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abstract

In this paper, we study and compare performance and robustness of linear and non linear
Lanchester dampers. The linear Lanchester damper consists of a small mass attached to a
primary system through a linear dashpot, whereas the non linear Lanchester damper is linked
to the primary mass through dry friction forces. In each case, we propose a semi-analytical
method for computing the frequency response, for different values of the design parameters,
in order to evaluate the performance and robustness of the two kinds of damper. Overall,
it is shown that linear Lanchester dampers perform better than non linear damper both in
terms of efficiency and robustness. Moreover, the non linear frequency response curves, that
include the intrinsic non-smooth nature of the friction force, may serve as reference curve for
further numerical studies.

1 Introduction

In the engineering and industrial world, a lot of systems are subjected to oscillatory forces
which in turn give birth to vibrations. Most of the time those vibrations are an inconvenience
and one often wants to reduce the amplitude of vibration to a minimum. Several strategies
(active or passive) can be used to suppress or at least reduce the vibration amplitude.

Active methods contain sensors, actuators and control units and require energy sources.
These methods possess excellent properties and efficiencies, but involve complexities in the
design of sensors and actuators (piezoelectric, electromagnetic, hydraulic. . . ) as well as in the
controllers [1], require energy supply and may be unstable, which may not be suitable for
many applications. Passive or semi passive techniques such as electromechanical shunts share
the same features with the advantage of being intrinsically passive most of the time [2, 3, 4].

Passive methods, on the other hand, are composed of basic mechanical elements. They
are designed to affect the vibration behaviour of a system by either changing the key overall
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structural properties such as resonance / antiresonance frequencies or by adding auxiliary
energy dissipation elements. Viscoelastic elements [5, 6], Tuned Mass Dampers [7] and
Lanchester dampers [8] are among the most known passive methods.

Tuned mass damper have a wide range of application. They consist of a small mass being
attached to the primary system through well designed stiffness and viscous damper. Several
tuning strategies are at hand ([9, 7]) to find optimal values for the stiffness and damping
element of the absorber. For rotating machineries, analogous devices such as pendulum
absorbers tuned on a particular excitation frequency can also be used [10, 11]. Tuned mass
damper performs well at the design point but are not very robust, and linear lanchester
damper appears to be superior with relation to robustness. The same results hold for their
electromechanical analogs [3, 12].

A linear Lanchester damper is simply a tuned mass damper without the stiffness, i.e. it
consists of a small mass linked to the primary structure only through a viscous dashpot [13].
In application, it is usually used for rotating systems (e.g. thermal engines), where it consists
of a flywheel, generally shaped as a ring, free to rotate within a casing filled with a fluid with
high viscosity, for example, a silicon-based oil [14]. However, due to inconveniences regarding
maintenance and sealing, another type of damper, which has been proposed by Lanchester
in [15], is used as an alternative in many applications. The latter uses dry friction forces,
instead of viscous effects, to dissipate energy and thus reduce vibration levels.

The use of friction force to reduce vibration level is well established, for example, in turbo
machinery, where compressor or turbine blades are linked to the disk through dovetail joins
which generates friction [16]. In the case of blisks (monobloc bladed disk), a friction ring can
be used to reduce the vibration amplitude [17]. In the remaining of the paper, the Lanchester
damper with viscous effect will be referred to as a linear Lanchester damper, and the absorber
based on dry friction force will be referred to as a non linear Lanchester damper, due to the
non linear non-smooth nature of the coulomb friction.

Historically, the case of dry friction seems to have been studied before the case of linear
viscous damping. Its effect on the motion of a single degree of freedom system has been
studied in 1931 by Den Hartog [18]. Some years before, the same author considered non linear
Lanchester dampers including a dry friction element, with a fairly thorough work [19]. Due
to the lack of modern computation and sensor devices, the authors had to involve simplifying
assumptions and their contribution and results were pioneering for long. Their simplifying
assumptions include constant phase difference of 90 degrees between the input torque and
the primary system displacement, no counter effect of the damper-flywheels on the motion
profile in the steady state situation and more importantly, lack of damping effect in the
primary system. More recently, the results presented in [19] were reconsidered by removing
assumptions over the phase difference between the input torque and system displacement
and pure sinusoidal motion profile for the primary system by Ye in [20]. In their work, they
showed that for an undamped primary system, the results derived from the energy approach
involving all the simplifying assumptions by Den Hartog [19] were close enough to the exact
values. In parallel, the case of the Lanchester damper with a linear viscous element, more
simple because of its pure linear transfer function, has been considered and optimized by
several works [13, 21, 22].

In this paper, we aim to compare the two kinds of Lanchester absorbers (linear and non
linear). In section 2, a linear Lanchester damper is considered. We first propose an analytical
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approximation of the efficiency, which is used to derive an approximation of the optimal design
parameters for the absorber. Then, those results are validated using a numerical approach
allowing to find the ”exact” optimal value for the design parameters. The section ends by
the study of the efficiency and robustness of such a linear Lanchester absorber. Section 3 is
dedicated to the study of a non linear Lanchester absorber. We use a semi analytical approach
similar to the one proposed in [18] to compute the frequency response of the system. Then the
optimal design parameters are obtained through numerical simulation. Finally, the efficiency
and robustness of non linear damper are studied. Section 4 is devoted to the comparison
between the two kinds of dampers. The paper ends with some concluding remarks.

2 Linear Lanchester Damper

In this part, one focuses on a primary structure coupled to a linear Lanchester damper. A
single mode approximation is considered for the primary structure so that it can be represented
by a single degree of freedom with modal characteristics M , k and c1 [23]. In order to simplify
the presentation, a translational system is considered here. The overall schematic of a such a
system is shown in figure 1. The characteristics of the absorber device are m and c2.

x1

F

c1

mM

k

x2

c2

Figure 1: Schematics of a linear Lanchester absorber connected to a primary system of mass
M

2.1 Governing Equations

Using Newton’s law, one can derive the set of equations governing the motion of the system
in Fig.1, given as:

Mẍ1 + c1ẋ1 + kx1 − c2(ẋ2 − ẋ1) =F (t), (1a)

mẍ2 − c2(ẋ1 − ẋ2) =0. (1b)

The relative displacement xd between the absorber and the primary structure is defined as :

xd = x2 − x1.

Using the relative displacement, equations (1a) and (1b) can be rewritten as:

(1 + µ)ẍ1 + µẍd + 2ξω1ẋ1 + ω1
2x1 =

F (t)

M
, (2a)

ẍ1 + ẍd + Λẋd = 0, (2b)
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where the new parameters ω1 , ξ , Λ and µ are given by:

ω1 =

√
k

M
, ξ =

c1

2
√
kM

, Λ =
c2

m
, µ =

m

M
. (3)

Parameters ω1, ξ, µ and Λ are respectively the natural frequency and the damping ratio of
the primary system, the mass ratio and damping coefficient of the linear Lanchester absorber.
Finally, we consider a harmonic excitation F (t) = F sin(Ωt), we introduce a non dimensional
time t̄ and a non-dimensional displacements x̄i defined as follows (for i = 1, 2):

t̄ = ω1t, x̄i =
kxi
F
. (4)

Substituting the previous parameters into the equation of motion results in the following
non-dimensional form for the equation of motion:

(1 + µ)¨̄x1 + µ¨̄xd + 2ξ ˙̄x1 + x̄1 = sin(ωt̄), (5a)

¨̄x1 + ¨̄xd + λ ˙̄xd = 0, (5b)

with ω being the non dimensional excitation frequency and λ being the non dimensional
damping coefficient of the absorber, defined as follows:

ω =
Ω

ω1

, λ =
Λ

ω1

. (6)

The non dimensional equations(5a) and (5b) show that there is only three independent design
parameters (µ, λ and ξ). Note that, in the following, the bars denoting non dimensional
quantity will be dropped to lighten the notations.
Applying Fourier transform to equations (5a) and (5b) results in the Frequency Response
Function (FRF) H (between the displacement of the primary structure and the excitation),
given as:

H(ω) =
x̂1(ω)

F̂ (ω)
=

λ+ iω

λ− ω2
(
2ξ + λ(1 + µ)

)
+ iω(1 + 2ξλ− ω2)

, (7)

where ◦̂(ω) is the Fourier transform of ◦(t) and i2 = −1.
As an example, the surface representing the modulus |H(ω)| as a function of the frequency

for different damping values of the absorber is shown in figure 2. One can see that for every
value of λ (damping), there is a corresponding frequency for which |H| is maximum (resonance
point). One can also see that the maximum of the FRF have a minimum along the λ axis. In
other words, there exists an optimal damping ratio (λopt) for which the resonance amplitude
of the FRF is minimum (among all other possible FRF). This value creates a saddle point on
the |H(ω)| surface.

2.2 Efficiency of The Linear Lanchester Damper

Let us start by introducing our efficiency metric. In the remaining of this paper, the efficiency
of the dampers will be characterized by a property denoted AdB and called efficiency. This
parameter is defined as the ratio of the maximum amplitude of the FRF of a system without
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Figure 2: Surface of modulus |H(ω)| for a primary system with parameters ξ = 0.01 and
µ = 0.1

damper (λ = 0) over the maximum amplitude of the FRF of a system with optimal damper
(λ = λopt). The decibel scale is used so that the expression for AdB is:

AdB = 20 log

[
max
ω

(|H(ω)|λ=0)

max
ω

(|H(ω)|λ=λopt)

]
. (8)

A graphical interpretation of AdB is depicted on the right hand side of figure 3.

2.2.1 Analytical estimation of the efficiency AdB

The FRF curves of x1 for different values of λ are shown in figure 3. When there is no damping
for the primary system (ξ = 0), one observes the remarkable property that all the FRF curves
go through one particular point (denoted F on figure 3) [13].
To obtain an estimation of AdB, the first step is to find the crossing frequency ωc (corresponding
to the abscissa of point F on fig.3). For this, one can use the two FRF related to λ = 0 and
λ =∞ (absorber stuck to the primary mass), the frequency ωc being defined as:

|H(ωc)|λ=0 = |H(ωc)|λ=∞. (9)

Using equation (7) and solving the previous equation for ωc gives:

ωc =

√
2

2 + µ
. (10)
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Figure 3: Example of FRF for an undamped primary system (left, ξ = 0) and for a damped
primary system (right: ξ 6= 0)

The second step in deriving an expression for AdB is to find the optimal value of λ. When
ξ = 0, the optimal value of λ is the one for which the maximum of the FRF happens for
ω = ωc (i.e the maximum of the FRF is located exactly at point F ). This can be translated
into the following condition:

∂|H(ω)|
∂ω

|ω=ωc = 0. (11)

Solving the previous equation for λ gives an estimation for the optimal damping value (when
ξ = 0):

λest =

√
2

(1 + µ)(2 + µ)
. (12)

Which is in agreement with the results presented in [13] and [21].
To compute AdB in the general case (ξ 6= 0), we will assume that the optimal value of λ given
in Eq.(12) is still valid even if ξ 6= 0. Also we assume that the maximum of the related FRF
still happens for ω = ωc. Thus the term maxω(|H(ω)|λ=λopt) in equation (8) is approximated
by the following:

max
ω

(|H(ω)|λ=λopt) = |H(ωc)|λ=λest . (13)

Substituting the results of equations (10) and (12) into Eq.(7), one gets:

|H(ωc)|2λ=λest =
(2 + µ)5/2

8
√

2µξ
√

(1 + µ) + 8ξ2(2 + µ)3/2 + µ2
√

2 + µ
. (14)

When λ = 0, Eq.(7) gives the maximum amplitude of the response of a single degree of
freedom with damping and without any additional mass (no absorber):

max
ω

(|H(ω)|2λ=0) =
1

4ξ2(1− ξ2)
. (15)

Using Eq.(14) and (15) an estimation of the efficiency AdB is finally given by:

AdB = 10 log
8
√

2µξ
√

(1 + µ) + 8ξ2(2 + µ)3/2 + µ2
√

2 + µ

4ξ2(1− ξ2)(2 + µ)5/2
. (16)
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Figure 4: Values of estimated damping ratio λopt and optimal damping ratio λest as a function
of mass ratio (µ) for different primary damping ratio ξ

2.2.2 Direct Numerical Method for computing AdB

In the previous section, we derived an approximated expression λest for the optimal design
parameter λopt. Another way of finding the optimal parameter is simply to find the coordinates
of the saddle point of the surface response of the FRF (see fig. 2). Those coordinates can be
obtained by solving the following two equations for ω and λ:

∂H

∂ω
= 0,

∂H

∂λ
= 0. (17)

Computing the derivatives in equations (17) leads to the following equations:

2ω6 + Aω4 +Bω2 + C = 0, (18)

Dλ2 + Eλ− F = 0, (19)

with:

A = ((1 + µ)2 + 3)λ2 + 4ξµλ+ 2(2ξ2 − 1) , D = 2ξ,

B = 2(1 + µ)2λ4 + 8ξµλ3 + 4(2ξ2 − 1)λ2 , E = −2(2 + µ)ω2 + 2,

C = 2(2ξ2 − (1 + µ))λ4 , F = 2ξω2.

The system of Eqs.(18-19) can be solved numerically using classical root finding algorithm
(e.g. Newton Raphson algorithm) to yield the optimal values of the damping coefficient λopt.
Figure 4 depicts λopt and λest as function of the mass ratio for different values of ξ. We recall
that the value of λest is independent of the parameter ξ, therefore there is only one curve for
different values of the primary damping ratio ξ). Two important conclusions can be drawn
from figure 4. First, one can see that the estimation method for the design parameter λest,
presented in the previous section, is very reliable, especially for low primary damping (ξ
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Figure 5: Frequency response function of the primary mass for different values of ξ and λ.
(a): ξ = 0.1 ,(b): ξ = 0.01, (c): ξ = 10−3 and (d) ξ = 10−4.

small). Second, using a first order Taylor expension of Eq.(12), one notes that the evolution
of the optimal parameter is close to linear with relation to the mass ratio µ:

λest ≈ 1− 3

4
µ. (20)

This behaviour indicates the high robustness of λopt and λest when µ is varied.
Figure 5 depicts the modulus of the FRF |H(ω)| for several values of λ and for different

damping values of the primary system ξ. One sees that the solution of Eq.(18) actually
provides an optimal value for parameter λopt, since the associated FRF (violet curves) have
the lowest maximum amplitude.
Figure 6 depicts the comparison between the exact value of AdB, computed by the numerical

method, and its estimated value obtained in the previous section. It can be seen that the
analytical estimation of AdB in Eq. (12) is accurate for all values of ξ up to at least ξ = 0.1.

One can notice that the efficiency AdB of the linear Lanchester damper, if it has been
carefully optimized with Eqs. (12) or (20), depends on only one parameter: the mass ratio µ.
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Figure 7: A∗dB as function of deviation of the design parameter from its optimal value ( λ/λopt)
for several values of ξ and µ. (a): ξ = 0.1, (b): ξ = 0.01, (c): ξ = 10−3 and (d) ξ = 10−4.

2.3 Robustness of the Linear Damper

In order to study the robustness of the absorber, we define another property, denoted A∗dB,
which is essentially the same as AdB (see Eq.(8)) except that it is not computed necessarily
with the optimal value of λ. Figure 7 shows the value of A∗dB for a reasonable interval of
λ around the optimum point λopt. For a given mass ratio, the changes in A∗dB is bigger for
systems having low primary damping ratio. Also, for fixed primary damping, system with
lower mass ratios have smaller changes in AdB.

Properties of the viscous element in the system maybe subjected to change during its life
time. However, referring to figure 8, one see that a 20% variation of the λ parameter around
its optimal values results in an efficiency decrease of about 2% in the worst case (for ξ = 10−4).
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Figure 8: A∗dB−AdB as function of deviation of λopt for several values of ξ and µ. (a): ξ = 0.1,
(b): ξ = 0.01, (c): ξ = 10−3 and (d) ξ = 10−4.

In other cases (ξ = 10−3, 10−2, 10−1) the efficiency drop is less than 0.85%. Therefore one
can consider that small changes in λ will not cause any dramatic decrease in the performance
of damper, which can therefore be considered as very robust.

3 Non Linear Lanchester Damper

In this section, we consider a non linear Lanchester absorber which is composed of an additional
mass connected to the main structure with dry friction force. As before, the primary system is
a mass-spring-viscous damper system which is connected to the smaller mass which now slides
on the surface of the primary mass (see figure 9). Due to relative displacement, friction force
will dissipate energy from the system and reduce the resonance amplitude. In the following
sections we will investigate the efficiency of such non linear vibration dampers.

x1

F

c1

mM

k

x2

Fc

Figure 9: Schematics of a non linear Lanchester absorber attached to a primary system of
mass M
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3.1 Equations of motion

The equation of motion of the system depicted in figure 9 can be obtain by applying newton’s
law, which results in the following:

Mẍ1 + c1ẋ1 + kx1 + fc =F sin(Ωt), (21a)

mẍ2 − fc =0, (21b)

where fc is the Coulomb’s dry friction force between the two masses, defined as function of
the relative velocity (ẋd = ẋ2 − ẋ1):

fc = −Fc ẋd > 0
fc = Fc ẋd < 0
fc ∈ [−Fc, Fc] ẋd = 0

(22)

The previous non linear force can be rewritten shortly using the sign function as fc =
Fc sign(ẋd). Using the same procedure as in section 2, one obtains the equation of motion
under non dimensional form as :{

¨̄x1 + µ¨̄x2 + 2ξ ˙̄x1 + x̄1 = sin(ωt̄),
µ¨̄x2 + λsign( ˙̄xd) = 0,

(23)

with:

ω = Ω
ω1

, λ = Fc

F
, a = F

k
, x̄1 = x1

a
, x̄2 = x2

a
, t̄ = ω1t.

Note that the parameter λ is the non linear counterpart of the parameter λ defined for the
linear damper, with the difference that it now depends on the amplitude of excitation force.
For brevity sake, we will keep using the notation λ for the non linear parameter as well.

3.2 Direct Steady-state solution

In this section, we look for the steady state solutions of Eq.(23) in order to study the frequency
response behaviour of the non linear system. Depending on the amplitude and frequency of
the exciting force, three types of solutions are to be expected: (i) slip-only, (ii) stick- only
and (iii) stick-slip responses. Since the non linear force is an odd function of velocity, the
response is expected to be odd as well (a proof is presented in A). Thus, only half a period
will be considered for the study of the steady states, as proposed in [20]. After describing
the three types of motion, we will look for transition frequencies from one type of motion to
the other. This will allow to compute the frequency response and consequently the optimal
design parameter for the non linear absorber.

3.2.1 Stick-only response

Here the damper is fully stuck to the primary structure (x2 = x1, xd = 0) and the problem is
linear and consists of a single dof system with a mass of 1 + µ. Equation of motion in this
response type is given by the following:

(1 + µ)¨̄x1 + 2ξ ˙̄x1 + x̄1 = sin(ωt̄). (24)
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The response of the system is then a pure sine function for x1(t) = x2(t) with amplitude:

Â =
1

1 + µ

1√(
ω̂2

1 − ω2
)2

+ 4ξ̂2ω̂2
1ω

2

. (25)

where

ω̂1 =

√
1

1 + µ
, ξ̂ =

ξ√
1 + µ

. (26)

ω̂1 and ξ̂ are respectively the dimensionless natural frequency and the damping ratio of the
system with the two masses fully stuck.

3.2.2 Stick-slip response

Depending on the parameters of the system, mainly if the maximum friction force (Fc) is
in the same order as the excitation force (F ) and if the excitation frequency is far from the
natural frequency of the primary system, the two masses will both lock and unlock during
half a period leading to a stick-slip response. Here only one stick phase per half period will
be considered. Figure 10 shows the general form of different variables in this response type
over one period of excitation.

Time (t)

Figure 10: Representation and characteristics of a stick-slip response for the two dof system
of fig.9. Arbitrary units for y-axis.

The beginning of the period is chosen to be the time at which the two masses start to
lock (x2 = x1, xd = 0). Translating time origin to this instant can be done by adding a (yet
unknown) phase φ in the forcing term of Eq.(23) which now becomes sin(ωt̄+ φ). Locking is
possible only when the velocity of both masses are equal. The masses will unlock when the
force required to keep them connected reaches the maximum value of friction force (Fc).

Consider T as the unlocking time; then, the motion over one half period consists of two
parts: (i) for 0 < t < T the masses are connected and (ii) for T < t < π

Ω
the masses move
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separately. In the first part, the system could be considered as a linear single degree of
freedom system excited with a force (F sin(Ωt+ φ)). In the second part, the motion of M is
a result of both the excitation force and the friction force, whereas the dynamic of mass m is
only imposed by the friction force. In the following we will derive the expression for each part
of the motion.

Part 1 (Stick): As mentioned before, in this part both masses are locked together and can
thus be considered as one (x1 = x2). The dimensionless equation of motion for this part is
given as:

(1 + µ)¨̄x1 + 2ξ ˙̄x1 + x̄1 = sin(ωt̄+ φ). (27)

The solution of the previous equation is the sum of a transient response and a steady
states response:

x̄1(t̄) = Â sin(ωt̄+ α̂ + φ) + e−ξ̂ω̂1 t̄
[
b sin(ω̂dt̄) + a cos(ω̂dt̄)

]
, (0 6 t̄ 6 T̄ ) (28)

where Â is defined by Eq. (25) and

ω̂d = ω̂1

√
1− ξ̂2, α̂ = − atan

2ξ̂ω̂1ω

ω̂2
1 − ω2

. (29)

The constant a and b are obtained by taking into account the initial conditions:

a = X0 − Â sin(α̂ + φ),

b = 1
ω̂d

[
V0 + ξ̂ω̂1(X0 − Â sin(α̂ + φ))− Â cos(α̂ + φ)

]
,

(30)

with X0 and V0 being x̄1(0) and ˙̄x1(0) respectively.
Part 2 (Slip): In this part, the two masses move separately. The initial conditions for

this part of the motion are the final values of the displacement and the velocity of the stick
part (part 1). Let’s denote the initial displacement as X1 = x̄1(T̄ ) and the initial velocity as
V1 = ˙̄x1(T̄ ).

In the following we find the motion of each mass. We first consider the motion of the
secondary mass m subjected to the following equation of motion:

µ¨̄x2 = λ,

which allows to compute the velocity of the secondary mass directly as (for T̄ ≤ t̄ ≤ π
ω

):

˙̄x2(t̄) =
λ

µ
(t̄− T̄ ) + V1. (31)

We now consider the motion of the primary mass M subjected to the following equation of
motion:

¨̄x1 + 2ξ ˙̄x1 + x̄1 + λ = sin(ωt̄+ φ). (32)

A solution of equation (32) can be expressed as follows for T̄ 6 t̄ 6 π
ω

:

x̄1(t̄) = A sin(ωt̄+ α + φ)− λ+ e−ξ(t̄−T̄ )
[
d sin(ωd(t̄− T̄ )) + c cos(ωd(t̄− T̄ ))

]
, (33)

where:
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A = 1√(
1−ω2

)2
+4ξ2ω2

, α = − tan−1( 2ξω
1−ω2 ), ωd =

√
1− ξ2.

The constants c and d can be obtained using the final condition of the stick phase:

c = X1 − A sin(ωT̄ + α + φ) + λ,
d = 1

ωd

[
V1 + ξ(X1 − A sin(ωT̄ + φ+ α) + λ)− A cos(ωT̄ + φ+ α)

]
.

(34)

As a result, one sees that there are 4 unknown parameters in the description of the stick-slip
motion: (T, φ,X0, V0). These four parameters can be obtained by solving the following set of
equations:

µ ¨̄x1(T̄ ) = λ, (35a)

˙̄x1(
π

ω
) = −V0, (35b)

˙̄x2(
π

ω
) = −V0, (35c)

x̄1(
π

ω
) = −X0. (35d)

The above equations are related to the following conditions: (i) the connecting force between
two masses should be equal to the maximum friction force at t̄ = T̄ (Eq. (35a)), (ii) and (iii)
the velocity of both masses should be equal and equal to −V0 at t̄ = π

ω
(Eq. (35b) and (35c)),

(iv) the displacement of mass M should be equal to −X0 at t̄ = π
ω

(Eq. (35d)). Solving this
set of equations allows to finds the parameters (T, φ,X0, V0) and to reconstruct a stick-slip
motion of over a period. This set of non linear equations is solved using iterative algorithms
provided by fsolve function in Matlab software.

3.2.3 slip-only response

Here we suppose that the two masses will not lock to each other during the period, as depicted
on figure 11.

The expression for the slip-only solution can be obtained as a particular case of stick-slip
response studied previously. Indeed, the slip motion is similar to the second part of the
stick-slip response in Eq.(33). The only difference would be to set the value of T to zero
(T = 0).
The equations to be solved to find the three unknown parameters (φ,X0 and V0) in this
response type are of the same type as in the stick-slip situation except that one have to be
removed. The equation to be kept are Eqs.(35b) , (35c) and (35d).

As the main objective is to observe the amplitude of the frequency response over a
frequency interval around the resonance, the computation are carried out sequentially in
increasing order of frequency with a fixed frequency step. At each point, the set of solutions
is solved and the results are then used as an initial guess for the next step. For the initial
point of the frequency response, it can be obtained using a linear computation (for the fully
stick case, away from the resonance) or it can be found using a time integration algorithm
(e.g. Runge Kutta).
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Time (t)

Figure 11: Representation and characteristics of a slip only response for the two dof system
of fig.9. Arbitrary units for y-axis.

3.2.4 Switching points

Now that the different types of steady state motion have been described, it is important to
find out how the change occurs between one type to another when the excitation frequency
changes (see e.g. fig.12).

For very low frequencies, the two masses are connected to each other (x1 = x2), acting as
a single mass up to a point where the required connecting force between them is equal to the
maximum available friction force. Following Eqs (21b) and (23), it can be written:

mẍ2 = Fc ⇒ µ¨̄x2 = λ. (36)

Since the system acts as a one degree of freedom linear system solution of Eq. (24), x̄2 = x̄1

is a pure sine function with amplitude Â defined by Eq. (25). Consequently, at the switching
point, one has:

µω2Â = λ. (37)

The above equation is a non linear equation w.r.t the excitation frequency ω. The first positive
root of this equation corresponds to the transition point between stick and stick-slip motion,
and it can be obtained using numerical root finding algorithm.

When the excitation frequency increases, another transition point can appear corresponding
to the transition between stick-slip and fully slipping motion. This transition happens when
the solution of Eqs.(35a) to (35d) yield negative value for the variable T̄ . Note that this
transition may not exists, particularly for systems with high value of λ.

When the excitation frequency increases even more, the transitions happen in reversed
order (i.e. from fully slipping to stick-slip motion and from stick-slip to fully stick motion).
The transition from fully slipping to stick-slip happens when the solution of Eqs.(35a) to (35d)
corresponds to a velocity which is not always negative in the first half-period, and thus out of
the hypothesis of the previous section (According to Eqs. (35b) and (35c), the final value of
the velocity in both masses must be the opposite value of their initial value in a half-period).
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From this frequency on, the motion is under stick-slip form. This stick-slip motion will be
valid until the excitation frequency reaches the maximum positive root of Eq.(37). After this
point, the two masses get fully stuck again.

3.2.5 Frequency Response plot

Figure 12 shows an example of frequency response of the primary mass illustrating the position
of the transition points between the different types of motion for a specified system over a
wide range of excitation frequency. For each frequency ω, the steady state response function is
computed and the maximum displacement of the primary mass is extracted from the solution
and termed hereafter as X1M .
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Figure 12: Frequency response for the primary system of figure 9 with ξ = 0.01, µ = 0.1 and
λ = 0.7. Continuous line shows slip only response, dash-dotted lines shows stick-slip response
and dashed lines shows the stick-only response type. circles (◦) indicate switching points
between response types.

3.2.6 Results

Steady state solutions have been computed for several values of ξ and λ over a wide range of
excitation frequency for systems having parameter µ set to 0.05. Dimensionless frequency
response plots of displacement of the primary mass (M) are shown in figures 13 and 14. Those
figures show several aspects of a non linear Lanchester damper.

First, as expected, it can be seen that by increasing the friction force in the system
(increasing λ), the response of the system gets closer and closer to the response of a system
where the two masses are connected (λ =∞). In this case, the system has only one degree
of freedom and shows a classical linear resonant response of resonance frequency close to ω̂1
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Figure 13: Frequency response of the primary mass for ξ = 10−4 (top plot) and ξ = 10−3

(bottom plot) with µ = 0.05. Continuous line shows slip-only response, dash-dotted lines
shows stick-slip response and dashed lines shows the stick-only response type. Circles (◦)
indicate switching points between response types. The colors are related to a given value of λ,
shown in the legend.
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indicate switching points between response types.The colors are related to a given value of λ,
shown in the legend.
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(Eq. (26)), depicted on Figs. 13 and 14 with dashed dark blue lines. Also, when the friction
force increases, the frequency interval corresponding to a fully slipping response shortens.

Second, one sees that when the parameter λ increases from low to high values, the
maximum amplitude of the response (of the primary mass) decreases to a minimum, and
then increases again. This indicates that in non linear Lanchester damper, as well as for a
linear Lanchester damper, there exists an optimal value for λ which minimizes the maximum
amplitude of the primary mass. For each given system presented in Figures 13 and 14, the
frequency response corresponding to the optimal value of λ (λopt) is shown in orange. The
next step is to compute the efficiency of such a non linear Lanchester damper and to compare
it with the one of a linear Lanchester damper.

3.3 Efficiency of non linear damper

In this section we focus on the efficiency of a non linear Lanchester damper. The simulations
presented in this section have been carried out for several values of the mass ratio µ going
from µ = 0.0025 to µ = 0.2. For each value of µ the solution has been computed over a wide
range of excitation frequency for several value of λ in order to find the optimal value of this
design parameter (λopt).

The efficiency of the non linear damper is characterized by the quantity AdB which has the
same definition as in the linear case (see Eq.(8)). The efficiency of the non linear Lanchester
damper is depicted on figure 15, for several values of the mass ratio µ and several value of
the primary damping ξ. One can see that for a given mass, the efficiency of the non linear
damper is much higher in systems having low primary damping ratio ( i.e small ξ).
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Figure 15: Efficiency AdB of the non linear Lanchester damper, as a function of the mass
ratio µ for several values of ξ.

The optimal value of λopt as a function of the mass ratio and primary damping ratio is
depicted on figure 16. One can conclude from Figure 16 that for a given mass ratio, the
required friction force to meet the optimal value of λ is greater for system having low primary
damping ratio. Figure 16 also shows that, for low primary damping ratio, the optimal value
of λ is almost constant with relation to the mass ration µ.
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Figure 16: Optimal values of λ for the non linear Lanchester damper, as a function of the
mass ratio µ, for several values of ξ.

3.4 Robustness of non linear damper

In this section we investigate the robustness of the non linear Lanchester damper. The
procedure is the same as in the linear case already presented in the first section of this paper.
Recall that the robustness is evaluated using the quantity A∗dB which is essentially the same
as AdB except that it is not necessarily computed with the optimal design value (λopt).

In order to evaluate the robustness of the non linear Lanchester damper, the mass ratio
has been fixed to µ = 0.1, an the quantity A∗dB has been computed for several values of λ
around the optimal point λopt. The results are shown on figure 17.

It can be seen that the efficiency drops when λ is varied. It is noteworthy that systems
with higher primary damping experience a higher drop in performance. However, the system
can be seen as quite robust since a 20% variation in λ around λopt induces a drop in efficiency
of at most 6.5%. System having lower primary damping ratio (lower ξ) seems to be more
robust, especially when λ is greater than λopt (in those cases, the efficiency decreases slower
for λ > λopt compared to the decrease for λ < λopt).
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Figure 17: Efficiency (A∗dB) as function of deviation of λ from its optimal value (λopt)for
different values of ξ, with µ = 0.1. (a): ξ = 10−1, (b): ξ = 10−2, (c): ξ = 10−3, (d): ξ = 10−4

4 Comparison and discussion

In this section we compare and discuss the results obtained for a linear and non linear
Lanchester damper. The comparison is done with relation to the efficiency factor AdB, and
is depicted on Figure 18, where we plotted the efficiency of the linear damper along with
the efficiency of the non linear damper. Overall, for a given primary system, it is evident
that the efficiency of the linear damper is slightly better that the efficiency of the non linear
damper. The discrepancy between the efficiency is bigger for smaller values of the primary
damping. When the primary damping increases, the efficiency of the two dampers (linear and
non linear) are globally equivalent.

Another point of comparison can be drawn by comparing the robustness of the two kinds
of damper. Figure 19 depicts the evolution of the efficiency as a function of the deviation of
design parameter λ from its optimal value λopt for linear and non linear dampers, and for
several values of the primary damping ξ. In this figure, it can be seen clearly that the linear
damper is much more robust compared to the non linear damper.

Following this comparison, we can conclude that the linear Lanchester damper outperforms
the non linear Lanchester damper since it always has a better efficiency, and is much more
robust. Moreover, in the linear case, the optimal parameter λ is independent of the excitation
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Figure 18: Comparison of the efficiency AdB between linear and non linear dampers, as
function of µ, for different values of ξ. Continuous lines are related to non linear damper and
dashed lines are related to the linear damper.

amplitude, so that it stays optimal regardless to the amplitude of the excitation force. This
is another advantage over the non linear damper. Indeed, the optimal λ in the non linear
case is depending on the force amplitude, and thus has to be changed when the excitation
amplitude changes.
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Figure 19: Efficiency drop (A∗dB−AdB) for both linear (dashed lines) and non linear (continuous
lines) for different values of ξ, with µ = 0.1. (a): ξ = 10−1, (b): ξ = 10−2, (c): ξ = 10−3, (d):
ξ = 10−4

5 Conclusion

In this paper, we studied and compared linear and non linear Lanchester damper in the
context of vibration reduction. For both cases methods were developed to tune the damper
based on parameters of the primary system. Dimensionless equations are considered in order
to generalize the results to many different systems.

For the linear damper, the optimal parameters have been estimated using an analytical
approximation for the efficiency. Those estimations have been validated using results coming
from a direct numerical method.

For the non linear damper, the optimal parameters have been estimated using a semi-
analytical procedure. First, the frequency response of the primary system is constructed by
considering that three types of solution can be observed: (i) stick-only, (ii) stick-slip and
(iii) slip-only. Then the optimal values of the parameters are obtained by searching for the
frequency response having the lowest maximum amplitude.

The comparison between linear and non linear dampers is then carried out based on their
efficiency and their robustness. Globally, it can be seen that the linear damper outperforms
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the non linear damper both in term of efficiency and robustness. Moreover, the linear damper
remains optimal regardless to the amplitude of the excitation force, whereas the optimal
parameter for the non linear damper depends on the excitation force level.

Even though linear system performs better, in physical system, dry friction force are
almost inevitable, and this study provides reference curves for the study of a primary system
coupled to a damper through dry friction force. Those curves can serve as a benchmark for
future comparison using fully numerical procedures.

The presented method and the results obtained in this paper can be used as a reference
solution for the frequency response of non linear system with dry friction forces. This reference
can then be used in order to validate numerical procedures such as the harmonic balance
method in the context of dry friction.

A Symmetry in the response curves

We consider the following harmonically forced dynamical system:

mẍ+ cẋ+ kx+ fnl(ẋ) = fe cos Ωt (38)

where x(t) is a function of time t, ◦̇ is the time derivative of ◦, m, c, k are mass, damping
and stiffness constants, fnl(ẋ) is the non linear internal force and fe is the external force.
We assume that fnl(ẋ) is an odd function of ẋ, which means that for all ẋ:

fnl(−ẋ) = −fnl(ẋ). (39)

As a consequence, its Taylor series expansion around 0 contents only odd terms:

fnl(ẋ) = a1ẋ+ a3ẋ
3 + a5ẋ

5 + . . . =
+∞∑

i=1,3,5

aiẋ
i, (40)

where the ai, i ∈ N are the Taylor coefficients of fnl. If periodic solutions of Eq. (38), in the
steady state, are under concern, they can be written as the following Fourier series:

x(t) = x0 +
+∞∑
h=1

(xch coshΩt+ xsh sinhΩt) (41)

where Ω = 2π/T is the frequency of motion, T its period and (xch, x
s
h) are the Fourier coefficients

of x(t). In Eq. (38), the harmonics content of x(t) is created by the only non linear term of the
equation, the function fnl. Since it is odd, it creates only odd harmonics in x(t). For instance,
if x(t) = cos(Ωt+ϕ) = cosφ, x3 = (3 cosφ+cos 3φ)/4, x5 = (10 cosφ+5 cos 3φ+cos 5φ)/16. . .
so that:

x(t) = cos(Ωt+ ϕ) ⇒ fnl(ẋ) =
+∞∑

h=1,3,5

(f ch coshΩt+ f sh sinhΩt) , (42)

As a consequence, the simplest solution x(t) of Eq. (38) is composed only by odd harmonics:

x(t) =
+∞∑

h=1,3,5

(xch coshΩt+ xsh sinhΩt) , (43)
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Even harmonics can still be created after a symmetry breaking bifurcation, a case out of
the scope of the present text. Now, we consider the following symmetry property of the
T -periodic time function x(t):

∀t, x(t+ T/2) = −x(t) (44)

so that one half of the period is the inverse mirror of the other half period. Inserting Eq. (44)
into Eq. (41), one shows that necessarily all even harmonics of x(t) are zero, so that x(t) has
an odd harmonics content (Eq. (43)). The reciprocal rule is also verified: any time periodic
function with an odd harmonics content verify the symmetry property (44).

As a conclusion, if fnl(ẋ) is an odd function of ẋ, the harmonics content of the basic
(without considering symmetry breaking bifurcations) non linear solution x(t) of Eq. (38) is
necessarily odd and the symmetry property (44) is verified.
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