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On Switchable Languages of Discrete-Event Systems with Weighted Automata

Michael Canu and Naly Rakoto-Ravalontsalama

Abstract— The notion of switchable languages has been
defined by Kumar, Takai, Fabian and Ushio in [11]. It
deals with switching supervisory control, where switching
means switching between two specifications. In this paper,
we first extend the notion of switchable languages to n
languages, (n ≥ 3). Then we consider a discrete-event
system modeled with weighted automata. The use of
weighted automata is justified by the fact that it allows
us to synthesize a switching supervisory controller based
on the cost associated to each event, like the energy for
example. Finally the proposed methodology is applied to
a simple example.

Keywords: Supervisory control; switching control;
weighted automata.

I. INTRODUCTION

Supervisory control initiated by Ramadge and Wonham
[15] provides a systematic approach for the control of
discrete event system (DES) plant. There has been a
considerable work in the DES community since this
seminal paper. On the other hand, from the domain of
continuous-time system, hybrid and switched systems
have received a growing interests [12]. The notion of
switching is an important feature that has to be taken
into account, not only in the continuous-time domain
but for the DES area too.

As for non-blocking property, there exist different
approaches. The first one is the non-blocking prop-
erty defined in [15]. Since then other types of non-
blocking properties have been defined. The mutually
non-blocking property has been proposed in [5]. Other
approaches of mutually and globally nonblocking su-
pervision with application to switching control is pro-
posed in [11]. Robust non-blocking supervisory control
has been proposed in [1]. Other types of non-blocking
include the generalised non-blocking property studied
in [13]. Discrete-event modeling with switching max-
plus systems is proposed in [17], an example of mode
switching DES is described in [6] and finally a modal
supervisory control is considered in [7].
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In this paper we will consider the notion of switching
supervisory control defined by Kumar and Colleagues
in [11] where switching means switching between a
pair of specifications. Switching (supervisory) control
is in fact an application of some results obtained in the
same paper [11] about mutually non blocking prop-
erties of languages, mutually nonblocking supervisor
existence, supremal controllable, relative-closed and
mutually nonblocking languages. All these results led
to the definition of a pair of switchable languages [11].

In this paper, we first extend the notion of switchable
languages to n languages, (n ≥ 3). Then we consider a
discrete-event system modeled with weighted automata.
The switching supervisory control strategy is based on
the cost associated to each event, and it allows us to
synthesize an optimal supervisory controller. Finally
the proposed methodology is applied to a simple ex-
ample.

This paper is organized as follows. In Section II, we
recall the notation and some preliminaries. Then in
Section III the main results on the extension of n
switchable languages (n ≥ 3) are given. An illustrative
example of supervisory control of AGVs is proposed in
Section IV, and finally a conclusion is given in Section
V.

II. NOTATION AND PRELIMINARIES

Let the discrete event system plant be modeled by a
finite state automaton [10],[4] to which a cost function
is added.
Definition 1: (Weighted automaton). A weighted au-
tomaton is defined as a sixtuple

G = (Q,Σ, δ, q0, Qm,C)

where
• Q is the finite set of states,
• Σ is the finite set of events,
• δ : Q× Σ→ Q is the partial transition function,
• q0 ⊆ Q is the initial state,
• Qm ⊆ Q is the set of marked states (final states),
• C : Σ→ N is the cost function.
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Let Σ∗ be the set of all finite strings of elements in Σ
including the empty string ε. The transition function δ
can be generalized to δ : Σ∗×Q→ Q in the following
recursive manner:

δ(ε, q) = q
δ(ωσ, q) = δ(σ, δ(ω, q)) for ω ∈ Σ∗

The notation δ(σ, q)! for any σ ∈ Σ∗ and q ∈ Q denotes
that δ(σ, q) is defined. Let L(G) ⊆ Σ∗ be the language
generated by G, that is,

L(G) = {σ ∈ Σ∗|δ(σ, q0)!}

Let K ⊆ Σ∗ be a language. The set of all prefixes
of strings in K is denoted by pr(K) with pr(K) =
{σ ∈ Σ∗|∃ t ∈ Σ∗;σt ∈ K}. A language K is
said to be prefix closed if K = pr(K). The event
set Σ is decomposed into two subsets Σc and Σuc

of controllable and uncontrollable events, respectively,
where Σc ∩Σuc = ∅. A controller, called a supervisor,
controls the plant by dynamically disabling some of the
controllable events.

A sequence σ1σ2 . . . σn ∈ Σ∗ is called a trace or a
word in term of language. We call a valid trace a path
from the initial state to a marked state (δ(ω, q0) = qm
where ω ∈ Σ∗ and qm ∈ Qm). The cost is by definition
non negative. In the same way, the cost function C is
generalized to the domain Σ∗ as follows:

C(ε) = 0
C(ωσ) = C(ω) + C(σ) for ω ∈ Σ∗

In other words, the cost of a trace is the sum of the
costs of each event that composes the trace.

Definition 2: (Controllability) [15]. A language K ⊆
L(G) is said to be controllable with respect to (w.r.t.)
L(G) and Σuc if

pr(K)Σuc ∩ L(G) ⊆ pr(K).

Definition 3: (Mutually non-blocking supervisor) [5]. a
supervisor f : L(G)→ 2Σ−Σu is said to be (K1,K2)-
mutually non-blocking if

Ki ∩ Lm(Gf ) ⊆ pr(Kj ∩ Lm(Gf )), for i, j ∈ {1, 2}. (1)

In other words, a supervisor S is said to be mutually
non-blocking w.r.t. two specifications K1 and K2 if
whenever the closed-loop system has completed a task
of one language (by completing a marked trace of that
language), then it is always able to continue to complete
a task of the other language [5].

Definition 4: (Mutually non-blocking language) [5]. A
language H ⊆ K1∪K2 is said to be (K1,K2)-mutually
non-blocking if H∩Ki ⊆ pr(H∩Kj) for i, j ∈ {1, 2}.

The following theorem gives a necessary and sufficient
condition for the existence of a supervisor.

Theorem 1: (Mutually nonblocking supervisor exis-
tence) [5]. Given a pair of specifications K1,K2 ⊆
Lm(G), there exists a globally and mutually non-
blocking supervisor f such that Lm(Gf ) ⊆ K1 ∪ K2

if and only if there exists a nonempty, controllable,
relative-closed, and (K1,K2)-mutually non-blocking
sublanguage of K1 ∪K2.

The largest possible language (the supremal element)
that is controllable and mutually non-blocking exists,
as stated by the following theorem.

Theorem 2: (SupMRC(K1 ∪ K2) existence) [5]. The
set of controllable, relative-closed, and mutually non-
blocking languages is closed under union, so that
the supremal such sublanguage of K1 ∪ K2, denoted
supMRC(K1 ∪K2) exists.

Recall that a pair of languages K1,K2 are mutually
nonconflicting if pr(K1 ∩ K2) = pr(K1) ∩ pr(K2)
[18]. K1,K2 are called mutually weakly nonconflicting
if Ki, pr(Kj) (i ̸= j) are mutually nonconflicting [5].

Another useful result from [5] is the following. Given
a pair of mutually weakly nonconflicting languages
K1,K2 ⊆ Lm(G), the following holds ([5], Lemma
3). If K1,K2 are controllable then K1 ∩ pr(K2),K2 ∩
pr(K1) are also controllable.

The following theorem is proposed in [11] and it gives
the formula for the supremal controllable, relative-
closed, and mutually nonblocking languages.

Theorem 3: (SupMRC(K1 ∪ K2)) [11]. For
relative-closed specifications K1,K2 ⊆ Lm(G),
supMRC(K1 ∪K2) = supRC(K1 ∩K2).

The following theorem, also from [11] gives another
expression of the supremal controllable, relative-closed,
and mutually nonblocking languages.

Theorem 4: [11] Given a pair of controllable, relative-
closed, and mutually weakly nonconflicting languages
K1,K2 ⊆ Lm(G), it holds that supMRC(K1∪K2) =
(K1 ∩K2).

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

285



And finally the following theorem gives a third for-
mula of the supremal controllable, relative-closed, and
mutually nonblocking languages.

Theorem 5: [11] For specifications K1,K2 ⊆ Lm(G),
supMRC(K1 ∪K2) = supMC(supRC(K1 ∩K2)).

In order to allow switching between specifications, a
pair of supervisors is considered, such that the super-
visor is switched when the specification is switched.
The supervisor fi for the specification Ki is designed
to enforce a certain sublanguage Hi ⊆ Ki. Suppose
a switching in specification from Ki to Kj is induced
at a point when a trace s ∈ Hi has been executed
in the fi-controlled plant. Then in order to be able
to continue with the new specification Kj without
reconfiguring the plant, the trace s must be a prefix of
Hj ⊆ Kj . In other words, the two supervisors should
enforce the languages Hi and Hj respectively such that
Hi ⊆ pr(Hj). Hence the set of pairs of such languages
are defined to be switchable languages as follows.

Definition 5: (Pair of switchable languages) [11]. A
pair of specifications K1,K2 ⊆ Lm(G) are said to be
switchable languages if
SW (K1,K2) := {(H1,H2)|Hi ⊆ Ki ∩ pr(Hj), i ̸= j,
and Hi controllable}.

The supremal pair of switchable languages exists and
is given by the following theorem.

Theorem 6: (Supremal pair of switchable languages)
[11]. For specifications K1,K2 ⊆ Lm(G),
supSW (K1,K2) =
(supMC(K1 ∪K2) ∩K1, supMC(K1 ∪K2) ∩K2).

III. MAIN RESULTS

We now give the main results of this paper. First,
we define a triplet of switchable languages. Second
we derive a necessary and sufficient condition for the
transitivity of switchable languages (n = 3). Third we
generalize this definition to a n-uplet of switchable
languages, with n > 3. And fourth we derive a
necessary and sufficient condition for the transitivity
of switchable languages for n > 3.

A. Triplet of Switchable Languages

We extend the notion of pair of switchable languages,
defined in [11], to a triplet of switchable languages.

Definition 6: (Triplet of switchable languages). A
triplet of languages (K1,K2,K3), Ki ⊆ Lm(G) with
Hi ⊆ Ki, i = {1, 2, 3} are said to be a triplet of
switchable languages if they are pairwise switchable
languages, that is,

SW (K1,K2,K3) := SW (Ki,Kj), i ̸= j, i, j =
{1, 2, 3}.

Another expression of the triplet of switchable lan-
guages is given by the following lemma.

Lemma 1: (Triplet of switchable languages). A triplet
of languages (K1,K2,K3), Ki ⊆ Lm(G) with Hi ⊆
Ki, i = {1, 2, 3} are said to be a triplet of switchable
languages if the following holds:

SW (K1,K2,K3) = {(H1,H2,H3) | Hi ⊆ Ki ∩
pr(Hj), i ̸= j, and Hi controllable}.

B. Transitivity of Switchable Languages (n = 3)

The following theorem gives a necessary and sufficient
condition for the transitivity of switchable languages.

Theorem 7: (Transitivity of switchable languages, n =
3) . Given 3 specifications (K1,K2,K3), Ki ⊆ Lm(G)
with Hi ⊆ Ki, i = {1, 2, 3} such that SW (K1,K2)
and SW (K2,K3).
(K1,K3) is a pair of switchable languages, i.e.
SW (K1,K3), if and only if

1) H1 ∩ pr(H3) = H1, and
2) H3 ∩ pr(H1) = H3.

Proof: The proof can be found in [3].

C. N-uplet of Switchable Languages

We now extend the notion of switchable languages, to
a n-uplet of switchable languages, with (n > 3).

Definition 7: (N-uplet of switchable languages, n >
3). A n-uplet of languages (K1, ...,Kn), Ki ⊆ Lm(G)
with Hi ⊆ Ki, i = {1, ..., n}, n > 2, is said to be
a n-uplet of switchable languages if the languages are
pairwise switchable that is,

SW (K1, ...,Kn) := SW (Ki,Kj), i ̸= j, i, j =
{1, ..., n}, n > 2.

As for the triplet of switchable languages, an alternative
expression of the n-uplet of switchable languages is
given by the following lemma.

Lemma 2: (N-uplet of switchable languages, n > 3).
A n-uplet of languages (K1, . . . ,Kn), Ki ⊆ Lm(G)
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with Hi ⊆ Ki, i = {1, ..., n}, n > 3 are said to be a
n-uplet of switchable languages if the following holds:

SW (K1, ...,Kn) = {(H1, ..., Hn) | Hi ⊆ Ki ∩
pr(Hj), i ̸= j, and Hi controllable}.

D. Transitivity of Switchable Languages (n > 3)

We are now able to derive the following theorem
that gives a necessary and sufficient condition for the
transitivity of n switchable languages.

Theorem 8: (Transitivity of n switchable languages,
n > 3) . Given n specifications (K1, ...,Kn), Ki ⊆
Lm(G) with Hi ⊆ Ki, i = {1, ..., n}. Moreover,
assume that each language Ki is at least switchable
with another language Kj , i ̸= j.
A pair of languages (Kk,Kl) is switchable i.e.
SW (Kk,Kl), if and only if

1) Hk ∩ pr(Hl) = Hk, and
2) Hl ∩ pr(Hk) = Hl.

Proof: The proof is similar to the proof of
Theorem 6 and can be found in [3].
It is to be noted that the assumption that each of the n
languages be at least switchable with another language
is important, in order to derive the above result.

IV. EXAMPLE: SWITCHING SUPERVISORY

CONTROL OF AGVS

The idea of switching supervisory control is now ap-
plied to a discrete-event system, modeled with weighted
automata. We take as an illustrating example the su-
pervisory control of a fleet of fleet automated guided
vehicles (AGVs) that move in a given circuit area.
The example is taken from [9]. A circuit is partitioned
into sections and intersections. Each time an AGV
moves in a new intersection or a new section, then the
automaton will move to a new state in the associated
automaton. An example of an area with its associated
basic automaton is depicted in Figure 1.

The area to be supervised is the square depicted in
Figure 1 (left). The flow direction with the arrows
are specified the four intersections {A,B,C,D} and
the associated basic automaton are given in Figure
1 (right). The basic automaton is denoted Gbasic =
(Qb,Σb, δb, ∅, ∅) where the initial state and the final
state are not defined. The initial state is defined ac-
cording to the physical position of the AGV and the
final state is defined according to its mission, that is his
position target. A state represents and intersection or a
section. Each state corresponding to a section is named

Fig. 1. An AGV circuit (left) and its basic automaton (right)

XYi where X is the beginning of the section, Y its end
and i the number of the AGV. For each section, there
are two transitions, the first transition CXY is an input
which is controllable and represents the AGV moving
on the section from X to Y . The second transition is
an output transition UY which is uncontrollable and
represents the AGV arriving to the intersection Y .
For example the basic automaton depicted in Figure 1
(right) can be interpreted as follows. If AGVi arrives at
section A, then it has two possibilities, either to go to
section B with the event CABi, or the go section D with
the event CADi. If we choose to go to section B, then
the next state is ABi. From this state, the uncontrollable
event UAB is true so that the following state is Bi. And
from Bi, the only possibility is to exit to Point F with
the uncontrollable event exiti.
Now consider for example that 2 AGVs are moving in
the circuit of Figure 1 (left). Assume AGV1 is in D
and AGV2 is in AB so that the state is in (D1, AB2).
AGV1 is leaving the area when the event exit1 is true
so that the system will be in state (E1, AB2). And since
AGV1 is out of the considered area, then the new state
will be (E1, AB2) = (∅1, AB2) = (AB2) since AGV1

is out of the area.

We give here below the synthesis algorithm for calcu-
lating the supervisor Sc as it aws proposed by Girault
et Colleagues in [9]. For more details on the synthesis
algorithm, the reader is referred to the above paper.
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Algorithm 1 – Synthesis algorithm of SC [9]

Data: Gw,1, . . . Gw,n

Result: Supervisor SC

Gw ← {Gw,1, . . . Gw,n}
Gu ← {∅}
forall Gw,i ∈ Gw do

Gu ← Gu ∪ Uγi
(Gw,i)

end
SC ← S(Gu,i)
Gu ← Gu\{Gu,1}
while Gu ̸= ∅ do

x← get(Gu)
SC ← S(SC ||x)
Gu ← Gu\{x}

end

V. CONCLUSIONS

The notion of switchable languages has been defined by
Kumar and Colleagues in [11]. It deals with switching
supervisory control, where switching means switching
between two specifications. In this paper, we have
extended the notion of switchable languages to a triplet
of languages (n = 3) and we gave a necessary and
sufficient condition for the transitivity of two switch-
able languages. Then we generalized the notion of
switchable languages of a n-uplet of languages, n > 3
and we gave also necessary and sufficient condition for
the transitivity of two (out of n) switchable languages.
Finally the proposed methodology is applied to a sim-
ple example for the supervisory control of a fleet of
AGVs. Ongoing work deals with a) the calculation of
the supremal of n-uplet of switchable languages, and
b) the optimal switching supervisory control of DES
exploiting the cost of the weighted automata for the
synthesis strategy.
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