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Abstract

An approach to estimate the influence of the treatment-type controls on the basic reproduction 

number, R0, is proposed and elaborated. The presented approach allows one to estimate the effect 

of a given treatment strategy or to compare a number of different treatment strategies on the basic 

reproduction number. All our results are valid for sufficiently small values of the control. However, 

in many cases it is possible to extend this analysis to larger values of the control as was illustrated 

by examples.
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1. Introduction

The basic reproduction number (R0), i.e. the number of infections generated by an infected 

person in a fully susceptible population, is a key determinant of the dynamics of an 

infectious disease. Interpretation of R0 is complex and is covered in a number of excellent 

papers, see, e.g., [28, 15, 17] as well as the books [11, 10]. For the purposes of this paper, we 

note that R0 can be interpreted as a threshold parameter: if R0 < 1 then the disease can not 

sustain itself in the population and will eventually die out. That is, if our goal is to push a 

disease towards extinction, then we can categorize a population-level intervention as 

‘effective’ if it reduces R0 from where it was before the intervention was enacted.
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Computation of R0.

R0 can be computed or estimated from partially empirical considerations, for instance the 

“survival function”-based approach [16] that assumes knowledge of both the survival 

probability F(t) and the infectivity b(t) of an individual as functions of time. In addition to 

being difficult to implement, such approaches can hardly be used for computing R0 in the 

case where there are more than one group of infected. This issue was addressed in [12], 

where an elegant approach to computing R0 was proposed, termed the next generation 
matrix (NGM) method. This method boils down to computing R0 as the spectral radius of a 

specially constructed matrix. Later, this method was detailed and substantiated in a number 

of papers, see, e.g., [28] and [8]. The power of the NGM approach lies in its universality. It 

can be applied to any population balance model as long as it satisfies a number of very 

natural assumptions. The result is based on certain properties of positive and inverse positive 

matrices, in particular M-matrices [3, 19].

Contribution.

We aim at developing this approach in that we extend the notion of the basic reproduction 

number to a class of controlled disease propagation models. Much of applied theoretical 

epidemiology focuses on how treatment policies, intervention designs, and novel treatments 

will impact the burden of a given disease by considering alternative scenarios. There have 

been a large number of papers aimed at evaluating the efficacy of different treatment 

schemes using various methods, from numerical simulation to optimal control. We mention 

[7, 6, 21, 4, 2, 26, 23, 27, 14] for a short list of related research. Modeling efforts have even 

attempted to measure the effects of control programs in historical epidemics [5]. However, 

most modeling efforts do not attempt to measure intervention effects systematically, i.e. by 

considering the joint effects of model parameters on the relative efficacy of alternative 

interventions. In this paper we address treatment programs, i.e., the intervention strategies 

that result in moving infected individuals either into a different group of infected (with 

different biological or behavioral characteristics) or into a group of not-infected, which can 

correspond to susceptible, recovered or any other group that consists of not contagious 

individuals.

When applied to one or several groups of infected individuals, the action of a treatment 

strategy can be described by a parameter u that corresponds to a fraction of potentially 

eligible individuals that are administered the treatment during a unit of time. Typically, this 

fraction is rather small. Our first result consists in defining the notion of a controlled 

reproduction number R0(u) which explicitly contains u as a parameter. The next result 

allows to estimate the action of the particular treatment strategy on the value of the 

controlled reproduction number R0(u). We formulate conditions under which the application 

of a treatment strategy leads to the reduction in R0(u). This allows for evaluating the efficacy 

of a devised treatment strategy as well as for comparing the efficacy of different strategies. 

The obtained results are illustrated by a number of examples.

The paper is organized as follows: Section 2 describes a general compartmental epidemic 

model and briefly introduces the NGM method for computing the basic reproduction 

number R0. The main result of the paper along with a discussion on further extensions and 
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ramifications of the developed approach are presented in Sec. 3. The obtained results are 

illustrated by a number of examples in Sec. 4. The paper is concluded with a discussion 

section. Finally, there are two appendices containing necessary technical information.

2. Epidemics dynamics

2.1. A disease propagation model

When modeling the process of disease propagation in a heterogeneous population, the 

standard procedure consists in dividing the total population into a number of classes 

(compartments) according to some criteria relevant to the disease transmission: disease 

status, ability to contract disease, behavioral (contact) pattern and so on. All individuals 

within a compartment are assumed to be identical in their evolution. Thus we can consider 

only the number of individuals within each compartment, denoted by xi, where i = 1, …, n is 

the number of the compartment.

General formulation.—The dynamics of these groups include transitions between groups 

and the in- and outflows associated with these groups. In the following it is assumed that the 

total inflow is constant over time and does not depend on the population size while the 

outflow depends on both the size and the structure of the population. The evolution of the ith 

state is thus described by the following compartmental DE:

x.i = Φi(x) = wi +
i ≠ j

(ai j(x) − a ji(x)) − aixi, (1)

where x ∈ ℝ ≥ 0
n  is the state, wi is the constant inflow, aixi is the outflow from the i-th 

compartment, and aij(x), i ≠ j, is the flow rate from the j-th to the i-th compartment.

The flow rate functions are assumed to be C∞ for all x ∈ ℝ ≥ 0
n . Furthermore, all flow rates 

have to satisfy the following properties:

wi ≥ 0, ai ≥ 0, a ji(x) ≥ 0, ∀x ∈ ℝ ≥ 0
n , i, j = 1, …, n . (2a)

xi = 0 a ji(x) = 0 ∀i, j = 1, …, n . (2b)

The property (2b) implies that there is no outflow from an empty compartment.

Compartmental epidemic model.—All state variables are divided into two groups 

depending on whether the respective compartment corresponds to the infectious individuals 

(that is those able to transmit infection) or to the non-infectious individuals (regardless of 

whether they were infected earlier or not).

Let there be l state variables representing the “infectious” compartments. We rearrange the 

states in the way that the vector of the state variables takes the form x⊺ = xI
⊺, xN

⊺ , where 

xI
⊺ = x1, …, xl  and xN

⊺ = xl + 1, …, xn  are the states associated with “infectious” and “non-
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infectious” compartments. We will refer to the respective compartments as the I- and N-

compartments. Further, we write Φ(x) as the sum of two vector-valued functions

Φ(x) = ΦI(x) + w + Φin(x) − Φout(x) = ΦI(x) + ΦC(x), (3)

Where Φi
out(x) =

j ≠ i
a ji(x) + aixi, and

ΦI(x) = j > l
ai j(x)

i = 1, …, l
0

, Φin(x) =
j ≤ l
j ≠ i

ai j(x)

i = 1, …, l

j ≠ i
ai j(x)

i = l + 1, …, n

.

Here, Φi
I is the rate at which new infections occur in the i-th compartment (new infection 

means that the flow is to be from an N-compartment), Φin(x) is the vector of 

intercompartmental inflow rates not related to new infections, and Φout(x) are the outflow 

rates from the respective compartments. Thus, ΦC(x) represents the totality of all flows not 

related to new infections. Note that Φi
I(x) = 0 for all i > l as there is no inflow of infected into 

the N-compartments.

The components of the respective vectors Φ(·)(x) satisfy the following properties (note that 

(4a) and (4b) can be derived from (2)):

Φi
I(x), Φi

in(x), Φi
out(x) ≥ 0, ∀i = 1, …, n (4a)

xi = 0 Φi
out(x) = 0 , ∀i = 1, …, n (4b)

xI = 0 Φi
I(x) = 0, Φi

in(x) = 0 , ∀i = 1, …, l . (4c)

The latter property implies that no new infections occur in a totally healthy population.

Assumptions.—We conclude this section by making a number of epidemiologically 

motivated assumptions.

A1. There is no steady inflow into the I-compartments, i.e., wi = 0, i = 1, …, l.

A2. There exists a positive constant μ such that ai ≥ μ > 0 for all i = 1, …, n. We refer to μ as 

the baseline mortality rate.

2.2. Stability of a disease-free equilibrium

Let 𝒳DF ⊂ ℝ ≥ 0
n  be the set of disease-free states, i.e., 𝒳DF = x ∈ ℝ ≥ 0

n xi = 0, i = 1, …, l .
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Definition 2.1. Let x* be an equilibrium state, i.e., Φ(x*) = 0. Then x* is said to be a 

disease-free equilibrium (DFE) if x∗ ∈ 𝒳DF. Otherwise, x* is referred to as an endemic 

infection equilibrium.

The system (1) is locally stable at a DFE x* if the linearized model ẋ = Ax  is asymptotically 

stable. The latter holds if the spectrum of the structure matrix A contains only the 

eigenvalues with negative real part, [9]. Such matrices are said to be Hurwitz.

Lemma 2.1 ([28]). Let x* be a DFE. The Jacobian matrices AI = DΦI(x)|
x = x∗ and 

AC = DΦC(x)|
x = x∗ have the following form:

AI = A11
I 0

0 0
, AC =

A11
C 0

A21
C A22

C
,

where A11
I  is an [l × l] matrix with non-negative elements, A11

I ⪰ 0 and A11
C  is an [l × l] matrix 

with non-positive diagonal elements and non-negative off-diagonal elements1.

At this point, we make one more assumption regarding the behavior of the system in the 

absence of the infection.

A3. AC is Hurwitz.

This assumption effectively implies that the DFE is asymptotically stable provided the virus 

or whatever source of the infection has lost its contagiousness hence, no new infections 

occur.

Since the block matrix A22
C  is stable at a DFE, stability of the whole system is determined by 

the sum A11
I + A11

C . Following the common convention we write F = A11
I  and V = − A11

C . 

Hence, the stability of a DFE is determined by the stability of the matrix F − V.

Theorem 2.2 ([28]). The matrix F − V is Hurwitz if and only if ρ(FV−1) < 1.

We conclude this section with the following two definitions:

Definition 2.2. The matrix FV−1 is called the the next generation matrix.

Definition 2.3. The parameter R0 = ρ(FV−1) is called the basic reproduction number.

In Def. 2.3, ρ(·) denotes the spectral radius of a matrix.

1See Appendix B for the explanation of the used notation.
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3. Evaluating the Effect of a Treatment-type Control

3.1. A controlled disease propagation model

We wish to model the effect of treatment-type controls, i.e., the controls that result in 

moving individuals from the infected compartments to other (both infected and healthy) 

compartments. In doing so, we restrict our attention to the cases where the control action 

enters the equations linearly. In particular, this implies that there is no interference between 

different treatment strategies, i.e., the rate at which people are administered to treatment i 
does not depend on the respective rate associated with treatment j for all pairs of i and j.

With the above assumptions in mind, we write the controlled population balance model in 

the following form:

ẋ = Φ(x) + Φu(x)u, (5)

where u ∈ ℝ ≥ 0
m  is the vector of non-negative controls and the components of the control 

matrix Φu(x) = Φik
u (x) , i = 1, …, n, k = 1, …, m, have the following structure:

Φ · , k
u (x) =

j ≤ l
j ≠ i

ai j, k
u (x) −

j ≠ i
a ji, k

u (x)

i = 1, …, l

j ≤ l
ai j, k

u (x)
i = l + 1, …, n

.

The control matrix describes the controlled flows from the infected compartments to both 

infected and healthy compartments. This may correspond to isolating infected individuals 

(corresponds to a transition from an I-compartment to another I-compartment) or treating an 

infected individual (a flow from an I-compartment to an N-compartment).

The respective controlled flow rates ai j, k
u (x) satisfy the conditions similar to those for the 

flow rates of the original (uncontrolled) model:

a ji, k
u (x) ≥ 0, ∀x ∈ ℝ ≥ 0

n , i, j = 1, …, n, i ≠ j, k = 1, …, m . (6a)

xi = 0 a ji, k
u (x) = 0 ∀i, j = 1, …, n, k = 1, …, m . (6b)

Controllability.—Note that at a DFE x*, the control matrix vanishes identically as there 

are no outflows from I-compartments: Φu(x*) = 0[n×m]. This implies that at a DFE x*, the 

linearized model is effectively uncontrollable. Thus, one cannot use the linearized model to 

design a feedback control law stabilizing the DFE.
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3.2. Analysis of the controlled system

Due to the difficulties outlined above, we consider a somewhat simpler, but even more 

practically relevant situation. Namely, we wish to study the system’s dynamics when a 

constant control u∗ ∈ ℝ ≥ 0
m  is applied. We first formulate the result that extends Lemma 2.1 

to include the controls u.

Lemma 3.1. Let u(t) = u∗ ∈ ℝ ≥ 0
m  for all t ≥ 0. The linearized model of (5) at a DFE x* has 

the form

ẋ = AI + AC +
k = 1

m
Bkuk

∗ x, (7)

where AI and AC are defined in Lemma 2.1 and Bk, k = 1, …, m are

Bk =
DΦ · , k

u (x)
Dx

x = x∗
=

B11, k 0

B21, k 0 .

The matrices B11,k have non-positive diagonal and non-negative off-diagonal elements. 
Furthermore, B11,k are weakly column diagonally dominant.

Proof. See Appendix A. □

For the sake of notational simplicity and to comply with the previously accepted notation, 

we will write Wi = −B11,i. Matrices Wi belong to the class of Z-matrices (see Appendix B 

for details). However, these are not M-matrices as matrices Wi are typically rank-deficient 

and hence non-invertible.

We are interested in the stability of the linearized system (7). As in the uncontrolled case, the 

structure matrix of (7) is a block-lower triangular matrix, whose eigenvalues coincide with 

the eigenvalues of the diagonal blocks. The lower right block is Hurwitz according to A3. 

Thus, the stability of (7) is determined by the eigenvalues of the matrix

Ju = F − V −
k = 1

m
Wkuk .

The following lemma gives an important result that will be used in the sequel.

Lemma 3.2. Let V be a strictly column diagonally dominant Z-matrix with positive diagonal 

elements. Then for any u ∈ ℝ ≥ 0
m  the matrix V + k = 1

m Wkuk is an M-matrix.

Proof. According to Lemma 3.1, matrices Wi = −B11,i have positive diagonal elements and 

are weakly (non-strictly) column diagonally dominant. Thus for any positive u the matrix 
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V + k = 1
m Wkuk is a Z-matrix and is strictly column diagonally dominant. Then it follows 

from Theorem 5.2 that V + k = 1
m Wkuk is a non-singular M-matrix. □

Now we are ready to formulate a generalized version of Theorem 2.2

Theorem 3.3. The matrix F − V − k = 1
m Wkuk is Hurwitz if and only if

ρ F V +
k = 1

m
Wkuk

−1
< 1.

We thus define the controlled reproduction number R0(u) as the spectral radius of the 

perturbed matrix Q(u) = F(V + k = 1
m Wkuk)−1

:

R0(u) = ρ F V +
k = 1

m
Wkuk

−1
. (8)

Obviously, we have R0(0) = R0.

Let the uncontrollable system be such that R0 > 1. Theorem 3.3 allows for determining if a 

given constant control u* suffices to shift the value of the basic reproduction number in 

order to make it less than 1. However, in many cases it is difficult to compute the perturbed 

reproduction number R0(u). Thus, we would like to have a result that would tell us if a given 

structure of the treatment allows for achieving the stated goal.

The following result provides the required estimation. We first consider the case m = 1, i.e., 

we assume that there is a scalar control u > 0.

Theorem 3.4. Let R0, x0 and y0 be the spectral radius of FV−1 as well as the right and the 
left eigenvectors of FV−1 corresponding to R0, respectively. Let, furthermore, there be only 
one eigenvalue of FV−1 coinciding with R0 and other eigenvalues be strictly less than R0 in 
absolute value. For sufficiently small u, the sign of variation R0(u) − R0 is determined by the 
sign of

R1 = − y0
⊺V−1Wx0R0/(y0

⊺x0) (9)

Proof. The eigenvalues of Q(u) = F(V + Wu)−1 change continuously with u. Hence, we can 

write the spectral radius R0(u) = R0 + uR1 + O(u2) and the respective eigenvector as x(u) = 

x0 + ux1 + O(u2). We thus have

F(V + uW)−1(x0 + ux1 + O(u2)) = (R0 + uR1 + O(u2))(x0 + ux1 + O(u2)) . (10)
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First, we note that d
du (V + uW)−1 = − (V + uW)−1W(V + uW)−1 and at u = 0 we have 

d
du (V + uW)−1 |u = 0 = − V−1WV−1. Differentiating the left and the right sides of (10) and 

setting u = 0 we get:

(FV−1 − R0I)x1 = (FV−1WV−1 + R1I)x0 . (11)

The matrix (FV−1 − R0I) has a zero eigenvalue and the respective left eigenvector is y0, i.e., 

y0
⊺(FV−1 − R0I) = 0. Multiplying both sides of (11) with y0

⊺ and expressing R1 we get:

R1 = − y0
⊺WV−1x0R0/(y0

⊺x0) .

Finally, we note that for sufficiently small (and positive) u the sign of the difference R0(u) − 

R0 is determined by the sign of R1, whence the result follows. □

That is to say, we can determine if a given treatment is efficient (at least for small values of 

u) by checking the sign of R1. If this sign is negative then by increasing u we decrease R0(u) 

and eventually ensure that it becomes less than 1. Otherwise (if R1 > 0) we conclude that the 

treatment program is inadequately formulated and does not lead to a decrease in the 

reproduction number. See Sec. 4 for examples.

Following the same procedure, one can write R0(u) for the case when u ∈ ℝm. We have

R0(u∗) = R0 +
k = 1

m
uk
∗R1

k + O( ∥ u∗ ∥2) .

If the components of u* are sufficiently small, the contribution of each individual component 

is determined by the respective term R1
k, which is defined as

R1
k = −y0

⊺WkV−1x0R0/(y0
⊺x0) . (12)

We immediately arrive at the following result.

Theorem 3.5. For sufficiently small values of the controls ui, the effect of each control is 
independent from the values of the remaining controls. The total change of R0(u) is equal to 
the sum of individual contributions up to the high order term: 

R0(u) − R0 = k = 1
m ukR1

k + O( ∥ u ∥2).

This result indicates the second potential use of R1. Let there be m treatment strategies that 

aim at decreasing the value of R0(u). Then the most efficient strategy is the one with the 

smallest (and necessarily negative) value of the parameter R1
k.
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Discussion.—Note that the structure of the expression for R1 does resemble that one for 

R0 and it can be interpreted as follows. First, following [28], we interpret the (i, j) entry of V
−1 as the average duration of time an individual introduced into the j-th compartment spends 

in the i-th one, assuming there is no reinfection and no control. The (i, i) entry of (−Wk) is 

the rate at which infected individuals are removed from the i-th compartment, while the (i, 
j)-th component, i ≠ j, corresponds to the rate at which the infected from i-th compartment 

are moved to the j-th compartment. The respective rates are multiplied by the control uk.

Hence, the (i, j)-th element of −WV−1 is the relative treatment-induced rate of flow (outflow 

if negative or inflow if positive) from the i-th compartment as applied to the individuals 

initially introduced into the j-th compartment. Note that Σi(−WV−1)i,j = 0 if the treatment 

consists in redistributing the infected individuals between infected compartments and is 

negative if at least a part of infected individuals are removed to the susceptible 

compartments as a result of treatment.

To interpret the right eigenvector of FV−1, corresponding to R0, recall that FV−1x0 is the 

expected number of new infections produced by the initial distribution of infected 

individuals given by x0. Hence, the right eigenvector x0 can be interpreted as the worst case 

distribution of the infected. In contrast to that, the left eigenvector y0 can be seen as a worst 

case transmissibility rates, i.e., the transmissibility rates that result in the maximal infection 

spread in the population taking into account the existing structure of the transmission routes. 

Note that the eigenvectors are defined up to a positive factor and hence should be seen as 

proportions rather than absolute values.

Finally, the expression −y0
⊺WV−1x0(y0

⊺x0)−1
 can be interpreted as the total flow of the 

infection due to the treatment computed for the worst case scenario. The term (y0
⊺x0)−1

serves as a normalizing factor. If the total flow is negative, the treatment leads to a decrease 

in infection and to an increase otherwise. Note that R1 is negative if Σi(−WV−1)i,j < 0 for all 

j.

Remark 3.1. There are two main advantages of considering R1, resp., R1
k in contrast to 

working directly with R0(u) as defined in (8):

1. The function R0(u) depends on u in a highly nonlinear way, making it difficult if 

ever possible to analyze the impact of the control on the controlled reproduction 

number R0(u). In contrast, R1 is a well-defined quantity that does not depend on 

u thus making it more amenable for analysis.

2. In general, the matrix (V + k = 1
m Wkuk)−1

F has a complex structure which 

substantially complicates the problem of finding its spectral radius in an analytic 

form. In contrast to that, R1
k can be computed with much less effort. Also, we 

note that the vectors x0 and y0 need to be computed only once. The modeler can 

then vary the structure of Φu (and, respectively, Wk) to achieve the required 

effect in R1
k.
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Remark 3.2. Note that the preceding results are formulated for sufficiently small values of 

u. However, this assumption is not as restrictive as it may seem. The point is that each 

component of the control u denotes a fraction of the set of potentially eligible individuals 

that is enrolled into the respective treatment during a unit of time. In most practically 

relevant cases, this fraction is rather small, ranging from thousandths to hundredths, thus 

justifying the assumption.

3.3. Further extensions

The described method is substantially based upon the eigenvalue perturbation theory. 

Namely, we analyze the behavior of the largest real eigenvalue (spectral radius) of a next 

generation matrix under certain structured perturbations. All the presented results are of 

local nature, i.e., these are valid for sufficiently small values of u. However, in many cases it 

is possible to extend this analysis to larger values of u. Below, we consider several possible 

scenarios and consider possible options and potential limitations.

The simplest case is when the rank of the matrix F is equal to 1. This corresponds to the 

situation when all immediately infected individuals enter the same compartment, but the 

infection itself can be caused by a contact with different types of infected. In this case, there 

is only one non-zero positive eigenvalue coinciding with the spectral radius. The only 

possible limitation corresponding to this situation is that the controlled reproduction number 

can change its behavior when the control u grows sufficiently large. One could thus wish to 

study the behavior of R0(u) in some more detail. To do so one can compute the second term 

in the series expansion which we denote by R2. The corresponding expression is presented 

in Appendix A, Eq. (25). However, determination of R2 is a rather cumbersome procedure 

involving computing Moore-Penrose pseudo inverse. On the other hand, it seems that most 

cases the sign of R1 describes the behavior of R0(u) for arbitrary large values of u and hence 

can be used for making global predictions.

When the rank of F is larger than 1, the matrix (V + uW)−1F has in general more than one 

nonzero eigenvalue. A model of co-infection and two types of treatment, one for each type 

of infection, is a typical example of such a situation. In this case, there are two nonzero 

eigenvalues λ1(u1) and λ2(u2) controlled by the respective treatments u1 and u2. Suppose 

that for u1 = u2 = 0, R0(0) = λ1(0) > λ2(0). Hence, the optimal strategy (in terms of 

minimizing R0(u)) would be to invest into u1. However, as λ1(u1) decreases, it will at some 

point equate with λ2(u2). Further investment into u1 will lead to the change of the roles: 

λ2(u2) will become greater than λ1(u1) and hence will account for R0(u).

In general, the behavior of the eigenvalues can be predicted by analyzing the structure of 

Q(u) = (V+uW)−1F. We assume here that this structure does not change with u, that is, Qij(u) 

= 0, u > 0 ⇒ Qij(u) = 0, ∀u > 0 and Qij(u) ≠ 0, u > 0 ⇒ Qij(u) ≠ 0, ∀u > 0. In this case there 

are two possible situations: the matrix Q(u) can be either irreducible or reducible. The 

former implies that there is a simple real eigenvalue corresponding to the spectral radius and 

hence to R0 (see, e.g., [24, Sec. 8.3]). If the matrix Q(u) is reducible, one can find a 

permutation matrix P such that Q‒(u) = PQ(u)P−1 has a block-diagonal form and the blocks on 

the main diagonal are irreducible. Since the eigenvalues of the permuted matrix are 
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determined by the diagonal blocks Q‒i(u) it suffices to track the spectral radii of Q‒i(u); denote 

them by λ‒i(u). We have that R0(u) = maxi(λ
‒

i(u)). If for some u* it happens that λ‒i(u
∗) = λ‒ j(u

∗)

we have the situation described in the preceding paragraph.

4. Examples

In this section we consider three sufficiently simple but yet non-trivial epidemiological 255 

models that are aimed at illustrating the usefulness of the proposed approach.

4.1. An SI model with acute and chronic stages and a single treatment

Model.—Consider an SI-model of a disease with two stages (acute and chronic) and a 

treatment u. This general model structure with sequential infection compartments containing 

infected persons with different levels of contagiousness describes the evolution of such 

diseases as HIV [25] and syphilis [13] that have variable levels of contagiousness over the 

course of infection. For the sake of illustration we explicitly show the ΦI, ΦC, and Φu 

components in (13).

d
dt

IA

IC

T
S

=

α(X)S
0
0
0

ΦI(x)

+

−βIA − μAIA

βIA + δT − μCIC

−δT − μTT

w − α(X)S − μSS

ΦC(x)

+

0
−IC

IC

0

u

Φu(x)

(13)

where α(X) =
αAIA + αCIC + αTT

N , X = [IA, IC, T, S], and N = IA + IC + T + S. The states 

correspond to the number of acutely infected (IA), chronically infected (IC), treated (T), and 

susceptible (S) individuals. We assume that the first three compartments are infectious with 

different transmission probabilities: αA, αC, and αT. Furthermore, β is the inverse duration 

of the acute phase, μS, μA, μC and μT are the mortality rates for susceptible, non-treated in 

acute and chronic phases and treated infected, with μC > {μA, μT} > μS, and δ is the rate at 

which the treatment fails.

Analysis.—The disease-free equilibrium is unique and given by x* = [0, 0, 0, w/μS]. The 

(uncontrolled) value of R0 is computed as the spectral radius of FV−1 and is equal to

R0 =
αCβ + αAμC
(β + μA)μC

Note that the DFE x* is unstable if αCβ + αAμC > (β + μS)μC. We wish to evaluate if the 

proposed treatment strategy is efficient. To do so we compute R1 according to (9):

R1 = −
β(αCμT − αTμC)

μC
2 (β + μA)(δ + μT) (14)
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This expression is negative if αCμ > αTμC. This can be written as

αCμC
−1 > αTμT

−1, (15)

that is the treatment turns out to be efficient if the product (transmission probability times 

average residence time in the respective compartment) is lower for the treated individuals as 

compared with chronically infected. In the following, we will refer to this product as the 

cumulative transmissibility of the infection induced by a given compartment. The condition 

(15) can be interpreted as follows: If treated people live longer than untreated (but infected), 

but their infectivity does not reduce enough to compensate for this, such treatment will 

contribute to the propagation of the disease.

For the considered model it is possible to compute the controlled reproduction number 

R0(u):

R0(u) =
(αCβ + αAμC)(δ + μT) + (αTβ + αAμT)u

(β + μA)(δμC + μCμT + μTu) .

One may check that R1 =
∂R0(u)

∂u
u = 0

. However, we are interested in the behavior of R0(u) 

for (relatively) large values of u. To do so, we compute the difference

R0(u) − R0 = −
βu(αCμT − αTμC)

μC(β + μA)(δμC + μCμT + μTu) . (16)

One can readily observe that the difference is negative for any u > 0 when (15) holds.

Figure 1 shows the relative error in the R1 approximation to R0(u) for a set of random 

parameters as a function of R0. We obtained random parameter sets for a given value of R0 

optimizing from a random starting point for αA, αC, and β assuming μA = μC = 120−1, μT = 

360−1, and αT = 0. We rejected parameter sets such that there was no feasible control 

capable of reducing R0(u) to 1. The relative error is defined as the difference in the exact 

value of u* such that R0(u*) = 1 and u∗∗ =
R0 − 1

R1
 normalized by u*. The approximate value 

of the control is always less than the true value and the approximation becomes worse as the 

value of R0 increases, although the accuracy of the approximation is dependent on the 

specific parameter values. However, if R0 is small the approximation gives a reasonable 

indicator of the level of control required to bring the epidemic to the threshold level.

4.2. An SEIR model with an asymptomatic stage and treatment

Model.—Consider the model shown in Fig. 2. This model describes the transmission 

dynamics of an asymptomatic (sub-clinical) infection. Individuals with asymptomatic 

infection do not develop the respective symptoms, but are infectious and contribute to the 

distribution of the disease. Asymptomatic infection has been shown to exist for many 

diseases, including, e.g., herpes [29], gonorrhea [20], measles [1], and common cold.
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Here, we have the following compartments: E – exposed, I – infected, A – asymptomatically 

infected, T – treated. Λ is the inflow into the population, η is the transmission rate, p1 is the 

probability that the exposition will lead to the typical clinical course and p2 is the probability 

that the failed treatment will result in the typical clinical course. Furthermore, x is the rate at 

which the treatment is failed or canceled, and γI, γA and γT are the inverses of the mean 

residence time in respective compartments. We assume that only the symptomatic infected, 

i.e., I, are treated. However, the disease can be transmitted both by symptomatic and 

asymptomatic infected though with different transmission rates αI and αA. People under 

treatment are assumed to be non-infectious.

Its behavior is described by the following DEs:

Ė = α(X)S − (η + μ)E
Ȧ = − (γA + μ)A + η(1 − p1)E + x(1 − p2)T

İ = ηp1E − (γI + μ)I − uI + p2xT

Ṫ = uI − (γT + μ + x)T

Ṡ = Λ − μS − α(X)S
Ṙ = γAA + γII + γTT − μR,

where α(X) =
αAA + αII

N .

Analysis.—The basic reproduction number R0 is found using the NGM approach to be

R0 = η
η + μ

αA
γA + μ (1 − p1) +

αI
γI + μ p1 ,

where the expression in square brackets is the expected value of the total cumulative 

transmissibility of the infection and the quantity in front of the brackets is the fraction of the 

infected that leave E toward either I or A.

We compute R1

R1 = −
ηp1 αI(γA + μ)(γT + μ) + (αI(γA + μ) − αA(γI + μ))(1 − p2)x

(η + μ)(γA + μ)(γI + μ)2(γT + μ + x)
(17)

which turns out to be negative if the numerator is positive (note that the denominator is 

always positive).

Upon some algebraic manipulations, this condition can be written as

αI
γI + μ >

x(1 − p2)
γT + μ

αA
γA + μ −

αI
γI + μ . (18)
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Define the cumulative transmissibilities of the A and I stages as ζA =
αA

γA + μ  and ζI =
αI

γI + μ . 

With this, the condition (18) can be rewritten as

ζA − ζI
ζA

⋅ x(1 − p2) < γT + μ,

provided ζA > ζI (otherwise the condition (18) holds trivially as the r.h.s. of (18) turns to be 

negative). The first term on the left side is the relative difference in cumulative 

transmissibility and the second one is the flow from T to A. Finally, the expression on the 

right side describes the flow from T to R or to outside the system. This result underscores 

the importance of the treatment efficiency for the successful eradication of the disease.

We proceed by considering the total change of R0 due to the control u

R0(u) − R0 =

−
ηp1u[αI(γA + μ)(γT + μ) + (αI(γA + μ) − αA(γI + μ)(1 − p2)x]

(η + μ)(γA + μ)(γI + μ)[(γI + μ)(γT + μ + x) + (γT + μ + x(1 − p2))u] .
(19)

The denominator of (19) is always positive so, the condition for the treatment to be efficient 

(that is the condition for the difference to be negative) is that the numerator is positive. But 

the numerator of (19) coincides with the numerator of R1, (17), up to the 3i5 control u which 

is positive. Hence we conclude that satisfaction of the condition (18) guarantees decrease in 

R0 for any positive value of u, i.e., gives a global condition.

4.3. An SI model with high- and low-risk groups and two treatments

Model.—Consider a simplified model of HIV transmission dynamics with two controls 

corresponding to treating infected individuals from the high- and the low-risk groups, 

denoted by uT and uL. For the details on the derivation of the model see [18]. The 

transmission dynamics is described by the following set of ODEs

İ H = − IHμ − IH f Lω + IL f Hω + ϕH(X)SH − IHuH − μIIH

İ L = − ILμ + IH f Lω − IL f Hω + ϕL(X)SL − ILuL − μIIL

ṪH = TL f Hω − THμ − TH f Lω + IHuH

ṪL = TH f Lω − TLμ − TL f Hω + ILuL

ṠH = αH − SHμ − SH f Lω + SL f Hω − ϕH(X)SH

ṠL = αL − SLμ + SH f Lω − SL f Hω − ϕL(X)SL,

(20)

where S{H,L}, I{H,L}, and T{H,L} are the susceptible, infected, and treated. The subscript 

denotes the behavioral pattern of the respective group: there are a (H)igh and a (L)ow risk 

group. Further ϕH(X) = βλH
λHIH + λLIL

λHNH + λLNL
 and ϕL(X) = βλH

λHIH + λLIL
λHNH + λLNL

 are the per-capita 
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transmission rates. μ is the mortality rate and μI is the disease-induced mortality; ρH = fHω 
and ρL = (1 − fH)ω = fLω are the transition rates between high- and low-risk groups with ω 
denoting the volatility coefficient; λH and λL are the contact rates; β is the infection 

transmissibility. Finally, the inflow rates are αH = fHμN and αL = fLμN.

For the considered model, the disease free equilibrium is 

IH
∗ , IL

∗, TH
∗ , TL

∗, SH
∗ , SL

∗ = 0, 0, 0, 0, f HN, f LN . Note that fH and fL are the fractions of the 

respective (high- or low-risk) population at the DFE. Using the next generation matrix 

method we can compute R0:

Analysis.—The basic reproduction number is computed using the NGM method:

R0 = β
(μI + μ + ω)CV(λ) + β

(μI + μ) λ

where λ = f LλL + f HλH and λ2 = λL
2 f L + λH

2 f H are the first and the second moments 335 

of the contact rate at the DFE, Var(λ) is the variance of the contact rate, and CV is the 

coefficient of variance defined as CV(λ) = Var(λ)/[λ]. Since there are two controls, we 

would like to compare their contributions in order to decide which one should be invested 

into. To compute the corresponding components R1
H and R1

L we use (12) to get

R1
H = −

β f H(λH(μI + μ) + λ ω)2

(μI + μ)2 λ (μI + μ + ω)2

R1
L = −

β f L(λL(μI + μ) + λ ω)2

(μI + μ)2 λ (μI + μ + ω)2

The first observation is that both R1
H and R1

L are negative thus, they contribute to reducing 

R0(u) for any choice of parameters. After some algebraic manipulations we find that uH is 

more efficient than uL if

f H
λH
λ + ω

μ

2
> f L

λL
λ + ω

μ

2

Figure 3 shows the value of λH such that the two terms in the inequality above are equal. To 

account for the variability in the duration of the high and low-risk periods as a function of 

fH, we introduce the normalized volatility coefficient

ω * = ωμ−1

f H
−1 + (1 − f H)−1,
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which is the number of full high and low-risk episodes that can be contained in a typical 

infectious period. This plot shows that for fixed value of fH, behavioral volatility makes 

high-risk intervention more plausible (i.e. the high-risk population does not have to be 

extremely high-risk to make a targeted intervention efficient). This simple analysis gives us a 

clear theoretical prescription for when to focus on high-risk group based on measurable 

aspects of the transmission system.

5. Discussion

The results presented in this paper can be applied to a wide class of epidemiological models 

as long as their dynamics can be described by a compartmental system of form (5). Our 

approach builds upon and further develops the next generation matrix method in that it 

allows one to estimate the influence of the treatment-type control(s) on the basic 

reproduction number R0 which defines the ultimate condition for eventual elimination of a 

disease. The more a given control reduces R0, the closer the system is to elimination and the 

more effective future interventions will be. Furthermore, it may turn out that in complex 

models an intervention could unintentionally make things worse for certain populations. The 

basic premise of medicine to do no harm applies to public health as well. However, the 

complex, non-linear dynamics of transmission limit the ability of our intuitions to predict the 

effects of an intervention. Likewise, measurement of the effects of interventions are often 

very noisy and can have long time lags. Both weak measurability of outcomes and hard to 

predict dynamics highlight the need for stronger theoretical guarantees that an intervention 

will not cause population-level harm. A possible extension to this work could include 

consideration of complex models of how risk behavior changes in response to changing 

prevalence and incidence of disease.

All our results are of local nature, i.e., these are valid for sufficiently small values of u. 

However, in many cases it is possible to extend this analysis to larger values of u as was 

illustrated by examples It should also be noted that the proposed approach does inherit all 

the limitations associated with the NGM method. For instance, it provides only a local 

stability condition and does not allow to make a conclusion about the behavior of the system 

under large deviations.
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Appendix A.: Proofs and computations

Proof of Lemma 3.1.

One can readily observe that 
∂Φi, k

u (x)
∂x j

= 0 for all j > l as Φi, k
u (x∗) turns to zero identically for 

any x* = [0l xC]⊺ We thus consider the partial derivatives of Φi, k
u (x∗) w.r.t. xj for j = 1, …, l.

Let i, j ∈ {1, …, l}. We have
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∂Φi, k
u (x)
∂x j

= lim
δx j 0

q ≤ l
q ≠ i

aiq, k
u (0, …, δx j,…, 0) −

q ≠ i
aqi, k

u (0, …, δx j,…, 0)

δx j

=

lim
δx j 0

−
q ≠ i

aqi, k
u (0, …, δx j,…, 0)

δx j
≤ 0, i = j

lim
δx j 0

ai j, k
u (0, …, δx j,…, 0)

δx j
≥ 0 i ≠ j

For i ∈ {l + 1, …, n} and i ∈ {1, …, l} the partial derivatives are

∂Φi, k
u (x)
∂x j

= lim
δx j 0

ai j, k
u (0, …, δx j, …, 0)

δx j
≥ 0,

which yields the required sign structure. Summation over j gives 
j = 1

n ∂Φi, k
u (x)
∂x j

= 0 for all i 

= 1, …, l and hence, we have (note that the summation is perfomed only for j ≤ l)

∂Φi, k
u (x)

∂x j
≥

j ≤ l
j ≠ i

∂Φi, k
u (x)

∂x j
.

(21)

This implies that the matrix B11, k =
∂Φi, k

u (x)
∂x j i = 1, …, l

j = 1, …, l

 is weakly column diagonally 

dominant as the inequality in (21) is not strict.

Computation of the second order term in the expansion of R0(u).

Let A(u) be a matrix depending on u, r0 be the simple eigenvalue equal to the spectral radius 

of A(0), and w0 and v0 be the left and the right eigenvectors corresponding to r0. We expand 

the perturbed eigenvalue r(u) and the corresponding right eigenvector x(u) in a Taylor series 

and keep the terms up to the second order: r(u) = r0 + r1u + r2u2 + O(u3) and x(u) = v0 + v1u 
+ v2u2 + O(u3). Thus we have

A(u)(υ0 + υ1u + υ2u2 + O(u3)) = (υ0 + υ1u + υ2u2 + O(u3))(r0 + r1u + r2u2 + O
(u3))

(22)

Differentiating (22) w.r.t. u and evaluating at u = 0 we get
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(Ir0 − A(0))υ1 = (A′(0) − Ir1)υ0, (23)

whence the expression for r1 can be obtained: r1 = w0
⊺A′(0)v0(w0

⊺v0)−1
 (cf. the proof of Thm. 

3.4). Substituting r1 back to (23) one gets an expression that can be used to determine v1 (see 

[22, Chap. 8] for details):

υ1 = (Ir0 − A(0))† I −
v0w0

⊺

w0
⊺v0

A′(0)υ0, (24)

where ()† is the Moor-Penrose inverse operator.

To compute the second term in the expansion of r(u) we differentiate (22) twice w.r.t. u and 

evaluate at u = 0 to get

1
2 A″(0)υ0 + A′(0)υ1 − υ1r1 − υ0r2 = (Ir0 − A(0))υ2

Multiplying from the left by w0
⊺ and substituting the previously obtained expressions for r1 

and v1 we arrive after some computations to the final expression for r2:

r2 = (w0
⊺v0)−1w0

⊺ 1
2 A″(0) + A′(0)P0(Ir0 − A(0))†P0A′(0) υ0, (25)

where P0 = I −
v0w0

⊺

w0
⊺v0

 is the oblique projection operator. Finally, we recall that A(u) = (V + 

uW)−1F, whence A′(0) = V−1WV−1F and A″(0) = −2V−2WV−2F.

Appendix B.: Special classes of matrices and their properties.

Definition 5.1. A matrix B ∈ ℝn × n is non-negative, denoted by B ⪰ 0, if bij ≥ 0 for all i, j = 

1,…, n.

Definition 5.2. A non-singular matrix A is said to be inverse positive if it satisfies 

ℝ ≥ 0
n ⊆ Aℝ ≥ 0

n , which is equivalent to A−1 ⪰ 0, i.e., A−1ℝ ≥ 0
n ⊆ ℝ ≥ 0

n .

Theorem 5.1. Let A = αI − B, where α > 0 and B ⪰ 0. Then the following statements are 
equivalent:

1. The matrix A is inverse positive,

2. The spectral radius of B is strictly smaller than α,

3. The matrix A is positive stable, i.e., if λ is an eigenvalue of A, then ℛ(λ) ≥ 0.

Definition 5.3. A matrix A = αI − B satisfying any of the properties of Thm. 5.1 is said to be 

an M-matrix.
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We will occasionally write M to denote the class of all n-by-n non-singular M-matrices. The 

preceding results can be generalized in the following way. Let us define the class of Z-

matrices as Z = A ∈ ℝn × n |ai j ≤ 0, i ≠ j . The following theorem gives a number of 

conditions which guarantee that a given Z-matrix is a non-singular M-matrix. For a complete 

list see [3].

Theorem 5.2. Let A ∈ Z.Any of the following conditions implies A ∈ M.

1. A is inverse-positive.

2. A is positive stable.

3. A has all positive diagonal elements and is strictly row diagonally dominant 

(d.d.), i.e.,

aii >
i ≠ j

a ji , i = 1, …, n .

4. A has all positive diagonal elements and is strictly column d.d., i.e.,

aii >
i ≠ j

ai j , i = 1, …, n .

Proof. We will prove only the last item as the remaining ones are covered in [3].

Let A ∈ Z and A be strictly column d.d., then A⊺ ∈ Z and is strictly row d.d. This implies A⊺ 

∈ M. Since the spectrum of A coincides with that of A⊺, the positive stability property holds 

for A and hence A ∈ M.
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Figure 1: 
Relative error in approximate reduction in R0 due to treatment. This figure shows the 

multiplicative-scale error defined as u∗ − u∗∗

u∗  where u* such that R0(u*) = 1 and u∗∗ =
1 − R0

R1
for a set of randomly selected parameter values. Parameters with a given R0 between 1.1 and 

4 were selected at random as described in the text. The blue line is a local polynomial 

regression showing the general trend.
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Figure 2: 
SEIR model.

Gromov et al. Page 24

J Theor Biol. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Minimum value of the high-risk contact rate, λH, for which the high-risk intervention is 

preferred. The color shows the value of λH for which the terms in the above inequality are 

equal. For any value of λH higher than the plotted value the high-risk intervention is 

preferred. The gray color indicates that the value is either above 104 or there is no value such 

that the terms are equal. The x-axis is the normalized volatility coefficient ω*. The y-axis 

shows the fraction of the population that is high-risk in the absence of disease. The 

remaining parameters are λL = 1 and μI =0.

Gromov et al. Page 25

J Theor Biol. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Computation of R0.
	Contribution.

	Epidemics dynamics
	A disease propagation model
	General formulation.
	Compartmental epidemic model.
	Assumptions.

	Stability of a disease-free equilibrium

	Evaluating the Effect of a Treatment-type Control
	A controlled disease propagation model
	Controllability.

	Analysis of the controlled system
	Discussion.

	Further extensions

	Examples
	An SI model with acute and chronic stages and a single treatment
	Model.
	Analysis.

	An SEIR model with an asymptomatic stage and treatment
	Model.
	Analysis.

	An SI model with high- and low-risk groups and two treatments
	Model.
	Analysis.


	Discussion
	Proofs and computations
	Special classes of matrices and their properties.
	References
	Figure 1:
	Figure 2:
	Figure 3:

