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Abstract

We experimentally study the behavior of suspensions of silica particles in aqueous solution. Despite many studies on these materials, the
dependence of the overall rheological properties of the suspension on particle size, solid volume fraction, ionic strength, and strain history
remains debated. In this paper, we manage to manufacture materials and develop procedures that allow us (i) to approach this problem in the
best possible way and (ii) to check that the results obtained with well controlled systems (monodisperse silica spherical particles) also apply to
less controlled suspensions (crushed silica particles). We find that the elastic modulus-particle size and yield stress-particle size relationships
follow power laws that disagree with classical models from the literature. We also show that elastic modulus versus yields stress data fall on a
single master curve when rescaled by particle size, whatever are solid volume fraction, resting time, and ionic strength. This suggests that the
rescaled elastic modulus can play the role of a parameter in a structural kinetics model of the behavior of thixotropic suspensions. Furthermore
confocal observations of the system provided evidence that the evolution of the overall properties of the material with resting time cannot be

ascribed to changes in the particle network. © 2018 The Society of Rheology. https://doi.org/10.1122/1.5031897

I. INTRODUCTION

Paste systems, which consist of colloidal particles (up to
several micrometers) suspended in a fluid, are present in
many industries, such as civil engineering or the food indus-
try. For example, fresh cement paste (i.e., cement paste
before setting and hardening) is a suspension of irregularly
shaped particles with a typical size range from 1 um to about
10 um. In the concrete industry, the placement of the mate-
rial is an important operation which largely determines the
quality of the final product. The placement of the paste in
formworks or its spreading on solid surfaces relies on the
rheology of the material. Proving rheology is a key parame-
ter of concrete technology [1].

As it is well known, colloidal suspensions’ response to a
loading does not depend only on the stress or strain applied
at the concerned time, but also depends on the stress-strain
history experienced by the material [2-5]. This behavior
finds its origin at the particle scale: When suspended in
water, colloidal particles organize spatially as a result of par-
ticle—particle interaction (van der Waals, steric, etc.), fluid-
particle interaction (electrostatic, Brownian motion, etc.), or
others [6]. Rheology of colloidal suspension is mainly con-
trolled by particle interactions, and a lot of work has been
devoted to study the link between interactions at the particle
scale and the overall behavior of the suspension [2,5,7-11].
Thanks to these works, consensus has emerged to attribute
the intricate overall properties of attractive colloidal particle
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suspensions to the changes in the particle microstructure
induced by flow.

If neighboring particles attract each other and if the sus-
pension is at rest for a while, particles will cluster together to
form flocs. As flocs are porous and behave as rigid particles
when slowly sheared by the suspending fluid, flocculation
increases the apparent viscosity of the suspension. Moreover,
if colloidal aggregates span over the sample, the viscosity
diverges and the material has a yield stress. Conversely, it is
possible to break aggregates and then to redisperse the
colloidal particles over the suspending fluid by strongly
shearing the suspension. It is well known that many thixotro-
pic materials such as ketchup, bentonite, or cement paste
(among others) exhibit these flow-induced and time changes
of apparent viscosity [2—5]. As all these interactions depend
upon the particles’ size and shape as well as on the suspend-
ing fluid properties the same dependencies exist for the over-
all suspension properties.

A better understanding of the parameters that control the
rheology of attractive colloidal suspensions is essential to
make progress in this field. A better comprehension of the
link between phenomena occurring at the particle scale and
the overall behavior of the material will surely enhance the
design of new materials or help in developing materials with
improved or more controlled properties. For this purpose,
many recent research works have focused on studying the
rheological properties of mineral suspensions [9,12-14] and
more specifically silica suspensions [8,15-22]. It has been
observed that for most of the studied systems, the yield stress
depends on the solid volume fraction through a power-law
[9,14,15,23]. The same tendency has been observed regard-
ing the elastic shear modulus’ dependence on the solid
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volume fraction by [24]. In all these works, it has also been
observed that the interaction forces magnitude strongly
impacts the material properties. Furthermore, it was unam-
biguously observed in several of these studies that adding
salt enhances flocculation of mineral suspensions. On the
other hand, it seems that the time dependency of yield stress
and shear modulus have received little attention [17,21].

Particle properties, especially size, also greatly interfere
in the rheological response. It has been observed for many
systems that the yield stress is inversely proportional to the
square of particle’s size [9,25] even it is difficult to draw a
definitive conclusion due to the small range of particle’s size
used in most of the experimental studies. Even if some mod-
els agree with these experimental results [10], a consensus
on the modeling of this trend has not yet emerged since other
models predict an inverse dependence of the yield stress on
the particle’s size [2,26,27]. Flatt and Bowen discuss the
influence of rugosity on particle’s size-yield stress depen-
dence in the framework of the Yodel model [10]. They reach
to the conclusion that yield stress is inversely proportional to
the square of particles size for rough particles whereas an
inverse dependence is predicted for both particles. To our
best knowledge, experimental validation of this result
remains to be made.

Studies have also been carried out to model and link the
rheological properties to the fractal dimension of suspensions
[5,28,29]. However, this concept is of limited applicability at
a volume fraction above 0.2.

Numerical simulations of colloidal suspensions allow to
study the influence of particle interactions on the rheological
properties of colloidal suspensions. Numerical simulations
are attractive methods because they can incorporate all the
desired information about the interparticle interaction, and
then, allow to study how the suspension’s rheological behav-
ior depends on the model’s ingredients. For example, the
behavior of non-Brownian suspensions under shear flow con-
ditions has been studied by Mari et al. [30] in the framework
of Stokesian Dynamics model. They show that adding
friction between solid particles to a model including hydrody-
namic interactions and short-range repulsive potential is
enough to reproduce shear thickening including its dependence
on the solid volume fraction. Even if numeric simulations are
versatile, enabling to model the behavior of colloidal aggre-
gates under shear flow conditions [31,32] or to reproduce the
compressive consolidation behavior of strongly aggregated
particle gels [33] they have to be validated by comparison to
macroscopic experimental data due to the lack of experimental
device for measuring the contact forces for any particle’s size.

The problem of transitioning from the particle scale to the
macroscopic scale in view of the prediction of overall behav-
ior remains far from being fully understood.

In this article, we focus on the dependence of the yield
stress and elastic modulus with respect to time, strength of
particle interaction, solid volume fraction, and particle size.
The behavior of real colloidal suspensions reveals many
complex features that originate from the great variety of
interactions and particle properties. We chose to work with
model materials to reduce the number of parameters and phe-
nomena involved in upscaling the suspensions properties. In

this way, interactions and particles’ properties should be
more easily controlled, tuned, and described, which eases
identification of the influence of microscopic parameters
onto the overall properties. However, as a first step toward
better understanding of real materials, we also perform
experiments with irregularly shaped particles.

In Sec. II, we describe the materials employed and the
experimental setup we used. Experimental results for the
yield stress and elastic modulus are presented in Sec. III and
compared to theoretical results from the literature in Sec. IV.
Finally, Sec. V concludes and gives some perspectives about
future work.

Il. MATERIAL AND METHODS

To investigate the behavior of suspensions we use two
types of silica particles suspended in an aqueous solution,
respectively, monodisperse silica beads synthesized via the
Stober process and polydisperse crushed silica provided by
Sibelco. First, a carefully controlled material is manufac-
tured to reduce the number of parameters needed to describe
its microscopic properties as much as possible. Then, as a
first step toward the study of real materials, we also prepare
suspensions with angular shaped particles with a broader
size distribution. From now on, the synthesized silica beads
will be called the model material and the crushed silica will
be referred to as the realistic material even if it is clear that
this material does not exhibit all the complexity and diversity
of real materials.

The particle volume fraction of colloidal suspensions
varies between approximately 0.3 and 0.4. To control the
degree of flocculation of suspensions, we only adjust the ionic
strength through the addition of salt. We use divalent salt,
CaCl,, which is commonly used in civil engineering materi-
als, with an ionic strength / varying from 0.05 to 0.3. As we
used the same salt in the whole study, we do not vary the
valency of the type of ions. The ionic strength is defined as

1
IZEZC,-ZI?, (1)

where ¢; is the ion concentration in moll™' and z; the ion
valency. Indeed the ionic strength controls the magnitude of
interactions at play in the suspensions. Basically, the interac-
tions involved in such systems are described by Derjaguin,
Landau, Verwey, and Overbeek (DLVO) theory. DLVO
[34,35] developed a theory explaining main trends of aqueous
dispersion by combining two main interactions: van der
Waals attraction [6,36] and electrostatic repulsive force [6].
The simplified expression for DLVO potential between two
spheres of diameter d,, in an asymmetric electrolyte separated
by a distance 4 is given by

Apnd ;
VpLvo = — ﬁ + ndpsao‘{’(z) exp ", (2)
with Ay representing the Hamaker constant. Different values
ranging from 10~2'J to 102°J can be found in the literature
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for the Hamaker constant of silica particles suspended in
water [24]. k denotes the inverse of Debye length, ¢ and ¢,
the relative permittivity of the medium and of the vacuum,
respectively, and ¥, is the surface potential.

It is worth noting that changing the salt concentration also
induces a variation of the surface potential Wy. To the best of
our knowledge, a satisfactory model does not exist to predict
W, variations with respect to a change in the salt concentra-
tion. To overcome this difficulty, we experimentally measure
W, for the different salt concentrations values used in this
study (see Sec. Il A). From Eq. (2), it is readily seen that par-
ticles size influences both the van der Waals and electrostatic
forces.

The particles also experience Brownian motion and gravi-
tational force. To quantify their competitive effects, we
introduce the Péclet number

nApgd;

Pe — 3
¢ T kT )

with Ap as the difference between the particle density and
the suspending medium density and g as the gravity. For
T=293K and silica particle with density p ~ 2000kgm >
and diameter d, = 0.7 ym suspended in water, we obtain Pe
~0.15 whereas for the same particle with diameter
d,=1.4 yum we have Pe~2.5. In our study, we are close to
the limit between colloidal and noncolloidal systems, but it
has to be noticed that this number does not take into account
the interactions between particles in a flocculated state which
prevent sedimentation with the apparition of yield stress.

A. Materials
1. Model system: Silica beads

The silica bead particles are produced by a Stober synthe-
sis [37]. The hydrolysis of silicon alkoxides in a basic
medium leads to the precipitation of essentially monodis-
perse SiO, particles through the chemical reactions

= Si— OR + H,0=2 = Si — OH + ROH,
= Si— OH+ = Si — OH= = Si — O — Si = +H,0,
= Si — OH+ = Si — OR= = Si — O — Si = +ROH.

Many authors [38—41] have worked on improving the size
control and reproducibility of this synthesis. Indeed the tem-
perature, the type of alkoxides, solvents, and the rate of
reagent addition are crucial to the final particles size as well
as the monodispersity. We follow the protocol established by
Kang et al. [42] with a few changes (details about the operat-
ing conditions are reported in Table I). Ethanol
absolute >99% (EtOH, Analar NORMAPUR) and ammo-
nium hydroxide 28% (NH4OH, AnalaR NORMAPUR) are
mixed and tetraethyl orthosilicate for synthesis (TEOS,
Merck) in ethanol is added dropwise with a syringe pump.
The batch was stirred for 1 h after the addition of reagents.
Then, particles are separated from the solvent by centrifuga-
tion and washed several times with ethanol 96% (GPR
Rectapur VWR) and deionized water to remove impurities

TABLE I. Operating conditions.

Quantities

Ethanol absolute (ml) 490 (batch)/100 (dropwise)

NH,OH (ml) 120
TEOS (ml) 60
Rate of adding (ml min~") 1.1

and traces of solvents. The particles are finally dried at 60 °C
for several days.

Particles having diameters of 0.7, 0.8, 1.0, and 1.4 um
have been produced. The particles’ size has been character-
ized using laser granulometry. A scanning electron micro-
scope (SEM) image and a typical size distribution of
particles are presented in Fig. 1. It is readily seen that par-
ticles are spherical and almost monodisperse. Standard
deviation of the size distribution depicted in Fig. 1 is equal
to 130 nm, that is, ~10% of the particle’s mean diameter.

Large amount of silica beads cannot be produced by
Stober synthesis; only about 20g are produced per batch.
Therefore, it was not possible to perform all the reproducibil-
ity tests we would have liked to do. We did not have this
problem with crushed silica particles since they are available
in large quantities.

2. Crushed silica

To check that the result obtained with silica spherical
particles are of interest for real materials, we also studied sus-
pensions of crushed silica. The quartz particles are also made
of silica, but they are polydisperse and angularly shaped [Fig.
2(a)]. Quartz is extracted from a quarry and crushed. During
this process, particles are washed and calcined up to 700 °C,
which remove most of the silanol groups (SiOH) from the
particles’ surface by condensing water between the two sila-
nol groups. To ensure that the quartz particles’ surface prop-
erties are similar to that of silica beads, zeta potential
measurements have been performed on calcined silica beads
(see Sec. ITA4). Two average diameters are used: 2 um
(C800, Sibelco) and 4 um (C600, Sibelco). The size distribu-
tion of these particles, measured by laser granulometry, is
presented in Fig. 2(b). The particles are angular, polydisperse,
and have a broad size distribution.

The properties of the different types of particles used in
this study are summarized in Table II.

3. Formulation protocol

We observed that the rheological properties of our
suspensions evolve with time and shear-stress history.
Consequently, samples are prepared using a rigorously con-
trolled procedure. In order to obtain homogeneous suspen-
sions, the desired amount of dry powder is dispersed in water
and mixed for several hours. Then, the solution is centri-
fuged to concentrate it at the desired volume fraction. The
pH of the suspension is around 5.8 and varies up to 6.02 for
the highest calcium chloride concentration. Therefore, the
pH variation of the suspension by addition of CaCl, can be
neglected. The proper amount of salt is then added to the
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FIG. 1. SEM picture (a) and size distribution measured by DLS (b) of 1.4 um silica beads.

suspension which is vigorously mixed until the system is
homogeneous. Then, the rheometer cup is filled and soni-
cated for 2 min to deflocculate the material prior to placing it
in the rheometer. The rheometry cycle starts 1 min after soni-
cation. The exact volume fraction is measured by weighing
the dry extract of a small amount of each sample dried at

60°C in an oven.

(a) SEM

FIG. 2. Two micrometer crushed silica particles observed with a SEM (a) and characterized by laser granulometry (b).

4. Zeta potential measurement
Silica surfaces are known to be negatively charged in
water [43]; the surface hydroxyl groups in contact with water
form (—O™) groups, then the zeta potential measured is nega-
tive. Its magnitude varies when salt is added to the suspend-
ing fluid because the amplitude of the electrostatic repulsive
potential is lowered. Indeed the only parameters impacted
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TABLE II. Particles’ properties.

Properties Silica beads Quartz
Median diameter (xm) 0.7-1.4 2/4
Size distribution Monodisperse Polydisperse
Specific surface area (m? g h 7.1-2.7 6.25/4.85

are the ion concentration in Eq. (1) and the surface potential
appearing in Eq. (2) for the electrostatic potential. It is
extremely difficult to measure the potential at a particle sur-
face due to the presence of adsorbed ions and solvent mole-
cules near the solid surface, but it is possible to measure the
potential at the shear plane between the particle and the sus-
pending medium, thanks to electrophoretic mobility method
[44].

The mobility of the particle submitted to an electric field
is measured and related to its zeta potential by the
Smoluchowski equation, which reads for xd, > 1,

- LI"()S
n

) “)

In Eq. (4), u denotes the electrophoretic mobility of the parti-
cle and n the medium viscosity. The zeta potential of suspen-
sions with solid weight fraction of 0.005wt. % was
measured using a zetasizer (Cad instrument) for ionic
strengths varying from O to 0.1. It was not possible with our
instrument to measure zeta potentials for higher ionic
strengths due to perturbing effects at high conductivity.

-20 0 %

40

-60 4

Zeta potential (mV)
H{D

O 700 nm
0O 1400 nm
-80 -

-100 —7r r r r 1 - 1 r 1 T 7
-0,01 0,00 0,01 0,02 003 004 0,05 0,06
lonic strength

(a) Silica beads of 1.4 ym (red

square) and 0.7 um (black circle)

Nevertheless, Johnson et al. [45] showed by using electro-
acoustic techniques that the zeta potential of concentrated
suspensions is close to that of dilute suspensions.

Many researchers assume that the magnitude of the zeta
potential provides an indication about the stability of the col-
loidal system. For large (positive or negative) values of ¥
particles tend to repulse each other and the suspension does
not flocculate. On the contrary, if the particles have a low
zeta potential, there is no force to prevent flocculation of the
particles. There exists a particular value of the pH, known as
the isoelectric point, for which the majority of silanol groups
are neutralized and the total net charge on the surface is
zero. For silica, this pH is around 2-3. We do not work in
this domain, but at natural pH around 6. One can readily see
in Fig. 3(a) that adding salt decreases the magnitude of the
zeta potential. Moreover, the zeta potential does not depend
on particles’ size.

Quartz particles are calcined during the industrial process.
The only way we have to check that calcination does not
change completely the surface properties is to compare the
zeta potential before and after calcination (i.e., heated up
700°C) of silica particles. Comparison was made for spheri-
cal silica beads because the Zeta potential measurement is
possible only for spherical particles [Eq. (4) was obtained by
assuming sphericity of the particles]. The ratio of the zeta
potential of calcinated spherical particles to that of uncal-
cined spherical particles is depicted in Fig. 3(b) as a function
of ionic strength. Calcination does not alter significantly the
value of Zeta potential of the particles. Therefore, we believe

1,5

1,4—-
131
1,2-
1,1—- ]
1,0—- [ ]
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0,8 -

Zeta potential normalised
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(b) g of calcined silica beads of

1.4 pm normalised by Vg of

uncalcined beads.

FIG. 3. Zeta potential as a function of ionic strength for different sizes of silica beads.
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that the difference in measured properties for silica beads
and crushed particles should be attributed to the particle
shape and polydispersity.

5. Sedimentation

As the density difference between silica particles and the
aqueous solution is about 1kg/m>, we use the nonintrusive
Proton Magnetic Resonance Imaging technique to investigate
the sedimentation of the suspensions [46,47]. We study the
time evolution of the horizontal section-averaged profile of the
particle volume fraction. The material is poured in a cup with
the diameter and height equal to 2 cm and then set to rest. The
solid volume fraction profile is measured every 30 min for sev-
eral hours. Results for a 1.4 um silica bead suspension at a
solid volume fraction of 0.35 and an ionic strength of 0.15 are
depicted in Fig. 4. It is readily seen that the solid volume frac-
tion slightly increases at the bottom of the sample while a thin
layer of water appears close to the free top surface. Overall,
sedimentation is rather limited in the main part of the sample
(the change in normalized solid volume fraction is less than
5% apart from the thin layer of water located at the top of the
sample); the material remains globally homogeneous over
90 min and the solid volume fraction variation is less than 2%
in the bottom of the sample and less than 1% in most of the
sample. As rheometric measurements on each sample last
approximately 1 h, one might conclude that particle sedimenta-
tion does not perturb rheometric measurements.

B. Rheometry measurements

Since the suspensions are highly thixotrope, the rheome-
try measurements must be designed to account for the time
dependence of rheological properties. We are mainly inter-
ested in the yield stress and in the elastic modulus of the

1- g
}
—0h
—— 0h30
1 ——1h
§ ——1h30
£ o- &
N
14
1,0 ' 1:1 ' 1,2
¢ (t,2)/9(0,2)

FIG. 4. Evolution of the normalized bead volume fraction profile measured
in a suspension of 1.4 um silica bead suspension with homogeneous initial
volume fraction ¢, = 0.35 and ionic strength / =0.15.

suspensions. These two quantities complement each other
since they provide additional information: Yield stress char-
acterizes the macroscopic strength of the material, which is a
quantity of primary interest for applications, whereas elastic
modulus is strongly related to microstructure of suspensions
and to the spatial organization of the suspended particles. We
use a specific protocol to measure the evolution of these
quantities with time. The experiments are performed within a
thin gap Couette geometry (inner radius R; = 12.5 mm, outer
cylinder radius R, = 13.75 mm, and height H=37.5mm) in a
stress controlled rheometer (Kinexus Malvern) with rough
surfaces to avoid slipping.

1. Preshear

To study the influence of resting time on the rheological
properties of flocculated silica suspensions, several experi-
ments are performed on the same sample. After pouring the
material into the Couette cup, a strong initial shear is applied
to “erase” the preparation and setting history. Then, a
preshear at 200 s~ is applied on the sample for 3 min before
each measurement to start from a reference state of
“rejuvenation.” Then, a series of experiments is performed to
measure the rheological properties of the sample.

It is not clear that the rejuvenation preshear fully defloc-
culates the material, i.e., that only single silica particles are
suspended right after the rejuvenation process. Heiney et al.
[17] observed that the flocculation of primary particles is
irreversible on submicron sized silica particles. Nevertheless
we checked that the rejuvenation procedure we used in this
work allows us to reach a reproducible state and then to
obtain satisfactory results. It is worth noting that our proce-
dure ensures that the structural state of the colloidal suspen-
sion contained in the rheometer is homogeneous. Then,
when the torque applied to the inner cylinder is increased
from zero, the first material elements to flow are located near
the inner cylinder because the shear stress is a decreasing
function of the radius. As the elastic modulus is also mea-
sured on material samples that are homogeneously destruc-
tured, we do not face the classical problems resulting from
heterogeneities of the structuration state when the sample
experiences a complex strain-stress history. For greater cer-
tainty, we carefully checked that measured elastic modulus
and yield stress do not depend on Couette gap device.

Figure 5 shows the evolution of the elastic modulus, mea-
sured using the procedure described below, as a function of
time measured over three intervals (5, 10, and 20 min).

2. Elastic modulus measurements method

Each measurement begins just after the rejuvenation pre-
shear was applied to the sample. As can be seen in Fig. 5, the
evolution of the elastic modulus is similar for each of the
three experiments.

Elastic modulus evolution during resting time is measured
using a method well suited for thixotropic materials [48].
Small strain oscillations with a frequency equal to 1 Hz are
applied to the sample during the resting period just after
stopping the rejuvenation preshear. It is found that the mea-
sured elastic modulus does not depend on the frequency in
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FIG. 5. Elastic modulus vs time with y = 10~* at 1 Hz frequency for 1.4 ym
suspension of silica beads at ¢, =0.35 and /=0.1 after 5, 10, and 20 min of
resting time (see Sec. II B2 for the description of the elastic modulus mea-
surement procedure).

the range [0.5-2 Hz]. Figure 6(a) shows that same evolution
is obtained for the three frequency values: 0.5, 1, and 2 Hz.
The linear elastic domain (i.e., the domain in which strain
depends linearly on stress) is identified by applying strain
oscillations with increasing amplitude. The size of the lin-
ear domain, that is, to say, the small strain domain, evolves
with resting time because of the thixotropy of suspensions,
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(a) Elastic modulus vs time
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as shown in Fig. 6(b). As we aim to measure the linear
elastic modulus as a function of resting time in the range of
[5-20] minutes, we chose y =10"* (1072%) which is in the
linear domain for the three resting times. It can be seen
in Fig. 6(b) that the data are scattered for small strain
amplitude (typically <0.01) and for short resting time
(<20 min). This is a classical problem encountered when a
stress controlled rheometer is used to prescribe strain oscil-
lations with small amplitude. This comes from the rheome-
ter control loop which hardly manages to prescribe strain
oscillations with small amplitude (less that 10 2% in our
case) to materials with low stiffness (< a few 10*Pa). A
strain amplitude equal to 10 2% appears to be a good com-
promise when measuring the elastic modulus of all of our
suspensions.

As we worked with a stress controlled rheometer, an
oscillatory shear stress is applied rather than an oscillatory
shear strain, to avoid retro-action noise. To remain in the lin-
ear regime at a strain corresponding to 10, the stress
applied on the sample must be updated to compensate for the
evolution of the material properties over time. To do so, the
measurement sequence is divided into periods of 10s; every
10s the prescribed stress is adjusted based on the elastic
modulus measured in the previous cycle so that the strain
amplitude remains close to 104 (Fig. 7).

Typical results for the measured elastic modulus after var-
ious period of rest is depicted in Fig. 5. Measuring the evolu-
tion of elastic modulus as a function of time is a convenient
way to characterize the evolution of the system microstruc-
ture during structuration of the suspension. Indeed oscillating
strains do not induce microstructural rearrangement in the
suspension as long as they remain in the linear domain. It
has been checked that the strain oscillations we apply to the

10°

-
(e}
N

Elastic modulus (Pa)

10°

10"
Strain amplitude (%)

(b) Elastic modulus vs shear strain

FIG. 6. (a) Elastic modulus vs time for three different frequencies (0.5, 1, and 2 Hz) with y = 10~ (b) Elastic modulus vs shear strain for 2 um crushed silica

suspension with ¢, =0.37 and I = 0.1 for resting time t,.; =5, 10, and 20 min.
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FIG. 7. The procedure we use to measure evolution of the elastic modulus as a function of time. F denotes the oscillatory shear stress frequency and 7 is the

number of 10-s cycles in each sequence.

studied suspensions are nondestructive by comparing the
yield stress measured after resting time for suspension with
or without oscillations.

3. Yield stress measurement method

Yield stress is the minimum stress to initiate sample
flow. As our suspensions are thixotropic, we observe reor-
ganization of the microstructure at rest. To quantify the
increase in yield stress during material aging, the yield
stress is measured through a stress ramp. A linear stress
ramp from 0 to 200 Pa in 2 min is applied on the suspen-
sion. We do not use the classical method, which consists in
applying a small and constant shear rate to measure the
yield stress because we observed that the control system of
the rheometer is not accurate enough to impose a precise
rotation of the inner tool. The ramp is automatically

50

Shear stress (Pa)

10° 10° 10" 10" 10°

Shear rate (s”)

(a) Shear stress vs shear rate

stopped once a shear rate of 200 s~ ' is reached to avoid
stronger destruction than during preshear. Figure 8 shows
the yield stress measured on a suspension as a function of
the shear rate (left picture) and as a function of the shear
strain (right picture).

4. Summary of the procedure

First, quartz or silica bead suspensions are formulated
with ¢, ranging from 0.3 to 0.4 and / from 0.05 to 0.2 with
the divalent salt CaCl,. The preparation procedure is care-
fully time controlled and the suspension is stirred with a vor-
tex and sonicated in the Couette cup, before the geometry is
put in the rheometer, so that the experiments start with a
material as deflocculated as possible.

Once the material is in the rheometer, we apply the fol-
lowing loading history to the sample (Fig. 9 and Table III)

50
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15 4

Shear stress (Pa)

104

10" 10 10° 10° 10°* 10°
Shear strain (%)

(b) Shear stress vs shear strain

FIG. 8. (a) Shear stress vs shear rate and (b) shear stress vs shear strain when a linear stress ramp is applied to suspension of 1.4 um diameter silica beads at

¢,=0.38 and / = 0.15 for different resting times.
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FIG. 9. Loading history applied to the sample during rheometric
measurements.

where t, denotes the initial time of each loading sequence. It
is reminded that the preshear durations (10 min after pouring
the material into the rheometer and 3 min after measuring
the suspension properties) have been chosen to ensure that
the material is fully deflocculated at the beginning of each
loading sequence.

TABLE III. Loading history applied to the sample during rheometric
measurements.

1. The sample is strongly presheared at 200 s~ for 10 min to get a repro-
ducible initial state and eliminate the memory of pouring history.

2. Stress ramp from 0 to 200 Pa in 2 min allows to measure the yield
stress at to.

3. Preshear at 200 s~ for 3 min to rejuvenate initial state.
Oscillatory shear stress during 5 min with y = 10* and F = 1 Hz
to measure G’ time-evolution during restructuration.

5. Stress ramp from 0 to 200 Pa in 2 min allows to measure the yield
stress after 5 min at rest.

Preshear at 200 s~ for 3 min to rejuvenate initial state.

7. Oscillatory shear stress during 10 min with y = 10 * and F = 1 Hz
to measure G’ time-evolution during restructuration.

8. Stress ramp from 0 to 200 Pa in 2 min allows to measure the yield
stress after 10 min at rest.

9. Preshear at 200 s~ for 3 min to rejuvenate initial state.

10.  Oscillatory shear stress during 20 min with y = 10~* and F = 1 Hz
to measure G’ time-evolution during restructuration.

11.  Stress ramp from 0 to 200 Pa in 2 min allows to measure the yield
stress after 20 min at rest.

lll. RESULTS
A. Evolution of yield stress and elastic modulus
1. Silica beads

In Fig. 10, we plot the evolution of the yield stress and
the elastic modulus as a function of the particle volume frac-
tion measured in suspensions of 1.4 um silica beads for dif-
ferent resting times and ionic strengths. Both the yield stress
and elastic modulus of the suspensions increase with aging,
ionic strength, and volume fraction. Increasing the ionic
strength from /=0.05 to / =0.1 induces a large increase in
both the yield stress and the elastic modulus (see experimen-
tal data for suspensions with volume fraction close to 39%).
A further increase in the ionic strength above /=0.1 seems
to have less influence on the overall rheological properties of
the suspension, especially for larger values of the solid
volume fraction. This suggests that beyond a critical salt
concentration adding salt has no more effect on flocculation
of the suspension. The yield stress value increases strongly
with the resting time while a slower increase is observed for
elastic modulus (with the exception of suspensions with low
ionic strength). This difference in behavior certainly comes
from the difference in microstructural phenomena induced
by the breaking (yield stress) and small reversible deforma-
tions (elastic modulus) of the particle network.

These experimental observations are consistent with
microscopic theory. According to DLVO theory (see Sec.
II), when salt is added to the suspending medium, the repul-
sive electrostatic potential is lowered and the amplitude of
the repulsive barrier decreases. Then, the particles are more
prone to van der Waals attraction. In the same way, the
increase in volume fraction leads to a system more packed
and more subject to aggregation. Both phenomena can
explain the increase in the yield stress and the particle net-
work stiffness. The increase in yield stress and elastic modu-
lus with resting time is classically thought to be due to
evolution of the particle network toward a more stable con-
figuration induced by Brownian motion [5].

The increase in yield stress with ionic strength and vol-
ume fraction have already been reported by several authors
[8,18,20,21,24] while few studies deal with elastic modulus
measurements. In mineral suspensions, many authors have
shown that the addition of salt enhances flocculation, more
often by measuring yield stress at different salt concentra-
tions [12,18,20,21,24,49]. Franks [18] noticed the yield
stress dependency with aging but without including details.
Only a few studies have been devoted to the measurement of
the evolution of the elastic modulus with time for thixotropic
suspensions. Heiney et al. [17] have measured the evolution
of the elastic modulus of silica suspensions with time and
reported that the volume fraction greatly enhances the evolu-
tion rate.

Furthermore, simultaneous evolution of the yield stress
and elastic modulus with resting time, which is of great inter-
est for thixotropic materials as their structure evolves with
time, has not been systematically studied either. As elastic
modulus measurements are not destructive, it is easier to fol-
low the time evolution of the sample by measuring G’ rather
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FIG. 10. (a) Yield stress and (b) elastic modulus measured for 1.4 um silica bead suspensions as function of volume fraction for different times of rest and

ionic strengths.

than by measuring 7. at a given time. It is readily seen in
Fig. 10 that the elastic modulus exhibits the same trend as
the yield stress: G’ is an increasing function of the ionic
strength, the particle volume fraction, and the resting time.
Then, it may be worthwhile investigating whether a relation-
ship exists between the elastic modulus and the yield stress
of colloidal suspensions. The important issue is addressed
below.

As it can be seen in Fig. 11, the elastic modulus evolves
over a very long time: We measure G’ as a function of time
for 10h without reaching a plateau. It is likely that yield
stress exhibits the same trend. Consequently, we decided not
to study the long-term evolutions of the overall rheological
properties of suspensions and to restrict our attention to the
changes in elastic modulus and yield stress during the first
20 min after preshear has been stopped.

2. Crushed silica

The results obtained for crushed silica are presented in
Fig. 12. As quartz particles are cheap and commercially
available, reproducibility of the measurements can be tested
easily. Thus, averaged results have been displayed in Fig.
12. One can notice that, except for few points, the reproduc-
ibility of the experiments is good.

As observed for the silica suspension, the elastic modulus
and yield stress increase with resting time, particles volume
fraction, and ionic strength up to a saturation point where an
increase in concentration does not provide an additional
effect on the system. The yield stress and elastic modulus
seem to have a power law relationship with the volume frac-
tion as already observed by several authors in literature
[9,15,50]. It worth noticing that yield stress for the highest

solid volume fraction is highly dispersed. This is a signature
of the transition from a shear thinning behavior to a shear
thickening behavior at low shear rate classically observed for
colloidal suspension. This transition originates from the
increase in frequency of contact between particles due to the
increase in solid volume fraction. As we do not aim to study
this transition, we restrict ourselves to solid volume fractions
lower than 40% in this work. As regards the elastic modulus

100000

L1 1l

10000

Elastic modulus (Pa)

1000

L1 11l

T T
0 10000 20000

Time (s)

FIG. 11. Elastic modulus vs time for 2 um crushed silica with ¢, =0.36 and
I1=0.1.
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FIG. 12. (a) Yield stress and (b) elastic modulus measured for 2 um crushed silica suspensions as function of volume fraction for different times of rest and

ionic strengths.

measurements, experimental data are dispersed when the
yield stress is low. In this situation, it is difficult to stay in
the linear regime, even if the prescribed oscillatory strain
amplitude is small. For example, the yield stress of the sus-
pension with volume fraction approximately equal to 28% is
close to a few Pascals whereas the elastic modulus is roughly
equal to 10?Pa to 10° Pa. In this situation, applying a shear
strain amplitude of 10~* can induce plastic deformation
flawing the elastic modulus measurement. This problem goes
away for larger values of the yield stress.

It is worth noting that Figs. 10 and 12 are very similar
which suggests that angularity and polydispersity of the
quartz particles do not give rise to different phenomena from
that in play with silica beads. That might lead to the conclu-
sion that trends and rules identified for well controlled silica
bead suspensions remain true when dealing with less con-
trolled systems such as crushed silica suspensions.

B. Elastic modulus vs yield stress
1. Silica beads

Both elastic modulus and yield stress depend on the sus-
pension microstructure but provide different information.
The elastic shear modulus describes the mechanical response
of the system submitted to reversible small strain whereas
yield stress is related to the breakage of the colloidal particle
network. To check whether both quantities are linked and to
demonstrate that G’ can provide a reliable measurement of
the reorganization and flocculation state of the suspension,
we plot the elastic shear modulus as function of the yield
stress in Fig. 13. As can be seen on these graphs, all the data
collapse onto a single curve for a given particle size. One

important point is that the same elastic modulus-yield stress
couple can be measured for different formulations (/, ¢,),
and loading history (). For example, it can be seen in Fig.
13(b) that the red filled triangle corresponding to a suspen-
sion of 1.4 um particles with volume fraction 34.7%, ionic
strength 0.1 and resting time 20 min is very close to the black
half filled triangle corresponding to a suspension of same
particles with volume fraction 34.7%, ionic strength 0.2, and
resting time 10min. It suggests that suspensions are in a
“similar” state for the two different sets of data. It is worth
noting that no scaling is used in Fig. 13. If a master curve
exists on the elastic modulus-yield stress graph, it proves
that both quantities are a macroscopic counterpart of the par-
ticle network state and that each of these quantities can
equivalently characterize the suspension flocculation state.
Then, they can be seen as structural parameters able to
account for the flocculation state on the other macroscopic
properties of the suspension.

If the elastic modulus can faithfully account for the evolu-
tion of the microstructure over time, then it may advanta-
geously replace the dimensionless structural parameter A
with no physical or experimental meaning usually used to
build structural kinetics models [5].

Figure 13(b) depicts the results obtained for a suspension
of 1.4 um particles with the same set of values for ionic
strength, resting time, and solid volume fraction. The same
trend is observed: couples of (elastic modulus-yield stress)
values for different systems collapse onto a single curve. It is
worth noting that for the same formulation (volume fraction,
ionic strength, and resting time), the smallest particles give a
larger yield stress and to a lesser extent a larger elastic mod-
ulus. On the contrary, Fagan and Zukoski [8] found that the
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FIG. 13. Elastic modulus as function of yield stress for all formulation prepared with (a) 1.0 um and (b) 1.4 um silica beads.

elastic modulus of suspensions made of silica beads synthe-
sized via a Stober process increases with particle size.
However, other researchers have also measured an increase
in elastic modulus when reducing the size of the silica par-
ticles [20]. This issue is discussed further in Sec. IV.

2. Crushed silica

Similar data measured for crushed silica suspensions are
plotted in Fig. 14. For the sake of readability, the legend is

10° 3 3
10°3 ;
’8 - -
< 104 -
(2} E 3
=) 3 ]
= ] ]
©
g - -
o 10°4 4
? E E
8] ]
w ] O 5min ]
102__ O 10 min _
A 20 min
101 I T 1 T 1 T I T I T 1 T I T
0O 20 40 60 80 100 120 140

Yield stress (Pa)

(a) 2 pm

not fully detailed because of the huge number of experiments
done on this system. But as for the silica beads the data in
Fig. 14 has been measured for suspensions with a solid vol-
ume fraction ranging from 30% to 40%, an ionic strength
from 0.05 to 0.2 and a resting time equal to 5, 10, or 20 min.
For each mean size of quartz particles, the elastic modulus
versus yield stress data collapse onto a single curve. We also
observe that yield stress and elastic modulus of crushed silica
suspensions are decreasing function of the median size of the
particle. Despite the material is much less controlled, i.e., the
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FIG. 14. Elastic modulus vs yield stress for the crushed silica suspensions we studied for the range of parameters (I € [0.05, 0.2] and ¢, € [0.28, 0.40]) with

(a) 2 um and (b) 4 um particles.
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particles are polydisperse and have sharp-edges, the same
trends as for silica monodisperse beads are observed. This
confirms that the interplay of the colloidal interactions, solid
volume fraction, and resting time control the overall proper-
ties of crushed silica suspensions in the same way as for
monodisperse silica bead suspensions.

3. Size effect

We plot in Fig. 15 the elastic modulus as a function of the
yield stress for all the silica bead suspensions [Fig. 15(a)]
and all the crushed silica particle suspensions [Fig. 15(b)] we
studied. We obtain one curve for each particle size: Both the
elastic modulus and the yield stress of the suspension depend
on the particle size. Owing to the narrow size distribution of
silica beads (see Fig. 1), the offset between the curves
G’ =1(z,) we obtain for the silica bead suspensions can only
be due to a difference in particle size. For crushed silica sus-
pensions, polydispersity of the particles could have masked
the mean size effect on the elastic modulus-yield stress rela-
tionship. The fact that we obtain two different curves when
plotting the suspensions elastic modulus as a function of the
yield stress in Fig. 15(b) proves that the mean size of the par-
ticles is still a key parameter in this case. Of course, this
result should be valid only for suspensions with low
polydispersity.

C. Resting time

Rheometry measurements clearly show that the yield
stress and elastic modulus depend on the resting time. To
check if these time evolutions are due to some change of the
suspension microstructure, we observed the silica bead sus-
pensions with a confocal microscope LSM 700 Zeiss with an
immersive objective x 100 Plan-APOCHROMAT Zeiss. To
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allow deeper penetration of the laser into the samples, and to
avoid end effects which can be observed near the bottom
wall, the optical index of the suspending medium is partially
matched to that of the silica particles with the addition of
40 wt. % of glycerol. Even if the addition of glycerol slightly
modifies the rheological properties of the suspending fluid,
we checked that suspensions with the matched optic index
behave in the same way as the original suspensions: Yield
stress and elastic modulus increase with ionic strength, rest-
ing time, and solid volume fraction.

The suspension is deposited in a rectangular tank, the
bottom of which is a glass lamella and covered to avoid
evaporation during experiments (Fig. 16). It was not possible
to control and apply exactly the same preshear as in the rhe-
ometer to the sample. Nevertheless the sample is strongly
presheared and destructured manually with a spatula before
observations.

The rheological properties of a microstructured suspen-
sion of 1.4 um silica beads with ¢,=0.39, I=0.15, and
40 wt. % glycerol have been measured. Its microstructure
has been observed using confocal microscopy. It appears
clearly in Fig. 17 that even if the elastic modulus increases
with resting time over 2 orders of magnitude, no structural
changes are seen in the series of pictures taken over a period
of 10 min. A careful examination of the four pictures of the
suspension reveals that particles do not move. Differences
between the images come only from the contrast level of
exposure time variations.

At this stage, flocculation and thixotropy may be summa-
rized as follows:

« First, a primary structure is almost instantaneously formed
when an external load is released. Particles’ aggregation
should be very fast assuming that each binary collision
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FIG. 15. (a) Elastic modulus vs yield stress for all different sizes silica beads and (b) for crushed silica with two mean diameters.
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glass cover to initially formed and observed when the suspension formu-

avoid evaporation lation is varied as can be seen in Fig. 18 for two suspen-

suspension / sions of silica beads with the diameter 1.4 um, solid
volume 35%, and two different ionic strength /=0.05 and

\ I=0.1. Then, this primary structure depends on the formu-

: lation of the suspension and, in particular, on the interparti-

cle force intensity depending on the ionic strength.

e Once the primary structure has been formed, thixotropy
glass lamella 'D‘ lens arises .w1thout. detectaple .or noticeable mlcrostructqral
evolution as evidenced in Fig. 17. Therefore, the evolution

E=160) fimn of the overall rheological properties can be explained in
two ways. On the one hand, Brownian agitation produces
particle displacements of a few nanometers that cannot be
detected with a conventional microscope but which indu-
ces changes in the interparticle forces. On the other hand,
changes in interparticle forces (tangential or normal) aris-
ing from chemical bonding or other physico-chemical
, ) phenomena occurring close to the contact between par-

3u ticles that modify the overall rheological properties with-

out any evolution of the microstructure.

FIG. 16. Confocal microscopy tank.

causes the two particles to stick together. The rate of dou-
blet formation was calculated by Von Smoluchowski [51]

8kpTn®
_]OZB—n

with 7 as the particle density
3¢,
n= .
2nd3

Putting ¢, = 0.3 and d, = 1.4 um into Eqgs. (5) and (6)
yields n~10"" particles/m® and J,~10'" doublets

This question is further discussed in Sec. IV.

(6)

IV. DISCUSSION ABOUT MECHANISMS INVOLVED
IN THIXOTROPY

formed/m® per second, which means that particles To our best knowledge, no experimental technique (or
agglomerate in few seconds. The results of this rough cal- hardly accessible) allows one to probe such small particle
culation are consistent with experimental observations. displacement or to measure forces between particles (less

Even if the evolution of the suspension microstructure than 5 um) suspended in a fluid. Therefore, it is impossible
cannot be detected, very different microstructures are  to directly assess the relevance of the explanations proposed
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FIG. 17. Comparison of the elastic modulus (a) and the microstructure (b)—(e) evolutions during aging of 1.4 um silica bead suspension at 39% volume frac-
tion, / =0.15, and 40 wt. % glycerol in suspending medium.
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FIG. 18. Microstructure of two 1.4 um silica bead suspensions with
¢,=0.35low (I =0.05, left) and high (/ = 0.2, right) ionic strength observed
with a confocal microscope. Both suspensions have exactly the same solid
volume fraction, whereas microstructures are rather different.

below. However, theoretical models which predict the over-
all rheological properties of a colloidal suspension, from the
description of its microstructure and the interparticle forces,
have been proposed in the literature. We propose to compare
the predictions of these models to our experimental data in
order to verify which effect can explain our experimental
findings. In this framework, studying how the rheological
properties of the suspension depend on the particle size
should make it possible to assess which interpretation is
realistic.

A. Brownian motion

Thixotropy encountered in colloidal suspensions can be
explained through Brownian motion. Indeed particles sub-
mitted to Brownian agitation continually explore different
configurations which allow them to reorganize in more ener-
getically favorable configurations [4,5]. These movements
might not be detected experimentally. Indeed regarding
DLVO potentials depicted in Fig. 19 a few nanometers dis-
placement is enough to considerably change the interactions
between particles. As can be seen in Fig. 19, the distance
separating the maximum and the secondary minimum of the
DLVO potential is 3 nm for 0.7 um silica beads suspended in
a solution with an ionic strength /=0.05, which means that
the particles displacement of 1 nm may induce a huge change
in the interparticle force.

1. Models

Most models we found in the literature concerning the
behavior of colloidal suspensions are based on the assump-
tion that interparticle forces are central and can be described
by DLVO theory [34,35]. It is out of the scope of this paper
to review in detail all these models; it is enough to say that a
model does not exist where there is a broad agreement. Most
of the existing models contain adjustable parameters or func-
tions such as the interparticle distance % [10,15,27], the max-
imum packing fraction ¢,, [10], the percolation threshold ¢,
[10], the coordination functions K(¢,) [27], chosen so that
the model accurately fits the experimental data.
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FIG. 19. Dimensionless DLVO potentials for 0.7 um silica beads interacting
in a solution at /= 0.05 with A;;=3.4 x 107%' J, and Wy =—15mV.

We have gathered the estimates for the yield stress of
three models in Table IV and the estimates for the elastic
modulus of two models in Table V.

The two estimates for the elastic modulus and the Russel
et al. [2] estimate for the yield stress are valid no matter the
interaction potential Vj,,. While there is no adjustable param-
eter in the Russel et al. [2] model, the Buscall estimate for
the elastic modulus depends linearly on a coordination num-
ber N that cannot be directly evaluated. In the framework of
this work, it makes sense to use the simplified expression of
the DLVO potential [Eq. (2)] for two spheres immersed in an
asymmetrical electrolyte as an interaction potential. The
Flatt and Bowen model takes into account van der Waals,
electrostatic, and steric forces. Three parameters are used as
adjustable variables: The maximum packing fraction ¢,,, the
percolation threshold ¢, and the minimum interparticle sep-
aration distance hpg. Finally, the Scales et al. model for the
yield stress relies on the simplified Eq. (2) for the interparti-
cle interaction and the mean interparticle separation distance
h depending on a particle crowding factor X, and a character-
istic separation distance A, which are fitting parameters.

TABLE IV. Models from literature expressing yield stress as a function of
potential of interaction in colloidal systems.

References Models Fitting parameters
Scales et al. [27] b, K(§,) Ay 24meeqiV? h = hoXo
Ky d, 7 (I +exp (k) exp (—4.5¢,)
ho, Xo
Flatt and 1.8 An 4 G2 (hy — do) P Pos rm
T = ,
Bowen [10] C VB \120d, ) " by (b — )
Russel et al. [2] $* (i)vi“[)
T~ L
TN\ Oh ) max
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TABLE V. Models from literature expressing elastic modulus as a function
of potential of interaction in colloidal systems.

References Models Fitting parameters
3
Buscall [15] 0 dViy o= 3—2</>mN
b om
Russel et al. [2] ksT Vint)
B min
]

{ (o >m,I

It is worth noting that both Scales ef al. and Flatt and
Bowen estimates for the yield stress scale inversely with the
size of the particle. The same scaling is obtained when the
simplified Eq. (2) is put into the Russel er al. [2] model.
With regard to the elastic modulus, putting the simplified
DLVO potential [Eq. (2)] into the estimates of Table V
yields expressions that do not depend on the particle size.

Before paying attention to alternative models for the over-
all properties of colloidal suspensions, it is advisable to
recall that several authors have reported experimental data or
arguments that contradict the predictions of these models.

2. Limits

Some authors [6,52,53] have measured forces curves
between smooth mica surfaces with different ionic aqueous
solution, and they have shown that the experimental data do
not agree with the DLVO theory, especially for short inter-
particle distance. Solvation forces [12,49], ion-correlation
forces [54-56], or steric forces are commonly discussed, but
no general expression for these forces has been proposed. If
we look into the details of our experimental results (see
Table VI), it is obvious that the elastic modulus depends on
the particle size, as already observed by Chen et al. [20]. On
the contrary, models relying on the DLVO description of the
interparticle force predict that the elastic modulus does not
depend on the particle size. More precisely, models based on
DLVO theory and Brownian motion predict that the elastic
modulus does not depend on the particle size and that overall
rheological properties stop evolving after a few seconds of
resting time, which disagrees strongly with our experimental
results. Such models do not apply to the silica suspensions
we study.

B. Interparticle bonds

Other models based on contact theory have been investi-
gated. Pantina and Furst [57] have seen the presence of

tangential forces between colloidal particles in suspension
through bending experiments. This contradicts previous
models based on DLVO interactions which are centro-
symmetric and consequently assume free rotation of the
particles.

1. Models

Based on the Johnson, Kendall, and Roberts (JKR) theory
of adhesion [58] and assuming that the suspensions elastic
modulus depends on the bending rigidity of the largest clus-
ter, a scaling relation for the elastic modulus of a fractal net-
work can be derived [57]

G = 2K ya+d)/-d) o

v
d[’

with ky denoting the bending rigidity of a single colloidal
bond, d), as the bond dimension and d representing the frac-
tal dimension of the gel. It leads to G ~ Kd,*/* with K
accounting for solid liquid surface energy and the elastic
property of the particle constitutive material.

During bending experiments on particles, Pantina and
Furst [57] observed local rearrangements of the particles
occurring when the bending moment is larger than a critical
value M, which characterizes the onset of microstructural
yielding. By assuming that the critical stress for the onset of
plastic deformation (yield) of the suspension is the stress
required to induce local rearrangements at the particle scale,
it can be shown that

5,707
T~ M.d,~= . ®)
"o,
where ¢, denotes an effective cluster volume fraction. Pantina
and Furst found M, o d2 which leads to . o d,*/3 [57].

2. Limits

Even if this model predicts that both the elastic modulus
and the yield stress depend on the particle size, it is based on
assumptions that deserve to be discussed. First, the relation-
ship between the microscopic properties and rheological
behavior is developed based on contact theory. Although
experimental force measurements point out a very strong
repulsion at a short distance [6] that may prevent direct con-
tact between the particles. Accounting only for contact
between solid surfaces in colloidal silica suspensions may
also be debated, particularly regarding that chemical bonds

TABLE VI. Yield stress and elastic modulus experimentally measured for different silica bead sizes and similar formulations.

Yield stress (Pa) Elastic modulus (Pa)

Resting time (min) Resting time (min)

Diameter (um) Volume fraction Ionic strength 5 10 20 5 10 20

1.4 0.332 0.15 20 27 30 19000 23000 30500
1.0 0.346 0.15 45 60 80 37000 48 000 66 000
0.7 0.333 0.15 80 98 120 41000 56 000 74500
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between silica surfaces have been found in similar systems
[43]. Besides, the work of adhesion, W, , has not been exper-
imentally measured yet and DLVO theory needs to be
included in this approach since experimental results clearly
depend on the ionic strength of the suspending fluid.

C. Experimental identification of the particle size
scaling

In the absence of a universally accepted multiscale model
for the overall rheological properties of silica bead suspen-
sions, we check if a particle size scaling exists for our experi-
mental data. We fit the experimental data using power laws

G=A,dr° ©)

Te :An,dzr ng%p s

where the exponents 7, and ng are simple numbers assumed
to be the same for all the silica suspensions while the coeffi-
cients A, and A,, depend on the formulation parameters.
Best fits are obtained for n, =—1.94 and ng =-1.22.

Experimental results unambiguously show that the elastic
modulus of silica suspensions depend on the particle size in
contrast to the DLVO model. Specifically, experimental data
for the yield stress are well fitted by a power law with an
exponent equal to —1.94 when plotted against the solid vol-
ume fraction while DLVO theory predicts an exponent equal
to —1. The models based only on DLVO potentials are conse-
quently not suitable to accurately describe the behavior of
silica suspensions.

Even if the model of Pantina and Furst [59] accounts for a
size effect on both the elastic modulus and the yield stress, it
failed to accurately predict the exponents we calculated from
experimental data. The discrepancy is larger for the yield
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(a) Silica beads

stress exponent (—1.94 vs —1.67) than for the elastic modulus
exponent (—1.22 vs —1.33). It might mean that the contact
model is more relevant for bending stiffness of interparticle
bonds than for local rearrangements of the particles.
Anyway, it is not obvious that contact theory accurately
describes interparticle interaction between silica particles
even if it accounts for tangential forces that are not taken
into account by DLVO theory as said in Sec. IV B.

We plot in Fig. 20(a) the elastic modulus scaled by the
particle size to the power ng =—1.22 against the yield stress
scaled by the particle size to the power n,=-1.94. All the
experimental data, obtained for all the formulations and dif-
ferent particle sizes, collapse on a master curve. We use the
same scaling to plot the quartz suspension experimental data
in Fig. 20(b). Again, all the data fall on a single curve even if
the results exhibit a broader dispersion with respect to the
monodisperse suspension of spheres. Such distribution
doubtlessly comes from the particles polydispersity.

The existence of these master curves reveals that the two
coefficients A, and Ag are linked by the same relationship
whatever the solid volume fraction, the particle size, the
ionic strength, or the resting time. As both yield stress and
elastic modulus are measured for the same microstructure of
the colloidal suspension, it is believed that the master curves
observed in Fig. 20 are the microstructure “scalar signature.”
In addition, existence of master curves suggests that the
scaled elastic modulus can play the role of a structural
parameter characterizing the instantaneous reorganization of
the colloidal suspension. Of course, scaled yield stress can
play the same role, but as elastic modulus are easier to mea-
sure than the yield stress, experimental validation of a model
using the scaled elastic modulus as the structural parameter
would be easier.
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FIG. 20. Elastic modulus scaled by the particle size to the power ng =—1.22 as a function of yield stress scaled by the particle size to the power n, =—1.94 for
silica bead suspensions (a) and quartz suspensions (b). The insets show the original experimental data.
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V. CONCLUSION

We have experimentally studied the elastic modulus and
yield stress of suspensions of monodisperse spherical silica
particles in an aqueous solution as a function of the particle
size, solid volume fraction, ionic strength, and resting time.
When plotted in an elastic modulus versus yield stress dia-
gram, all the experimental data for suspensions with same
particle size collapse onto a single curve whatever the solid
volume fraction, ionic strength, and resting time. This result
remains true for angular particles. When plotted against par-
ticle size, the experimental data fit a power law well with
exponents of n, =—1.94 for the yield stress and ng=-1.22
for the elastic modulus.

In a second step, we plot in a t.d)** — Gd)** diagram all
the experimental data we collected for monodisperse suspen-
sions of spherical particles with particle diameters of {0.7, 0.8,
1.0, 1.4} um, solid volume fractions between 33% and 41%,
ionic strength of {0.05, 0.1, 0.15, 0.2}, and resting time of {5,
10, 20} min. All the data fall on a master curve, which is seen as
a scalar signature of the colloidal particles microstructure. To
check that the power laws and the master curves we identify
with monodisperse spherical particles apply to a less controlled
system, we also experimentally study suspensions of angular
shaped particles having a broader size distribution (crushed sil-
ica particles). We observe that experimental data for this system
collapse on a master curve in the same r(.dlé'g4 — Gal,l,'22 dia-
gram which means that the scaled variables we use are robust
enough to account for the size effect of a “real” suspension.

We show that classical models from the literature based
on the DLVO theory fail to account for the relationship
experimentally observed between the particle size and over-
all rheological properties. This is likely due to the fact that
such models do not take into account the existence of tan-
gential forces or torques at the contact between particles.
Size effects are better accounted for by models based on
JKR theory, even if the agreement between our experimental
data and these models is not perfect since they predict a theo-
retical exponent of —5/3 for particle size-yield stress power
law and —4/3 for particle size-elastic modulus.

Confocal microscopy observations performed on silica
bead suspensions reveal that the microstructure does not
evolve when the suspension is at rest, which is surprising
since the overall rheological properties increase strongly
with time. This means that the evolution of the yield stress
and elastic modulus must be ascribed to small motions of the
particles that cannot be observed with our microscope or to
strengthening of the interparticle force and contact law due
to physicochemical phenomena such as chemical bonds
between silica surfaces. These observations contradict classi-
cal theory based on Brownian motion and DLVO interparti-
cle forces to explain thixotropy of silica suspensions.

To go further in the understanding of the behavior of such
colloidal suspensions, experimental characterization of the
interactions between silica particles with a diameter on the
order of 1 um suspended in aqueous solution is needed how-
ever difficult this seems. Furthermore, a multiscale theory of
colloidal suspensions able to account for both DLVO and
tangential forces remains to be completed.
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