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Abstract Climatological normals are widely used baselines for the descrip-7

tion and the characterization of a given meteorological situation. The World8

Meteorological Organization (WMO) standard recommends estimating clima-9

tological normals as the average of observations over a 30-year period. This10

approach may lead to strongly biased normals in a changing climate. Here we11

propose a new method with which to estimate daily climatological normals in12

a non-stationary climate. Our statistical framework relies on the assumption13

that the response to climate change is smooth over time, and on a decompo-14

sition of the response inspired by the pattern scaling assumption. Estimation15

is carried out using smoothing splines techniques, with a careful examination16

of the selection of smoothing parameters. The new method is compared, in17

a predictive sense and in a perfect model framework, to previously proposed18

alternatives such as the WMO standard (reset either on a decadal or an-19

nual basis), averages over shorter periods, and hinge fits. Results show that20

our technique outperforms all alternatives considered. They confirm that pre-21

viously proposed techniques are substantially biased – biases are typically as22

large as a few tenth to more than 1 degree by the end of the century – while our23

method is not. We argue that such “climate change corrected” normals might24

be very useful for climate monitoring, and that weather services could consider25

using two different sets of normals (i.e. both stationary and non-stationary)26

for different purposes.27
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1 Introduction30

Climatological normals are widely used baselines which describe and charac-31

terise a given meteorological situation. On the news, weather forecasts com-32

monly refer to normals in order to compare a weather or seasonal forecast to33

its expectation. Retrospective climate monitoring also typically involves such34

a comparison. Climate normals are primarily meant to describe the mean sea-35

sonal cycle in standard meteorological variables such as temperature or pre-36

cipitation. In the most common estimation techniques, normals are assumed37

to be stationary, i.e. the drift related to anthropogenic climate change is ne-38

glected, potentially leading to inaccurate or biased estimates. One issue with39

this approach is that, as pointed out by Arguez and Vose (2011): “climate40

normals are calculated retrospectively, but are often utilized prospectively”.41

For instance, when they are compared to weather forecasts, it is assumed that42

normals provide an estimation of the expected weather to date. Neglecting43

on-going warming can prevent this.44

For example, the current recommendation of the World Meteorological Or-45

ganization (WMO) for the calculation of climatological normals, known as the46

Climatological Standard Normals, is to compute an average over a 30-year47

period (World Meteorological Organization, 2007; Baddour, 2011)48

(ref to http://www.wmo.int/pages/prog/wcp/wcdmp/GCDS 1.php). These49

normals are supposed to be updated every 30 years, with the current ref-50

erence period being 1961-1990. Following these recommendations, the next51

generation of climatological normals would be available in 2021, based on the52

1991-2020 average.53

Several studies pointed out the limitation of such normals and their in-54

accuracy in a non-stationary climate (e.g Scherrer, Appenzeller, and Liniger55

(2006); Krakauer and Devineni (2015)). WMO itself advocated for a more56

frequent revision of climate normals, through updates every 10 years but57

still averaging over a 30-year period (Wright, 2014). This change was in-58

tended to reduce the bias, with a careful discussion of pros and cons in or-59

der to define a dual standard for normals. Other authors, e.g. Livezey, Vin-60

nikov, Timofeyeva, Tinker, and van den Dool (2007); Wilks (2013); Wilks61

and Livezey (2013), proposed alternative methods for deriving climatological62

normals and assessed these methods across the US. Optimal Climatological63

Normals (OCNs) are averages calculated over periods shorter than 30-years.64

The length of the averaging period is then selected to maximize the accuracy65

of the estimation – the authors typically considered 15-year means for tem-66

peratures across the US. Hinge fits are break-point statistical models where67

the climatological mean is expected to be constant before a given date, and68

linearly growing after that date. Authors cited above suggest that 1975 is a69

good choice for the break point over the US. Some national meteorological70
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services already use these alternative estimation techniques operationally (ref71

to https://www.ncdc.noaa.gov/normalsPDFaccess/).72

Another important feature of climatological normals is their time-resolution.73

Most normals are calculated on a monthly time-scale. However, for specific74

applications, the estimation of daily normals is required (Arguez, Vose, and75

Dissen, 2013). A few techniques have been proposed and /or are routinely used76

to translate monthly into daily values (Arguez and Applequist, 2013; Arguez,77

Applequist, Vose, Durre, Squires, and Yin, 2011; Arguez, Durre, Applequist,78

Vose, Squires, Yin, Heim, and Owen, 2012). Another option is to estimate79

daily normals directly from raw data, assuming some type of regularity in the80

seasonal variations (i.e. normals do not vary much from one day to the next).81

Doing this in a non-stationary context will require smoothness both in the sea-82

sonal cycle and the climate change components. This is the method employed83

in this manuscript.84

In this paper, we assess the accuracy of previously proposed techniques for85

the estimating of climatological normals. We outline their limitations if applied86

in the course of the 21st century We then introduce a new approach for the87

overcoming of these issues. With this approach, the drift related to climate88

change on the seasonal component is estimated, leading to daily estimates.89

All evaluations are made in a predictive sense, i.e. assessing whether normals90

calculated in the (recent) past provide a reliable estimation of current to near-91

future climates.92

The manuscript is organized as follows. After presenting the dataset in93

Section 2 we elaborate on the methods used to estimate climatological nor-94

mals, then introduce our new method. The predictive skills of the various95

techniques considered are assessed and discussed in Section 4. This is followed96

by a discussion along with some concluding remarks in the last section.97

2 Data & existing methods98

2.1 Data99

In order to assess the accuracy of various techniques for estimating climato-100

logical normals during the 21st century – a period over which observations are101

not available – we use series of daily and annual mean temperatures. These102

are simulated by an ensemble of climate models from the Coupled Model In-103

tercomparison Project Phase 5 (CMIP5) as realistic realizations of future ob-104

servations. Estimation techniques are therefore compared in a perfect model105

framework (see more details in Section 4).106

More specifically, we focus on four locations which are meant to be repre-107

sentative of a wide range of climates: Bengaluru (India) in the tropics, Alert108

(Canadian Arctic Archipelago) in high-latitude, Paris (France) and San Fran-109

cisco (California, USA) in mid-latitude regions. Twenty one CMIP5 models110

were selected for the daily mean temperature and sixty for the annual mean111

temperature (see Appendix A for a detailed list of models).112
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The considered time-series cover a period of 238 years from 1862 to 2099.113

They consist of the concatenation of two types of experiments:114

– historical runs (driven by observed radiative forcings) covering the period115

1862-2005,116

– RCP8.5 scenario (Representative Concentration Pathways 8.5, correspond-117

ing to a high increase in greenhouse gas emissions during the 21st) simu-118

lations covering the remaining of the 21St century (2006-2100).119

The choice of a RCP8.5 scenario involves a strong climate change signal in the120

coming decades, but results obtained with this scenario are expected to hold121

at least qualitatively with more moderated alternatives.122

It must be noted that for daily calculations, all the 29Th February were123

removed to facilitate processing. Also, extensions to other climate variables,124

such as precipitation, are beyond the scope of this paper.125

2.2 Previously introduced methods considered within this study126

Here we review methods proposed by various authors in order to estimate cli-127

matological normals. Some of these techniques have been introduced in order128

to cope with climate change, and/or build upon the standard WMO recom-129

mendation. First we explain how these methods can be used to estimate annual130

normals, then we discuss how they can be extended to the daily timescale. This131

list of techniques is not meant to be exhaustive, but instead representative of132

what has been proposed in the literature.133

– 2.2.1 WMO standard134

The WMO recommendation is to calculate climatological normals as a135

simple average over a 30-year period composed of 3 full decades:136

WMO(D + k) =
1

30

D∑
i=D−29

Ti, (1)

where D + k is the current year, D is the current decade (e.g 2010), k ∈137

J1, 10K denotes the year within the decade, Ti is the mean temperature (or138

any other meteorological variable) of year i. This calculation is updated139

every 10 years which means that, after a decade is completed, the estimated140

normals are valid and can be used for the subsequent 10 years (as denoted141

by D + k in (1)).142

– 2.2.2 WMO reset143

As a first very simple alternative, the same calculation can be made and144

updated every year (instead of every decade), leading to145

WMO(y) =
1

30

y−1∑
i=y−30

Ti, (2)
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where y is the current year. This will be referred to as WMO reset in146

the following, and is expected to be less biased than WMO in a changing147

climate thanks to the more frequent update.148

– 2.2.3 Optimal Climate Normals (OCN)149

Huang, van den Dool, and Barnston (1996); Wilks (2013); Wilks and150

Livezey (2013) argued that averaging over a 30-year period was non-optimal151

(too long) in a climate change context, and suggested tuning the length of152

the averaging period to improve the accuracy of the estimate. They sug-153

gested that averaging over the most recent 15 years was a good compromise154

for temperature normals. As follows, OCN therefore designates a 15-year155

average:156

OCN(D + k) =
1

15

D∑
i=D−14

Ti, (3)

with k ∈ J1, 10K. As for WMO, this average can be updated every 10 years157

(as assumed in the following), or every year. In the following, this 15-year158

average will be used as a benchmark for other operational normals using159

the mean of a different number of years.160

– 2.2.4 Hinge fit161

In order to account for non-stationary climates, other authors proposed162

the use of a statistical model allowing for a trend in the estimation of163

climate normals. Among these, the most popular technique is the hinge164

fit (Livezey et al, 2007; Wilks and Livezey, 2013). This is a simple break-165

point model where the normals are assumed to be constant (i.e. non time-166

dependent) up to a given date, then linearly moving with time. The date of167

the break-point needs to be selected carefully – Livezey et al (2007), Wilks168

and Livezey (2013) suggested that 1975 was an appropriate choice for the169

continental US and this is the value used in this paper.170

Hinge(D + k) = β0 + β1I1975(D + k), (4)

where I(x) = 0 if x ≤ 1975 and I(x) = x − 1975 if x > 1975. The coeffi-171

cients β0 and β1 are estimated from the full observational record available172

up to year D (i.e. not restricted to a 30-year period) using simple linear173

regression. Again this type of estimate could be updated each decade or174

year.175

– 2.2.5 Hinge fit reset176

The same calculation can be made and updated every year instead of every177

decade, leading to178

Hinge(y) = β0 + β1I1975(y), (5)
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The coefficients β0 and β1 are estimated from the full observational record179

available up to year y−1 using simple linear regression. This will be referred180

to as Hinge fit reset in the following.181

2.2.6 From annual to daily normals182

All of the techniques listed above can be used to derive daily (instead of183

yearly or even monthly) normals. This requires an additional procedure first184

introduced by Arguez and Applequist (2013) and consisting of an expansion185

in a Fourier basis. This technique is described below using the WMO estimate186

as an example, but it can be applied to any other normal estimator, including187

the OCN and Hinge methods introduced above. Firstly, we compute normals188

for each single day within a year, i.e.189

WMOraw(D + k, d) =
1

30

D∑
i=D−29

Ti,d, (6)

where d ∈ J1, 365K represents the day, while other notations are consistent with190

(1). These daily values are then fitted onto the thirteen first elements of the191

Fourier basis. Equivalently, we estimate the linear coefficients αi, βi involved192

in the statistical model193

WMOraw(D+k, d) = α0 +

6∑
k=1

(
αk cos

(
2kπ

365
d

)
+ βk sin

(
2kπ

365
d

))
+εd. (7)

Finally the estimated daily normals WMOday for year D + k and day d are194

WMOday(D + k, d) = α̂0 +

6∑
k=1

(̂
αk cos

(
2kπ

365
d

)
+ β̂k sin

(
2kπ

365
d

))
, (8)

where α̂i, β̂i are the estimated regression coefficients. Through projection onto195

a Fourier basis, this technique ensures regularity in the estimated annual cycle.196

3 New Method197

All methods described above could be criticized for a certain lack of flexibil-198

ity (e.g. Krakauer (2012)). Indeed, climate is either assumed to be stationary199

locally (computing averages) or moving linearly over time, with the linearity200

holding over a relatively long period of time, from 1975 onwards (hinge fit).201

In this section, we introduce an alternative method for computing climatolog-202

ical normals, which is somewhat more flexible for its being based on spline203

smoothing. Obviously, the increase in flexibility is at the cost of an increase in204

the variance of the estimator – this will be discussed through the investigation205

of the overall performance of our approach in subsequent sections.206
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3.1 Statistical framework207

The general statistical model considered is inspired by and adapted from Azäıs208

and Ribes (2016). Let Ty,d be the mean (i.e. statistical expectation of) tem-209

perature of day d in year y. Our statistical model assumes that the following210

decomposition holds:211

Td,y = f(d) + g(y)h(d) + εd,y, d ∈ J1, 365K, y ∈ J1, nK, (9)

where:212

– f(), g(), h() are smooth functions (f(d), g(y), h(d) being their trace on in-213

teger values),214

– f(), h() are, additionally, periodic functions with period 365,215

– ε is assumed to be Gaussian white noise with unknown variance σ2.216

In addition we impose the constraints
∑n

y=1 g(y) = 0 and
∑365

d=1 h(y) = 1217

in order to ensure model identifiability (i.e. to avoid any possible confusion218

between the terms f and gh). Note that another system of constraints is219

possible in order to facilitate interpretation (see Appendix B).220

This statical model can be interpreted as follows. f(d) represents a sta-221

tionary seasonal cycle, which would be observed if the climate was stationary222

and the effect of climate change is described by the term g(y)h(d). The key223

assumption is that this climate change response can be factorized into one224

component which describes how the shape of a seasonal cycle changes, h(d),225

and another one which describes the variation of the magnitude of this change226

with time, in the long-term, g(y).227

This type of decomposition is an adaptation of the pattern scaling assump-228

tion (Mitchell, 2003; Tebaldi and Arblaster, 2014; Geoffroy and Saint-Martin,229

2014) in a slightly different setup. Under pattern scaling, it is assumed that230

the spatial distribution of climate change does not vary with time – only the231

amplitude of the change does. It is thus possible to decompose climate change232

as the product between one spatial function, and one temporal function. In233

the present paper, the spatial component is replaced by the seasonal cycle. In234

both cases, the assumption can be thought of as a Taylor approximation of235

order one, which is valid as long as the change is small enough. This factor-236

ization assumption is obviously one of consequence but has already proven its237

descriptive capabilities on hourly surface air temperature observations (Vin-238

nikov, Robock, Grody, and Basist, 2004). Its primary interest comes from the239

induced reduction in the model’s complexity: estimating two univariate func-240

tions g and h is much easier than estimating a bivariate function (say c(y, d)).241

Its introduction therefore allows us to better constrain the estimation of the242

climate change component. Additionally, model (9) proved a very good capa-243

bility across the entire time series considered and it can be at least partially244

validated by examining goodness-of-fit to model (9), as discussed below.245

An illustration of this model and the typical outputs it can produce, is246

shown in Figure1. Next we will discuss how estimating the unknown functions247
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f, g, h within this model. Goodness-of-fit of this model is also discussed in248

Section 3.4.249
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Fig. 1 Decomposition of a time series (Paris) by the spline model (9). a) represents the
reference seasonal cycle f with df=11 (see section 2.4), b) illustrates the seasonal drift h
with df=10, and c) represents the annual trend g with df=10. The plots d) and e) show the
estimation of the annual cycle in 1900 and 2030 respectively. Raw data are shown in red,
while the fit of model (1) is in blue.
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3.2 Estimation Algorithm250

Our estimation procedure is a sequential, two-step procedure. Firstly, g() is251

estimated using annual mean data only. Secondly, f() and h() are estimated252

assuming that g() is known.253

Both steps involve smoothing with cubic splines. For instance, denoting254

T.y = 1
365

∑365
d=1 Td,y the annual mean temperature of year y, the smoothing255

splines estimate that ĝ() of g() can be defined as256

ĝ() = argmin
s()

n∑
i=1

(
T.y − s(y)

)2
+ λ

∫ n

1

(
s′′(x)

)2
dx, (10)

where the minimum is taken over all possible function s() belonging to the257

associated Sobolev space. A spline estimate thus performs a trade-off between258

closeness to input data (here T.y), and roughness (last term in the right-hand259

side). λ is a regularization parameter determining the level of smoothness. The260

selection of λ is a common but difficult problem which is addressed in detail261

in Subsection 3.3. Remarkably, the solutions of (10) are known in closed forms262

and can be computed easily.263

Furthermore, we attempt to provide a calculation which meets operational264

constraints, and which is thus computationally not too expensive so as to265

apply it to multiple grid points. For this reason we implemented the sequential266

algorithm described below.267

268

Algorithm269

270

1 Estimation of g():271

Calculate the annual means T.y. From the T.y time-series, compute the272

smoothing spline estimate ĝ() of g(), with a given dfg. Note that this esti-273

mate has to be centered subsequently in order to satisfy the identifiability274

constrains.275

2 Linear regression on ĝ(y):276

For each day d ∈ J1, 365K, the time-series Ty,d is linearly regressed onto277

ĝ(y), i.e. we estimate the coefficients αd, βd involved in:278

279

Td,y = αd + ĝ(y)βd + εy,d. (11)

Thanks to orthogonality, α̂d = Td,., where Td. = 1
n

∑n
y=1 Ty,d, and β̂d =280 ∑n

y=1 ĝ(y)Td,y∑n
y=1 ĝ(y)2

.281

3 Estimation of f() and h():282

From the series α̂d and β̂d, respectively, we calculate the estimates f̂() and283

ĥ(), as periodic cubic smoothing splines estimates, with given dff and dfh.284

285
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As it is sequential and based on an orthogonal design in the regression286

step, this algorithm is very rapid. A more sophisticated, iterated version of287

the algorithm has also been studied, and is presented in Appendix C. This288

variant showed no real improvement however and was thus dismissed.289

Predictions based on the model (9) can be derived by extrapolating the290

estimated spline ĝ() to the year in question. Note that, as natural splines are291

used to estimate g (i.e second derivatives are null at the terminating points),292

this extrapolation is linear.293

3.3 Selecting degrees of freedom294

The selection of the smoothing parameters λ (there is one parameter for each295

function f(), g() and h()), will be discussed in terms of ”equivalent degrees of296

freedom” (df), as in many spline papers. df is meant to be the equivalent of the297

number of parametric predictors involved in the estimation of the function. The298

smaller the df , the smoother the function estimate. Note that df is a complex299

one-to-one function of λ – but this correspondence will not be detailed further.300

The determination of the different degrees of freedom (df) is performed301

using a variant of cross validation methods adapted to a prediction context.302

We use a multi-model ensemble of transient simulations covering the 1850-2100303

period (see Section 2.1) as plausible realizations of the real world. From this304

dataset, we look for the value of df allowing the best prediction for the coming305

decade (e.g. 2011-2020) using data from previous years (e.g. 1850-2010).306

This procedure is distinct from common cross-validation. Usual cross-validation307

would, in our case, consist of removing one or several years from the available308

observations (e.g. 1850-2017 if we are in 2018), and tuning the df coefficients309

to make the estimated normals as close as possible to the years removed.310

This procedure is then repeated by removing different years. If this type of311

cross-validation were used, then the df coefficients would be optimized to best312

estimate normals in the past – a period over which climate exhibits no or little313

change. Given that the non-stationary feature of climate is larger now than in314

the past, the best df for prediction might differ from the best df in the past –315

we checked that this was effectively the case.316

Finally, the three coefficients involved, hereafter dff , dfg, dfh, are estimated317

sequentially, instead of simultaneously. This makes the selection procedure318

computationally more affordable.319

In each of the three cases, the observation is decomposed into a training320

sample and a testing sample. For various values of the number of degrees of321

freedom df , the considered function (f , g or h) is estimated on the training322

sample and then compared to the testing sample by measuring a Mean Square323

Error (MSE). Results are averaged over the available climate models. The df324

leading to the smallest MSE is then selected. In addition to the MSE value, we325

estimate its standard deviation which enables the computation of a plausible326

range of values for df , through the one standard error rule Hastie, Tibshirani,327

and Wainwright (2015).328
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Degree of freedom of the reference cycle f()329

f() is meant to represent the mean annual cycle in a stationary climate. In330

order to select dff , we took the periods 1900-1930 as a training sample, and331

1931-1940 as a testing sample. This somewhat subjective choice was motivated332

by the fact that climate in the early 20th century is almost stationary.333

The selected dff is typically between 10 and 20, depending on the loca-334

tion considered. Note that the signal-to-noise ratio is much higher for this335

stationary component f() than for the remaining g() and h() functions, which336

explains why dff is relatively large and well defined.337

Degree of freedom of the annual trend g()338

Unlike dff , dfg depends on the decade considered. For a given decade D (for339

example 2001-2010), we use the data prior to D (i.e. the period 1862-2000) as340

a training sample, the decade itself being the testing sample. Again, we use341

the one standard error rule to assess a range of value for dfg.342

Our selection procedure for dfg is illustrated in Figure 2a–b. Note that343

only annual mean values are used there. Focusing on the 2050 decade, the344

best value for dfg lies between 5 and 6 (panel a). Values smaller than 3 are345

clearly discarded, but the accuracy of the estimated normals is only slightly346

deteriorated if larger dfg are used (up to more than 15). Remarkably, the347

selected dfg is almost constant from 1990 to 2100 (panel b), with optimal values348

around 6. This applies to many other locations (not shown). Moreover, as the349

cross validation curve was very flat around its minimum, for all predictions350

made after 1990, we will use dfg = 6 in the following. Using such a constant351

value makes the algorithm easier to implement.352

Degree of freedom of the delta cycle h()353

Once dff and dfg have been determined, estimates of f() and g() can be354

derived, and dfh is the only missing parameter to fit. In order to select dfh355

for a given year (2018 for example), we used the past (i.e. 1862–2017) as a356

training sample, then calculate the mean square error (MSE) over the next357

year (2018 in this case). Due to the strength of internal variability, we applied358

a smoothing over time. For each year, the selected dfh is the one minimising359

the smoothed MSE (see Figure 2c–d).360

Our results suggest that dfh is the most sensitive (and therefore difficult361

to estimate) parameter in our statistical model. The selected values for dfh362

vary substantially both over space and time. In the case of Paris (Figure 2d),363

dfh increases with time from near 1 (i.e. the minimum possible value, corre-364

sponding to no change in the annual cycle) to 10 in 2100. This corresponds365

to the signal-to-noise increase across the 21st century. In 1990, climate change366

was limited, and it is unclear which season experienced the greatest warm-367

ing. It is thus safer to assume a flat response (i.e. the same degree of warming368
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throughout the year). During subsequent decades,this changing signal (includ-369

ing change in the annual cycle) becomes clearer and greater flexibility in h()370

becomes effective.371
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Fig. 2 Selecting dfg and dfh. a) error of annual mean temperature normals (points) for
the decade 2050 (normals are estimated from 1862-2050 data, error is calculated over 2051-
2060), and its standard deviation (bars), as a function of dfg . b) selected dfg (points), with
the corresponding uncertainty according to the one standard error rule (bars), as a function
of the predicted decade D. c) Mean square prediction error of daily normals as a function
of time, for different values of dfh (dfg , dff are given). d) Selected dfh as a function of the
predicted year. All calculations in this figure are made for the Paris (France) grid-point.

3.4 Model goodness-of-fit372

An important step in order to validate the use of our statistical model (9)373

and its underlying assumption is to assess the goodness-of-fit to this model.374

This can be done using climate model data, and fitting the model across the375

entire period considered (1862–2100). Such diagnoses are shown in Figure 3.376

Consistent with Figure 1, these diagnoses apply to Paris and the CNRM-CM5377

climate model; they are representative of different locations and models.378

Firstly, the determination coefficient R2 = 0.73 is relatively high, and379

consistent with the internal climate variability. Residuals show no abnormal380

patterns: the Gaussian assumption is reasonably well-satisfied (2a), and they381
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do not exhibit clear dependence on the fitted value (2b). Note that in the latter382

panel, the density of points depend strongly on the fitted values, thanks to the383

annual cycle and the fact that the climate is almost stationary over the first384

100 years. For instance, the accumulation around 19◦C is due to pre-industrial385

summer maxima.386

Fig. 3 Goodness-of-fit to our statistical model. a) normal QQ-plot of the residuals. b)
residual vs fitted values plot.

4 Results387

4.1 Scores on annual mean temperature388

The results of the five methods introduced above are compared for annual389

mean temperatures in Figure 4. The comparison is performed for 4 distinct390

locations, corresponding to different climates (mean temperature ranges from391

−32℃ to +27℃), amounts of warming (from 4℃ to 8℃ in 2100 under RCP8.5),392

and signal-to-noise ratio (internal variability being relatively smaller in the393

tropics).394

Globally, for all locations, the methods have almost the same performance395

until the late 20th century (near 1990 or 2000, depending on the location). The396

hinge fit however seems to exhibit a larger variance after 1975 (see e.g. quick397

variations in Alert and Bengaluru). This is because very few points contribute398

significantly to fit the broken line’s trend. This also applies to a lesser extent399

to OCN, given that the average is calculated on a smaller number of years400

than that of the WMO. The sampling margin of error is therefore larger.401
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During the early 21st century, methods based on averaging over past years402

(namely OCN, WMO, and WMO reset), are starting to depart from the refer-403

ence, and show a negative bias. Hinge fit and our technique do a much better404

job and remain close to the reference.405

Lastly, our method performs much better than any other in the second406

half of the 21st century. While this method remains continuously close to the407

reference, alternatives systematically underestimate the current state of the408

climate, by .5 to 1 degree.409
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Fig. 4 Annual mean temperature and estimated normals. Temperature normals on an
RCP8.5 scenario of the CNRM-CM5 model. Time-series of annual mean temperature
(points) at four different locations (panels). Climatological normals are estimated using
6 different techniques: WMO standard (black line), WMO reset (grey), OCN (yellow), hinge
fit (light green), hinge fit reset (dark green), and our method (blue). Normals for a given
year (e.g. 2018) are estimated using data from previous years (e.g. 1900-2017). A smoothing
spline of the entire time-series (1900-2100; purple line) can be considered as a reference.
Anomalies of individual years are calculated with respect to the WMO reset, in order to
further illustrate the bias related to this method. All calculations are based on one RCP8.5
simulation from CNRM-CM5.

Beyond the illustrative and qualitative assessment made in Figure 4, meth-410

ods can be quantitatively compared using standard criterion such as MSE, bias411

and variance. Such a score-based comparison will be carried out in detail in412

the next section for daily normals. It is also appropriate on annual time-scales,413

and is illustrated in appendix. These quantitative results are consistent with414

those described above.415
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4.2 Scores on the daily timescale416

Figure 5 compares the performance of the 5 considered methods, at the daily417

timescale, and for one grid point near San Francisco. Again, the estimation418

techniques are trained on all years prior to the one predicted, then the esti-419

mated normals are extrapolated to that year. Evaluation of the methods is420

based primarily on the mean square error (MSE)(Council et al, 2010). The421

latter is also decomposed as the sum of the bias2 and the variance.422

Bias varies from 0 to more than 1℃ depending on the method and period423

of time. If all methods are nearly unbiased in the late 20th century, only our424

approach remains unbiased throughout the 21st century. Alternatives exhibit425

negative bias as large as .5 to .8℃, except for the standard WMO approach426

for which the bias is even larger, near or beyond 1℃. Even though hinge and427

hinge reset lie close to our method until 2040, their bias are slightly larger,428

on average. Overall, in the 2000-2100 period, methods can be sorted with re-429

spect to their bias (increasing order): our method, hinge reset, hinge, OCN,430

and WMO. These results are highly consistent with those obtained on annual431

mean temperature.432

433

The variance of all estimation techniques are in fact very close to one an-434

other. Only the hinge and hinge reset estimators yield a slightly higher variance435

than others, especially near the beginning of the period. Our technique has436

the lowest variance on average over the entire period.437

In terms of Mean Square Error (MSE), which is an aggregation of bias and438

variance and a very usual criterion, our technique performs muchbetter than439

all proposed alternatives. OCN and WMO approaches are reasonably accurate440

near the beginning of the period, for instance before 2020, when climate change441

remains slight. They are penalized by their large bias subsequently. The two442

variants of the hinge technique suffer from their large variance at the beginning,443

then rank second from 2010 to 2020.444

Two additional remarks can be made. Firstly, results found for other loca-445

tions were qualitatively similar. In particular, they confirm that our method446

outperforms the proposed alternatives, and remains almost unbiased across447

the 21st century. Secondly, all methods reset on a decadal basis exhibit some448

degradation of their scores at the end of each decade (WMO, OCN and hinge).449

This is particularly pronounced in the bias of OCN and WMO.450

Overall, these results suggest that our method is more accurate than ex-451

isting alternatives. This happens both in terms of bias and variance, which452

can be underlined. Furthermore, very low bias is revealed over the 21st cen-453

tury. This suggests that our technique has the appropriate level of flexibility454

to follow climate change, whilst not having too much variance. As our method455

exhibits almost no bias, potentially more sophisticated methods could improve456

on the variance (the bias is already minimal). This would probably lead to lim-457

ited gain in terms of total MSE, as a large part of this variance is related to458

(irreducible) internal climate variability.459
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Fig. 5 Daily scores in San Francisco. Six techniques for estimating daily normals, namely
WMO standard (black), WMO reset (grey), OCN (yellow), hinge fit (light green), hinge
fit reset (dark green), and our method (red), are compared. Their evaluation is based on
their bias (top), variance (middle), and mean square error (MSE, bottom). The year in the
x-axis denotes the end of the training period; prediction is made for the following year.
The coloured line (top of each panels) indicates which method performs best, for a given
criterion and a given year. Calculations are made for one grid-point near San Francisco,
using an ensemble of RCP8.5 simulation from the CMIP5 archive.
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5 Conclusion and discussion460

In this paper, we introduce a new method for estimating daily climatological461

normals, describing the corresponding model. This technique relies on the462

assumption that the response to climate change is smooth over time and nears463

the pattern scaling assumption. All terms can by estimated using smoothing464

splines. The proposed estimation algorithm is very fast and this is due to a465

two-step (as opposed to simultaneous) procedure. The main challenge is the466

tuning of the smoothing parameters which is done using an extension of cross467

validation specifically designed for prediction.468

Our method is compared to previously proposed alternatives in a predic-469

tive sense: methods are used to estimate climatological normals for the next,470

unobserved year. Their accuracy is compared on that basis, using an ensemble471

of RCP8.5 simulation from the CMIP5 ensemble in a perfect model framework.472

Results show that our method is more accurate than all considered alter-473

natives on the yearly timescale. The gap is particularly large across the second474

part of the 21St century. Additionally, on the daily timescale, our method was475

also shown to provide the best results in terms of bias, variance, and therefore476

mean square error. These good properties can be partly attributed to the flex-477

ibility of the method, adjusted through the selection of smoothing parameters.478

Our results thus suggest that the proposed method brings a strong im-479

provement in the estimation of climatological normals accounting for climate480

change. Such revised – with respect to the WMO recommendation – normals481

could be used to address several questions. Unbiased normals could be partic-482

ularly useful for climate monitoring, e.g. qualify if a year or season is warmer483

or colder than really expected. It could also be used to produce climate change484

corrected times-series. This would be relevant e.g. to compare how anomalous485

different years or periods are. As a typical illustration, one might wonder if486

an extreme event like the 2003 European Event remains unprecedented after487

correction for the climate change effect. Additionally, our method could be488

used to provide a refined description of on-going climate change with respect489

to the annual cycle, i.e. beyond the annual mean warming.490

These attractive features do not mean that the standard way of computing491

climatological normals is now obsolete. Having a stationary reference such as492

the WMO standard is still very valuable, e.g. in order to highlight climate493

change. We suggest therefore that weather or climate services in charge of494

climate monitoring could compute two different sets of normals – a stationary495

reference and a climate change corrected set of normals – and use one or the496

other depending on the application considered. Updating the revised set of497

normals on a regular annual basis seems to be something required for the498

delivery of an estimation as accurate as possible.499

Future work on the method described in this paper could include the esti-500

mation of uncertainties in the estimated normals. This would be very valuable,501

e.g. for assessing the uncertainties in climate change corrected time-series. Fu-502

ture work could also include a pre-computation of smoothing parameters for a503

large number of locations, in order to make the method even easier to imple-504
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ment. This tuning step remains the most difficult in our procedure and has to505

be re-examined carefully for different places. Lastly, the selection of smoothing506

parameters could be re-examined for different emission scenarios for the shape507

of the time response (and therefore the optimal value of smoothing parame-508

ters) greatly depends on the emission pathway.509
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Appendix510

The analysis in this article has been performed using the statistical511

software R.512

513

A Computational and simulation details514

The 21 simulations used for daily mean temperature were:515

ACCESS1-0, ACCESS1-3, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-516

CM5, CSIRO-Mk3-6-0, CanESM2, GFDL-CM3, GFDL-ESM2G, GFDL-517

ESM2M, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC-518

ESM-CHEM, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3,519

NorESM1-M, inmcm4520

The simulations used for annual mean temperature were:521

ACCS0 r1i1p1, ACCS3 r1i1p1, BCCl r1i1p1, BCCm r1i1p1, BNU522

r1i1p1, CCCMA r1i1p1, CCCMA r2i1p1, CCCMA r3i1p1, CCCMA523

r4i1p1, CCCMA r5i1p1, CNRM r10i1p1, CNRM r1i1p1, CNRM524

r2i1p1, CNRM r4i1p1, CNRM r6i1p1, CSIRO r10i1p1, CSIRO525

r1i1p1, CSIRO r2i1p1, CSIRO r3i1p1, CSIRO r4i1p1, CSIRO526

r5i1p1, CSIRO r6i1p1, CSIRO r7i1p1, CSIRO r8i1p1, CSIRO527

r9i1p1, GFDLc r1i1p1, GFDLg r1i1p1, GFDLm r1i1p1, GISSr528

r1i1p1, IAPg r1i1p1, IAPs r1i1p1, IAPs r2i1p1, IAPs r3i1p1,529

INGVc r1i1p1, INGVe r1i1p1, INGVs r1i1p1, INM r1i1p1, IPSLal530

r1i1p1, IPSLal r2i1p1, IPSLal r3i1p1, IPSLal r4i1p1, IPSLam531

r1i1p1, IPSLb r1i1p1, MIROC5 r1i1p1, MIROC5 r2i1p1, MIROC5532

r3i1p1, MIROCc r1i1p1, MIROCe r1i1p1, MPIMl r1i1p1, MPIMl533

r2i1p1, MPIMl r3i1p1, MPIMm r1i1p1, MRI r1i1p1, NCARc534

r1i1p1, NCARc r2i1p1, NCARc r3i1p1, NCARc r4i1p1, NCARc535

r5i1p1, NCARc r6i1p1, NCARe r1i1p1536

B Another system of constraints for model (9)537

Once we have obtained the decomposition of model (9), it is possible

to make it more interpretable. Let g̃ = g − g(1), f̃ = f + g(1).h. Then,
the decomposition of model (1) can be rewritten as:

f(d) + g(y).h(d) = (f(d) + g(1).h(d)) + (g(y)− g(1)).h(d)

= f̃(d) + g̃(y).h(d)

Thus, f̃ represents the annual reference cycle of the first year of the con-538

sidered period and g̃ quantifies the annual mean temperature evolution.539

Therefore the first value, g̃(1), is zero.540
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C Alternating least squares541

Addition of a few steps to the sequential algorithm permitting an iter-542

ative procedure:543

4 Re-estimation of g():544

We now fix f̂ , ĥ and estimate g once again, the goal of the procedure545

being minimization of the total sum of squares546

i.e RSS =
∑

y,d(Ty,d − f̂d − ĝy.ĥd)2.547

For a fixed y, let us define:548

RSSy =
∑

d((Ty,d − f̂d)− gy.ĥd)2 =
∑

d(T̃y,d − gy.ĥd)2
549

where T̃y,d = Ty,d − f̂d550

let g0,y the mean square estimator g0,y =
∑365

j=1 ĥd.Ty,d∑365
j=1 ĥ

2
d

551

Also by the Pythagorean theorem:552

553

365∑
d=1

(T̃y,d − gy.ĥd) =
365∑
d=1

(T̃y,d − g0,y.ĥd + (g0,y − gy).ĥd)2

=

365∑
d=1

(T̃y,d − g0,y.ĥd)2 +

365∑
d=1

((g0,y − gy).ĥd)2

=
365∑
d=1

(T̃y,d − g0,y.ĥd)2 + (g0,y − gy)2.
365∑
d=1

ĥ2
d

Finally,

RSS =
n∑

y=1

RSSy

=
∑
d,y

(T̃y,d − g0,y.ĥd)2 +

n∑
y=1

(g0,y − gy)2.

365∑
d=1

ĥ2
d

Then, we compute the smoothing spline estimate ĝ() of g0,y, with554

the given dfg.555

5 We iterate steps 3 and 4 to minimize sum of squares RSS.556
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D Annual scoring for normals557
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Fig. 6 The three plots illustrate scoring on the yearly mean temperature at San Francisco,
for each year normal prediction occurs on all CMIP5 models. The horizontal axis represents
the end of the training period and for each method, prediction occurs the following year.
The upper line shows, for each score, the winning method for predicting the next year.
The different calculations are WMO (black), WMO reset (grey), OCN (yellow), hinge (light
green), hinge fit reset (green) and model(9) (blue). The upper figure shows the evolution
of the bias, the middle one represents the variance of the prediction and the bottom plot
illustrates the evolution of the mean square prediction error (MSE).
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