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Abstract

We obtain the asymptotic variance, as the degree goes to infinity, of
the normalized number of real roots of a square Kostlan-Shub-Smale ran-
dom polynomial system of any size. Our main tools are the Kac-Rice
formula for the second factorial moment of the number of roots and a
Hermite expansion of this random variable.

Keywords: Kostlan-Shub-Smale ramdom polynomials, Kac-Rice for-
mula, Hermite expansion.
AMS subjet classification: Primary: 60F05, 30C15. Secondary: 60G60,
65H10

1 Introduction

The study of the roots of random polynomials is among the most important
and popular topics in Mathematics and in some areas of Physics. For almost
a century a considerable amount of literature about this problem has emerged
from fields as probability, geometry, algebraic geometry, algorithm complexity,
quantum physics, etc. In spite of its rich history it is still an extremely active
field.

There are several reasons that lead to consider random polynomials and
several ways to randomize them, see Bharucha-Reid and Sambandham [3].

The case of algebraic polynomials Py(t) = Z?Zl a;tJ with independent iden-
tically distributed coefficients was the first one to be extensively studied and
was completely understood during the 70s. If a; is centered, P(a; = 0) = 0
and E (|a1|2+5) < oo for some § > 0, then, the asymptotic expectation and the
asymptotic variance of the number of real roots of P;, as the degree d tends
to infinity, are of order log(d) and, once normalized, the number of real roots

converges in distribution towards a centered Gaussian random variable. See

*CMAT, Universidad de la Republica, Montevideo, Uruguay. E-mail: diego@cmat.edu.uy.

TIMT, UMR CNRS 5219, Université de Toulouse, Email: jean-marc.azais@math.univ-
toulouse.fr

fDMEL, Universidad de la Repiblica, Salto, Uruguay. E-mail: fdalmao@unorte.edu.uy.

SIMERL, Universidad de la Reptblica, Montevideo, Uruguay and Escuela de Matematica.
Facultad de Ciencias. Universidad Central de Venezuela, Caracas, Venezuela. E-mail: rl-
ramos@fing.edu.uy



the books by Farahmand [7] and Bharucha-Reid and Sambandham [3] and the
references therein for the whole picture.

The case of systems of polynomial equations seems to be considerably harder
and has received in consequence much less attention. The results in this direc-
tion are confined to the Shub-Smale model and some other invariant distribu-
tions. The ensemble of Shub-Smale random polynomials was introduced in the
early 90s by Kostlan [9]. Kostlan argues that this is the most natural distribu-
tion for a polynomial system. The exact expectation was obtained in the early
90’s by geometric means, see Edelman and Kostlan [5] for the one-dimensional
case and Shub and Smale [18] for the multi-dimensional one. In 2004, 2005
Azais and Wschebor [2] and Wschebor [19] obtained by probabilistic methods
the asymptotic variance as the number of equations and variables tends to in-
finity. Recently, Dalmao [4] obtained the asymptotic variance and a CLT for
the number of zeros as the degree d goes to infinity in the case of one equation
in one variable. Letendre in [13] studied the asymptotic behavior of the vol-
ume of random real algebraic submanifolds. His results include the finiteness of
the limit variance, when the degree tends to infinity, of the volume of the zero
sets of Kostlan-Shub-Smale systems with strictly less equations than variables.
Some results for the expectation and variance of related models are included in
[2, 11, 12].

In the present paper we prove that, as the degree goes to infinity, the asymp-
totic variance of the normalized number of real roots of a Kostlan-Shub-Smale
square random system with m equations and m variables exists in (0,00). We
use Rice Formulas [1] to show the finiteness of the limit variance and Hermite
expansions as in Kratz and Ledn [10] to show that it is strictly positive. Fur-
thermore, we strongly exploit the invariance under isometries of the distribution
of the polynomials.

The reader may wonder, in view of the results mentioned above, if the nor-
malized number of roots satisfies a CLT when the degree of the system tends to
infinity. The answer is affirmative if m = 1 [4] but for the time being we cannot
give an answer to this question for m > 1. The ingredients to prove a CLT for
a non linear functional of a Gaussian process are: a) to write a representation
in the It6-Wiener chaos of the normalized functional; b) to demonstrate that
each component verifies a CLT (Fourth Moment Theorem [16], [17]) and if the
functional has an expansion involving infinitely many terms: c) to prove that
the tail of the asymptotic variance tends uniformly (w.r.t. d) to zero. In the
present case we lack a proof of ¢). For m = 1 the fact that the invariance by
rotations is equivalent with the stationarity allows to build a proof similar to
the one made for the number of crossings of a stationary Gaussian process.

The rest of the paper is organized as follows. Section 2 sets the problem and
presents the main result. Section 3 deals with the proof and Section 4 presents
some auxiliary results as well as the explicit form of the asymptotic variance.

2 Main Result

Consider a square system P of m polynomial equations in m variables with
common degree d > 1. More precisely, let P = (Py,..., P,) with

Pi(t) =" af't,

ld|<d



where
L g =1 dm) €N™and || = 301, s

2.9 =al” . eR 0=1,...,m, |j| < d;

J J1---Im
3. t= (tl, . ,tm) and tj — H;n:l t{:

We say that P has the Kostlan-Shub-Smale (KSS for short) distribution

if the coefficients ay) are independent centered normally distributed random

variables with variances

© d d!
V N — . = - n . .
ar (a5) (3) Jile i@ = 13!

We are interested in the number of real roots of P that we denote by N¥.
Shub and Smale [18] proved that E(NF) = d™/2. Our main result is the
following.

Theorem 1. Let P be a KSS random polynomial system with m equations, m
variables and degree d. Then, as d — oo we have

. Var(NY) _ 12
28 g = Voo
where 0 < V2 < .

2.1 Explicit expression of the variance

Using the method of section 12.1.2 of [1] an explicit expression for the limit
variance can be given.

For k=1,...,m let &, n, be independent standard normal random vectors
on R*. Let us define

2 qxen(—t2
« (1) =1~ ZonCw

_ (1—t?—exp(—t?)) exp(=t>/2) ,

o ) = —armyen)
o my; =E ([|&]7) = 27'/21“((#(:7%)/2), where || - || is the Euclidean norm on
RF:

e—t2/2
o for k=1,...,m—1, My(t) = E [I&]l I + il
o for k=m, Myu(t) =E [[&nlll1nm + =B émll] -
Theorem 2. We have

L Rkt [ [0 =20 [ )
Vi=57 2(2n>m’/o t 1[ 1—e " ] ka(t)Hmi’1] "

k=1
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3 Proof

3.1 Preliminaries

It is customary and convenient to homogenize the polynomials. That is, to add
an auxiliary variable ¢y and to multiply the monomial in P, corresponding to
the index j by tg_m. Let Y = (Y1,...,Y,,) denote the resulting vector of m
homogeneous polynomials in m + 1 real variables with common degree d > 1.
We have,
Yety= >, t=1,...m,
l7|=d

S . . . . . L £
where this time j = (jo, ..., Jm) € N™¥1 3] = 3740 jk; a§~) =aj) ;. €R
t=(to,...,tm) € R™ 1 and t9 =[]}, t)".

Since Y is homogeneous, its roots consist of lines through 0 in R™*!. Then,
it is easy to check that each root of P corresponds exactly to two (opposite)
roots of Y on the unit sphere S™ of R™*!. Furthermore, one can prove that
the subset of homogeneous polynomials Y with roots lying in the hyperplane
top = 0 has Lebesgue measure zero. Then, denoting by NY the number of roots
of Y on S™, we have NP = NY /2 almost surely.

From now on we work with the homogenized version Y. The standard
multinomial formula shows that for all s, € R™*! we have

ra(s,t) == E (Ye(s)Ye(t)) = (s,0)",

where (-,-) is the usual inner product in R™T!. As a consequence, we see that
the distribution of the system Y is invariant under the action of the orthogonal
group in R™*!. For the ease of notation we omit the dependence on d of Y.

In the sequel we need to consider the derivative of Y, £ = 1,...,m. Since
the parameter space is the sphere S™, the derivative is taken in the sense of the
sphere, that is, the spherical derivative Y} (¢) of Y;(¢) is the orthogonal projection
of the free gradient on the tangent space t* of S™ at t. The k-th component of
Y/(t) at a given basis of the tangent space is denoted by Y}, (¢).

The covariances between the derivatives and between the derivatives and
the process are obtained via routine computations from the covariance of Y;. In
particular, the invariance under isometries is preserved after derivation and for
each t € S™, Y (t) is independent from Y'(t) = (Y{(t),..., Y, (¢)).

3.2 Finiteness of the limit variance

In this section we prove that

P
lim Var(Ny )

0.
d—oo dm/2 <

Recall that E (NF) = d™/2, we write

dm/2

Var(VF) = Var <N23(> _lEovy S 1) - B2+ (3.1)

1
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The quantity E (N} (N —1)) is computed using Rice formula [1, Th. 6.3] and
a localisation argument.

E(NY(NY —1)) = /(SM)Q E[|det Y'(s)det Y'(t)| [Y(s) = Y(t) = 0]

*PY(s),Y(t) (07 O)det

Here ds and dt are the m-geometric measure on S™ but we will use in other
parts ds and dt for the Lebesgue measure.

The following Lemma allows us to reduce this integral to a one-dimensional
one. The proof is a direct consequence of the co-area formula.

Lemma 1. Let H be a measurable function defined on R. Then, we have

/ CH((s, 1)) dsdt = K kim—1 /7r sin(¢)™ " H (cos(¢))) di
(5m)2 0

Vdr m—1
KmKRm—1 . z z
=7 sin [ — H | cos| — dz,
vd Jo (\/&) ( (ﬁ))

where K., is the m-geometric measure of S™. O

Let {eg,e1,...,em} be the canonical basis of R™*1. Because of the invari-
ance of Y by isometries we can assume without loss of generality that

s=-egy, t=cos(®)ey+ sin(y)e;. (3.2)

For s+ we choose as basis {e1, ..., e, } and {sin(z))eg —cos(¥)er, ea, ..., e} for
t1. Finally, take ¢ = z/ V/d and use Lemma 1. Hence,

"B (NY (NY - 1))

Vdm m/2
-t [ () e (e
m)m 0 — cos2d( =\
(1 cos (\/E)>
where £(z/v/d) is the conditional expectation written for s,¢ as in (3.2).

Now, we deal with the conditional expectation £(z/v/d). Introduce the fol-
lowing notation

(3) - e ()e()
5(7a) = () e () ()
“(7) = =)
2(G) - = ()

and -omitting the (z/v/d)-

A? B -C?) - A
1—c> Tt e-w




Thus, the variance-covariance matrix of the vector (Yg(s), Yi(t), Yfl/(g), Yfl/%)) at

the given basis, can be written in the following form

An | A | A
AB I, Aoz |, (3.4)
Al 1Ay | I

where [, is the m x m identity matrix,
|1 C B o 0 --- 0 A 0 -0
A“{c 1]’A12{—A0--- 0}"413[0 0 - 0}’

and Ass is the m x m diagonal matrix diag(B,D, ..., D).
Gaussian regression formulas (see [1, Proposition 1.2]) imply that the condi-

tional distribution of the vector (%, %) (conditioned on Y(s) =Y (t) = 0)
is centered normal with variance-covariance matrix given by

{ By | Bi2 }

3.6
By, | Ba2 (3:6)

with B11 = B22 = diag(aQ, 1, ey 1) and B12 = diag(a2p, D, . ,D)

It is important to remark that if A = (4; Az ... A,,) is a matrix with columns
vectors Aj;, it holds that det(A) = @, (A1, A2, ..., A,,) for a certain polynomial
Q@ of degree m from R™ to R. Using representation of Gaussian vectors from
a standard one we can write

or11 0Tm1

z T12 Tm2
\/& (Rm?)2 : :

T1im Tmm

o(pri + /1= p*yn) o(prm1 + /1 = pym1)

Dz13 + V1 — D?y1o o Do + V1 — D2y dxdy

Dl’lm + v 1- D2y1m Dmmm + v 1-D? mm

where ¢,,,2 is the standard normal density in R™. Because of the homogeneity
of the determinant we have

£(J) =7 [, @09@u010 (00, ()axdy = 0*Glo, D),

where z = diag(p, D, ..., D)x + diag(y/1 — p%, V1 —=D?,..., /1 —D?)y.

Now, we return to the expression of the variance in (3.1). We have

Qm

a2 Var (NF) = s [E(NF VY~ 1)) - @V + 5
Lt VI et (2 g2
2 4@2m)™ Jo Vd

o*(Z5 z z
= o (o 2) () - G0.0]d= @1



The proof of the convergence of this integral is done in several steps.

In the rest of this section C denotes an unimportant constant, its value can
change from one occurrence to another. It can depend on m, but recall that m
is fixed.

Step 1: Bounds for G.

¢ G(pD) = [ s Qon(X) @ ()6 (K)o (3 )y
G(0,0) = [igm2)2 Qm(X)Qun(Y) bz (%) bz (y) dxdy;
[V1—p? =1 <Clp|; [V1-D? -1 < C|DJ;
Qm (%) < C(1 + [|x]|o0)™;

any partial derivative of Q,,(w) is a polynomial of degree m — 1 and thus
it is bounded by C(1 + [|w|[oo)™ L.

Applying that to a point between y and z, we get

|Qm(2) = Qu(y)| < CA+ Iyl + l|z]loc)™ (Il + D)
< C(1+ [[xlloo + Iy lloe)™ (o] + D),

and

|Qm(x) ’ Qm(z) —Qm (X) “Qm (Y)‘
< C+ [xllo)™ (1 + lIxllos + ¥ lloc)™* (lo] + D))
The finiteness of all the moments of the supremum of Gaussian random variables

finally yields
|G(p, D) — G(0,0)| < C(|p| + |DI).

Step 2: Point-wise convergence. It is a direct consequence of the expansions of
sine and cosine functions. As d tends to infinity:

. A(ﬁ) — —zexp(—22/2);
o B(Z) — (1—2°)exp(—22/2);

e C(%) and D(5) tend to exp(—22/2);

— 22) exp(—2z2 —
) - el _ g2()

1—t2 —exp(—t2 xp(—12/2 _
o 1(G) = T Ee e = (2);

being 5% and p as in Subsection 2.1. This, in view of the continuity of the
function G, implies the point-wise convergence of the integrand in (3.7).

Step 3: Symmetrization. We have A(m — z/vd) = (—1)* ' A(z/Vd), B(r —

2/Vd) = (=1)B(z/Vd), C(r—2/Vd) = (=1)*C(z/Vd), D(n—2/Vd) = (=1)*"'D(z/Vd),
o?(m — 2v/d) = 0?(z/Vd) and p(m — 2v/d) = (—1)%p(z/+/d). Hence, Bio(m —

z/+/d) in (3.6) becomes

(~1)%0(z/Vd)p(= V@), (1) D(z/Vd), ... (~1)*'D(z/Vd),



the rest being unchanged. This corresponds, for example to performing some
change of signs (depending on the parity of d) on the coordinates of Y}(t).
Gathering the different ¢ this may imply a change of sign in det(Y’(¢)) that
plays no role because of the absolute value. As a consequence

E(r — z/Vd) = E(z/Vd).

In conclusion, for the next step it suffices to dominate the integral in the
r.h.s of (3.7) restricted to the interval [0, vdr/2].

Step 4: Domination. The following lemma gives bounds for the different terms.

Lemma 2. There exists some constant o, 0 < o < 1/2 and some integer dy
such that for < 5 and d > dy:

e <DL cos? (T) < eXp( 2);
Al < zexp(—az?);
p(—«

|B| < (1+2?) exp(—az?);

forz>2,1-C*>1-C*—-A2>C>0;

e 0<1-02< Cexp(—2a2?);

lp| < C(1 + 22)% exp(—2a2?).

Proof. We give the proof of 1, the other cases are similar or easier. On [0, 7 /2]
there exists a1, 0 < a; < 1/2 such that

cos(¥) <1 — a9

Thus,
2\ 2(d -2
cos?2 (%) < <1 — alj) < exp < — alz(d)> < exp (— az2>,
as soon as a < o1 and d is big enough. O

We have to find a dominant and to prove the convergence of the integral at
zero and at infinity.
At zero, since the function G is bounded we have to give bounds for

)

a7 s (5) 0% ()

(1 — (3082‘1(%))1%/2

Clearly, d™=" sin™ ! (z/v/d) < z™~1. Besides,

*() 1ok -ae
(1—cos2d(=)) %  (I—cj(2) s+

where c(z) = C(z/Vd).



For the denominator, using Lemma 2, we have
1 —c3(2) > C(1 — exp(—2az?)). (3.8)

We turn now to the numerator, let X4(.) be a formal Gaussian stationary process
on the line with covariance ¢;. Hence,

1 cj(2) — ¢ (2) = Var(Xa(2)|Xa(0), X4(0))
= Var(Xa(2) — Xa(0) — 2X3(0)|Xa(0), X;(0))

< Var (Xy(2) — Xa(0) — 2X4(0)) = 2*Var( /0 (1 — X} (ur)ar ).

where we used the Taylor formula with the integral form of the remainder.
The covariance function cos(z/v/d) corresponds to the spectral measure p =
2(6_g-1/2+064-12), see [1]. The spectral measure associated to c4(z) = cos?(z/V/d)
is the d-th convolution of u and a direct computation shows that its fourth spec-
tral moment exists and is bounded uniformly in d. As a consequence, Var(X//(t))
is bounded uniformely in d, yielding that

1—c3(2) — c?(z) < Cz1 (3.9)

Using (3.8) and (3.9) we get the convergence at zero.
At infinity, define

() ) () ()

i (o) o))

Vd

Multiplication of bounded Lipchitz functions gives a Lipchitz function, thus

(7)) () 2(55)) ool
< C(lo® = 1|+ [C| + |p| +|D]).

The proof is achieved with Lemma 2.



3.3 Positivity of the limit variance
3.3.1 Hermite expansion of the number of real roots

We introduce the Hermite polynomials H,(z) by Ho(z) = 1, H1(z) = x and
H,1(z) = xH,(x) —nH,_1(z). The multi-dimensional versions are, for multi-
indexes a = (o) € N™ and B = (Be) € N™ and vectors y = (y¢) € R™ and

y' = (Ypu) €R™

Ha(y) = H Ha, (ye), ﬁﬁ‘(yl) = H Hﬁl,k(yé,k)'
=1 Ch=1

It is well known that the standardized Hermite polynomials {\/—%Hn}, {\/%Ha}
and {ﬁﬁﬁ} form orthonormal bases of the spaces L?(R, ¢1), L?(R™, ¢,,) and

L? (Rm2, ®m2) respectively. Here, ¢; stands for the standard Gaussian measure
on R7 (j = 1,m,m?) and a! = [[,2, ar!, B! = [1%—1 Bei!. See [16, 17] for a
general picture of Hermite polynomials. 7

Before stating the Hermite expansion for the normalized number of roots of
Y we need to introduce some coefficients. Let fg (8 € Rm2) be the coeflicients
in the Hermite’s basis of the function f: R™" — R such that f(y') =|det(y’)].

That is f(y') = >_gepm? feHga(y') with

1 T /
fo = fpvsn = g [ 1) Fa(y oy )dy
! ety ] O e W WIS
= et ] Ho, D 2 —dyl, (310
Bl B Jam: N C7S

with 8, = (B, .., Bim) and y] = (Y}1, - Ym): L =1,...,m.

Parseval’s Theorem entails ||f||3 = Z;X;Ozlﬁlzq féﬂ! < o00. Moreover,
since the function f is even w.r.t. each column, the above coefficients are zero
whenever |3;] is odd for at least one I =1,...,m.

To introduce the next coefficients let us consider first the coefficients in
the Hermite’s basis in L*(R,¢;) for the Dirac delta §o(z). They are by; =

1 1

ﬁ(,i)j%7 and zero for odd indices [10]. Introducing now the distribution

H;.nzl 00(y,) and denoting as by its coefficients it holds

ba_[‘é‘]!jnl\/ﬁ{Q] (3.11)

or b = 0 if at least one index «; is odd.

Since the formulas for the covariances of Hermite polynomials work in a
neater way when the underlying random variables are standardized, we define
the standardized derivative as

Yi(t) = Yf/%), and Y'(t) = (V.(),.... V" (1)),

where Y/(t) denotes the spherical derivative of Y, at t € S™. As said above, the
k-th component of 7;(15) in a given basis is denoted by 7;,6 (t).

10



Proposition 1. With the same notations as above, we have, in the L? sense,
that

_ NY —2dm? &
Nd = dm/4 ZI s
where
dm/4
Iga= / Z cyH HB(Y (t))dt,

[v|=¢

with v = (o, B) € N™ x N™ and || = |a| + |8] and Cy = ba f3-

!

Remark 1. Hermite polynomials’ properties imply that for q # q
E(Igalqy.q) =0.

Remark 2. The main difficulty in order to obtain a CLT relies on the bound of
the va@nce of the tail Zqu I4.q because of the degeneracy of the covariances
of (Y,Y) near the diagonal {(s,t) € S™ x S™ : s =t}. Besides, on the sphere
finding a convenient re-scaling as in the one-dimensional case [}] is a difficult
18Sue.

Proposition 1 is a direct consequence of the following lemma.

Lemma 3. Fore > 0 define
Noim [ Jder(Y ()] a(Y (1)t
Sm

where 6:(y) = [1)o1 5= 1{jys|<e} Jor Y = (W1, ym), and Y’ is the spherical
derwative of Y. Then, we have the following.

1. For v.€ R™, let NY(v) denote the number of real roots in S™ of the
equation Y (t) = v. Then, NY (v) is bounded above by 2d™ almost surely.

2. N. — NY almost surely and in the L* sense as e — 0.
3. The random variable NY admits a Hermite’s expansion.

Proof. Since the paths of Y are smooth, Proposition 6.5 of [1] implies that for
every v € R™ almost surely there is no point ¢ € S™ such that Y (¢) = v and the
spherical gradient is singular. Using the local inversion theorem, this implies
that the roots of Y = v are isolated and by compactness they are finitely many.
As a consequence, NY (v) is well defined and a.s. finite. Moreover, for every
t € R™HL such that Y (¢) = v, ||t|| = 1, we have that the set {Y{(¢),...,Y, (t),t}
is almost surely linearly independent in R™*1. This implies that NJY (v) is
uniformly bounded by the Bézout’s number 2d™ concluding 1 (see for example
Milnor [15, Lemma 1, pag. 275]).

By the inverse function theorem, a.s. for every regular value v € R™, NY (-)
is locally constant in a neighborhood of v. Furthermore, by the Area Formula
(see Federer [8], or [1] Proposition 6.1), for small € > 0 we have

1
N, = 7/ NY(v)dv, a.s. 3.12
(25)m [Cecjm d( ) ( )

11



Hence,
NY(0)=lim N., a.s. (3.13)
e—0

From 1. and (3.12) we have N. < 2d"™ a.s. Then, the convergence in (3.13) also
happens in L2.
This convergence allows us getting a Hermite’s expansion. We have

0=(y) = > baHal(y),

acNm
y' ! y'
()= 2% (%)
\/a ﬁeanQ \/(3

where b, are the Hermite coefficients of §.(y) and the fg have been already
defined. Furthermore, we know that lim._,o b5, = bo. Now, taking limit and
regrouping terms we get as in Estrade and Ledn [6] that

No=d32 S bafp [ Ha(Y0)Ha(Y (1)

9=0 || +|B|=¢

This concludes the proof. O

3.3.2 V>0

To prove that V,, > 0 we use the Hermite expansion. In fact,
oo
V2 = lim Y Var(l,q) > lim Var(ly ).
d—o0

o d—o0
q=2

By Proposition 1, we have,

dm/4
2

Ing = S e B Ho (Y (£))Hg(Y (t))dt.

lv|=2

The coefficients ¢, = bq fg vanish for any odd a, and |3,|. Thus, the only
possibilities to satisfy the condition |y| = 2 are that either only one of the
indices is 2 and the rest vanish, or that 8y, = B¢ = 1 for some k # k" and the
rest vanish. Hence,

dnﬂ4 m ~ _,
Iyq = /m lz (beg%lf(o ..... 0y Ha(Ye(t)) + bglfel2H2(Ye,1<t)))

(=1

+ 30 foraHa (Y i (8) + > 68 forwr Hy (Y 1, () Ha (Y;,k,a))] dt,
k=2 k#k'

where fi2 = fio,... 80,0,...,0), Bex = 2 and fokrr1 = f(o,....8en,....Bp0,,0)> Bek =

Ber = 1. By (3.4)-(3.5) the variables in different sums are orthogonal when eval-
uated at s,t € S™. Now, by Mehler’s formula, E (Hy(£)Ho(n)) = 2(E (€1))? > 0
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for jointly normal variables £,n. Hence, bounding the sum of the variances by
one convenient term, we have

m /4

d ~ —
Var(ly,4) > Var ( 5 b81f£22/ Hz(yéz(t))dt)
S‘VTL

= G T [ BT a(0) s

(b e /( . (<s,t>d A= 1) (s 21— <s,t>2)2dsdt,

where last equality is a consequence of (3.3).

The integral tends to a positive limit as can be seen using Lemma 1 and the
scaling ¢ = z/v/d as in Section 3.2.

Finally, by (3.11) by # 0. Besides, by the symmetry of the function f(-) =
| det(-)| and (3.10), foxa = forr2 for all £, k, k'. Therefore, adding up (3.10) w.r.t.
¢ and k, we get

fezz = # (E (| det(y)lly"I7) — mE (| det(y")])) ,

being || - || is Frobenious’ norm and y’ an m x m standard Gaussian matrix.
Straightforward computations using polar coordinates show that fyo > 0 for
all m > 1. This concludes the proof.

References

[1] J-M Azais and M. Wschebor. Level sets and extrema of random processes
and fields. John Wiley & Sons Inc., Hoboken, NJ, (2009), ISBN: 978-0-470-
40933-6.

[2] J-M Azais and M. Wschebor. On the roots of a random system of equations.
The theorem on Shub and Smale and some extensions. Found. Comput. Math.
5 (2005), no. 2, 125-144.

[3] A.T. Bharucha-Reid and M. Sambandham. Random polynomials. Probabil-
ity and Mathematical Statistics. Academic Press, Inc., Orlando, FL, (1986),
xvi4+206 pp. ISBN: 0-12-095710-8.

[4] F. Dalmao. Asymptotic variance and CLT for the number of zeros of Kostlan
Shub Smale random Polynomials. C.R. Acad. Sci. Paris Ser. I 353 (2015),
1141-1145.

[5] A. Edelman and E. Kostlan. How many zeros of a random polynomial are
real? Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1-37.

[6] A. Estrade and J.R. Leén. A central limit theorem for the Euler character-
istic of a Gaussian excursion set. Ann. Probab. 44 (2016), no. 6, 3849-3878.

[7] K. Farahmand. Topics in random polynomials. Pitman Research Notes in
Mathematics Series, 393. Longman, Harlow, (1998), x+163 pp. ISBN: 0-582-
35622-9.

13



[8] H. Federer. Two theorems in geometric measure theory. Bull. Amer. Math.
Soc., 72, (1966), 719.

[9] E. Kostlan. On the distribution of roots of random polynomials. From Topol-
ogy to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990),
419-431, Springer, New York, 1993.

[10] M. F. Kratz and J. R. Leén. Hermite polynomial expansion for non-
smooth functionals of stationary Gaussian processes: crossings and extremes.

Stochastic Process. Appl., 66(2), (1997), 237-252.

[11] A. Lerario and E. Lundberg. On the zeros of random harmonic polynomials:
the truncated model. J. Math. Anal. Appl. 438 (2016), no. 2, 1041-1054.

[12] T. Letendre. Expected volume and Euler characteristic of random subman-
ifolds. J. Funct. Anal. 270 (2016), no. 8, 3047-3110.

[13] T. Letendre. Variance of the volume of random real algebraic submanifolds.
To appear in Trans. Amer. Math. Society arXiv:1608.05658.

[14] T. Letendre and M. Puchol, Variance of the volume of random real algebraic
submanifolds II, arXiv:1707.09771

[15] J. Milnor. On the Betti numbers of real varieties. Proc. Amer. Math. Soc
(1964), 15, 275-280.

[16] I. Nourdin and G. Peccati. Normal approximations with Malliavin calculus.
From Stein’s method to universality. Cambridge Tracts in Mathematics, 192.
Cambridge University Press, Cambridge, (2012), xiv+239 pp. ISBN: 978-1-
107-01777-1

[17] G. Peccati and M. Taqqu. Wiener chaos: moments, cumulants and di-
agrams. A survey with computer implementation. Supplementary material
available online. Bocconi & Springer Series, 1. Springer, Milan; Bocconi Uni-
versity Press, Milan, (2011), xiv+274 pp. ISBN: 978-88-470-1678-1.

[18] M. Shub and S. Smale. Complexity of Bézout’s theorem. II. Volumes and
Computational algebraic geometry (Nice, 1992), 267-285, Progr. Math., 109,
Birkhauser Boston, Boston, MA, 1993.

[19] M. Wschebor. On the Kostlan-Shub-Smale model for random polynomial
systems. Variance of the number of roots. J. Complexity 21 (2005), no. 6,
773-789.

14



	Introduction
	Main Result
	Explicit expression of the variance

	Proof
	Preliminaries
	Finiteness of the limit variance
	Positivity of the limit variance
	Hermite expansion of the number of real roots
	V>0



