
HAL Id: hal-01980644
https://hal.science/hal-01980644v1

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint-Propagation-Based Cutting Planes: An
Application to the Resource-Constrained Project

Scheduling Problem
Sophie Demassey, Christian Artigues, Philippe Michelon

To cite this version:
Sophie Demassey, Christian Artigues, Philippe Michelon. Constraint-Propagation-Based Cutting
Planes: An Application to the Resource-Constrained Project Scheduling Problem. INFORMS Journal
on Computing, 2005, 17 (1), pp.52-65. �10.1287/ijoc.1030.0043�. �hal-01980644�

https://hal.science/hal-01980644v1
https://hal.archives-ouvertes.fr

Constraint-Propagation-Based Cutting
Planes: An Application to the
Resource-Constrained Project

Scheduling Problem

Sophie Demassey • Christian Artigues • Philippe Michelon
Laboratoire d’Informatique d’Avignon, 339, Chemin des Meinajariés, Agroparc, BP 1228,

84911 Avignon Cedex 9, France

sophie.demassey@lia.univ-avignon.fr • christian.artigues@lia.univ-avignon.fr

philippe.michelon@lia.univ-avignon.fr

We propose a cooperation method between constraint programming and integer

programming to compute lower bounds for the resource-constrained project schedul-

ing problem (RCPSP). The lower bounds are evaluated through linear-programming (LP)

relaxations of two different integer linear formulations. Efficient resource-constraint propa-

gation algorithms serve as a preprocessing technique for these relaxations. The originality of

our approach is to use additionally some deductions performed by constraint propagation,

and particularly by the shaving technique, to derive new cutting planes that strengthen

the linear programs. Such new valid linear inequalities are given in this paper, as well

as a computational analysis of our approach. Through this analysis, we also compare the

two considered linear formulations for the RCPSP and confirm the efficiency of lower

bounds computed in a destructive way.

(Resource-Constrained Project Scheduling Problem; Cutting Plane; Constraint Propagation;

Shaving)

1. Introduction
The resource-constrained project scheduling problem

(RCPSP) is one of the most general scheduling prob-

lems that is extensively studied in the literature

(Brucker et al. 1999). It consists of scheduling a project,

i.e., a set of activities linked by precedence constraints,

on a set of resources with limited availabilities. The

objective is to minimize the total duration of the

project, or makespan.

Being strongly NP hard, the exact resolution of this

problem has most often been tackled by branch-and-

bound procedures; see, e.g., Baptiste and Le Pape

(2000), Brucker et al. (1998), Demeulemeester and

Herroelen (1997), Dorndorf et al. (2000), Mingozzi

et al. (1998), and Sprecher (2000). Consequently, some

research focuses on the computation of good lower

bounds. Among them we can mention the ones based

on linear programming, like the cutting-plane algo-

rithm over the time-indexed linear formulation pre-

sented in Christofides et al. (1987) and in Sankaran

et al. (1999), the lagrangian relaxation of this same for-

mulation by Christofides et al. (1987) and its enhance-

ment by Möhring et al. (2003) solving a minimum

cut problem, the preemptive linear relaxations of a

new formulation based on the concept of feasible sub-

sets proposed in Mingozzi et al. (1998), the recent

0899-1499/03/0000/001
1526-5528 electronic ISSN

INFORMS Journal on Computing © 2003 INFORMS
Vol. 00, No. 0, Xxxxx 2003, pp. 1–17

Sophie Demassey

Sophie Demassey

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

improvement of one of these relaxations in Brucker

and Knust (2000) applying column-generation tech-

niques, and the linear lower bound in Carlier and

Néron (2000) computed from the quick resolution by

a parametric approach of a new linear multi-elastic

preemptive relaxation of the problem based on the

concept of feasible configurations.

In a second category, we can group together

constraint-programming-based lower bounds like the

ones proposed by Klein and Scholl (1999), Caseau

and Laburthe (1996), Baptiste and Le Pape (2000), or

Dorndorf et al. (2000). In fact, among all these authors,

Klein and Scholl are the only ones actually to compute

a lower bound of the optimal makespan. They make

use of a destructive procedure: constraint-propagation

rules are applied in order to prove that no feasible

schedule with makespan lower than T exists, yield-

ing a fortiori that T + 1 is a lower bound. On the

other hand, in the three other papers, constraint-

propagation rules are directly applied to prune a

search tree by proving that no optimal schedule can

be reached from a given node.

The bound proposed in Brucker and Knust (2000)

belongs to both categories since they use constraint-

propagation techniques to preprocess their linear

program.

Our objective is also to propose lower bounds

for the RCPSP based on cooperation between lin-

ear programming (LP) and constraint programming

(CP). We first use constraint-propagation algorithms

as a preprocessing technique as in Brucker and Knust

(2000) and we compute a lower bound by solving to

optimality the linear program without the integral-

ity constraints (i.e., the LP relaxation). Such a pre-

processing of linear programs by constraint program-

ming is relatively well-known. However, in contrast

to other hybrid methods, including the Brucker and

Knust one, we aim to exploit the deductions per-

formed by constraint propagation in a deeper way.

Indeed, we derive from theses deductions new valid

linear inequalities that are added to the LP relaxation

to strengthen the LP-based bound, if they cut the cur-

rent solution. To our knowledge, the latter experiment,

which is an actual cooperation, has not been carried

out yet for this problem. However, approaches based

on such cooperation are increasingly being reported as

successful in the literature for various combinatorial

optimization problems, including scheduling prob-

lems (Harjunkoski et al. 2000, Hooker 2000). We apply

this hybrid constraint-linear programming approach

on two different linear formulations of the RCPSP,

one based on a continuous-time representation and

the other based on a discrete-time representation. In

both cases, the same preprocessing phase is used. It is

composed of constraint-propagation algorithms and it

includes an original shaving technique. Then we pro-

pose new CP-based valid inequalities for each of the

two linear programs. Last, for a further improvement,

we embed the best of these two approaches into a

destructive procedure.

The paper is organized as follows. Section 2 gives

definitions and notation for the RCPSP. In §3 we

review two integer linear formulations for the RCPSP,

as well as their relaxations. We report in §4 the differ-

ent rules implemented in our constraint-propagation

algorithm at the preprocessing stage and, in par-

ticular, the global shaving rule. In §5, we explain

for each formulation, how the information provided

by constraint programming is used to derive valid

linear inequalities within the linear program resolu-

tion procedure. Finally, §6 presents some computa-

tional results, including an experimental comparison

between the two linear formulations and the results of

the destructive approach applied to the time-indexed

formulation.

2. Definitions and Notation
An instance of the RCPSP is composed of:

• a set � of m renewable resources with limited

availabilities Rk ∈ �
∗� ∀k ∈�;

• a project or a set V ′ of n activities. Each activ-

ity i must execute over pi ∈�
∗ time units and requests

during this period a constant amount rik ∈ � of each

resource k. Moreover, a partial order E ′ is given on

the set V ′ representing precedence relations between

the activities.

It is assumed that two dummy activities 0 and

n+ 1 (with null duration and requests) are added

to represent the start and the end of the project,

respectively. Let V = V ′∪ �0�n+1� and E = E ′∪ ��0� i�,

�i�n+1� � i ∈ V ′�.

2 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

The objective of the problem is then to find a

schedule S on V , i.e., an activity starting-times vector

�S0� S1� � � � � Sn+1� ∈ �
V in such a way that S0 = 0,

and:

• S satisfies the precedence constraints: If i and j

are two activities linked by �i� j� ∈ E then j cannot

start before the completion of i, i.e., Sj ≥ Si+pi.

• S satisfies the limited-resource constraints: At any

time t and for any resource k, the capacity of k must

not be exceeded by the total request of the activities

in progress at time t, i.e.,
∑

j∈Vt
rjk ≤ Rk, where Vt =

�j ∈ V ′ � Sj ≤ t < Sj +pj�.

• The completion time of the project (makespan)

Sn+1 is minimized.

Finally, let T denote an upper bound on the optimal

makespan.

3. Integer Linear Programs
and Relaxations

There are two usual ways to model scheduling prob-

lems as integer linear programs: by using continuous-

time variables or time-indexed variables. Our study is

related to one formulation in each category. The first

one, presented in §3.1, follows the disjunctive graph

approach by Balas (1970). The second one, in §3.2,

was presumably given first in Pritsker et al. (1969).

Once an integer program is formulated for the RCPSP,

the exact resolution of any of its relaxations, in par-

ticular of its LP relaxation (i.e., dropping the integral-

ity requirements on the variables), provides a lower

bound on the optimal makespan. We present here the

two models and the way we use their relaxations.

3.1. Continuous-Time Variables

The classical Balas disjunctive model for the job-shop

problem, based on the natural starting time vari-

ables Si, was extended to the RCPSP by Alvarez-

Valdés and Tamarit (1993) making use of the concept

from Radermacher (1985) of minimal forbidden sets (i.e.,

any subset F of activities not linked by any precedence

path in E, satisfying
∑

j∈F rjk > Rk for some resource

k ∈ � and minimal for inclusion). To model resource

constraints, additional variables are defined: for any

pair of activities �i� j�, let xij be 1 if j starts after the

completion of i, and 0 otherwise.

The RCPSP is formulated in Alvarez-Valdés and

Tamarit (1993) as follows:

min Sn+1

subject to: xij =1 ∀�i�j�∈E (C1)

xij+xji≤1 ∀�i�j�∈V ×V (C2)

xik≥xij+xjk−1

∀�i�j�k�∈V ×V ×V (C3)

Sj−Si≥−M+�pi+M�xij

∀�i�j�∈V ×V (C4)
∑

i�j∈F

xij ≥1 ∀ minimal forbidden

set F (C5)

xij ∈�0�1� ∀�i�j�∈V ×V (C6)

Si≥0 ∀i∈V � (C7)

Constraints (C1) give the precedence relations within

the project. Constraints (C2) and (C3) avoid cycles.

Constraints (C4) model implications xij = 1 ⇒ Sj ≥

Si+pi, where M is some large constant. The resource

constraints (C5) state that in any minimal forbidden

set F , at least one sequencing decision must be taken.

Finally, constraints (C6) and (C7) state that decision

variables xij are Boolean and that the variables Si are

nonnegative, respectively.

Note that the implementation of the LP relaxation

of this program is not practical because of the possi-

ble exponential number of constraints (C5). Hence, in

our relaxation, besides the integrality constraints (C6),

we also drop all constraints (C5) with minimal forbid-

den sets of cardinality strictly greater than 3. Hence,

it is clearly essential to tighten this linear program,

and in particular to adjust the value of M inside

the constraints (C4), to take into account the missing

resource constraints implicitly. We will see in §5.1 how

constraint-programming preprocessing allows this.

3.2. Time-Indexed Variables

The most frequently encountered integer linear for-

mulation of the RCPSP (Christofides et al. 1987,

Möhring et al. 2003, Pritsker et al. 1969) is based on

time-indexed Boolean variables yjt where yjt = 1 if and

only if activity j starts at time t, for each activity j ∈

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 3

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

V and for each time period t = 0� � � � � T . Given these

variables, the RCPSP can be formulated as follows:

min
∑

t=0�����T

ty�n+1�t

subject to:
T
∑

t=0

yjt = 1 ∀j ∈ V (D1)

T
∑

t=0

t�yjt −yit�≥ pi ∀�i� j� ∈ E (D2)

∑

j∈V

rjk

t
∑

�=t−pj+1

yj� ≤ Rk

∀k ∈�� ∀t ∈ �0� � � � � T � (D3)

yjt ∈ �0�1� ∀j ∈ V � ∀t ∈ �0� � � � � T �� (D4)

where constraints (D1) state that each activity must

be started exactly once over the planning horizon T .

Inequalities (D2) and (D3) represent precedence and

resource constraints, respectively. Constraints (D4)

enforce variables yjt to be 0-1.

Christofides et al. (1987) introduce a variant where

precedence constraints are presented in a disaggre-

gated (strongest) way:

T
∑

�=t

yi� +
t+pi−1
∑

�=0

yj� ≤ 1

∀�i� j� ∈ E� ∀t = 0� � � � � T � (D2S�

Constraints (D2S) state that for any precedence rela-

tion �i� j� in E, if activity i starts at time t or later

then activity j cannot start before time t + pi, and

conversely.

We have implemented the LP relaxation for these

two variants with time-indexed variables despite the

relatively large number of constraints (D1), (D2),

(D2S), and (D3). Preprocessing is especially useful to

fix a maximal number of variables yit .

4. Constraint Programming
as Preprocessing

In the first phase of the proposed approach, a

constraint-propagation algorithm is applied to the

problem, given a feasible upper bound T on the

optimal makespan. We detail in this section the

constraint-propagation rules we have implemented,

including an original shaving technique for the

RCPSP. First, we present the way the rules are prop-

agated within the shaving process.

As in Brucker and Knust (2000), our algorithm is

implemented using the start-start distance (SSD)-matrix

formalism. An SSD-matrix B = �bij�V×V is any integer

matrix satisfying, for any feasible schedule S,

Sj −Si ≥ bij ∀�i� j� ∈ V ×V �

The major interest in this notion is to reflect the

sequencing relations for any pair �i� j� of activities.

For instance, if bij ≥ pi then i precedes j (which is

denoted by i → j) in any feasible schedule. On the

other hand, if bji ≥ 1−pi, then j starts before the com-

pletion of i (i� j) and if, moreover, bij ≥ 1−pj , then i

and j are executed in parallel (i � j) in any feasible

schedule.

With this formalism, the RCPSP can easily be seen

as a constraint-satisfaction problem (CSP) with vari-

ables (Sj −Si) and domains approximated by intervals

�bij�−bji	. The bounds on these domains are initialized

taking the precedence constraints E and the planning

horizon T into account:

bij =

0 if i = j

pi if �i� j� ∈ E

−T otherwise

�

In this CSP, we also take resource constraints par-

tially into account by computing all the minimal for-

bidden sets (see §3.1) with two (�2) or three (�3)

activities. The constraint-programming algorithm also

maintains, besides the matrix B, a symmetric rela-

tion D over the set of activities, the disjunction relation

defined by �i� j� ∈D if activities i and j cannot be exe-

cuted in parallel (i→ j or j → i). Obviously, D may be

initialized to the set �2 of minimal forbidden pairs.

The constraint-programming algorithm consists of

four local consistency-enforcing techniques (§4.1)

embedded in an original shaving framework (§4.2).

The objective is to deduce some additional relations

(parallel, conjunction, or disjunction), deriving in turn

bound adjustments on the variable domains (i.e.,

increases of some entries in B). During this process,

4 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

b0�n+1� is an actual lower bound (CPLB) of the optimal

makespan.

4.1. Local Constraint Propagation

The local constraint-propagation algorithm we use is

inspired by Brucker and Knust (2000). A series of four

CP algorithms is applied iteratively until no more

adjustments can be performed. A single execution of

these four algorithms has an ��m2n4� time complexity.

But note that in practice, they are applied only a cou-

ple of times. We refer to Brucker et al. (1998) for more

details about the four local techniques enumerated

below:

Path Consistency. The first local constraint-propag-

ation rule can be implemented in O�n3� time by

the Floyd-Warshall algorithm, which computes the

transitive closure of the matrix B by setting bil
=

maxj∈V �bij +bjl�. Hence it reflects the transitivity prop-

erty Sl − Si = �Sl − Sj�+ �Sj − Si�. Note also that when-

ever only one entry bhl is updated in a transitively

closed matrix, the path consistency is run in O�n2�

time by setting bij
= max�bij� bih + bhl + blj� ∀�i� j� ∈

V × V . This is the case in the shaving process

described in §4.2.

The immediate selection algorithm (see, e.g., Carlier

and Pinson 1989) is a simple O��D�� algorithm that

replaces each disjunction �i� j� ∈ D by the precedence

constraint i→ j whenever bij ≥ 1−pj (i.e., j � i).

Symmetric triples rules deduce new disjunctions con-

sidering forbidden sets of three activities. For exam-

ple, let �i� j� k� ∈ �3 be a forbidden set, then k � i

and k � j imply that i and j are in disjunction. Other

relations are deduced considering an additional activ-

ity l related to such a symmetric triple �i� j� k�. We

have implemented the O�m2n4� algorithm proposed

by Brucker et al. (1998).

Edge-finding rules of Carlier and Pinson (1990)

also deduce new precedence relations but consider

cliques of disjunctions that are sets in which each

pair of activities are in disjunction. We use primal

(respectively dual) edge-finding to detect whether an

activity of the clique has to execute after (respec-

tively before) all the other activities in the clique. For

instance, primal edge-finding tests for each activity j

in a clique C, if the condition mini∈C b0i +
∑

i∈C pi >

maxi∈C� i �=j�−bi0 + pi� is satisfied. In the positive case,

the earliest start time of j is updated by setting

b0j
= max�b0j�maxC ′⊆C\�j��mini∈C ′ b0i +
∑

i∈C ′ pi�� and

the latest start time of any activity i ∈ C� i �= j is

updated by setting bi0
=max�bi0� bj0+pi�.

We also perform additional adjustments on the

lower bound b0�n+1� for any computed clique C and

all its sub-cliques:

b0�n+1�
=max

{

b0�n+1��min
i∈C

b0i+
∑

i∈C

pi+min
i∈C

bi�n+1�

}

�

Note, however, that this additional constraint does

not propagate. The version of edge-finding we have

implemented runs in ���C�2� time (Nuijten 1994), as

well as the latter adjustment to the lower bound. To

compute cliques we have implemented two heuris-

tics, one proposed in Brucker et al. (1998) and the

other proposed in Baptiste and Le Pape (2000). Since

this can be done in ��n2� time, the overall algorithm

of clique generation and edge-finding runs in O�n4�

time.

The entries of B are eventually increased by all

these propagation techniques. Furthermore, infeasibil-

ity may be detected if some variable domain remains

empty (bij > −bji): that is, if no feasible schedule of

total duration lower than T exists.

4.2. Shaving

To improve the constraint-propagation process, we

apply an adapted shaving technique. Shaving (Carlier

and Pinson 1994, Caseau and Laburthe 1996, Martin

and Shmoys 1996) follows the general principle of

consistency-enforcing techniques based on refutation

for a CSP: A new constraint c is temporarily added

and constraint propagation is performed. If it leads

to an infeasibility, then the opposite constraint ¬c is

valid. We have adapted the shaving technique to the

RCPSP with the objective of generating sequencing

constraints. For each pair of activities �i� j�, we test

the validity of the three following constraints: i → j ,

j → i, and i � j , propagating them separately on the

overall problem by means of the four local techniques

described in §4.1. We obtain three new SSD-matrices

Bi→j , Bj→i, and Bi�j of the same RCPSP instance in

which the corresponding constraint is added. If a

matrix Bc is inconsistent, that is, if bcij > −bcji for

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 5

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

some activities �i� j� and c ∈ �i → j� j → i� i � j�, then

constraint c is refuted and global deductions on B can

be done. Moreover, if the constraint i � j is refuted,

then the disjunction i− j is added to D.

For instance, let �i� j� be a pair of activities such

that Bj→i is inconsistent, but neither Bi→j nor Bi�j is

inconsistent. This implies that in any feasible schedule

either i precedes j , or i and j are in parallel. This

information is stated by

B
=min�Bi→j�Bi�j��

Furthermore, even if no infeasibility is detected, the

distance matrix may however be updated as follows:

B
=min�Bi→j�Bj→i�Bi�j��

Such a global operation is powerful but also very

time-consuming since it calls the local constraint-

propagation algorithm for each unresolved sequenc-

ing decision. We investigate two ways of keeping

reasonable CPU times, on the one hand, by reducing

the local constraint-propagation algorithm within the

shaving process (essentially by suppressing symmet-

ric triples rules) and, on the other hand, by restricting

shaving to a reduced set of pairs of activities.

5. Valid Inequalities Inferred from
Constraint Propagation

At the end of the preprocessing, and if the lower

bound obtained by constraint propagation CPLB =

b0�n+1� has not reached the upper bound T , we resort

to the LP relaxations reported in §3, augmented by

cutting planes. First, some data computed within the

preprocessing phase are fixed and stored: on the one

hand, the SSD-matrix B and the disjunction relation

D and, on the other hand, the cliques of disjunctions

computed for the edge-finding and all the remaining

consistent “shaved” SSD-matrices Bi→j , Bj→i, and Bi�j

for each pair �i� j� of activities not yet sequenced. The

distance and disjunction matrices are used, before the

resolution, to sharpen the linear programs by fixing

variables and tighten linear inequalities, while shav-

ing deductions and cliques of disjunctions permit us

to infer some strong cutting planes. In this section, we

detail how deductions performed by constraint prop-

agation enhance the linear programs corresponding

to each formulation with continuous-time variables

(§5.1) and with time-indexed variables (§5.2).

5.1. Continuous-Time Variables

The constraint-programming algorithm described in

the previous section is obviously directed toward

sequencing decisions for pairs of activities. Hence,

it is especially suited to tighten the linear program

in continuous-time variables. In §§5.1.1 and 5.1.2 we

describe how constraint programming is used for pre-

processing. Then, we derive from constraint propa-

gation roughly two kinds of valid inequalities. The

first ones express shaving deductions as described in

§§5.1.3, 5.1.4, and 5.1.5. The second ones, described in

§5.1.6, translate and extend edge-finding-like rules.

5.1.1. Fixing Variables. Indeed, numerous vari-

ables can be fixed before resolution by considering the

SSD-matrix B since the following equalities hold for

any feasible schedule:

xij = 1 ∀�i� j� ∈ V ×V such that bij ≥ pi (C1′)

xij = 0 ∀�i� j� ∈ V ×V such that bji ≥ 1−pi� (C1′′)

5.1.2. Strengthening Linear Constraints. In the

same way, we can obviously replace the “big M”

value in constraint (C4) by −bij . In order to strengthen

the precedence constraints, we replace (C4) by

Sj −Si ≥ bij ∀�i� j� ∈ V ×V � bij ≥ pi (C4′�

Sj −Si ≥ bij + �pi− bij�xij

∀�i� j� ∈ V ×V � 1−pj ≤ bij < pi (C4′′�

Sj −Si ≥ �1−pj�+ �pi+pj −1�xij + �bij +pj −1�xji

∀�i� j� ∈ V ×V � bij < 1−pj � (C4′′′�

These inequalities express the minimal distance, per-

formed within the preprocessing phase, between the

beginning of two activities Sj −Si ≥ bij . They also rep-

resent the sequencing relations xij = 1 ⇔ Sj − Si ≥ pi
and xij = xji = 0⇒ Sj −Si ≥ 1−pj .

With the new disjunctions deduced by the symmet-

ric triples and the shaving techniques, we can enlarge

the definition of forbidden sets of cardinality 2 to all

pairs of activities in disjunction, hence increasing the

number of remaining constraints (C5):

xij +xji = 1 ∀�i� j� ∈D �C5′�

6 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

∑

u�v∈�i� j� k�

xuv ≥ 1

∀minimal forbidden set �i� j� k� ∈ �3� �C5′′�

5.1.3. Four-Tuple Shaving Cuts Based on Sequen-

cing. The four-tuple shaving cuts based on sequenc-

ing link the relative sequencing of two activities

�i� j� with the relative sequencing of two other activ-

ities �h� l�. Such a link is implicitly represented in

the shaved SSD matrices. For instance, the condi-

tion bh→l
ij ≥ pi represents the relation h → l ⇒ i → j .

Then the linear constraint xij ≥ xhl is clearly valid in

this case.

Following this idea, we generate all the dominant

cutting planes linking variables xij , xji, xhl, and xlh
according to the different values of bij , bji, bhl, and blh
in the matrices B, Bi→j , Bh→l, Bi�j , Bh�l, Bj→i, and Bl→h.

Another example can give theoretical insight of this

approach. Suppose that no information about the rel-

ative ordering of i and j has been deduced within the

CP phase (i.e., if bji < 1−pi and bij < 1−pj). However,

the CP has detected that h cannot be scheduled after l

(that is, if bhl ≥ 1−pl and blh < 1−ph). Hence, xlh is set

to 0 whereas xij , xji, and xhl are undetermined. Since

xij +xji ≤ 1, the projection P ′ of the fractional solution

space on ��xij�xji�xhl��⊆ �0�1	3 is included in the con-

vex hull of

X =

0

0

0

 �

1

0

0

 �

0

1

0

 �

0

0

1

 �

1

0

1

 �

0

1

1

�

Because each of these vertices is associated with a

necessary existence condition, this set can be reduced

through an analysis of the shaved SSD matrices. The

proposed cuts are the facets of the convex hull of the

subset obtained after removing one or several vertices

from X.

For example, the point
(

1
0
1

)

can be removed from P ′

if the following condition is satisfied:

b
i→j

lh ≥ 1−ph or bh→l
ji ≥ 1−pi� (a)

Indeed, this corresponds to the implication i → j ⇒

¬�h → l�. Furthermore, xhl ≤ 1 − xij is a facet of

conv
(

X
∖

{(

1
0
1

)})

. Consequently, it is a valid inequality

of P ′. Suppose that, in addition, we have,

b
i�j

lh ≥ 1−ph or bh→l
ij ≥ pi or bh→l

ji ≥ pj � (b)

x
ij

xji

xhl

(

1

0

1

)

(

0

0

1

)

Figure 1 Cut xj i ≤ xhl as a Facet of X ′

In other words, there cannot simultaneously be i � j

and h→ l. Then

P ′ ⊆ X ′ = conv

X

∖

1

0

1

 �

0

0

1

and the deeper cut xji ≤ xhl, which is a facet of

X ′, can be generated. Figure 1 gives an illustration

of the proposed cuts and shows that using jointly

deductions (a) and (b) clearly gives better results than

treating them separately.

The general framework for finding the dominant

sequencing cuts is as follows. For each four-tuple

�i� j�h� l�, we consider the polyhedron of Figure 1.

We remove the maximal number of infeasible extreme

points by performing an analysis of the distance

matrices similar to the above-described one. Such a

removal generates one or two facets corresponding to

the sequencing cut(s).

5.1.4. Four-Tuple Shaving Cut Based on Dis-

tance. A four-tuple shaving cut based on distance is

defined for any activities �i� j�h� l� such that i �= j and

h < l. It links starting time variables with sequenc-

ing variables and is directly derived from the shaved

distances, following the “lifting” principle for linear

inequalities:

Sj −Si ≥ b
h�l
ij + �bh→l

ij − b
h�l
ij �xhl+ �bl→h

ij − b
l�h
ij �xlh� (C7)

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 7

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

The validity of this cut is straightforward by test-

ing the three admissible values for the pair �xhl�xlh�,

which are
(

0
0

)

,
(

1
0

)

, and
(

0
1

)

. Note that, in the general

case, there is no dominance between this cut and the

shaving cuts based on sequencing.

5.1.5. Path Cuts. Obviously, the optimal solution

of the RCPSP is equal to the length of a path made

of arcs �i� j� such that xij = 1. Hence, it is tempting to

generate some “path cuts” with three activities:

Sl−Si ≥ �+�xij +xjl ∀�i� j� l� ∈ V 3� (C8)

where the coefficients �, �, and are computed from

default evaluations of the distance between Si and Sl
according to the different values of xij and xjl. Here

again the shaved SSD matrices provide some tight

evaluations, allowing generation of deeper cutting

planes. We detail hereafter the lifting technique that

can be used to compute some ������ triples such

that the resulting cuts C8������ are dominant.

If � �P� denotes the set of the feasible solutions of

the initial problem P formulated in §3.1, let us define

the following notation:

b00il = min
{

Sl−Si � S ∈� �P�xij = 0�xjl = 0�
}

b10il = min
{

Sl−Si � S ∈� �P�xij = 1�xjl = 0�
}

b01il = min
{

Sl−Si � S ∈� �P�xij = 0�xjl = 1�
}

b11il = min
{

Sl−Si � S ∈� �P�xij = 1�xjl = 1�
}

�

Hence, by enumerating the four possible values for

the pair of variables �xij�xjl� we obtain the following

lemma:

Lemma 1. C8������ is a valid inequality for P if

and only if � ≤ b00il , � + � ≤ b10il , � + ≤ b01il , and

�+�+ ≤ b11il .

Unfortunately, the computation of b00il , b
10
il , b

01
il , and b11il

is itself as difficult as is the original problem P . Sup-

pose however that we have four minorants of these

values (say A, B, C, and D, respectively); then there

is a dominance relation between the valid inequalities

of type C8������:

Proposition 2. Any valid inequality C8������ sat-

isfying �≤A, �+�≤ B, �+ ≤C, and �+�+ ≤D is

dominated by the conjunction of two inequalities PC1 and

PC2 where,

(i) if A+D ≥ B+C then PC1= C8�A�B−A�C−A�,

and PC2= C8�B+C−D�D−C�D−B�, or

(ii) if A+D≤ B+C then PC1=C8�A�D−C�C−A�,

and PC2= C8�A�B−A�D−B�.

A proof is in the Appendix.

The proposed path cuts with three activities are

deepest if A, B, C, and D are close to the optimal coef-

ficients b00il , b
01
il , b

10
il , and b11il . A way of computing good

minorants is to use the shaving principle of constraint

propagation, running the local constraint-propagation

algorithms after posting each of the corresponding

constraints

A = b
¬�i→j�∧¬�j→l�

il � B = b
�i→j�∧¬�j→l�

il �

C = b
¬�i→j�∧�j→l�

il � and D = b
�i→j�∧�j→l�

il �

However, to save computational time, we perform

a weaker approximation, using only the shaved dis-

tance matrices stored during the CP phase:

A = max
{

min�b
i�j

il � b
j→i

il ��min�b
j�l

il � b
l→j

il ��

min�b
j�l
ij � b

l→j
ij �+min�b

i�j

jl � b
j→i

jl �
}

B = max
{

b
i→j

il �min�b
j�l

il � b
l→j

il ��min�b
j�l
ij � b

l→j
ij �+ b

i→j

jl

}

C = max
{

min�b
i�j

il � b
j→i

il �� b
j→l

il � b
j→l
ij +min�b

i�j

jl � b
j→i

jl �
}

D = max
{

b
i→j

il � b
j→l

il � b
i→j
ij + b

j→l

jl � b
j→l
ij + b

i→j

jl

}

�

Given these coefficients, we obtain dominant path

cuts with three activities in the sense of Proposition 2.

By similar arguments, we also obtain dominant cuts

for four-activity paths starting in 0 or ending in n+1:

Sl�−S0�≥ �+�xij +xjl ∀�i� j� l� ∈ V 3 (C8′)

Sn+1−Si ≥ �+�xij +xjl ∀�i� j� l� ∈ V 3� (C8′′)

Finally, we have generated some path cuts with

four nondummy activities without attempting to find

all dominant ones:

Sl−Si ≥ �+�xij +xjh+�xhl ∀�i� j�h� l� ∈ V 4� (C9)

5.1.6. Clique Cuts. The valid inequalities pre-

sented in this section are all defined for any clique of

disjunctions and aim at updating the starting time of

8 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

one of its activities j with respect to the other activities

in the clique. For this reason, they can be considered

as translations of some edge-finding rules in terms of

cutting planes. Each of these cuts has two symmetric

expressions. One corresponds to a lower bound of the

distance between starting time S0 = 0 of the project

and starting time Sj of j . The other corresponds to

a lower bound of the distance between completion

time Sn+1 of the project and completion time Sj + pj
of j . We provide the symmetric counterpart only for

the first cut since the mechanism for obtaining it is

straightforward.

In the remaining, C is any clique of disjunctions,

and j and l are two distinct activities in C.

The first cut we have implemented is the “half cut”

proposed in Applegate and Cook (1991) for the job-

shop problem. It states that each activity j ∈ C has to

be scheduled after all activities i ∈ C if xij = 1:

Sj ≥min
i∈C

b0i+
∑

i∈C\�j�

pixij ∀j ∈ C� (C10)

Let qi = bi�n+1�−pi denote the tail of activity i, then the

symmetric inequality is

Sn+1−Sj ≥ pj +
∑

i∈C\�j�

pixji+min
i∈C

qi� (C′10)

The second cut from Dyer and Wolsey (1990) is

called a “late job cut” and has also been introduced

for the job-shop problem. It modifies a half cut by

assuming that another activity l ∈ C is scheduled at

the first position. A penalty is then added whenever

another activity has to be scheduled before l:

Sj ≥ b0l+
∑

i∈C\�j�

pixij

+
∑

i∈C\�l�

min�0�b0i−b0l�xil ∀j�l∈C� (C11)

We propose our own version of the late job cut by

introducing the actual starting time Sl of activity l

instead of its earliest starting time. Whenever an activ-

ity i ∈ C has to be scheduled before l, Sl is replaced

by Sl+ bli ≤ Si:

Sj ≥ Sl+
∑

i∈C\�j�

pixij +
∑

i∈C\�l�

blixil ∀j� l ∈ C� (C12)

Finally, we generate another kind of cut that tight-

ens (C12) if activity l is known to precede all activities

of C (such a condition may be detected by the dual

edge-finding rule):

Sj ≥ Sl+
∑

i∈C\�j�

pixij

+min
i∈C\�l�

�bli−pl� ∀j�l∈C � l→C\�l�� (C13)

To generate all the cuts involving a clique of dis-

junctions, we have used the heuristic clique genera-

tion algorithm of the CP phase (see §4.1).

5.2. Time-Indexed Variables

For the two formulations in time-indexed variables,

the aggregated one and the disaggregated one, we

relax the only integrality constraints (D4) as seen in

§3.2. In §§5.2.1 and 5.2.2, we describe how CP is

used to preprocess the time-indexed linear program.

Some cutting planes have already been proposed for

the time-indexed formulations (see, e.g., Christofides

et al. 1987, Sankaran et al. 1999). Among them, we use

the clique cuts as described in §5.2.3. In §§5.2.4 and

5.2.5, we also propose a new category of cuts, shaving

cuts.

5.2.1. Fixing Variables. As for the continuous for-

mulation, before the resolution, the huge number of

variables can be drastically reduced thanks to the pre-

processed SSD-matrix B. Indeed, for each activity j

in V , we only have to define the variables yjt for t

bounded by the earliest starting time ESj = b0j of j and

its latest starting time LSj =−bj0.

5.2.2. Strengthening Linear Constraints. The

weak and the strong precedence constraints can be

more efficiently implemented as follows:

LSj
∑

t=ESj

tyjt −
LSi
∑

t=ESi

tyit ≥ bij ∀�i� j� ∈ V 2 �D2′�

LSi
∑

�=t

yi� +

t+bij−1
∑

�=ESj

yj� ≤ 1

∀�i� j� ∈ V 2� ∀t ∈ �ESj − bij +1� � � � �LSi�� �D2′S�

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 9

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

5.2.3. Clique Cuts. Clique cuts are packing in-

equalities stating that if C is a maximal set of mutu-

ally incompatible activities then, at any time t, at most

one activity of C is in process:

∑

�j� ��∈Ct

yj� ≤ 1 ∀t ∈ �0� � � � � T �� (D5)

where Ct = ��j� �� ∈ C × �max�ESj� t − pj + 1�� � � � ,

min�LSj� t�� � ESj ≤ t < LSj +pj�.

These inequalities are considered for all cliques of

disjunctions which were generated during the pre-

processing phase and which are maximal for inclu-

sion. Hence, we can expect that these clique cuts are

stronger than the ones used in classical implemen-

tations since numerous additional disjunctions and

conjunctions are likely to be detected by constraint

programming.

5.2.4. Four-Tuple Shaving Cuts. With the aim of

using shaving deductions, we have first translated the

implication Sj −Si ≥ pi ⇒ Sl−Sh ≥ b
i→j

hl for two distinct

pairs of activities �i� j� and �h� l�, into linear inequal-

ities by means of the time-indexed variables yit .

To ensure that this deduction is not dominated by

another constraint within the CSP formulation, we

assume that b
i→j

hl > bhl and that bij ≤ pi−1<−bji.

For better readability, let zij denote

LSj
∑

t=ESj

tyjt −
LSi
∑

t=ESi

tyit�

i.e., Sj −Si. As for the precedence constraints (D2) and

(D2S), we can write the relation according to both for-

malisms, aggregated or disaggregated:

zij > pi−1⇒ zhl ≥ b
i→j

hl

zij > pi−1⇒
LSh
∑

�=t

yh� +

t+b
i→j
hl −1
∑

�=ESl

yl� ≤ 1 ∀t ∈ �0� � � � � T ��

The first implication can be modeled by the

inequality:

�−bji−pi+1��zhl− bhl�≥ �zij −pi+1�
(

b
i→j

hl − bhl
)

� (D6)

as shown in Figure 2, where solutions of the integer

program lie in the cross-hatched zone and solutions

of the linear relaxation lie in the gray zone.

zij
bij pi−1 −bji

zhl

bhl

b
i→j

hl

]

]
(D6)

Figure 2 Projection of � in the �zij � zhl �-Plane

The second implication can be represented by the

next set of inequalities:

−bji−zij ≥ �−bji−pi+1�

(LSh
∑

�=t

yh� +

t+b
i→j
hl −1
∑

�=ESl

yl� −1

)

∀t ∈
{

max
{

ESh�ESl− b
i→j

hl +1
}

� � � � �

min
{

LSh�LSl− b
i→j

hl +1
}}

� �D6S�

There is another way to write the initial relation in

a disaggregated shape. Indeed, the equivalent relation

Sl−Sh < b
i→j

hl ⇒ Si−Sj ≥ 1−pi can be written:

zhl < b
i→j

hl ⇒

LSj
∑

�=t

yj� +

t−pj
∑

�=ESi

yi� ≤ 1 ∀t ∈ �0� � � � � T ��

Consequently, the following inequalities are also

valid:

zhl−bhl≥

(LSj
∑

�=t

yj�+
t−pi
∑

�=ESi

yi�

)

(

b
i→j

hl −bhl
)

∀t∈�max�ESj�ESi+pi������min�LSj�LSi+pi��� �D6′S�

Obviously, selecting cutting planes (D6S) (or (D6′S))

rather than (D6) amounts to choosing between the

strong, but more numerous, precedence constraints

(D2S) and the weak ones (D2).

5.2.5. Triple Shaving Cuts. If h (or l) is equal to 0,

the two corresponding valid inequalities (D6) and

(D6S) are dominated by

−bji−zij ≥ �−bji−pi+1�

(ES
i→j
l −1
∑

�=ESl

yl� +
LSl
∑

�=LS
i→j
l +1

yl�

)

(D7)

since it models the stronger implication Sj −Si ≥ pi ⇒

ES
i→j

l ≤ Sl ≤ LS
i→j

l �

10 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

6. Computational Experiments
We have tested our lower bounds on the ProGen

instances (Kolisch et al. 1995) with 30, 60, 90, and 120

activities. The constraint propagation, shaving, and

cutting-plane algorithms were all written in C++,

using ILOG CPLEX 7.0 as the LP solver. The exper-

iments were carried out on a Pentium III 800 MHz

system, under Linux and using g++ 2.95.4. Our pro-

cedures are essentially compared to the strongest

currently available one on these instances, i.e., (BK)

proposed by Brucker and Knust (2000), who obtained

their results on a Sun Ultra 2 workstation 167 MHz.

We first tested our CP-LP hybrid method on the

two linear models in a constructive way. In §6.1 we

present variants of these two algorithms and make

an experimental comparison of their efficiency for

computing lower bounds. To enhance our method, we

then selected whichever of these two algorithms that

obtained the best lower bounds, and we embedded it

into a destructive procedure. We explain the princi-

ple of this destructive procedure and report its results

compared to the bound by Brucker and Knust (2000)

in §6.2.

6.1. Constructive Lower Bounds

The constructive lower bounds are computed accord-

ing to the following scheme: given a feasible upper

bound T , the CP algorithm including shaving is

applied until no more deductions are found. Then the

constraint-programming lower bound CPLB = b0�n+1�

is obtained. The LP phase is invoked if CPLB < T .

Starting from the linear relaxation, the different pools

of cuts are successively added in a cyclic way. At

each iteration, all the inequalities of a single group

are tested inside an enumerative procedure, but only

Table 1 Results on the Nontrivial KSD30 Instances

CP Discrete (Aggregated)
Continuous

KSD30 264 Instances LCP CCP LCP+LP CCP+LP CCP+Weak CCP+Strong CCP+Cuts

Average �opt (%) 5�8 3�6 5�3 3�2 3�1 3�0 3�2

Maximal �opt (%) 33�7 31�3 25�0 25�0 21�8 21�8 29�7

Average time (s.) 0�0 2�3 1�0 3�0 10�2 35�6 4�9

Max time (s.) 0�0 17�3 49�5 31�1 601 1�296 37�6

No. of LB= opt 95 155 96 157 159 160 160

No. of LP> CP — — 24 17 35 42 47

the ones violating the current fractional solution are

generated and included in the LP. The LP relaxation

is solved with dual simplex, and the nonbinding cuts

are removed from the LP. The on-the-fly cutting-plane

procedure stops when no significant improvement of

the lower bound has been made during a certain

number of iterations, when no violating inequality

can be found, or when the computation time allowed

is elapsed.

In Table 1, we report experiments on the 264 KSD

nontrivial instances with 30 activities, which are the

instances for which the optimal value is not the length

of the critical path within the precedence graph.

Rows 1 and 2 give the average and maximal deviation

�opt from the optimal solution of our lower bounds.

Rows 3 and 4 give the average and maximal CPU

times. We also give the number of instances for which

the optimal value is reached (Row 5) and the number

of instances for which LP improves constraint propa-

gation (Row 6). Each column corresponds to a specific

lower bound obtained from:

• Columns 2 and 3: the constraint-programming

process alone, “LCP” local (i.e., CP without shaving),

and “CCP” complete (including shaving).

• Columns 4 and 5: the resolution of the “weak dis-

crete” linear program (i.e., in time-indexed variables

with aggregated precedence constraints) with either

LCP or CCP preprocessing.

• Columns 6 and 7: the resolution of the weak dis-

crete linear program with CCP preprocessing and cut-

ting planes including either aggregated (“weak”) cuts

(D6) or disaggregated (“strong”) cuts (D6S) and (D6′S).

• Column 8: the resolution of the “continuous” lin-

ear program (i.e., in continuous-time variables) with

CCP preprocessing and with cutting planes.

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 11

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

For each of these instances, T is set to the optimal

makespan, which is known. In terms of the quality of

the bound, the results on the KSD30 instances are very

good for both formulations that prove the optimality

of 160 instances out of 264. Compared to the contin-

uous formulation, the discrete formulation using our

strong cuts and the complete CP process reaches a

slightly better average deviation under the optimum

(3.0% versus 3.2%) but requires much more average

CPU time (35.6 seconds versus 4.9 seconds).

Within the CP phase, the shaving technique greatly

improves the local rules (3.6% versus 5.8%) at the

expense of extra computational times (2.3 seconds

versus 0 seconds). The cuts derived from CP suc-

ceed in improving significantly the CP bound: Of

the 109 instances not solved by CCP alone, the pro-

posed cutting planes are useful on 18 instances for

the discrete formulation with aggregated precedence

cuts, 25 instances for the discrete formulation with

disaggregated precedence cuts, and 47 instances for

the continuous formulation.

The interest in the cooperation between CP and LP

is enlightened by this experiment. Indeed, the average

deviation from the optimum obtained with coopera-

tion is between 3.0% and 3.1% (Columns 6 and 7),

while the CP phase alone (including complete shav-

ing) obtains 3.6% (Column 3), and discrete LP relax-

ation without shaving preprocessing obtains 5.3%.

We have also tested our algorithm on the 184 non-

trivial KSD instances with 60 activities (see Table 2).

Some of them are still open (not solved to optimal-

ity). We use then for T the best known upper bounds

to date. Furthermore, we compare our bounds over

their average deviations above the trivial critical path

lower bound LB0 (Row 1: �LB0). Here, RCP denotes

the reduced CP process where shaving is only applied

Table 2 Results on the Nontrivial KSD60 Instances

CP Discrete (Aggregated)
Continuous

KSD60 184 Instances LCP RCP CCP RCP+LP RCP+Weak RCP+Strong RCP+Cuts

Average �LB0 (%) 7�7 9�5 9�6 17�5 17�7 17�7 10�0

Average time (s.) 0�0 27�7 62�1 81�8 243 771 257

Max time (s.) 0�1 130�8 297 904 1�800 1�800 919

No. of LB= opt 41 58 59 58 58 58 59

No. of LP> CP — — — 57 62 64 51

to the pairs of activities in disjunction. Finally, the

processing time is limited to 30 minutes.

For the KSD60 instances, preprocessing through CP

is less efficient than for KSD30. Because of the size

of the problems, the shaving technique has obviously

a lower power of deduction. This also holds for the

cutting planes derived from the CP. However, use of

a reduced version of the CP algorithm appears to be

really advantageous since it allows more reasonable

CPU times (27.7 seconds versus 62.1 seconds) with

only a slight deterioration of the results (9.5% versus

9.6%).

The method based on the continuous formulation

proves optimality for one more instance than does the

method based on the discrete formulation. However,

the average deviation from LB0 stays dramatically

low for the continuous model. A basic reason is that,

within this procedure, the only resource constraints

that are taken into account are the ones involving

fewer than three activities at a time.

On the other hand, the discrete LP model performs

remarkably well for this criterion, improving by more

than 8% the results of the CP phase. The weak and the

strong cuts increase the number of times LP improves

CP (by 5 and 7, respectively) and perform better in

terms of average deviation above LB0 than does the

LP relaxation without cuts (17.7% versus 17.5%). How-

ever the efficiency of the cutting planes is rather disap-

pointing since they have considerably less impact on

the quality of the bound than does the basic LP model

itself. Actually, their computation requires a great deal

of CPU time. In particular, the disaggregated prece-

dence cutting planes that dominate, in theory, the

aggregated ones, do not significantly improve the

average deviation above LB0 since their huge number

really slows down the entire procedure.

12 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

The interest in the cooperation between CP and LP

is again underlined by the improvement this coop-

eration brings to both methods used separately. As

an illustration, we improve upon the bound proposed

in Möhring et al. (2003) based on the discrete-time

formulation without CP preprocessing.

As a conclusion to this experimental compari-

son, it appears that the discrete-time formulation

outperforms the continuous-time formulation as the

problem size increases. As a counterpart, the cuts

we have proposed bring more improvement for the

continuous-time formulation than for the discrete-

time formulation.

We follow up our experiments by considering only

the best algorithm (based on the discrete-time formu-

lation with aggregated precedence cutting planes) and

by including it into a destructive procedure.

6.2. Destructive Lower Bound

To improve the constructive algorithm based on

the discrete formulation, we incorporated it into a

destructive procedure. Indeed, Klein and Scholl (1999)

reported the efficiency of destructive approaches

to compute lower bounds, and the quality of the

destructive bound of Brucker and Knust (2000) seems

to confirm this conclusion. Moreover, the implemen-

tation of a destructive procedure embedding the algo-

rithm presented in the preceding section is quite easy.

Starting again from an upper bound UB of the opti-

mal makespan (e.g., the sum of the duration activi-

ties), we look, via a dichotomizing search procedure,

for the greatest value T between 0 and UB − 1

such that the constructive CP+LP algorithm proves

that there is no feasible schedule with makespan less

than or equal to T . Our destructive lower bound

is then T +1. In both phases of the constructive algo-

rithm, the infeasibility of the planning horizon T can

be detected: if b0�n+1 > T within the CP phase, or if

the set of feasible solutions becomes empty within the

cutting-plane-generation phase.

In Table 3, we give the results of our destructive

lower bound (destr: Column 6) compared with the

trivial critical path bound (LB0: Column 3), with the

tightest bound to date on the KSD instances proposed

by Brucker and Knust (2000) (BK: Column 4) and with

the best available lower bound for each instance (best:

Table 3 Results on the KSD Instance Sets

No. of Act LB0 BK best destr

30 (480)

Av. �opt (%) — 1�5 — 0�7

Max (%) — 11�1 — 15�2

Av. CPU∗ — 0�4 — 3�2

Max — 4�3 — 229�9

No. of LB= opt — 318 — 403

60 (480)

Av. �LB0 (%) — 7�8 7�9 7�7

Av. �UB (%) 7�1 1�9 1�8 1�8

Max (%) 50�0 14�7 13�7 17�9

Av. CPU∗ — 5 — 168

Max — 3�720 — 1�963

No. of LB= UB 296 341 356 360

No. of LB> best — — — 43

No. of new opt — — — 9

90 (480)

Av. �LB0 (%) — 7�2 7�2 7�0

Av. �UB (%) 6�6 1�8 1�8 1�8

Max (%) 50�0 12�7 12�7 23�4

Av. CPU∗ — 72 — 379

Max — 9�900 — 3�606

No. of LB= UB 334 350 351 364

No. of LB> best — — — 28

No. of new opt — — — 13

120 (600)

Av. �LB0 (%) — 21�4 21�4 19�1

Av. �UB (%) 16�2 3�8 3�8 4�8

Max (%) 66�1 17�4 17�4 33�2

Av. CPU∗ — 21�300∗∗ — 1�388

Max — 259�200 — 3�836

No. of LB= UB 178 208 208 229

No. of LB> best — — — 60

No. of new opt — — — 21

∗“BK” was computed on a Sun Ultra 2 workstation at 167 MHz and “destr”

on a Pentium III at 800 MHz.
∗∗Refers only to 481 of the 600 instances. For the remaining instances the

computation was carried out until the limit of 259,200 seconds (72 hours).

Column 5) on the KSD instances with 30, 60, 90, and

120 activities (available at http://www.bwl.uni-kiel.

de/Prod/psplib/).

For the KSD60, KSD90, and KSD120 instance sets,

we give from top to bottom in Table 3 the average

deviation of the lower bounds from the critical path

bound (LB0), the average and maximal deviation from

the available best upper bound (UB), the average and

maximal CPU time in seconds (note that the two

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 13

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

bounds were not computed on the same machine), the

number of instances for which the optimal value is

reached (LB = UB), the number of times we perform

better than the previous best-known lower bound,

and the number of new optima we prove. Since

the optimal value is known for all instances with

30 activities, results on KSD30 presented in Table 3

are only statistics on the deviation from the optimal

value, the CPU time, and the number of instances for

which the optimal value is reached.

Finally, for each instance set, we adapted our algo-

rithm to save computation time: for the 480 instances

with 30 activities, the constructive algorithm was

run with CCP preprocessing (i.e., complete shaving),

clique cuts, and aggregated precedence cuts. For the

KSD60 instances, the algorithm was run with RCP

preprocessing (where shaving was applied only to a

reduced set of 500 pairs of activities including pairs in

disjunction), clique cuts, and aggregated precedence

cuts, but within computation time limited to 30 min-

utes. For the 480 instances with 90 activities and for

the 600 instances with 120 activities, we just ran the

algorithm with RCP preprocessing and LP without

generating cutting planes and with computation time

limited to 1 hour.

Despite the higher computation time, our destruc-

tive lower bound is comparable to, and even

improves upon, the tightest known lower bound (BK),

in terms of both the number of solved instances

and the average deviation from the upper bound

for the KSD30, KSD60, and KSD90 instance sets. For

the biggest instances with 120 activities, we proved

optimality for more instances but the average devi-

ation from the upper bound is higher. However, an

advantage of our bound is the possibility to limit

the computation time, which is not possible for the

column-generation process. Hence, for the KSD120

set, our procedure seems to be on average faster

(although the tests have not been run on the same

machine).

The power of destructive approaches is obviously

demonstrated here, comparing for each criterion

(quality and CPU time) results of the same algorithm

used in a constructive way (Table 1, Column 6 for

KSD30, and Table 2, Column 6 for KSD60) and in a

destructive way (Table 3, Column 6).

Finally, note that for each challenging instance set,

we found new lower bounds for 43 of 124 nonsolved

instances, 28 of 129 and 60 of 392 for the 60, 90, and

120 activity instance sets, respectively. Among these

new bounds, we closed the optimality gap for 9, 13,

and 21 instances, respectively.

We now propose a deeper analysis of these com-

putational results by evaluating the performance of

our bound with respect to the characteristics of the

instances. The KSD instances were generated by a

controlled design of specified parameters (Kolisch

et al. 1995). These characteristics are the network com-

plexity, the resource factor and the resource strength.

The network complexity NC ∈ �0�1	 gives the ratio

of nonredundant precedence constraints. The resource

factor RF ∈ �0�1	 describes the average number of

resources required by a job: RF = 1 means that any

nondummy activity requires each of the m resources.

The resource strength RS ∈ �0�1	 measures the tight-

ness of the resource constraints. Hence, RS= 0 means

that the availability Rk of any resource k is set to the

minimal feasible value, whereas RS = 1 corresponds

to an unconstrained problem where the resource

availabilities are set such that the CPM schedule is

resource-feasible. The KSD30, KSD60, and KSD90 sets

are divided into 48 groups of ten instances sharing the

same triple �NC�RF�RS�. The KSD120 set is divided

into 60 groups of ten similar instances.

For the 30 activity set, Mingozzi et al. (1998) exhib-

ited groups of instances that the branch and bound

algorithm of Demeulemeester and Herroelen (1992)

was not able to solve. In Table 4, we give the average

deviation in percent from the optimum of our destruc-

tive bound on these hard instances compared with the

LB0 bound and the best LP-based lower bound LB1

of Mingozzi et al. (1998).

Table 4 Compared Results on the “Hard” KSD30 instances

Group NC RF RS LB0 LB1 destr

21 1.8 0.50 0.20 25�67 13�55 0.00

25 1.8 0.75 0.20 36�68 9�75 1.07

29 1.8 1.00 0.20 41�56 11�66 5.67

30 1.8 1.00 0.50 8�88 5�34 3.17

31 1.8 1.00 0.70 2�66 0�74 0.95

41 2.1 0.75 0.20 37�24 8�21 0.11

45 2.1 1.00 0.20 36�52 8�26 0.36

14 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

Table 5 Compared Results on the KSD60 Instances with RS= 0�2

LB0 BK destr No. of No. of

Groups RS RF (%) (%) (%) destr> best UB> best

1,17,33 0.20 0.25 8�82 0.99 0�08 3 3

5,21,37 0.20 0.50 23�40 8.23 3�43 27 30

9,25,41 0.20 0.75 31�51 9.38 10�43 8 30

13,29,45 0.20 1.00 39�90 7.36 11�55 0 30

Our bound performs better than LB1 on almost all

hard instance groups (21, 25, 41, 45, 29, 30), but it does

not perform as well on Group 31. In fact, it seems

that the “hard” instances identified by Mingozzi et al.

(1998) do not correspond at all to the ones for which

our method is less efficient. For example, our lower

bound reaches the optimal value for all instances of

Group 21, while its deviation from the optimal value

is on average 8.21% for Group 13.

Actually, Groups 13 and 29 correspond to a high

resource factor (RF = 1) and low resource strength

(RS = 0.2), which are characteristics that are together

not favorable to our bound. On the other hand, the

quality of our bound is very good for low resource

factors (RF = 0.25 or 0.5) as in Group 21. To show

more precisely how these characteristics affect our

bound, we give in Tables 5, 6, and 7 experimental

results on all instance groups of the 60, 90, and 120

activity sets with RS = 0.2. As mentioned by Brucker

and Knust (2000), these are the hardest instances since

they correspond to scarce resources and have numer-

ous disjunctions. Among these instances, we have

grouped the ones having the same resource factor.

In Tables 5, 6, and 7, Columns 4, 5, and 6 give

the average deviation from the best upper bound

for, respectively, LB0, BK, and destr lower bounds.

In Column 7, we report how many times destr

improves upon the best known lower bound among

the instances for which the optimality gap is not

Table 6 Compared Results on KSD90 Instances with RS= 0�2

LB0 BK destr No. of No. of

Groups RS RF (%) (%) (%) destr> best UB> best

1,17,33 0.20 0.25 8�23 1�65 0�36 15 18

5,21,37 0.20 0.50 22�17 8�56 8�27 10 30

9,25,41 0.20 0.75 33�13 8�81 10�69 0 30

13,29,45 0.20 1.00 37�79 7�16 8�47 1 30

Table 7 Compared Results on KSD120 Instances with RS= 0�2

LB0 BK destr No. of No. of

Groups RS RF (%) (%) (%) destr> best UB> best

1,21,41 0.20 0.25 18.67 4�25 1�34 25 28

6,26,46 0.20 0.50 41.69 10�23 11�72 3 29

11,31,51 0.20 0.75 53.29 10�69 19�85 0 30

16,36,56 0.20 1.00 58.82 8�61 21�44 0 30

closed, i.e., instances with the best known upper

bound strictly greater than the best known lower

bound (Column 8).

It appears that our results on the hard instances are

not homogeneous and that the quality of our bound

strongly depends on the resource-factor characteristic.

Indeed, we significantly improve upon the BK bound

for instances where RF = 0.25, where we find a large

number of new best lower bounds (43 of 49 nonsolved

instances) and also for RF = 0.50 (40 new best lower

bounds of 89). On the other hand, our procedure is

less efficient for instances with RF= 0.75 and RF= 1,

i.e., when activities require on average from three to

four resources out of four. Again, the CP phase, which

appears to be crucial in our scheme, is inefficient for

such problem characteristics and the cuts cannot close

the gap. This is not surprising since most of the cuts

we proposed are based on the shaved distance matri-

ces computed by CP.

This property of the proposed bound is enlight-

ened by Figure 3, which represents the behavior of

2

4

6

8

10

12

14

16

18

0.25 0.5 0.75 1

KSD60 : Deviation from LB0/RF

UB
destr

BK

Figure 3 Comparisons on the KSD60 Instances with RS= 0.2

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 15

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

the average deviation �LB0 of our lower bound (destr),

of the best-known lower bound (BK), and of the best-

known upper bound (UB), depending on the resource

factor over the KSD60 instances.

7. Conclusion
In this paper, we have presented a new method to

compute lower bounds for the RCPSP, based on close

cooperation between CP and LP. We have first pro-

posed a new shaving technique from which we derive

original cutting planes for linear models of the RCPSP.

In order to investigate this method, we have per-

formed two parallel studies by considering two dif-

ferent linear formulations of the RCPSP. In both cases,

computational experimentations show that the pro-

posed cuts are able to improve the initial lower bound

on some hard RCPSP instances. An experimental com-

parison between the two proposed lower bounds con-

firms that the formulation with discrete-time variables

is clearly more efficient than the one with continuous-

time variables. Indeed, the bound obtained from this

first program is quite competitive with the best known

lower bounds, despite rather high computation times.

To speed up and also to improve this algorithm, we

embedded it into a destructive procedure. The results

obtained are satisfactory and confirm the power of

destructive approaches to compute lower bounds.

A significant number of new lower bounds has been

found on each challenging instance set. Although the

proposed bound is rather time consuming and signifi-

cantly weaker on average for the KSD120 instance set

than the best current bound designed by Brucker and

Knust (2000), it is in turn quite competitive compared

to the latter bound for the KSD30, KSD60, and KSD90

sets.

To make a better compromise between time require-

ments and bound quality, it would be of great interest

to combine the lagrangian approach of Möhring et al.

(2003), which would speed up the linear program res-

olution, with our cuts.

It must also be noted that our algorithm is not

adapted to difficult highly cumulative instances like

the ones proposed by Baptiste and Le Pape (2000). This

should motivate the search for constraint-propagation

algorithms and cutting planes able to tackle such prob-

lem characteristics. For that, we can modify the pre-

processing phase of our algorithm (initially developed

for the linear program in continuous-time variables),

by implementing a more classical CP procedure based

on time windows and shaving of inconsistent start-

ing times. We could then derive cutting planes better

suited to the discrete-time programwhile saving space

and computational time requirements. It would also

be interesting to add energetic reasoning (Lopez et al.

1992) within the CP phase or to generate energetic-

reasoning-based cutting planes.

The scope of the experiments we have performed

was to validate the approach. This is mostly achieved

in this study. Further necessary research lies in the

optimization of the management of the cuts inside

the cutting-plane-generation algorithm, which is still

purely enumerative. Moreover, the global scheme

introduced in this paper (cutting-plane generation

through CP) can probably be adapted on many other

problems.

Appendix
Proof of Proposition 2. In both cases (i) and (ii), PC1 and

PC2 are valid since they satisfy the conditions of Lemma 1. Let

������ satisfy the conditions of the proposition. Let �� = A−�,

�� = B−A+��−�, and � = C−A+��−. Then ��, ��, and � are

nonnegative and satisfy ��−��−� ≤A+D−B−C.

(i) Suppose that A+D ≥ B+C and let �S ∈� �P�.

(i1) if �S is such that x̄ij + x̄jl ≤ 1, then if inequality PC1 holds

for �S,
�+�x̄ij +x̄jl = A+ �B−A�x̄ij + �C−A�x̄jl

+���x̄ij + x̄jl −1�−��x̄ij −� x̄jl

≤ A+ �B−A�x̄ij + �C−A�x̄jl�

(i2) Otherwise, if �S is such that x̄ij + x̄jl > 1, then if inequality

PC2 holds for �S,

�+�x̄ij +x̄jl = �B+C−D�+ �D−C�x̄ij + �D−B�x̄jl

+���−��−� − �A+D−B−C���x̄ij + x̄jl −1�

+���x̄jl −1�+��x̄ij −1�

≤ �B+C−D�+ �D−C�x̄ij + �D−B�x̄jl�

Hence, if A+D ≥ B+C, then any solution satisfying both inequali-

ties PC1 and PC2, also satisfies any inequality C8������ satisfying

the conditions of the proposition.

(ii) It can be symmetrically demonstrated that if A+D ≤ B+C,

then any valid inequality PC������ is dominated by either PC1

or by PC2. �

16 INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003

DEMASSEY, ARTIGUES, AND MICHELON

Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem

References
Alvarez-Valdés, R., J. M. Tamarit. 1993. The project scheduling poly-

hedron: Dimension, facets and lifting theorems. Eur. J. Oper.

Res. 67 204–220.

Applegate, D., W. Cook. 1991. A computational study of job-shop

scheduling. ORSA J. Comput. 3 149–156.

Balas, E. 1970. Project scheduling with resource constraints. E. M. L.

Beale, ed. Appl. Math. Programming Tech. The English Universi-

ties Press, London, U.K., 187–200.

Baptiste, P., C. Le Pape. 2000. Constraint propagation and decompo-

sition techniques for highly disjunctive and highly cumulative

project scheduling problems. Constraints 5 119–139.

Brucker, P., A. Drexl, R. Möhring, K. Neumann, E. Pesch. 1999.

Resource-constrained project scheduling problem: Notation,

classification, models and methods. Eur. J. Oper. Res. 112 3–41.

Brucker, P., S. Knust. 2000. A linear programming and constraint

propagation-based lower bound for the RCPSP. Eur. J. Oper.

Res. 127 355–362.

Brucker, P., S. Knust, A. Schoo, O. Thiele. 1998. A branch and

bound algorithm for the resource-constrained project schedul-

ing problem. Eur. J. Oper. Res. 107 272–288.

Carlier, J., E. Néron. 2000. A new LP based lower bound for the

cumulative scheduling problem. Eur. J. Oper. Res. 127 363–382.

Carlier, J., E. Pinson. 1989. An algorithm for solving the job-shop

problem. Management Sci. 35 164–176.

Carlier, J., E. Pinson. 1990. A practical use of Jackson’s preemp-

tive schedule for solving the job-shop problem. Ann. Oper. Res.

26 269–287.

Carlier, J., E. Pinson. 1994. Adjustment of heads and tails for the

job-shop problem. Eur. J. Oper. Res. 78 146–161.

Caseau, Y., F. Laburthe. 1996. Cumulative scheduling with task

intervals. M. Maher, ed. Proc. Joint Internat. Conf. Sympos. Logic

Programming, JCPSLP’96. MIT Press, Cambridge, MA, 363–377.

Christofides, N., R. Alvarez-Valdés, J. M. Tamarit. 1987. Project

scheduling with resource constraints: A branch and bound

approach. Eur. J. Oper. Res. 29 262–273.

Demeulemeester, E., W. Herroelen. 1992. A branch-and-bound pro-

cedure for the multiple-resource constrained single project

scheduling problem. Management Sci. 38 1803–1818.

Demeulemeester, E., W. Herroelen. 1997. New benchmark results

for the resource-constrained project scheduling problem.

Management Sci. 43 1485–1492.

Dorndorf, U., E. Pesch, T. Phan-Huy. 2000. A branch-and-bound

algorithm for the resource constrained project scheduling prob-

lem. Math. Methods Oper. Res. 52 413–439.

Dyer, M., L. A. Wolsey. 1990. Formulating the single machine

sequencing problem with release dates as mixed integer pro-

gram. Discrete Appl. Math. 26 255–270.

Harjunkoski, I., V. Jain, I. Grossmann. 2000. Hybrid mixed

integer/constraint logic programming strategies for solving

scheduling and combinatorial optimization problems. Comput.

Chemical Engrg. 24 337–343.

Hooker, J. N. 2000. Logic-Based Methods for Optimization: Combining

Optimization and Constraint Satisfaction. Wiley, New York.

Klein, R., A. Scholl. 1999. Computing lower bound by destructive

improvement: An application to resource-constrained project

scheduling. Eur. J. Oper. Res. 112 322–346.

Kolisch, R., A. Sprecher, A. Drexl. 1995. Characterization and gener-

ation of a general class of resource-constrained project schedul-

ing problems. Management Sci. 41 1693–1703.

Lopez, P., J. Erschler, P. Esquirol. 1992. Ordonnancement de tâches

sous contraintes: une approche énergétique. Revue Française

Automatisme Informatique Rech. Oper. APII 26 453–481.

Martin, P., D. B. Shmoys. 1996. A new approach to computing

optimal schedules for the job-shop scheduling problem. W. H.

Cunningham, S. T. McCormick, M. Queyranne, eds. Proc. 5th

Internat. Conf. Integer Programming Combin. Optim., IPCO’96.

Vancouver, British Columbia, Canada, 389–403.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, L. Bianco. 1998. An

exact algorithm for the multiple resource-constrained project

scheduling problem based on a new mathematical formulation.

Management Sci. 44 714–729.

Möhring, R. H., A. Schultz, F. Stork, M. Uetz. 2003. Solving project

scheduling problems by minimum cut computations. Manage-

ment Sci. 49 330–350.

Nuijten, W. 1994. Time and resource constrained scheduling: A con-

straint satisfaction approach. Ph.D. thesis, University of Tech-

nology, Eindhoven, The Netherlands.

Pritsker, A., L. Watters, P. Wolfe. 1969. Multi-project scheduling

with limited resources: A zero-one programming approach.

Management Sci. 16 93–108.

Radermacher, F. 1985. Scheduling of project networks. Ann. Oper.

Res. 4 227–252.

Sankaran, J. K., D. L. Bricker, S-H. Juang. 1999. A strong frac-

tional cutting-plane algorithm for resource-constrained project

scheduling. Internat. J. Indust. Engrg.: Appl. Practice 6 99–111.

Sprecher, A. 2000. Scheduling resource-constrained projects com-

petitively at modest memory requirements. Management Sci.

46 710–723.

Accepted by John W. Chinneck; received February 2001; revised December 2001, December 2002, March 2003; accepted May 2003.

INFORMS Journal on Computing/Vol. 00, No. 0, Xxxxx 2003 17

