

verticale. (ii) Distribution de | cos θ| (anisotropie des orientations de contact) résultant de la
pluviation, dans la partie centrale d’un échantillon de 10000 billes. La distribution est ici

normalisée au nombre de coordination z. En trait continu on a représenté le développement en
polynômes de Legendre jusqu’à l’ordre 4 et à l’ordre 6 en pointillés. Figures extraites de

[EMA 06].

réseau des contacts). Dans le cas de systèmes granulaires tridimensionnels et en vertu
de la symétrie de révolution autour de l’axe vertical, la distibution des orientations
de contact s’exprime comme une fonction paire de cos θ, notée P (cos θ), θ désignant
l’angle entre l’axe vertical et le vecteur normal au plan de contact. Une telle fonction
se décompose sur la base des polynômes de Legendre :

P (cos θ) =

+∞∑

k=0

B2kP2k(cos θ), [1.9]

Les trois premiers termes (k = 0, 1 et 2) suffisent en pratique à donner un paramé-
trage de la distribution des orientations P (cos θ), comme le montre la figure 1.17-
(ii), et l’anisotropie de l’assemblage se résume à deux paramètres µ2 = ⟨cos2θ⟩ et
µ4= ⟨cos4θ⟩, qui déterminent les coefficients B2et B4. Ces moments de la distribu-
tion de cos θ valent 1/3 et 1/5 dans le cas d’une texture isotrope, pour lequel P (cos θ)
est constante (distribution uniforme).

La simulation de l’assemblage par pluviation permet également de tester l’ho-
mogénéité de l’état produit, à d’éventuels effets de bord près. L’ensemble des variables
d’état ne doit pas varier avec la profondeur, à ceci près que le niveau de contrainte aug-
mente (linéairement si la densité est uniforme) avec la profondeur. La caractérisation

Figure 21. ζP (| cos θ|) (coordination number ζ ' 5.2 in this case) versus
| cos θ| in bead sample assembled under gravity. Histogram: numerical data.
Expansion (17) to order 4 (solid line), and to order 6 (dotted line).

of contact orientation distributions, as evidenced in Fig. 21: probability
distribution function P (| cos θ|) (twice p(cos θ) of Eq. 17 because of normal-
ization) is well described by the expansion to order 4 (i.e., truncated after
the terms explicitly written in Eq. 17).

The average normal force among all contact being denoted as 〈FN 〉, it
is often useful to know how forces differ according to contact orientations.
One thus defines FN (n) as the average normal force carried by the con-
tacts with normal direction n, normalized by 〈FN 〉 (such that FN (n) is
uniformly equal to 1 in isotropic systems under isotropic pressure). FN (n)
may then be expanded in spherical harmonics or in Legendre polynomials
in the axisymmetric case, just like P(n).

3.2 Contact forces and macroscopic stress.

Consider a granular sample, of volume Ω, made of grains labelled with
indices i, 1 ≤ i ≤ N , with masses mi and velocities vi. Let us define Fij the
contact force, exterted by grain i onto its contacting neighbour j, and the
branch vector rij , pointing from the centre of i to the centre of j. Then if
the system is subjected to a uniform stress σ, one has the following relation,
in which α, β are indices of coordinates, and the second sum runs over all
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contacts:

σαβ =
1

Ω



N∑

i=1

miv
α
i v

β
j +

∑

i<j

Fαijr
β
ij


 . (18)

This formula may be proved in various ways (Christoffersen et al., 1981;
Iwashita and Oda, 1999), e.g., averaging the stress field within the grains, or
dealing with the momentum transmission through cutting surfaces inside the
sample. The first term of (18) vanishes in equilibrium (evaluating velocities
in the frame of the centre of mass). One may then write

σαβ = nc〈Fαijrβij〉, (19)

from which, using (16), a simple, convenient relation may be extracted for
spherical grains of diameter a, between the average stress P = trσ/3 and
the average normal force:

P =
zΦ

πa2
〈FN 〉. (20)

This formula gives a quantitative form to the estimation of an order of
magnitude of typical contact forces as a2P .

Denoting as σN the contribution of normal force components to the
stress tensor, and assuming, in an equilibrated assembly of spherical grains,
that the average branch vector length is equal to the average diameter a,
and uncorrelated to the contact force, one has

σNαβ = anc〈FN 〉
∫

Σ

FN (n)P(n)nαnβd
2n (21)

In axisymmetric systems like those assembled under gravity and sub-
jected to triaxial compression in the vertical direction, one may also define
FT as the force density, normalized by 〈FN 〉, in the tangential direction
contained in the azimuthal plane – along vector t with non-negative coordi-
nate along the axial direction from which angle θ is measured. In such cases,
choosing this axis as axis of coordinate, one has for all diagonal components

σαα = anc〈FN 〉
∫

Σ

P(n)
[
FN (n)nαnα + FT (n)tαnα

]
d2n. (22)

Then, useful approximation formulae are obtained on keeping the dominant
anisotropic terms in expansions of P (defining coefficient b2 as in expansion
17), of FN (defining, analogously, coefficient bN2 ), and FT . In this latter
case, one should pay attention to the different symmetry and write:

FT (n) = bT sin θ cos θ. (23)
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Keeping only the dominant anisotropic terms in the integral and neglect-
ing their products, convenient fomulae are obtained (Azéma et al., 2009,
2013), which often prove quite accurate, expressing axial, σ1, and lateral,
σ3, stresses as

σ1 = anc〈FN 〉
[

1

3
+

2

15

(
b2 + bN2 + bT

)]

σ3 = anc〈FN 〉
[

1

3
− 1

15

(
b2 + bN2 + bT

)]
.

(24)

Similar formulae may be derived in systems under shear tests (Peyneau and
Roux, 2008b; Azéma and Radjäı, 2014), and, for grains of arbitrary shapes
and polydispersities, the anisotropy of branch vectors might be accounted
for (Azéma et al., 2009, 2013).

3.3 Contact networks and rigidity matrices

Definitions. The rigidity matrix is a central object in the relation be-
tween grain kinematics, contact behavior, and global properties of contact
networks. It should not be confused with the stiffness matrix, expressing
elastic or elastoplastic behavior. The rigidity matrix is a geometric object
– its name originates in the theory of rigidity of structures assembled with
cables, bars and joints (Thorpe and Duxbury, 1998). For a pair of grains i,

n
ij

Grain i

ij

R
ij

R
ji

h

Grain j

Figure 22. A pair of grains nearly in contact.

j in contact or very nearly in contact (separated by a very small distance
hij), as represented in Fig. 22, one defines the corresponding semi-branch

vectors Rj
i , pointing from the (arbitrarily chosen) centre of i to the con-
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tact point or the nearest point to the surface of j, and, similarly, Ri
j , and

the unit vector nij normal to the contact plane (or the incipient one). We
choose one of the grains, say i, as the first object. Then, the contact laws
of Sec. 2.2 involve the relative displacement of the contact point, i.e., the
difference in displacements, δUij , according to the (rigid body) motions of
the first and the second object. Denoting as ui, uj , the displaements of
grain centres and ~ωi, ~ωj their small rotations (displacements are actually
assumed infinitesimal, like velocities), one has

δUij = ui + ~ωi ×Rj
i − (uj + ~ωj ×Ri

j). (25)

Contact laws are more conveniently implemented on distinguishing the nor-
mal (scalar δUNij = nij · δUij) and tangential (vector δUTij ⊥ nij ) com-
ponents of relative displacements. If the contact law admits rolling and
pivoting torques, then (25) should be supplemented by the definition of
relative rotation vector ~ωi − ~ωj . Assembling all degrees of freedom, one
gets an Nf -dimensional vector, U, whose coordinates comprise all those of
displacements and rotations of the N grains. Depending on specific bound-
ary conditions, involving walls, fixed objects, periodicity conditions... Nf
might slightly differ from ND(D+ 1)/2 in dimension D (3 or 2). Likewise,
let us define, with Nc contacts, an DNc-dimensional vector U containing
all normal and tangential components of relative displacements δUij in the
contacts. Then (25) defines a linear operator or matrix we denote as G,
transforming the coordinates of U into those of U :

U = G ·U. (26)

G is the rigidity matrix, with Nf columns and DNc lines, attached to the
structure and geometry of the contact network. Note that the elements of G
contain normal unit vectors and semi-branch vectors, and pertain therefore
to one specific set of grain positions and orientations. The kernel of the
rigidity matrix, ker G, is the subspace of IRNf containing the coordinates
of mechanism motions, i.e., those displacements and rotations causing no
relative displacement at contacts. It may include some (a small number in
usual applications) trivial such motions, in which the whole grain assembly
moves as one rigid body. Its dimension, which we denote as k, is the de-
gree of displacement (or velocity) indeterminacy, or degree of hypostaticity.
The range of G, R

(
G
)
, is the subset of IRNc containing the normal and

tangential components of compatible relative displacements, i.e. those val-
ues which are actually achieved for some displacements and rotations of the
grains. By the rank theorem, the dimension of R

(
G
)

– the rank of matrix
G – is Nf − k.
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Contact forces, defined in each contact as the forces exerted by the first
grain onto the second one, may also be gathered in a DNc-dimensional
vector F , with normal and tangential components in the same order as in
vector U . Forces and torques may be externally applied onto the grains,
and their coordinates may be suitably gathered into an Nf -dimensional
load vector Fext – such that its work in small displacement U is simply the
scalar product Fext ·U. The equilibrium condition, for forces and torques,
requests that Fext is balanced by the net internal forces and torques on each
grain, the coordinates of which form vector Fint. It is easy to check that
this condition simply writes

Fext = −Fint = TG · F (27)

involving the transposed rigidity matrix. The kernel of TG contains all
those sets of contact forces in equilibrium without any applied load – self-
balanced contact forces. Its dimension h is the degree of force indeterminacy
or degree of hyperstaticity of the contact structure. The range of TG con-
tains all load vectors which may be balanced by some set of contact forces:
it is the set of supportable loads (defined here without any sign or inequal-
ity condition on forces). The statement that the matrices appearing in (26)
and (27) are transposed to each other is some kind of generalized theorem of
virtual work: work may be evaluated as Fext ·U = F ·U whatever the choice
of those vectors provided U = G ·U and Fext = TG · F . Since the range
of a matrix is the orthogonal complementary subspace to the kernel of its
transpose, this provides a condition for compatibity of U (orthogonality to
all sets of self-balanced contact forces) and a condition for supportability of
Fext (orthogonality to all mechanism motions). Finally, combining the re-
lations on subspace dimensions stemming from the rank theorem and from

R
(
G
)

=
[
ker TG

]⊥
, one finds the following relation between h, the degree

of hyperstaticity (force indeterminacy) and k, the degree of hypostaticity
(velocity indeterminacy):

Nf + h = DNc + k. (28)

Variants of relation 28 apply to frictionless grains, for which only normal rel-
ative displacements and contact forces are relevant. Restricting accordingly
the definition of the rigidity matrix and the appropriate spatial dimensions,
one finds

Nf + h = Nc + k. (29)

In the presence of rolling and pivoting resistance in the contacts, relative
displacements are to be supplemented with relative rotations, and contact
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forces are to be supplemented with contact torques, thereby increasing the
number of lines of matrix G to D(D + 1)Nc/2 (i.e. 3Nc in 2D and 6Nc in
3D). And (28) becomes

Nf + h =
D(D + 1)

2
Nc + k. (30)

Contact structures devoid both of hyperstaticity (h = 0) and of hypostatic-
ity (k = 0) are isostatic. Equivalently, matrix G is square and invertible.
It is also customary to regard as isostatic networks those that only pos-
sess trivial mechanism motions (global rigid body motions, or rotations for
frictionless spheres) which are easily eliminated from the list of degrees of
freedom. Note that isostatic systems have specific value of the coordination
number, obtained on writing Nc = zN/2 and Nf = D(D + 1)N/2, for N
grains, in (28).

Properties. One fundamental characteristic feature of granular materials
is the scarcity of contacts, which in some particular cases reaches the limit
that the contact network becomes devoid of hyperstaticity (h = 0). This is
in particular, the generic case with frictionless grains in the rigid limit, i.e.,
when the confining stress is small enough and/or the stiffness of contacts
large enough for the elastic deflections to be negligible – a condition that
will be specified in more quantitative terms in the following. The absence
of force indeterminacy for rigid frictionless objects, as discussed, e.g., by
Roux (2000), is well established in generically disordered systems (Silbert
et al., 2002; O’Hern et al., 2003; Agnolin and Roux, 2007a; Donev et al.,
2007) and stems from the impossibility (in the statistical sense of events
of vanishing probability) of satisfying specific relations involving grain po-
sitions and sizes. A familiar example is that of a four-legged table, which
is generically wobbly on a hard floor – thereby suppressing force indeter-
minacy. As a property originating in geometric genericity, it applies to the
contact network of hard grains, with or without friction: generically, self-
balanced sets of normal contact forces cannot be supported. This entails
an upper bound to the number of contacts in assemblies of rigid grains.
Applying relation (29) to large contact networks, and eliminating rattlers
(which would contribute 6x0N to both Nf and k), one has Nf = 6N (or
Nf = 3N in 2D), while Nc is equal to z∗N/2. Upper bounds on z∗ follow:
z∗ ≤ 12 (z∗ ≤ 6 in 2D) in general. If a lower bound is known to k, then
the upper bound on z∗ will be more stringent. With frictionless spheres (or
disks) all rotations are mechanism motions, whence k ≥ 3N and z∗ ≤ 6
(or k ≥ N and z∗ ≤ 4 in 2D). With objects of revolution, k ≥ N and
z∗ ≤ 10. These bounds on (rattler-corrected) coordination number z∗ ap-
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ply, as already mentioned, to frictional objects in general. The isostatic
value of z∗ for frictionless objects coincides with this upper bound. Consid-
ering truly frictionless rigid objects, it is established (Roux, 2000) that the
force-carrying structure in sphere assemblies under a certain load is isostatic
(k = h = 0), while a non-vanishing degree of hypostaticity (k > 0) may
be retained in stable packs of frictionless grains of other shapes (which still
satisfy h = 0), as, e.g., ellipsoids (Donev et al., 2007). In the presence of
friction, values well below the upper bound might be obtained. From (28),
the isostatic value is z∗ = 4 (z∗ = 3 in 2D), whatever the grain shape. In
general, contact structures of frictional objects are observed to possess little
or no hypostaticity [the small proportion of spheres maintained between 2
contacts (Roux, 2000) is an exception], whence a lower bound: z∗ ≥ 4. The
isostatic value is not very closely approached (one typically obtains z∗ = 4.5
in poorly coordinated sphere assemblies), except on choosing unphysically
large friction coefficients (µ → ∞) (Agnolin and Roux, 2007a). However,
with ratio h/Nf of order 15%, it may be concluded that the paucity of
contacts remains an important characteristic of granular materials. It ex-
plains the wide distribution of force values. While elasticity, which rules
the distribution of forces in well connected networks, tends to share them
evenly, geometrically determined force values, as modeled in some statistical
approaches (Radjäı, 2015) tend to spread force values over wider intervals.
With contacts capable of resistance to rolling and pivoting, it is easy to

20

Force networks: loopless structure?

Large RR,
or small RR,
but very low initial ve-
locities
Minimum coordination
= 2 (h = k = 0)

Figure 23. Detail of nearly loopless structure formed on slowly assembling
cohesive grains with rolling resistance in the contacts (Gilabert et al., 2007).

show that any continuous contact network is devoid of non-trivial mech-
anism motion, any chain of contacting grains forms a solid structure (see
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Fig. 10). In agreement with (30), the isostatic coordination number is equal
to 2, the value characterizing a tree or loopless structure. Any cycle in
the contact network creates hyperstaticity. Upon assembling, with adhe-
sive grains, equilibrium contact networks by some dynamical process, loops
will spontaneously appear as preassembled structures break and come into
contact with one another. But if the assembling process is gentle enough,
adhesive contacts will not break, and, as cycles only form in the unlikely
event of two rigid structures coming in contact simultaneously by two dif-
ferent points, loopless, isostatic structures will tend to form, as shown in
Fig. 23.

Rigidity matrix and stiffness matrix. The rigidity matrix and its
transpose are objects of constant use in numerical computations of granular
micromechanics: while equations of motion are written for the coordinates
of U, involving those of Fext and Fint, the contact behavior relates F to U ;
matrix G and its transpose relate U to U and Fint to F . Stiffness matrices
express the response of the whole grain collection to small displacements.
They are mostly used in quasistatic conditions (although they might also
contain some viscous terms associated with wave damping). Their relation
to rigidity matrices is explicitly shown here, for elastic contact behavior:
small changes in relative displacements ∆U are assumed to correspond to
small contact force increments ∆F as

∆F = K ·∆U , (31)

where the local stiffness matrix K, a square matrix of order DNc, expressing
contact elasticity, contains zeros except on its principal diagonal, the ele-
ments of which are the normal and tangential stiffnesses KN and KT for all
the contacts (values of KN and KT depend on the contact geometry and its
deflection). Using the rigidity matrix, ∆U results from small displacements
and rotations, coordinates of ∆U; and the increment in the net forces and
torques on the grains, ∆Fint, results from ∆F :

∆Fint = − TG · ∆F = − TG · K · ∆U = − TG ·K · G · ∆U = −K · ∆U

This defines the stiffness matrix of the granular sample, a square matrix or
order Nf , K, as

K = TG · K · G. (32)

K is symmetric if K is symmetric (which is insured by its diagonal form in
the elastic case), and positive if K is positive (as for elastic contacts with
KN > 0 and KT > 0). If K is diagonal with non-vanishing elements, the
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Table 1. Influence of initial state and dimensionless control parameters on
mechanical behavior (Y=Yes, N=No)

initial state I κ (> 103) e or ζ µ, µR,P /a P ∗

Assembling Y Y N Y Y Y

Quasistatic (I) Y N Y N Y Y

Quasistatic (II) Y N N N Y Y

Critical state N N N N Y Y

Dense flow N Y N N Y Y

Collisional N Y N Y Y Y

kernel of K coincides with the kernel of G, i.e., contains the mechanism
motions. Stiffness matrices are used to numerically measure elastic moduli
and discuss theoretically their values and relations to microstructure (Ag-
nolin and Roux, 2007c; La Ragione and Jenkins, 2007). In case the force
in some of the contacts reaches the Coulomb threshold, causing potential
sliding, one may still express the elastoplastic response through a local stiff-
ness matrix coupling. K remains block-diagonal, with 3× 3 (D×D) blocks
corresponding to each contact, possibly coupling tangential forces to nor-
mal displacements for contacts with full friction mobilization – this matrix
now depends on the direction of incremental displacements (McNamara and
Herrmann, 2006; Roux and Combe, 2011). Such elastoplastic stiffness ma-
trices are useful in the study of quasistatic contact network response and
stability (Roux and Combe, 2002; Welker and McNamara, 2009; Roux and
Combe, 2011).

3.4 Dimensionless control parameters

In view of the potential complexity of contact behavior, it has proved use-
ful to extract the essential parameters governing material behavior in dimen-
sionless form (Roux and Chevoir, 2011). Such dimensionless groups combine
parameters appearing in contact laws (such as material elastic properties)
and those defining the mechanical test one wishes to model. Measurements
of granular rheology typically involve some stress control, say some pressure
level P , and some strain rate ε̇ – with plastic-like response for small enough
rates, and different states away from mechanical equilibrium in flow.

Table 1 summarizes the dependence of material behavior in different
regimes on control parameters. One relevant classification of the different
regimes of mechanical behavior of granular materials is in terms of solid-
like (statically resisting shear stress) or liquidlike (flowing) rheology, supple-
mented, by analogy with collections of molecules, with the case of “granular
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gases”, in which the grains are strongly agitated and interact with one an-
other in sequences of collisions. These categories correspond, in part, to the
lines of Table 1. The columns are labelled according to the different relevant
dimensionless parameters, and the intersection of, e.g., column µ (together
with rolling or pivoting friction coefficients in dimensionless form), contains
“Y” on all lines for which µ (µR and µP as well) have some influence on the
material behavior in the situation considered. Friction coefficients turn out
to affect all rheological regimes.

The inertial number, I, quantifies the distance to equilibrium by multi-
plying ε̇ by a characteristic time. Let us consider one grain, of diameter a
and mass m, in interaction with its neighbours by contact forces that may
vary as the material deform and the contact network rearranges. The net
force, accelerating it, is of order Pa2. New contacts will form within some
inertial time τi, of the order of the time within which the grain, accelerated
from rest, moves some distance proportional to a, i.e. τi =

√
m/aP . One

may thus define a dimensionless strain rate or inertial number as

I = ε̇

√
m

aP
. (33)

(Some use variant I = aε̇
√
ρ/P , ρ being the mass density within the grain).

The quasistatic limit, in which the material behaves like a solid, is the
limit of I → 0. A definition might depend on the accuracy with which
inertial effects and kinetic energy may be neglected. In practice, for simple
systems (e.g., frictional spherical beads with narrow diameter distribution),
a solid regime is achieved below I = 10−3 or 10−2. Frictionless grains require
smaller values for the quasistatic behavior to be approached (Peyneau and
Roux, 2008a). This defines the “quasistatic” lines of the table. In such
regimes, I, by definition, becomes irrelevant, and so are the viscous forces
– whence the “N” in the column corresponding to viscous damping (ζ) or
restitution coefficients (e). Such ingredients of the contact model turn out
to have little influence in dense granular flows too, i.e., in the regime of I
values up to order 0.1 (da Cruz et al., 2005). But more strongly agitated
systems are sensitive to the level of dissipation in collisions (e or ζ).

Contact forces, under pressure P , or of order Pa2 (with some effect of
density and coordination, see relation 20). With Hertzian contacts, this
entails some deflection h of order [Pa2/(a1/2Ẽ)]2/3, from (3). Comparing h
to diameter a defines a stiffness number:

κ =

(
Ẽ

P

)2/3

, (34)
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such that (h/a) ∝ κ−1, quantifying the geometric effect of contact deflec-
tion. The limit of rigid grains is defined as that of κ → ∞. With usual
materials (say, for sands or glass beads), κ usually remains above 103, un-
less grains are subjected to such high pressures that the stress concentration
in contact regions should cause breakage (Agnolin and Roux, 2007b). h/a
may be regarded as an order of magnitude for macroscopic strains, if their
microscopic origin is the material strain in the contact regions. Anticipating
on Sec. 5.1, such a strain regime is referred to as “type I” in Tab. 1, while
strains associated to contact network rearrangements – as in the simple ex-
ample of Fig. 17 – are termed “type II strains”. Type I strains are naturally
of order κ−1, while larger strain scales, within a solidlike quasistatic regime,
are insensitive to κ if κ > 1000. With linear contact elasticity, involving a
constant stiffness parameter KN , κ is appropriately defined as KN/(aP ).

Column P ∗, in Table 1, concerns cohesive materials, for which force scale
F0 (the tensile strength, introduced in connection with Eq. 6 and Fig. 9)
should be compared to confining forces of order Pa2. This defines a reduced
pressure, P ∗ (last column in the table), as

P ∗ =
a2P

F0
. (35)

Cohesive effects dominate for P ∗ � 1 and become negligible for P ∗ � 1.
Intergranular adhesion stabilizes open structures as shown in Figs. 10 and
23. For growing P ∗ such structures collapse, and as F0 becomes negligible,
the dense force networks of Fig. 15 are retrieved.

The assembling process by which granular samples are prepared, before
rheological tests are carried out, is both important and little known, because
models of granular materials have been focussing on solid deformation or
steady flow, whereas assembling processes are inherently hybrid situations,
in which agitated or flowing materials come to rest in a short time. It
tends to depend on all factors and parameters mentioned in the table, and
is briefly discussed in the next section.

4 Assembling process and compression.

The assembling processes condition the initial states of granular materials
prior to mechanical testing. Most frequently such processes should include
a compression stage, which brings the material to a certain controlled pre-
stressed state. Unlike ordinary solids such as metals, granular materials
have no natural state independently of the confining stress. The classical
approaches to the mechanics of solidlike granular materials describe their
response to changes or increments of external stress. Assembling methods
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escape such models as elastoplasticity applied to soil mechanics, and the
knowledge of these processes is still largely empirical. For cohesionless ma-
terials, the method of controlled pluviation offers the advantage to produce
homogeneous samples of varying densities. It consists in raining grains onto
the free surface of a growing sample (Rad and Tumay, 1987; Benahmed
et al., 2004), with constant flow rate per surface area and constant vertical
velocity of the falling grains. Simulations (Emam et al., 2005) enable ho-
mogeneity checks. Fig. 24 shows the lack of homogeneity due to a varying
height of free fall during the sample fabrication.

37
Less controlled pluviation

Drop the grains from fixed height (red)⇒ larger density at bottom, where H∗
p is

larger.
Dotted curve = pluviation results with varying H∗

p

Blue = controlled pluviation result

Figure 24. Vertical solid fraction profile Φ(z) in DEM-simulated samples
assembled by pluviation. Blue line (C50): homogeneous system assembled
with constant height of free fallH. Red (V55) and green (V70) lines: varying
Φ obtained on dropping grains from constant elevation. Dotted lines: model
of such variations from H-dependent controlled pluviation results.

Many assembling processes have been tested by DEM (Combe and Roux,
2011). They are often simply characterized by the values of the final state
variables, rather than striving to mimic laboratory methods. The slow com-
pression of loose configurations with initially non-contacting grains, until a
contact network resists further compression, is a convenient method if car-
ried out homogeneously within a periodic box of decreasing size. This results
in a variety of microstructures, hopefully representative of the possible ma-
terial states under low stresses. In the following, results will be reported
on such ideal structures, initially isotropic. Specifically, we briefly report
on the salient results obtained by Agnolin and Roux (2007a,b,c) on various
isotropic states: very dense, highly coordinated states (denoted as A), with
ΦA ' 0.64 and z∗A = 6 under low pressure (RCP state); very dense, poorly
coordinated ones (denoted as C) with ΦC ' ΦA, but z∗C ' 4.6; intermediate
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ones (B) such that ΦB ' 0.628 and zB ' 5.8; and looser ones (D), with
ΦD ' 0.593 and z∗D ' 4.55. (These values are obtained under low pressure,
corresponding to κ ' 39000, or glass beads under 10 kPa). Among these
systems those with low coordination initially have a proportion x0 of rattlers
above 10%. A result of DEM studies (unknown in the previous literature
on dense bead packs) is thus the existence of very dense states with low
coordination numbers, as z∗C is not larger than z∗D, while ΦC is very close
to the maximum value of RCP. As to state B, it is looser than C, but bet-
ter coordinated. Although the process leading to states A and B could be
argued to be similar to lubricating the grains (ideally for A, assembled with
µ = 0, imperfectly for B) and the preparation of C bears some analogy to
vibrating grains in a dense configuration, for lack of accurate measurements
of coordination numbers in large grain assemblies it is not known in general
which value of z∗ corresponds to experimental dense bead packs.

Fig. 25 shows the evolution of density and coordination in such systems
under an isotropic compression cycle, along with the shape of the force dis-
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Normal force distribution under growing pressure

f = FN/⟨FN ⟩,
P = 10, 100, 103, 104, 105 kPa
Distribution narrows as force indeter-
minacy increases.
A0 = frictionless system. A=A0 in
initial state
A is frictional, assembled without
friction.

Figure 25. Left: variations of Φ and z∗. Right: distribution of normal
forces, normalized by their averages (Agnolin and Roux, 2007b), for 5 values
of P , κ decreasing from 39000 to 84 by factors of 102/3. A0-labelled results
correspond to A systems kept frictionless during the compression.
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tribution, normalized by average 〈FN 〉 (or distribution of f = FN/〈FN 〉).
The friction coefficient is equal to 0.3 in all cases. Changes in Φ and z∗

are moderate as long as κ > 103 (although more notable for z∗ when ini-
tially low). The growing force indeterminacy as z∗ increases well above the
minimum value 4 leads to gradual narrowing of distribution P (f) – quite
fast in system A, for which friction is “plugged in” at the lowest pressure,
and slowly in frictionless case A0, which remains close to isostatic over a
large pressure range. Remarkably, the evolution of Φ in the pressure cycle
is almost reversible (with the small difference between A and C retrieved
upon decompressing). Sands are supposed to behave plastically, with a sig-
nificant density increase under isotropic compression. The different DEM
observations are very likely due to the absence of damage in the contact
regions in the numerical model. On the other hand, it is quite remarkable
that the coordination number, if initially high, decreases by a large amount
in the compression cycle (Fig. 25) – a phenomenon that occurs even for
smaller pressure cycles. The reversibility is only apparent, and complex
contact network evolutions take place. Oedometric compression (Khalili
et al., 2017), in which σ1 is increased with no lateral strain (ε2 = ε3 = 0)
reveals a similar behavior to isotropic compression.

Cohesive systems, as announced in Sec. 3.4, if initially stabilized in very
loose structures (Gilabert et al., 2007; Than et al., 2017), as apparent in
Figs. 10 and 23, will irreversibly collapse to denser states under growing
stress intensity. Their plasticity in isotropic (or oedometric) compression,
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Figure 26. Left: Φ versus P in model wet bead assemblies, comparing
systems with and without capillary cohesion. Right: Void index e = −1 +
1/Φ versus pressure in experiments (red solid line and black dashed one for a
different test) and simulations (red connected points) with wet beads (Than,
2017) of diameter 0.1 mm.
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unlike the subtle and hidden irreversible evolution of the model cohesion-
less systems of Fig. 25, is very conspicuous. Fig. 26 shows the simulated
behavior of wet glass beads, attracting one another at contacts through
small liquid bridges as in Fig. 8. Most of the irreversible density increase
occurs in P ∗ range between 0.1 and a few units. Note that the numerical
observations (right graph) are similar to experimental ones (Than, 2017),
despite a certain lack of reproducibility of the latter.

Loose cohesionless systems might be obtained on suppressing capillary
cohesion (as if drying, or, equivalently for the solid, quasistatic behavior,
saturating the system) under large P ∗, and then decompressing to a low
pressure (see first graph of Fig. 26). Still using µ = 0.3, one thus gets
samples denoted as L, with Φ = 0.571± 0.005 and z∗ ' 4.7.

5 Quasistatic behavior

We now turn to the response of solidlike granular systems in classical me-
chanical tests. Illustrations mainly focus on triaxial compressions of the
cohesionless model material (assemblies of spherical beads, µ = 0.3) the
preparation of which in different states is presented in Sec. 4. What do
we learn from the study of such materials in triaxial compression, with the
full microscopic information accessible in numerical, grain-level modeling
via DEM? The results reported here aim at clarifying (Sec. 5.1) the role of
elasticity and the deformation mechanisms of granular materials, depending
on their initial state, which should not only be classified according to its
density. We also relate the approach of the critical state at large strain with
internal material state evolutions (Sec. 5.2).

5.1 Initial state, small strains, “prepeak” behavior

Initial elastic behavior. Pressure dependent elastic moduli, in isotropic
compression, might be obtained using the elastic stiffness matrix of Sec. 3.3.
Fig. 27 shows the values of the bulk (B) and shear (G) moduli of the
isotropic systems of Fig. 25, versus pressure. It should be remarked that
the values of moduli are more sensitive to coordination number z than to
density: well-coordinated systems A and B are separated from poorly co-
ordinated ones C and D (even though C is denser than B). Elastic moduli,
which may be measured in the laboratory, may thus be regarded as indirect
measurements of coordination number. It is expected from relations 4 and
20 that moduli grow as P 1/3. Best linear fits on the logarithmic graphs of
Fig. 27 give however somewhat larger exponents. To some extent, this is
due to the increase of the contact density in compression (variation of z,
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Figure 27. Elastic moduli in the different systems of Fig. 25 in isotropic
compression [from Agnolin and Roux (2007c)]. Data set marked “KJ” cor-
respond to experimental results on loose pack of glass beads (Kuwano and
Jardine, 2002). Left: B versus P . Right: G versus P .

see Fig. 25). However, this does not explain the different behavior of shear
moduli, which are anomalously small in poorly coordinated systems. This
peculiar behavior is reflected by the performance of the Voigt approximation
for the moduli, based as usual on the assumption that displacements asso-
ciated to macroscopic strain ε coincide with the values of the corresponding

affine field at grain centres. This approximation predicts values BV, GV, in-

Figure 28. [From Agnolin and Roux (2007c)] Left: ratio B/Be (data points
with error bars, joined by solid line), with Be defined in (36), bracketed by
Voigt (crosses) and Reuss (square dots) estimates, in A (red) and C (black)
states versus P . Right: G, normalized by average contact stiffness and
density, versus corrected z∗ value. “Z” data points: samples with µ = ∞.
“LRJ” points: prediction of model by La Ragione and Jenkins (2007) .
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volving the constant stiffness ratio αT defined in (5) and Z(1/3) =
〈F 1/3

N 〉
〈FN 〉1/3 ,

characteristic of the force distribution:

BV = Z(1/3)Be =
1

2
Z(1/3)P 1/3

(
zΦẼ

3π

)2/3

; GV =
6 + 9αT

10
BV. (36)

The Voigt approximation grossly overestimates G especially for small z.
The explanation was first contributed by Wyart (2006), who argued that
G should be proportional to the degree of hyperstaticity. On the other
hand, B, because it expresses the response to a stress increment propor-
tional to the preexisting stress, possesses a Reuss-like lower bound (Agnolin
and Roux, 2007c), obtained from trial force increments proportional to the
preexisting forces. This Reuss estimate is also proportional to Be defined in
(36). Thus the bulk modulus is bracketed in some satisfactory estimation
interval (Fig. 28). The second graph of Fig. 28, in which shear moduli, di-
vided by obvious factors of average stiffness and density, are plotted versus
z∗∗ (a slightly corrected value of z∗ such that the degree of hyperstaticity
h is proportional to z∗∗ − 4) shows that the shear modulus indeed tends to
vanish proportionally to degree of hyperstaticity h (Somfai et al., 2007; Ag-
nolin and Roux, 2007c). To explore this tendency, additional samples with
infinite friction coefficients were assembled by Agnolin and Roux (2007c),
in which z∗∗ = 4 is approached at low pressure. The model by La Ragione
and Jenkins (2007), a sophisticated self-consistent approximation scheme,
provides improved estimates of G but fails to capture its tendency to vanish
proportionally to h.

Prepeak behavior and initial coordination number. With initial
isotropic state C, compressed to different pressures, the prepeak behavior,
expressed with stress ratios and strains, as shown in Fig. 29, shows little
dependence on initial pressure P . The peak deviator is reached for εa ∼
3.10−2. But, of course, on much smaller scale, one should first observe,
close to the initial state, the quasielastic regime. The corresponding strain
interval, shown in the insets of the graphs of Fig. 29, is of order 10−6 to
10−4, as in experiments on sands. The moduli, as deduced from the stiffness
matrix approach, based on the assumption of a stable contact network in
which all contacts behave elastically, describe the initial slope of stress-strain
curves. This quasi-elastic regime is observed (Agnolin and Roux, 2007c) to
grow approximately as P 2/3, which, assuming moduli proportional to P 1/3,
would correspond to constant relative stress increments δσ/σ.

Interestingly, elastic moduli may also be measured for different states
along the curves of Fig. 29. The stress deviator increase along the curve
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Figure 29. Deviator stress normalized by constant lateral stress q/P , in
prepeak regime (left), and volumetric strain (right) versus axial strain, in
dense initial states with small coordination number (C), for different values
of P , and elastic properties of glass beads. Insets: initial quasielastic regime
(note blown-up strain scale), straight line slope given by Young modulus
(left) or −(1− 2ν) (right).

Figure 30. Left: creep to equilibrium (between dots) and resumed compres-
sion test along triaxial loading path. Right: resumed, strain rate controlled,
triaxial compression (dots). Straight line slopes given by elastic moduli.
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reflects a non-elastic behavior, because of friction mobilization and network
restructuring. On maintaining constant stresses, rather than imposing the
axial strain rate, small creep strain intervals are observed, leading to well-
equilibrated states. Those states, in which contact networks are stabilized
with force values without full friction mobilization, first respond elastically
upon resuming the imposed strain rate test. Such elastic properties reflect
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Figure 31. Growing anisotropy in triaxial test for dense (C-type) initial
state: c̃2 = 4b2/15 and f̃2 = 4bN2 /15 (left); C11/C22 (right) versus q/σ3.

the growing anisotropy of the systems in triaxial compression, as shown in
Fig. 31. Thus the longitudinal moduli become larger in the axial direction
(C11), than in the transverse ones (C22), because of the increasing fabric and
force anisotropies. Contact normal directions are more numerous near the
axial direction (with growing parameter b2), and also tend to carry larger
forces (bN2 increases).

The dependence of the triaxial compression curve on the initial coordi-
nation number is visualized in Fig. 32, showing, on the same graph, the
deviator and the volumetric strain curves obtained from initial states A
and C, characterised by a very similar density (Φ near the maximum, RCP
value) but different coordination numbers: z∗ near 6 for A, about 4.6 for C
(and z ' 4). While the height of the peak deviator stress, given the level of
statistical uncertainty on measurements on finite samples (see right graph in
Fig. 32), should be regarded as identical, the shape of the stress-strain curve
is notably different, with a much steeper initial rise of deviator stress in the
well coordinated system. Fig. 33, showing, analogously to Fig. 29, triaxial
test results in A samples under varying initial pressure (and constant lateral
stress) P , reveals a striking difference: strain amplitudes strongly vary with
P for the part of the response corresponding to the steep increase of deviator
stress. On rescaling strains, using the scale of elastic strains, proportional
to P 2/3 (because moduli tend to grow like P 1/3), or like contact deflections
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Figure 32. (Roux and Combe, 2010). Left: triaxial compression response
for initial states A and C (κ ' 8000). Right: response of different C-type
samples.

Figure 33. (Roux and Combe, 2010). Triaxial tests in dense systems A
with initially large coordination number. Left graph: q/P and εv shown
versus εa for different P . Right graph: same data, shown versus rescaled
strain εa(P0/P )2/3.

h/a ∝ κ−1, thus using strain coordinates proportional to κε, then these dif-
ferent curves tend to superimpose in the initial range. This is characteristic
of type I strains, which stem from strains in the contact regions: as long as
q/P stays below 0.8 or 0.9, A-type systems deform because contact regions
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deform. This contrasts with the type II strains exhibited by systems in ini-
tial state C, for which macroscopic strains are not sensitive to κ, as shown
above with Fig. 29 and reported in Table 1. In a type I strain regime (Roux
and Combe, 2002, 2010; Roux, 2015), the granular system actually behaves
like a network of rheological elements as shown in Fig. 11. Although the
strains are not elastic, due to intergranular friction (the plastic sliders in
the network of rheological elements), elasticity (the springs) sets the strain
scale. Within such type I regimes, the creation of new contacts plays a minor
role: it is possible to observe the same behavior with simulations in which
only the initial contact network is dealt with, as long as this network does
not break. It is also possible to simulate this behavior with purely static
methods, based on elastoplastic stiffness matrices (Welker and McNamara,
2009; Roux and Combe, 2011). Beyond regime I (say for q/P > 1 in sys-
tems A, and much sooner, for q/P > 0.3 in systems C) contact networks
get repeatedly broken and repaired, in rearrangements involving instabili-
ties at the microscopic scale. “Quasistatic” stress-strain curves are strictly
continuous sets of equilibrium configurations in regime I. In regime II they
have to be understood as discontinuous sets of equilibrium configurations
involving jumps during which the system gets accelerated first, and then
stabilizes with a new contact network. To obtain a macroscopic constitu-
tive law from microscopic ingredients one should therefore follow different
routes according to the type of strain. Regime II is more challenging, as
the amplitude of strain does not originate in contact behavior, but in the
complex geometry of rearranging grain packs.

Type I strains are observed for stable contact networks, and naturally
extend to larger stress intervals for large coordination numbers (whence the
behavior of A samples). They also occur over notable intervals on reversing
the loading direction in tests such as the triaxial compression: load rever-
sal, causing tangential forces to return inside the Coulomb cone, reduces
the number of sliding contacts and may suppress the contact network in-
stability due to friction mobilization. Systems with small hyperstaticity
tend to possess less stable networks and typically exhibit type II response.
In the extreme case of rigid, frictionless grains, forming contact networks
with no force indeterminacy (isostatic for spheres or disks), it was explicitly
shown (Combe and Roux, 2000) that the range of stability of equilibrium
contact structures, in terms of stress interval, vanishes in the limit of large
samples. Any stress increment, however small, causes a rearrangement and
strains in the macroscopic limit. Frictionless grain assemblies (Peyneau and
Roux, 2008a,b; Azéma et al., 2015), in which stress-strain curves are partic-
ularly elusive – non-existent, according to Combe and Roux (2000), if grains
are perfectly rigid – exhibit finite macroscopic friction, but, at least for cir-
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cular, spherical or polygonal shapes, are devoid of dilatancy, contradicting
naive intuitions based on mechanisms like the one of Fig. 14. Instabilities,
producing combined complex displacement fields as shown in Fig. 16, turn
out to produce contraction as much as dilation (Combe and Roux, 2000;
Azéma et al., 2015).

5.2 Larger strains and approach to critical state

Fig. 34 shows how initially isotropic states L, D and A, made of frictional
beads (µ = 0.3) assembled with solid fraction ranging from ' 0.57 (L)
to 0.64 (A), approach the same critical state at large axial strain εa. As

Figure 34. Deviator stress (left axis) and solid fraction (right axis) versus
axial strain for dense (A), medium dense (D) and loose (L) initial state.

expected, all three initial states evolve towards the same plastic plateau
value (qc/σ3 ' 0.9) for deviator stress and the same density (solid fraction
Φc ' 0.595) for axial strains above 0.3. With, initially, Φc < ΦD < ΦA,
systems A and D classify as dense: deviator stress, increasing with εa, goes
to a maximum, the larger the denser the initial state, and then decreases
to the critical plateau value qc. Meanwhile, solid fraction Φ decreases (after
some contractant initial phase for D) towards the critical value Φc. On
the other hand, with ΦL < Φc, initial state L classifies as loose: as axial
strain εa grows, its solid fraction Φ, which decreases, and its deviator stress
q, which increases, both vary monotonically and asymptotically approach
their critical values, Φc and qc, at large εa.

As apparent in Fig. 35, specific values for all internal state variables,
which are common to different initial states, are approached for large strain
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in monotonic triaxial compression – this confirms the existence of a well-
defined critical state, with a specific plastic flow structure. The second graph

1989) ) both for spheres and polyhedra, as shown in Fig. 13,
all along the shear. We note that the theoretical fit would
have been less satisfactory for polyhedra if the branch vec-
tor length anisotropy al were omitted from the description.

Eq. (31) is interesting as it exhibits the two origins of
shear stress in a granular system: (1) the fabric anisotro-
pies a and al, related to the branch vector and (2) the force
anisotropies an0 and at0 , related to the contact force. Fig. 12
shows that the values of these anisotropy parameters
underlying the shear stress depend on the particle shape.
In particular, the total force anisotropy an0 þ at0 compared
to the total fabric anisotropy aþ al is much higher in
the case of polyhedra. In the critical state, we have
an0 þ at0 ’ 0:88 and aþ al ’ 0:2 for polyhedra, an0 þ at0 ’
0:26 and aþ al ’ 0:24 for spheres. The high value of the
force anisotropy in the case of polyhedra comes from both
radial and orthoradial components whereas in the sphere
packing at0 ’ 0:05 is much less important than an0 ’ 0:21.
The strong contribution of force anisotropy to the polyhe-
dra packing is a particle shape effect related to the face–
face contacts which carry most strong forces. This point
will be analyzed in more detail below.

6. Force distributions

In this section, we study the probability density func-
tions (pdfs) PðfnÞ for sphere and polyhedra packings.
Fig. 14 shows typical maps of normal forces in a portion
of both packings in the critical state. The 3D force chains
can be observed in both packings, but they seem more tor-
tuous in the case of polyhedra.

The normal force pdfs are shown in Fig. 15 on log–linear
and log–log scales at eq ¼ 0;3. In both pdfs, the strong
forces, i.e. forces above the mean normal force hfni, fall
off exponentially: PðfnÞ/e% bfn=hfni, with b ’ 0:9 for S1 and
b ’ 1:1 for S2. In contrast, the shapes of the pdfs in the
range of weak forces (fn < hfni) are radically different. In
the sphere packing, the pdf slightly bends down as fn ! 0
but does not tend to zero. We observe also a small peak
close to the mean force. This is consistent with several
other numerical and experimental observations for isotro-
pic packings (Lovol et al., 1999; Bardenhagen et al., 2000;
Antony, 2001; Silbert et al., 2002; Metzger, 2004; Majmu-
dar and Behringer, 2005). In the case of polyhedra, the

number of weak forces bends up as the force tends to zero.
For both packings, the range of weak forces is well approx-
imated by a power-law distribution:

PðfnÞ/
fn

hfni

! "a

; ð32Þ

with a ¼ % 0:24 for S1 and a ¼ 0:05 for S2. The divergence
of the number of weak forces in S1 should be attributed to
the polyhedral shape of the particles favoring the arching
effect an hence a higher fraction of weak forces. The coef-
ficient of friction has a similar effect though to a lesser ex-
tent. We find, however, that in both systems the fraction of
weak forces ðfn < hfniÞ is about 60%.

7. Contact networks of polyhedral particles

In the case of the polyhedra packing, it is interesting to
investigate the organization of the contact network in
terms of simple, double and triple contacts. The respective
fractions of these contact types and their contributions to
the structural anisotropy and force transmission are the
key quantities for understanding the effect of particle
shape on the shear strength properties of granular media.
In fact, one expects that the triple (face-to-face) contacts
play an essential role in force transmission. This feature
was observed in the case of polygon packings for side-to-
side contacts (Azéma et al., 2007).

Considering the discrete expression of the stress tensor
in Eq. (3) and restricting the summation to each contact
type allows us to perform an additive decomposition:

r ¼ rs þ rd þ rt ; ð33Þ

where the subscripts s, d and t design the respective contri-
butions of simple, double and triple contacts. The corre-
sponding stress deviators qs; qd and qt are then
calculated and normalized by the mean stress p. Fig. 16
shows the evolution of partial shear stresses qs=p; qd=p
and qt=p as a function of shear strain eq. The contribution
of simple contacts is larger than double and triple contacts.
However, the double and triple contacts support together
the largest portion of the overall shear stress. Indeed,
according to Fig. 16, we have qs=p ’ 0:19, qd=p ’ 0:16
and qt=p ’ 0:1 in the critical state, so that qd þ qt > qs.

The partial shear stress supported by each contact type
depends on both the number of its contacts and their mean
force. Fig. 17 shows the proportions ks; kd and kt of simple,
double and triple contacts as a function of shear strain. ks

declines during shear from 0.75 to 0.71 whereas kd and kt

increase from 0.14 to 0.15 and from 0.11 to 0.14, respec-
tively. Hence, the critical state is characterized by
ks ’ 0:7 and kt ’ kd ’ 0:15. Fig. 17 also shows the relative
mean forces fs, fd and ft defined by

fs ¼ kshfnis=hfni; ð34Þ
fd ¼ kdhfnid=hfni; ð35Þ
ft ¼ kthfnit=hfni; ð36Þ

where hfnis, hfnid and hfnit correspond to the mean normal
forces of simple, double and triple contacts. We see that
fs declines slightly with strain but is nearly two times lar-
ger than ft and 2.3 times larger than fd in the critical state.
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Fig. 13. The normalized shear stress q=p as a function of shear strain eq

for the packings S1 and S2 both from direct simulation data and
theoretical prediction of Eq. (31).
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Figure 35. Left: Coordination number and fabric parameters versus axial
in triaxial tests of Fig. 34 for initial states A and D. Right (Azéma et al.,
2009): ratio q/(3P + q) versus deviatoric strain εq = ε1 − ε3 (dashed lines)
versus prediction of Eq. 24 (dots). Lower red curve: beads (µ = 0.5); upper
black curve: polyhedra (µ = 0.5).

illustrates the success of approximation (24), relating stresses to leading fab-
ric and force anisotropy parameters – suitably supplemented with adequate
branch vector anisotropy parameter in the results on polyhedra given here,
from Azéma et al. (2009).

The critical state thus acts as an attractor to which all initial states
converge, after large enough monotonically growing strains. It has therefore
to be included in constitutive modelling, as a central concept, and state
parameters are often specified in terms of the distance to the critical state.
Dilatancy, which vanishes in the critical state, may thus be related to some
stress combinations (Wood, 1990). Plasticity models have been designed to
account for specific fabric anisotropies, by which critical states are different,
e.g., in simple shear or in triaxial compression (Manzani and Dafalias, 1997).
The statement that the critical state, for a given loading direction, only
depends on µ for cohesionless materials (and possibly on rolling and pivoting
friction, if present) as made here in Table 1, is somewhat at odds with the
tradition of soil mechanics, according to which the critical state volume
fraction Φc (or the void ratio ec = −1 + 1/Φc) varies with pressure, on the
so-called “critical state line”. This classical behavior of sands is believed
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however to be related to contact damage, which standard DEM approaches
usually ignore– whence the essentially κ-independent behavior recorded in
Fig. 29, as soon as εa exceeds the small range of regime I strains. The
critical state internal friction coefficient increases with µ [from its initial
value near 0.1 for µ = 0, Peyneau and Roux (2008a)] but usually reaches
a plateau for µ > 0.25. As to Φc, the critical solid fraction, it coincides
with the RCP value with frictionless spherical grains (which are devoid of
dilatancy), and steadily decreases for growing µ (Lemâıtre et al., 2009). Due
to its rheological importance (the material cannot be continuously sheared
above Φc) and independence on preparation, the critical state has often been
characterized in DEM, for varying grain shapes (Azéma et al., 2013), or size
distributions (Voivret et al., 2009). Contact elasticity being irrelevant for
large strains, such studies may be carried out using models of rigid grains,
as implemented in the “Contact Dynamics” simulation method (Radjäı and
Richefeu, 2009; Radjäı and Dubois, 2011).

6 Dense granular flow

Quasistatic critical states, in triaxial compression, or in simple shear, with
controlled normal stress (as in Fig. 36), only depend on the friction coeffi-
cient. Steady dense flows, in which the material state departs notably from
the quasistatic limit, may be regarded as generalizing critical states. Steady

S!̇=". This leads to #v= !̇d!AS/A". Consequently, the stress
components are equal to:

P = GP"$#m!̇2,

S= GS"$#m!̇2, "3#

where GP,S"$#=BP,SF"$# with BP=APAS/A" and BS

=!AS
3 /A". We notice that the effective friction coefficient is

a constant "%*=!ASA" /AP
2 #, and that the solid fraction

is a function of the dimensionless quantity I= !̇!m / P
$$=GP

−1"1/ I2#%. This fully collisional description is relevant
in the dilute limit when the inertial effects dominate.

In this paper, we focus our attention on the intermediate
dense flow regime, where the solid fraction is close to a
maximum solid fraction, so that the grains interact both
through enduring contacts and through collisions. There is a
contact network more or less percolating through the mate-
rial and greatly fluctuating in space and time $16%. Such
flows are beyond the quasistatic regime, since the inertia of
the grains "and so the shear rate# certainly comes into play.
On the other hand, the assumption of binary, instantaneous,
uncorrelated collisions of kinetic theory is clearly in trouble.
Due to the very strong correlations of motion and force, the
theoretical description of those dense flows is very difficult
and is still a matter of debate "see $17 % for a recent review#.
Advances have come in the last decade from the combination
of discrete numerical simulations and experiments on model
materials in simple geometry, confined or free surface flows,
and in various mechanical configurations. A detailed review
of these works can be found in $18 %. Depending on the me-
chanical configurations, the flows are steady, intermittent, or
may even jam. A localization of the shear, with a width of a
few grains, is also frequently observed near the walls or near
the free surface, with exponential velocity profiles around.
However, the heterogeneity of the stress distribution as well
as the presence of walls makes the analysis of the constitu-
tive law difficult.

This is the reason why we have chosen to study this dense
flow regime in a steady homogeneous shear state "uniform
stress components, shear rate, and solid fraction#. We have
studied the simplest geometry, plane shear without gravity, in
which the stress distribution is uniform inside the shear layer.
Furthermore, we have prescribed both the shear rate and the
pressure. Using discrete numerical simulations, we have ac-
cess to microscopic information, at the level of the grains
and of the contact network, hardly measurable experimen-
tally, and we are able to vary the parameters describing the
grains and the shear state.

Due to its interest in rheology and more specifically in
tribology "third body# and in geophysics "sliding of faults at
the origin of earthquakes#, this plane shear geometry has
already been the subject of numerous discrete simulation
studies $16,19–35 %.

Section II is devoted to the description of the simulated
system. We show in Sec. III that we obtain steady uniform
shear states in term of structure "solid fraction#, kinematics
"shear rate#, and stress distribution. In Sec. IV, we discuss the
dimensionless numbers that enter in the rheological laws,

especially the inertial number I, which describes the shear
state, and the contact stiffness number &, which describes the
typical deformation of the grains. In Sec. V, we measure the
evolution of two macroscopic quantities "solid fraction and
effective friction coefficient# as a function of I in the dense
flow regime, from which we deduce the constitutive law. In
Sec. VI from a parametric study, we show that this constitu-
tive law is not very sensitive to the mechanical properties of
the grains, once they are frictional, dissipative, and rigid.
Then, we describe microscopic information on the fluctua-
tions of the grain motion "Sec. VII# and on the contact net-
work "Sec. VIII#, from which we propose an explanation for
the friction law "Sec. IX#. For a more detailed account of the
results, we refer to $36%.

II. SIMULATED SYSTEM

The simulated system is two dimensional "Fig. 1#. The
granular material is a dense assembly of n dissipative disks
of average diameter d and average mass m. A small polydis-
persity of ±20% is considered to prevent crystallization $15 %.
The mechanical properties of the grains are described by four
independent parameters: a microscopic friction coefficient %,
a restitution coefficient in binary collisions e, and elastic
stiffness coefficients kn and kt.

The granular material is submitted to a plane shear, with-
out gravity, so that the stress distribution is uniform. The
material is sheared between two parallel rough walls, distant
from H. One of the walls is fixed, while the other moves at
the prescribed velocity V. We call the flow direction x and
the transverse direction y. Periodic boundary conditions are

FIG. 1. "Color online# Plane shear: "a# quasistatic regime
"I=10−2#; "b# collisional regime "I=0.2#. "Black grains constitute
the rough walls. The linewidths are proportional to the intensity of
the normal force between grains.#
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tally, and we are able to vary the parameters describing the
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Due to its interest in rheology and more specifically in
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already been the subject of numerous discrete simulation
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flow regime, from which we deduce the constitutive law. In
Sec. VI from a parametric study, we show that this constitu-
tive law is not very sensitive to the mechanical properties of
the grains, once they are frictional, dissipative, and rigid.
Then, we describe microscopic information on the fluctua-
tions of the grain motion "Sec. VII# and on the contact net-
work "Sec. VIII#, from which we propose an explanation for
the friction law "Sec. IX#. For a more detailed account of the
results, we refer to $36%.
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of average diameter d and average mass m. A small polydis-
persity of ±20% is considered to prevent crystallization $15 %.
The mechanical properties of the grains are described by four
independent parameters: a microscopic friction coefficient %,
a restitution coefficient in binary collisions e, and elastic
stiffness coefficients kn and kt.

The granular material is submitted to a plane shear, with-
out gravity, so that the stress distribution is uniform. The
material is sheared between two parallel rough walls, distant
from H. One of the walls is fixed, while the other moves at
the prescribed velocity V. We call the flow direction x and
the transverse direction y. Periodic boundary conditions are
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Figure 36. Sheared disk system, under controlled normal stress σ22 (de-
noted as P on the figure), with drawing of contact forces, with I = 0.01 (a)
and I = 0.2 (b) (note volume change) (da Cruz et al., 2005).

uniform flows are most easily described in simple shear, with a velocity field
in direction 1, constant gradient in direction 2, and controlled stress σ22.
Using shear rate γ̇ = ∂v1

∂x2
to define the inertial number as in (33) (suppress

diameter a in the denominator for an appropriate 2D definition), the state
of the flowing material only depends on I, with the critical state in the
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quasistatic limit of I → 0. The change in the state of the flowing material

Figure 37. Left: normal stress σ22 (left axis) and Φ (right axis) in simulated
shear flow of frictionless beads, versus shear strain γ. For γ < 1, σ22 = 1
is imposed, Φ fluctuates with average Φ ' 0.6378; for γ > 1, Φ is fixed at
value Φ, σ22 fluctuates. Right: ratio µ∗ = |σ12|/σ22 versus γ.

with I is quite conspicuous in Fig. 36, as the “force chain” pattern of qua-
sistatically deformed materials (similar to Fig 15, but with the characteristic
anisotropy of shear flow) becomes much more tenuous for I in the 0.1 range,
as the flowing systems dilates. The force network gradually evolves towards
a set of binary interactions, isolated in space and time, in the collisional
flow regime at larger I. Originated in soil mechanics, the idea to charac-
terize flowing granular materials under controlled normal stress (da Cruz
et al., 2005; Jop et al., 2006) proved much more convenient and efficient
than more traditional approaches inspired by fluid mechanics (Campbell,
2006). Fig. 37 directly compares controlled normal stress to controlled vol-
ume measurements in a simulation of frictionless beads in slow steady shear
flow with I = 10−4, close to the quasistatic limit but with still notable dif-
ferences in that case, as shown by Peyneau and Roux (2008a). For shear
strain γ < 1, the normal stress is fixed (σ22 = 1 in the simulation units)
while solid fraction Φ fluctuates, between 0.637 and 0.640 (slightly below
the critical value), with average Φ ' 0.6378. For γ > 1, as Φ is now fixed
to Φ, σ22 fluctuates between 0 and 4, so that measurement of an average
stress is quite problematic. The second graph of Fig. 37 shows that the
coefficient of internal friction, µ∗ = |σ12|/σ22, may be correctly identified in
both situations.

Such an I-dependent coefficient of internal friction characterizes the ma-
terial rheology, together with the I-dependent solid fraction. It should in
principle be supplemented by measurements of normal stress differences
(σ22 − σ11 and σ33 − σ22), which are usually quite small (Jop et al., 2006;

51



Khamseh et al., 2015). This defines what is now known as the “µ∗(I) rheol-
ogy” (Jop et al., 2006; Forterre and Pouliquen, 2008; Andreotti et al., 2013)
for dense granular flows.
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FIG. 1. (Color online) Model polyhedral grain: pinacoid.

Sec. IV identifies constitutive laws. Section V summarizes our
results and draws some perspectives.

II. SIMULATED SYSTEM

A. Shape of grains

The simulated system is a three dimensional dense assem-
bly of n grains of mass density ρ, interacting by contact forces
involving two dissipative mechanisms: friction (microscopic
friction coefficient µ) and totally inelastic collisions. Two grain
shapes are studied: spherical grains of average diameter dand
polyhedral grains of average characteristic dimension d. The
polyhedral geometry (Fig. 1) is that of a pinacoid, with 8
vertices, 14 edges, and 8 faces. This pohyhedron has three
planes of symmetry and is determined by four parameters:
length L, width l, height h, and angle α. According to an
extensive experimental study with various rock types [87], the
pinacoid gives the best fit among simple geometries for an
aggregate grain. In order to have the same aspect ratio for both
grain geometries, the pinacoid dimensional parameters are
taken identical (L = l = h), with the characteristic dimension
d expressed as d=

√
L2 + l2. In addition, angle α is set

to 60◦ (so that the grain volume is approximately equal to
0.143d3, around 1/3 of the volume of a sphere). Besides,
grain diameters (or characteristic dimensions) are uniformly
distributed between d(1 − ε) and d(1 + ε), with ε = 0.1 to
prevent both crystallization and segregation phenomena.

Previous studies showed that, in the rigid contact limit—
say, when typical contact deflections do not exceed 10− 4d—
the rheology of granular flows does not depend on contact elas-
ticity [3,4,13,17,88– 90]. Given usual values of elastic modulus
and stresses, this applies to most natural and experimental
granular flows, and we therefore deal with perfectly rigid
grains.

B. Flow configuration, sample preparation

The sample geometry is that of a parallelepiped (Fig. 2)
limited in the z direction by a fixed rough bottom wall and
a free surface at the top, with periodic boundary conditions
applied in the flow direction y and in the transverse direction
x. Thanks to these periodic conditions, the flow structure is
not affected by lateral walls, contrary to experiments [91] and
infinitely long chutes can be simulated using a finite number
of grains. The lengths of the parallelepiped (Ly = 30d and
Lx = 26d) are large enough to avoid size effects [18,22,24].

−→y

−→x

−→z

−→y
−→x

−→z

(a)

(b)

FIG. 2. (Color online) Samples of 19 000 polyhedra (a) and 6900
spheres (b).

The initial configuration is prepared according to the following
geometrical deposition protocol [92]: spherical grains are
sequentially dropped along z in the simulation box, and each
grain stops on the free surface made of the preceding layer of
grains (or on the rough bottom wall for the first layer of grains),
so that each new grain relies on three grains chosen in order
to minimize its altitude z. In the case of polyhedral grains,
a pinacoid with the largest possible characteristic dimension
d is subsequently introduced in each sphere and randomly
oriented.

For both studied grain shapes, a specific rough substrate
is prepared, consisting of a plane bottom wall on which
grains (identical to the flowing ones) are glued. The rough
substrate is constructed by geometrical deposition of three
layers of grains according to the preceding procedure. The
lowest one is in contact with the bottom plane, while the
highest grains are removed in order to keep a thickness of
the rough bottom of approximately 1.5d. In the case of
polyhedral grains, an intermediate phase consisting of grain
deposition under gravity is needed prior to the elimination of
the highest grains, as the geometrical deposition protocol does
not lead to mechanical equilibrium. In the following, z = 0
corresponds to a distance dfrom the plane bottom wall. Figure
3 shows an image of the substrate used for polyhedral particles.
In the next preparation step, n free grains are geometrically
deposited onto this substrate, by the same procedure. Finally,
gravity g⃗ (0,g sin θ ,− g cos θ ) is applied in order to initiate
the flow, the bottom rough surface being now inclined at
angle θ with respect to the horizontal plane. According to the
geometrical deposition protocol, spheres are in contact when
the gravity is applied, while pinacoids are still free of contact
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Sec. IV identifies constitutive laws. Section V summarizes our
results and draws some perspectives.

II. SIMULATED SYSTEM

A. Shape of grains

The simulated system is a three dimensional dense assem-
bly of n grains of mass density ρ, interacting by contact forces
involving two dissipative mechanisms: friction (microscopic
friction coefficient µ) and totally inelastic collisions. Two grain
shapes are studied: spherical grains of average diameter d and
polyhedral grains of average characteristic dimension d. The
polyhedral geometry (Fig. 1) is that of a pinacoid, with 8
vertices, 14 edges, and 8 faces. This pohyhedron has three
planes of symmetry and is determined by four parameters:
length L, width l, height h, and angle α. According to an
extensive experimental study with various rock types [87], the
pinacoid gives the best fit among simple geometries for an
aggregate grain. In order to have the same aspect ratio for both
grain geometries, the pinacoid dimensional parameters are
taken identical (L = l = h), with the characteristic dimension
d expressed as d =

√
L2 + l2. In addition, angle α is set

to 60◦ (so that the grain volume is approximately equal to
0.143d3, around 1/3 of the volume of a sphere). Besides,
grain diameters (or characteristic dimensions) are uniformly
distributed between d(1 − ε) and d(1 + ε), with ε = 0.1 to
prevent both crystallization and segregation phenomena.

Previous studies showed that, in the rigid contact limit—
say, when typical contact deflections do not exceed 10−4d—
the rheology of granular flows does not depend on contact elas-
ticity [3,4,13,17,88–90]. Given usual values of elastic modulus
and stresses, this applies to most natural and experimental
granular flows, and we therefore deal with perfectly rigid
grains.

B. Flow configuration, sample preparation

The sample geometry is that of a parallelepiped (Fig. 2)
limited in the z direction by a fixed rough bottom wall and
a free surface at the top, with periodic boundary conditions
applied in the flow direction y and in the transverse direction
x. Thanks to these periodic conditions, the flow structure is
not affected by lateral walls, contrary to experiments [91] and
infinitely long chutes can be simulated using a finite number
of grains. The lengths of the parallelepiped (Ly = 30d and
Lx = 26d) are large enough to avoid size effects [18,22,24].
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The initial configuration is prepared according to the following
geometrical deposition protocol [92]: spherical grains are
sequentially dropped along z in the simulation box, and each
grain stops on the free surface made of the preceding layer of
grains (or on the rough bottom wall for the first layer of grains),
so that each new grain relies on three grains chosen in order
to minimize its altitude z. In the case of polyhedral grains,
a pinacoid with the largest possible characteristic dimension
d is subsequently introduced in each sphere and randomly
oriented.

For both studied grain shapes, a specific rough substrate
is prepared, consisting of a plane bottom wall on which
grains (identical to the flowing ones) are glued. The rough
substrate is constructed by geometrical deposition of three
layers of grains according to the preceding procedure. The
lowest one is in contact with the bottom plane, while the
highest grains are removed in order to keep a thickness of
the rough bottom of approximately 1.5d. In the case of
polyhedral grains, an intermediate phase consisting of grain
deposition under gravity is needed prior to the elimination of
the highest grains, as the geometrical deposition protocol does
not lead to mechanical equilibrium. In the following, z = 0
corresponds to a distance d from the plane bottom wall. Figure
3 shows an image of the substrate used for polyhedral particles.
In the next preparation step, n free grains are geometrically
deposited onto this substrate, by the same procedure. Finally,
gravity g⃗ (0,g sin θ ,−g cos θ ) is applied in order to initiate
the flow, the bottom rough surface being now inclined at
angle θ with respect to the horizontal plane. According to the
geometrical deposition protocol, spheres are in contact when
the gravity is applied, while pinacoids are still free of contact
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Figure 38. Left: one of the “pinacoids” used in study by Azéma et al.
(2012). Right: sample (19000 such polyhedra) used in inclined plane flow.

Provided a steady state is achieved, with a uniform thickness, the flow,
under gravity, of a granular layer down a plane inclined at angle φ with
respect to a horizontal plane (with a rough surface, in order to avoid slid-
ing), directly characterizes µ∗(I): the constant shear stress to normal stress
(i.e., normal to the substrate or the free surface) ratio in the material fixes
µ∗(I) = tanφ. This has been applied experimentally (Jop et al., 2006) and
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roughness having a smaller asperity size are similar to those
of the standard case.

We conclude that a minimum level of roughness is
necessary for the dead zone phenomenon to appear, but that
the dead zone and the overall flowing layer properties should
not be sensitive to fine characteristics of the bottom rough
surface.

IV. CONSTITUTIVE LAWS

As recalled in the Introduction, the rheology of dense disk
assemblies in two dimensions and dense sphere assemblies in
three dimensions is conveniently expressed using two dynamic
laws, respectively relating solid fraction ν and effective friction
coefficient µ∗ to inertial number I . Our intention is now
to identify similar laws for both spheres and polyhedra
using measured effective friction coefficient values (µ∗ =
tan θ ), mean solid fraction, and inertial number (measured
for z/d between 8 and 15 for spheres, between 6 and 12 for
polyhedra).

The calculated inertial number values range 0.05–0.31 for
spheres, and 0.54–0.98 for polyhedra. The highest values
indicate the beginning of the collisional regime whereas the
lowest values correspond to flow stop.

The steady flows of polyhedra down a smooth frictional
substrate provide two other points for a much smaller value of
inertial number.

Effective friction and solid fraction dynamic laws corre-
sponding to the present simulations are shown respectively in
Figs. 19 and 20, both figures showing results for spheres and
polyhedra. Error bars denote the standard deviation calculated
from ν (Fig. 6), µ∗ (Fig. 11), and I (Fig. 12) measurements.
These laws can be fitted by linear expressions (2) and (3),
for which we measure νmax = 0.601, µ∗

min = 0.35, a= 0.56,
and b = 0.15 for spheres and νmax = 0.607, µ∗

min = 0.635,
a= 0.14, and b = 0.13 for polyhedra. It can be observed
that µ∗

min values compare very well with tan θm values given
in Table II (respectively 0.344 for spheres and 0.624 for
polyhedra). These values evidence a strong quantitative grain
shape effect on the friction law.

Interestingly, in the case of polyhedra, the points deduced
from the flow down a smooth frictional substrate (in the whole
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FIG. 19. (Color online) Friction law for spheres (red) and for
polyhedra (black). The diamond (other symbol) corresponds to
smooth frictional substrate.
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FIG. 20. (Color online) Dilation law for spheres (red) and for
polyhedra (black). The diamond (other symbol) corresponds to
smooth frictional substrate.

layer) nicely coincide with the linear law identified for the flow
down a rough substrate (in the bulk). This is consistent with
the fact that the constitutive law is intrinsic to the material and
does not depend on the boundary condition. Varying the value
of the friction coefficient µW at the smooth substrate might
allow us to measure the constitutive law in a larger range of
inertial number.

These results correspond to particular values of the friction
coefficient (µ = 0.4) and the restitution coefficients (eN =
eT = 0). Measurements with disks evidenced a significant
influence of the contact friction coefficient on the effective
macroscopic friction coefficient, but no influence of the resti-
tution coefficient value [3,17]. Similar findings are expected
for both spheres and polyhedra, in addition to a shape effect
for polyhedra, and this will have to be confirmed in the future.

Our results for spheres are compared to other ones in the
literature [20,24] in Fig. 19 for the friction law (for which both
experimental results [20] and numerical ones deduced from
Ref. [24] are shown) and in Fig. 20 for the dilation law (with
the numerical data of Ref. [24]).

Flow height H and tilt angle θ dependencies of the velocity
profile may be derived from the friction law as

vy (z) = 2
√

ν(θ )g cos θ

3bd
(tan θ −µ∗

min)[H 3/2 − (H − z)3/2].

(10)

Thus, with V = 1
H

∫ H

0 vy (z)dz denoting the mean velocity,
one readily obtains

V (θ,H ) = 2
√

ν(θ )g cos θ

5bd
H 3/2(tan θ −µ∗

min), (11)

and (given the values of θ )

V (θ,H ) ∝ H 3/2(θ − θm). (12)

This expression is compatible with experimental and numer-
ical measurements [18,19]. Reference [19] fits experimental
data with the expression V (θ,H ) ∝ H3/2

Hstop(θ ) , hence from Eq. (4) a
similar factor of θ − θm.

V. CONCLUSION

The influence of grain angularity on the properties of dense
flows down a rough inclined plane has been investigated by
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roughness having a smaller asperity size are similar to those
of the standard case.

We conclude that a minimum level of roughness is
necessary for the dead zone phenomenon to appear, but that
the dead zone and the overall flowing layer properties should
not be sensitive to fine characteristics of the bottom rough
surface.

IV. CONSTITUTIVE LAWS

As recalled in the Introduction, the rheology of dense disk
assemblies in two dimensions and dense sphere assemblies in
three dimensions is conveniently expressed using two dynamic
laws, respectively relating solid fraction ν and effective friction
coefficient µ∗ to inertial number I . Our intention is now
to identify similar laws for both spheres and polyhedra
using measured effective friction coefficient values (µ∗ =
tan θ ), mean solid fraction, and inertial number (measured
for z/d between 8 and 15 for spheres, between 6 and 12 for
polyhedra).

The calculated inertial number values range 0.05–0.31 for
spheres, and 0.54–0.98 for polyhedra. The highest values
indicate the beginning of the collisional regime whereas the
lowest values correspond to flow stop.

The steady flows of polyhedra down a smooth frictional
substrate provide two other points for a much smaller value of
inertial number.

Effective friction and solid fraction dynamic laws corre-
sponding to the present simulations are shown respectively in
Figs. 19 and 20, both figures showing results for spheres and
polyhedra. Error bars denote the standard deviation calculated
from ν (Fig. 6), µ∗ (Fig. 11), and I (Fig. 12) measurements.
These laws can be fitted by linear expressions (2) and (3),
for which we measure νmax = 0.601, µ∗

min = 0.35, a= 0.56,
and b = 0.15 for spheres and νmax = 0.607, µ∗

min = 0.635,
a= 0.14, and b = 0.13 for polyhedra. It can be observed
that µ∗

min values compare very well with tan θm values given
in Table II (respectively 0.344 for spheres and 0.624 for
polyhedra). These values evidence a strong quantitative grain
shape effect on the friction law.

Interestingly, in the case of polyhedra, the points deduced
from the flow down a smooth frictional substrate (in the whole
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layer) nicely coincide with the linear law identified for the flow
down a rough substrate (in the bulk). This is consistent with
the fact that the constitutive law is intrinsic to the material and
does not depend on the boundary condition. Varying the value
of the friction coefficient µW at the smooth substrate might
allow us to measure the constitutive law in a larger range of
inertial number.

These results correspond to particular values of the friction
coefficient (µ = 0.4) and the restitution coefficients (eN =
eT = 0). Measurements with disks evidenced a significant
influence of the contact friction coefficient on the effective
macroscopic friction coefficient, but no influence of the resti-
tution coefficient value [3,17]. Similar findings are expected
for both spheres and polyhedra, in addition to a shape effect
for polyhedra, and this will have to be confirmed in the future.

Our results for spheres are compared to other ones in the
literature [20,24] in Fig. 19 for the friction law (for which both
experimental results [20] and numerical ones deduced from
Ref. [24] are shown) and in Fig. 20 for the dilation law (with
the numerical data of Ref. [24]).

Flow height H and tilt angle θ dependencies of the velocity
profile may be derived from the friction law as

vy (z) = 2
√

ν(θ )g cos θ

3bd
(tan θ −µ∗

min)[H 3/2 − (H − z)3/2].

(10)

Thus, with V = 1
H

∫ H

0 vy (z)dz denoting the mean velocity,
one readily obtains

V (θ,H ) = 2
√

ν(θ )g cos θ

5bd
H 3/2(tan θ −µ∗

min), (11)

and (given the values of θ )

V (θ,H ) ∝ H 3/2(θ − θm). (12)

This expression is compatible with experimental and numer-
ical measurements [18,19]. Reference [19] fits experimental
data with the expression V (θ,H ) ∝ H3/2

Hstop(θ ) , hence from Eq. (4) a
similar factor of θ − θm.

V. CONCLUSION

The influence of grain angularity on the properties of dense
flows down a rough inclined plane has been investigated by
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Figure 39. (Azéma et al., 2012) Left: µ∗(I) for polyhedra (upper curve)
and spheres (bottom left, with comparisons with literature data). µ = 0.4
for both shapes. Right: ν(I) [= Φ(I)] for polyhedra and spheres.
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numerically, e.g. in the study by Azéma et al. (2012), for a certain type
of polygons known as pinacoids, as shown in Fig. 38. The resulting func-
tions µ∗(I) and Φ(I) are shown in Fig. 39, and compared to the results for
spherical beads. The linear variation of functions µ∗(I) (increasing) and
Φ(I) (decreasing) is often observed in range I ∼ 0.1 (da Cruz et al., 2005;
Forterre and Pouliquen, 2008), with a plateau of µ∗ at larger values. For

7

for given P ⇤ and I values. The remainder of the pa-
per deals with homogeneous flows, for the values of P ⇤
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We now deduce macroscopic constitutive relations
from the simulations of homogeneous flows.

A. Shear stress and solid fraction

Friction coe�cient µ⇤ and solid fraction �, depending
on I for various P ⇤ values, are shown in Fig. 8 for the
parameter choice adopted in most simulations. We fit the
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following power law functions to those data, denoting as
µ⇤

0 and �0 the quasistatic limits (critical state) values

of the macroscopic friction coe�cient and of the solid
fraction:

(
µ⇤ = µ⇤

0 + cI↵

��1 = ��1
0 + eI⌫

(10)

Tabs. II and III give the values of the fitting parameters
introduced in Eqs. 10. While the increase of µ⇤ and the
decrease of � as functions of I are familiar trends, similar
to observations made with dry grains [1, 4–6], some other
features are remarkable. The quasistatic limit is quite
nearly approached for I  0.01, and is strongly influ-
enced by capillary forces. Internal friction coe�cient µ⇤,
compared to the dry, cohesionless value (0.332±0.004),
already shows a notable increase at P ⇤ = 10, reaching
values as high as 0.6 for P ⇤ = 1 (i.e., as cohesive and
confining forces are of the same order), and nearly 0.9
for P ⇤ = 0.436, about 2.3 times the cohesionless value.
Our partial results for P ⇤ = 0.1, measured in reason-
ably homogeneous flows �  0.1), indicate µ⇤ ' 1.6 for
I = 10�2. Meanwhile, the material becomes looser, with
� reaching values that cannot be observed without cohe-
sion in quasistatic conditions.

P ⇤ µ⇤
0 ↵ c

0.436 0.867 ± 0.003 0.70 ± 0.05 0.30 ± 0.01

1 0.607 ± 0.003 0.76 ± 0.05 0.37 ± 0.02

2 0.473 ± 0.007 0.72 ± 0.06 0.42 ± 0.02

5 0.387 ± 0.006 0.70 ± 0.05 0.46 ± 0.02

10 0.366 ± 0.004 0.74 ± 0.04 0.48 ± 0.02

1 0.332 ± 0.004 0.71 ± 0.03 0.50 ± 0.01

TABLE II: Parameters of the fit of function µ⇤(I) by Eq. 10,
for di↵erent values of P ⇤.

P ⇤ �0 ⌫ e

0.4360 0.5243 ± 2.10�4 1.73 ± 0.05 0.497 ± 0.017

1 0.5559 ± 10�4 1.34 ± 0.012 0.512 ± 0.005

2 0.5726 ± 10�4 1.21 ± 0.01 0.547 ± 0.003

5 0.5851 ± 10�4 1.12 ± 0.01 0.580 ± 0.003

10 0.5900 ± 10�4 1.09 ± 0.01 0.594 ± 0.004

1 0.5970 ± 10�4 0.96 ± 0.015 0.562 ± 0.008

TABLE III: Parameters of the fit of function �(I) by Eq. 10,
for di↵erent values of P ⇤.

Such a strong influence of cohesive (capillary) forces
contrasts with the results of Refs. [11, 16], in which simi-
lar deviations between cohesionless and cohesive systems
are not observed until P ⇤ decreases to much lower val-
ues, of order 0.01. Such 2D results were however obtained
with a di↵erent attractive force law, of vanishing range
beyond contact.
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contrasts with the results of Refs. [11, 16], in which simi-
lar deviations between cohesionless and cohesive systems
are not observed until P ⇤ decreases to much lower val-
ues, of order 0.01. Such 2D results were however obtained
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beyond contact.

Figure 40. (Khamseh et al., 2015) µ∗(I) (left) and Φ(I) (right) for simu-
lated dry (P ∗ infinite) and wet beads, for different P ∗, defined using Eqs. 35
(with σ22 instead of P ) and 6. Departures from I → 0 limit fitted (solid
lines) as power laws, with exponents near 0.7 for µ∗ (whatever P ∗), between
1 and 1.7 (depending on P ∗) for Φ.

smaller I, as the quasistatic limit is approached the differences µ∗(I) − µ∗c
and Φc −Φ(I) with the quasistatic critical state values tend to vanish with
different exponents (Hatano, 2007; Peyneau and Roux, 2008a). This is il-
lustrated, for frictional (µ = 0.3) bead assemblies, in Fig. 40 – which also
contains results obtained for different P ∗ in systems endowed with capillary
cohesion. The “µ∗(I) rheology” thus proves a robust constitutive approach.
A particularly convincing illustration of its efficiency was supplied by Jop
et al. (2006), who applied it to predict complex velocity profiles in surface
flows of granular layers on top of static samples, between lateral walls. As
the constitutive laws (suitably generalized to tensorial form) were initially
measured in flow down inclined planes, this study involved no adjustable
parameter.

An interesting development is the treatment of very dense suspensions
with a similar approach, in which inertial number I is replaced by a “viscous
number”, V i = ηγ̇/Pp, involving the normal stress Pp tranmitted to the
solid particles (not to the whole suspension) and the viscosity η of the
(Newtonian) suspending liquid (Cassar et al., 2005; Lemâıtre et al., 2009;
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Boyer et al., 2011). This approach emphasizes the importance of frictional
solid contacts in the rheology of very dense suspensions. The relevance of
the same critical state as for dry grains in the quasistatic limit of V i → 0
implies in particular that the solid fraction at which the effective viscosity
of the suspension diverges coincides with the critical state solid fraction Φc.

7 Concluding remarks

This incomplete tour of current research on micromechanical approaches
to granular mechanics reveals first our enduring inability to predict some
basic features of material behavior from grain-level phenomena: a quanti-
tative determination of the properties of critical states, for instance, from
particle geometry and intergranular friction coefficient, is still unavailable.
Many difficulties are related to the complexity of packing geometry, and to
how their force-carrying networks responds and rearranges under varying
load. No such well-defined objects as crystal dislocation has been identified
at the origin of granular plasticity. Some inspiration could be gained from
recent advances in the modeling of the rheology of amorphous materials
[see, e.g., Maloney and Lemâıtre (2006)], although two major features set
granular materials apart: intergranular friction (the network properties are
no longer expressible in terms of potential energy landscape), and very stiff
interactions (causing singular behaviors linked to reduced hyperstaticity).
Some useful classification of mechanical regimes and material states how-
ever emerge, such as type I versus type II strains, or well coordinated versus
poorly coordinated systems. The fundamental concept of critical states, as
first identified in macroscopic soil mechanics, proves a robust tool in gran-
ular material modeling, including in the presence of inertial and/or viscous
effects. Current research perspectives are being pursued in the treatment of
systems of growing complexity (with different grain shapes, different grain
interactions, as for hard cohesive colloidal particles), but basic issues regard-
ing the nature and microscopic origins of granular plasticity should still be
investigated.
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É. Azéma, F. Radjäı, and G. Saussine. Quasistatic rheology, force transmis-
sion and fabric properties of a packing of irregular polyhedral particles.
Mechanics of Materials, 41:729–741, 2009.
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