

Bio-Based Hybrid Magnetic Latex Particles Containing Encapsulated γ -Fe 2 O 3 by Miniemulsion Copolymerization of Soybean Oil-Acrylated Methyl Ester and Styrene

Anderson Medeiros, Fabricio Machado, Elodie Bourgeat-lami, Joel Rubim, Timothy Frederick Llewellyn Mckenna

▶ To cite this version:

Anderson Medeiros, Fabricio Machado, Elodie Bourgeat-lami, Joel Rubim, Timothy Frederick Llewellyn Mckenna. Bio-Based Hybrid Magnetic Latex Particles Containing Encapsulated γ -Fe 2 O 3 by Miniemulsion Copolymerization of Soybean Oil-Acrylated Methyl Ester and Styrene. Macro-molecular Materials and Engineering, 2018, pp.1800449. 10.1002/mame.201800449. hal-01980510

HAL Id: hal-01980510 https://hal.science/hal-01980510

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Bio-based Hybrid Magnetic Latex Particles Containing Encapsulated
 γ-Fe₂O₃ by Miniemulsion Copolymerization of Soybean Oil-Acrylated Methyl Ester and
 Styrene

4

Anderson M.M.S. Medeiros,^{1,2,#*} Fabricio Machado,³ Elodie Bourgeat-Lami,¹ Joel C. Rubim²
and Timothy F.L. McKenna^{1,*}

7

¹ Université Claude Bernard Lyon 1, CPE Lyon, Laboratoire de Chimie Catalyse Polymères et 8 Procèdes (C2P2), LCPP Group, CNRS, UMR 5265, 43 Bvd. du 11 Novembre 1918, F-69612, 9 Villeurbanne, France. E-mail: timothy.mckenna@univ-lyon1.fr 10 ² Laboratório de Materiais e Combustíveis – LMC – Instituto de Química, Universidade de 11 Brasília, Campus Universitário Darcy Ribeiro, CP: 04478, CEP 70910-100, Brasília, Distrito 12 13 Federal, Brazil. E-mail: jocrubim@gmail.com or jocrubim@unb.br ³ Laboratório de Desenvolvimento de Processos Químicos – LDPQ – Instituto de Química, 14 Universidade de Brasília, Campus Universitário Darcy Ribeiro, CP: 04478, CEP 70910-100, 15 Brasília, Distrito Federal, Brazil 16 17 18 Abstract: This work reports the use of acrylated fatty acid methyl ester 19 (AFAME) as biomonomer for the synthesis of bio-based hybrid magnetic 20 particles poly(styrene-*co*-AFAME)/ γ -Fe₂O₃ produced by miniemulsion 21 22 polymerization. Poly(styrene-co-AFAME)/γ-Fe₂O₃ can be tailored intended for use in various fields by varying the content of AFAME. The strategy 23

employed was to encapsulate superparamagnetic iron oxide nanoparticles

1	(SPIONs) as γ -Fe ₂ O ₃ into styrene/AFAME-based copolymer matrix. Raman
2	spectroscopy was employed to ensure the formation of the SPIONs
3	$(\gamma - Fe_2O_3)$ obtained by co-precipitation technique followed by oxidation of
4	Fe ₃ O ₄ . The functionalization of SPIONs with oleic acid (OA) was carried
5	out to increase the SPIONs-monomer affinity. The presence of OA on the
6	surface of γ -Fe ₂ O ₃ was certified by identification of main absorption bands
7	by FTIR. Thermal analysis (DTG/DTA and DSC) results of poly(styrene-
8	co-AFAME)/ γ -Fe ₂ O ₃ showed an increase in AFAME content leading to a
9	lower copolymer T_{g} . DLS measurements resulted in poly(styrene-co-
10	AFAME)/ γ -Fe ₂ O ₃ particles with diameter in the range of 100 to 150 nm. It
11	could also be observed by TEM and cryo-TEM techniques that $\gamma\text{-}\text{Fe}_2\text{O}_3$
12	particles were successfully encapsulated into the poly(styrene-co-AFAME)
13	matrix.
14	
15	[#] This work is part of the PhD Thesis of Anderson M. M. S. Medeiros.
16	* Corresponding author: E-mail: timothy.mckenna@univ-lyon1.fr (T. F. L. McKenna)
17	
18	
19	1. Introduction
20	
21	Superparamagnetic iron oxide nanoparticles (SPIONs) have aroused a great deal of interest
22	in industrial and academic research because of their intrinsic properties such as
23	superparamagnetism, high saturation magnetization, extra anisotropy contributions, negligible
24	residual magnetization and coercivity, and, low costs of production. ^[1, 2] In this sense, these
25	materials can be employed in various fields such as paints ^[3, 4] , high density magnetic

recording media ^[5], sensors and biosensors ^[6], catalyst supports ^[7] as well as in biological
applications ^[8, 9] and nanomedicine ^[10-15]. Furthermore, SPIONs can be combined with other
materials that have different properties, and they can generate new materials, referred to as
magnetic nanocomposites, which are very versatile with singular characteristics.

5 Magnetic nanocomposites have emerged as efficient way to upgrade structures already 6 established. For decades, magnetic hybrid nanomaterials consisting of a distribution of 7 magnetic nanoparticles (MNPs) in a polymeric matrix have been extensively studied in terms 8 of property improvements such as mechanical, ^[16] thermal, ^[17] electrical ^[18, 19] and optical 9 properties. ^[20-22]

Among the magnetic nanocomposites, those formed by a combination of magnetic and 10 polymer particles deserves special attention due to their great affinity with biological systems 11 and the ability to alter the variation of magnetic behavior under the action of magnetic 12 fields.^[23-27] The specialized literature reports several researches on the development of 13 magnetic nanocomposites using polymeric matrixes. Chen and co-authors described the 14 synthesis of a spherical polyelectrolyte brushes containing magnetic encapsulated 15 nanoparticles. According to the authors, the material is composed by polystyrene core-16 incorporated magnetic nanoparticles and a brush shell formed by a linear poly(acrylic acid) 17 attached by covalent bonds to the core surface that was synthesized by photo-polymerization. 18 The authors affirm that this material can be employed in catalysis, wastewater treatment, 19 disease diagnosis and bio-engineering including enzyme immobilization and protein 20 adsorption, which represents the versatility of magnet-polymer materials.^[28] 21

Along the same line, Ferreira and co-workers reported the development of poly(vinyl acetate)-embedded Fe₃O₄ nanospheres through batch suspension polymerization. The authors have performed polymerization of vinyl acetate in the presence of MNPs. The incorporation of MNPs into polymeric matrix occurred *in situ* and the material presents potential application

as device of intravascular embolization.^[29] In another example, magnetic polyurethanes (PU) 1 were synthesized and described by Einloft et al.^[30]. According to the authors, Fe₃O₄-synthetic 2 talc, obtained by addition of synthetic talc in the process of Fe₃O₄ synthesis, have been 3 frequently used as nanofiller reinforcement for polyurethanes. It was dispersed into the PU 4 matrix in order to improve the crystallization temperature and thermal stability. The presence 5 of magnetite as a filler indicated the reorganization of polyurethane structure and caused the 6 disappearance of spherulites, increasing the roughness. This phenomenon was explained by 7 the hydrogen bonding balance between polymer/polymer, polymer/filler and filler/filler. 8

A number of approaches have been described for the synthesis of iron oxide/polymer 9 nanocomposites, as for instance, conventional emulsion polymerization,^[31] soapless emulsion 10 polymerization,^[32, 33] inverse emulsion polymerization,^[34, 35] atom transfer radical 11 polymerization,^[36] or reversible addition fragmentation chain transfer polymerization.^[37, 38] 12 However, miniemulsion technique deserves especial attention due to the high potential to 13 encapsulate inorganic fillers, elevated colloidal stability, droplet nucleation, and the 14 possibility of using both water-soluble and organo-soluble initiators. According to 15 Landfester,^[39] miniemulsion process is a practical route to the tailor-made synthesis of 16 inorganic/polymer composite particles. The particle formation mechanism proper to 17 miniemulsion – the high content of monomer into droplet contributes to the low internal 18 viscosity and thus thermodynamic equilibrium is reached – is particularly advantageous for 19 making composite polymer particles and will be a main factor in controlling (e.g. as function 20 of surfactant concentration) the morphology and shape of the final products.^[40] Additionally, 21 mass transfer through aqueous phase is not necessarily required and the alternative of using 22 organo-soluble intiatiors is decisive, in cases of biobased polymers, since these raw materials 23 have low intrinsic reactivity. 24

The scientific literature reports researches involving the use of miniemulsion 1 polymerization for development of magnetic hybrid nanomaterials as, for instance, the 2 encapsulation of MNPs in poly(methyl methacrylate) (PMMA) through minimemulsion as 3 reported by Feuser et al.^{[41],[42]}. According to the research, the obtained nanocomposites with 4 ca. 100 nm average diameters did not present cytotoxicity, making them suitable for 5 application in hyperthermia treatment as suggested by the authors. Mahdavian et al.^[43] have 6 used miniemulsion polymerization in order to obtain encapsulated-iron oxide nanoparticles 7 into butyl acrylate/styrene copolymer. They reported the synthesis of magnetic composites 8 with high content of encapsulated iron oxide (almost 32% relative to the polymer amount). Li 9 and co-workers^[44] have developed a spherical caged superparamagnetic nanocomposite 10 11 (SCN) (polystyrene/Fe₃O₄@SiO₂) employing a combination of miniemulsion and sol-gel 12 techniques. The hybrid material, so-called yolk/shell nanocomposite (YSNs), was composed of a polymeric core (polystyrene) and a magnetic-functionalized shell (Fe₃O₄@SiO₂). 13

Recently, researchers have turned their attention to the use of renewable sources in the synthesis of magnetic nanocomposites due to eco-friendly politics and new socio-ecological scenarios that have been established. Also, bio-based (co)polymers can have low cost in certain cases, present biodegradability, biocompatibility and distinct properties when compared to commercial polymers.^[45, 46]

Meiorin and co-authors^[47] have investigated the effect of incorporation of Fe₃O₄ MNPs into copolymers composed by styrene/tung oil (China wood oil). As explained by the authors, the incorporation of MNPs stiffened the material and reduced the ultimate strain, consequently, increasing its fragility. Medeiros and co-workers^[48] have developed a bio-based nanocomposite consisting of a maghemite (γ-Fe₂O₃) dispersion into a fatty acid-matrix [poly(AFACO)] from castor oil. It was shown that the strategy adopted of modifying the surface of MNPs with acrylated-fatty acid from castor oil (AFACO) may lead to an increase in the affinity between γ-Fe₂O₃ and the polymer from raw material, allowing for proper MNPs
dispersion and reducing the probability of MNPs leaching. In the same vein, Peres et al. ^[49]
described a new route to develop a magnetic polyester from castor oil. The results reached by
the researchers suggest that the new material presented good thermal stability and behaves as
superparamagnetic material.

Considering this context, the present work describes the development of a new class of 6 polymeric materials based on vegetable oil. Vegetable oils had been employed to modify 7 8 conventional properties of polystyrene and encapsulated MNPs providing magnetic properties to the new material. We will thus examine the encapsulation of γ -Fe₂O₃ by copolymers based 9 on soybean oil acrylated-methyl ester (AFAME) and styrene using miniemulsion 10 polymerization. For this purpose, methyl ester was obtained and modified in two steps 11 (epoxidation followed by ring-opening with acrylic acid). In addition, γ -Fe₂O₃ SPIONs were 12 synthesized by co-precipitation method and their surface was functionalized with oleic acid 13 (OA) (hereafter referred to as y-Fe₂O₃@OA) for increasing MNP-monomer and MNPs-14 15 polymer interactions. Our interest to use γ -Fe₂O₃ rather than Fe₃O₄ is basically due to high chemical stability of γ -Fe₂O₃. Considering that maghemite is an iron oxide, which has only 16 Fe³⁺, these SPIONs will not lose chemical stability due to oxidation reaction. In other hand, 17 the magnetite, Fe₃O₄, could be oxidized to γ -Fe₂O₃, which might generate an unstable 18 polymer latex. Nanoparticles of magnetic poly(styrene-co-AFAME)/y-Fe₂O₃ were obtained 19 with different AFAME content. SPIONs and SPIONs@OA were characterized by Raman 20 spectroscopy, X-ray diffraction, transmission electronic microscope (TEM), FTIR, TGA and 21 SQUID magnetic measurements. Poly(styrene-co-AFAME)/γ-Fe₂O₃ properties were 22 evaluated by FTIR, TEM and cryo-TEM, TGA, DSC-DTA and magnetization measurements. 23

24

- 1 2. Experimental Section
- 2

3 2.1 Chemicals

4

5 The analytical-grade reagents NaOH (\geq 98%, Sigma-Aldrich), FeCl₂·4H₂O (Sigma-Aldrich), FeCl₃·6H₂O (Sigma-Aldrich), ethanol (99%, LAURYLAB), acetone (99%, LAURYLAB), 6 7 methanol (99%, LAURYLAB), HNO₃ (68-70%, Sigma-Aldrich) soybean oil (Sigma-Aldrich), formic acid (SIGMA-ALDRICH), H₂O₂ (35%) (ACROS-ORGANICS), diethyl 8 ether (Sigma-Aldrich), 1,2-dichloroethane (Sigma-Aldrich), NaHCO₃ (ACROS-ORGANICS), 9 acrylic acid (Sigma-Aldrich), Sodium dodecyl sulfate (SDS) (≥99%, Sigma-Aldrich) 10 hexadecane (FISHER-SCIENTIFIC) and hydroquinone (99%, ACROS-ORGANICS) were 11 used as obtained. Styrene (Sigma-Aldrich) and 2,2'-azobis (2-methylpropionitrile) (AIBN) (> 12 98%, Sigma-Aldrich) were used without purification. 13

- 14
- 15

2.2 Synthesis and Characterization

16

Synthesis of γ -Fe₂O₃: Maghemite was obtained by the co-precipitation method followed by 17 chemical oxidation using concentrated HNO3.^[50] Firstly, 125 mL of an acid solution 18 containing Fe²⁺ (0.09 mol·L⁻¹) and Fe³⁺ (0,18 mol·L⁻¹) (Fe(II):Fe(III) stoichiometric ratio of 19 1:2) was prepared by dissolution of $FeCl_2$ and $FeCl_3$ in distilled water, then heating the 20 solution to 60 °C. 625 mL of 2M NaOH solution was prepared in a 2 L beaker, and then 21 heated to 60 °C under mechanical vigorous stirring. When both solutions reached thermal 22 23 equilibrium, the iron solution was added to the alkali solution very quickly and kept for one hour under vigorous stirring. The black precipitate formed was separated using a neodymium 24 magnet and was washed three times with each solvent, distilled water, ethanol and acetone, 25

1 respectively. Then, the black precipitate was kept in contact with 150 mL of concentrated 2 HNO₃ (2M) for 1 h. The brownish precipitate obtained was separated with a neodymium 3 magnet and was further washed with acetone. At the end, around 20 g of γ -Fe₂O₃ was 4 obtained.

5 Synthesis of modified γ -Fe₂O₃@OA: 5g of brownish SPIONs were re-dispersed in 170 mL of 6 an acidic aqueous solution and kept under vigorous mechanical stirring. The system was 7 heated up to 75 °C, followed by dropwise addition of oleic acid (5 mL) to the SPIONs 8 dispersion. The mixture was kept under stirring for 2 h after which two phases were observed 9 (water and oil-SPIONs). With a magnet, the SPIONs phase was separated and washed several 10 times with ethanol and acetone.

Synthesis of acrylated fatty acid methyl ester (AFAME) from Soybean Oil: Basically, 11 AFAME was synthesized following three main steps (see Figure 1): i) the first one is 12 characterized by the formation a fatty acid methyl ester (FAME) through the reaction between 13 soybean oil (100 g) and methanol (1:6 oil to alcohol ratio, respectively) in presence of sodium 14 hydroxide (1 wt%) as basic catalyst for three hours. It is important to note that an excess of 15 methanol was employed to ensure the complete transesterification and to avoid the 16 equilibrium shift in the reverse direction. The final reaction product was purified with distilled 17 water, sodium bicarbonate, followed by filtration by using a basic alumina column^[51]; ii) the 18 second step consisted in the epoxidation reaction of 50 g of FAME carried out with a mixture 19 20 containing a molar ratio of 1/4/2 (FAME/1,2-dichloroethane and formic acid, respectively) in a 250 mL three-neck round-bottom flask under vigorous magnetic stirring. When the the 21 system reached thermal equilibrium at 45 °C, hydrogen peroxide (35%) (molar ratio of 22 FAME/H₂O₂ was 1/20) was added dropwise during one hour and the reaction was performed 23 for 16 h, followed by extraction of the epoxidized FAME (EFAME) with diethyl ether. The 24 EFAME was then washed with distilled water and treated with sodium bicarbonate solution 25

until alkali pH was obtained and the conversion was ca. 96%; ^[52] iii) the last step comprises 1 the oxirane ring opening reaction performed in a 250 mL three-neck round-bottom flask at 75 2 °C. Initially, a mixture consisting of acrylic acid and hydroquinone (molar ratio of $6/3.5 \times 10^{-2}$ 3 of acrylic acid/hydroquinone, respectively) at 75 °C was added very slowly to the EFAME 4 (50 g) and kept under vigorous magnetic stirring for 8 h. The reaction product, acrylated fatty 5 acid methyl ester (AFAME), was purified following the same experimental procedure 6 described for EFAME purification.^[53] The experimental procedure was similar to the one 7 described by Medeiros et al.,^[54] and the reader is referred to this publication for a more 8 detailed description of the protocol. The overall conversion was ca. 93%. 9

10

11 Figure 1. Representative schema of the reaction steps involved in the AFAME synthesis.

12

13 γ -Fe₂O₃@OA monomer dispersion: SPIONs@OA was dispersed in styrene and the magnetic 14 fluid (MF) was kept in ultrasound bath for 2 h. The aggregates of maghemite (coarse 15 particles) were removed by centrifugation and a stable magnetic suspension with 20% of solid 16 content was accomplished.

Pre-emulsification: In all the systems, 10 g of oil-phase was used, even with the variation of AFAME. An appropriate amount of AFAME [5%, 25% or 50% (wt/wt)] was introduced in the oil-phase (containing γ -Fe₂O₃@OA dispersed in styrene) and the mixture was homogenized for 24 h. Then, the required amounts of AIBN (2 wt%) and hexadecane (6 wt%) were added and the system was kept under stirring for 30 min. Simultaneously, 40 g of aqueous phase containing 0.1 g of dissolved SDS was homogenized for 30 min. Then, the oilphase was added to the aqueous solution and the mixture was kept for 1 h under vigorous stirring. Table 1 shows the loadings of chemicals used to perform four (4) different
 miniemulsion polymerization reactions.

3

4 Table 1

5

6 <u>Miniemulsion polymerization</u>: After emulsification of the AFAME containing oil phase, a 7 nanosize dispersion was generated by ultrasonicating the pre-emulsion for 120 s at 70% 8 amplitude (VCX SONICS 750W) at 0 °C in order to prevent polymerization. Finally, the 9 reaction of polymerization was conducted at 75 °C for 4h. This process is represented in the 10 schema of Figure 2.

11

12 Figure 2. Schema of the miniemulsion polymerization process.

13

14 <u>Characterizations</u>: X-ray diffraction (XRD) patterns from SPIONs were obtained using a 15 Bruker AXS D8 FOCUS XRD instrument with the generator operating at 40 mA and 30 kV, 16 with Cu K α radiation ($\lambda = 1.5406$ Å) selected by a graphite monochromator.

17 Raman analyses were performed on a Labram HR800 spectrograph (Jobin Yvon-Horiba). 18 The Raman spectra were excited at 514.5 nm (Ar^+/Kr^+ laser from Spectra Physics). The 19 Raman signal of a Si wafer at 520.7 cm⁻¹ was used to calibrate the instrument. The laser 20 power on the sample was adjusted to avoid sample decomposition.

The presence of oleic acid on SPIONs surface was investigated by Fourier Transform Infrared (FTIR) spectroscopy on a Shimadzu IR-Prestige 21 system using an attenuated total reflectance (ATR) cell (MIRacle from PIKE Technologies) with a diamond prism. Each FTIR spectrum is the result of 32 scans at a nominal resolution of 4 cm⁻¹. Thermogravimetric measurements were acquired on a Shimadzu TG-60 system. During scanning, the system was purged with N₂ at a rate of 50 mL·min⁻¹. The average sample weight was 10 mg, and a temperature ramp from 25 °C to 800 °C was applied at a heating rate of 10 °C·min⁻¹. Differential Scanning Calorimetry (DSC) was carried out on a DSC 131 Setaram device. The samples were heated from -30 to 120 °C with a heating rate of 10 °C·min⁻¹ for three times and the second heating runs were used for analysis.

Dynamic Light Scattering (DLS) measurements were performed in a Nano Zetasizer
Malvern. The diluted latex was kept in a glass cuvette and triplicate analyses were performed.

9 Transmission electron microscopy (TEM) was performed on a Philips CM120 electron 10 microscope operating at an accelerating voltage of 100 kV. The samples were prepared by 11 drying a drop of sample onto carbon-coated copper grids covered by Formvar thin films (Ted 12 Pella, Inc.). Soft samples required the cryo-TEM technique.

Magnetic measurements were carried out using a Superconducting Quantum Interference
Device magnetometer (SQUID) from ADE Magnetics (Model EV7), operating at a
vibrational frequency of 75 Hz. The hysteresis loops (M vs H) of the samples were acquired
under applied magnetic fields varying from -50 kOe to +50 kOe at 300 K.

17

- 18 **3.** Results and Discussion
- 19

20 3.1 SPIONs (γ -Fe₂O₃ and γ -Fe₂O₃@OA)

21

The γ -Fe₂O₃ and its precursor, Fe₃O₄, were characterized by Raman spectroscopy, as displayed in Figure S1 (Supporting Information). According to Shebanova and Lazor ^[55, 56] magnetite belongs to the octahedral group and five Raman active phonons are expected with $a_{1g} + e_g + 3t_{2g}$ symmetries. In this sense, the features observed in the Raman spectrum of Figure S1a (magnetite) at 190 (t_{2g}), 310 (e_g), 532 (t_{2g}) and 664 cm⁻¹ (a_{1g}) are the Raman
 signature of magnetite. The broad Raman signals (see Figure S1b) observed at 358, 490,
 690 cm⁻¹ are characteristic of γ-Fe₂O₃, ^[57, 58] the SPIONs used in the development of this
 work.

The average diameters of the magnetic nanoparticles were determined based on the TEM micrograph images of γ -Fe₂O₃ and γ -Fe₂O₃@OA nanoparticles (Figure S2 – Supporting information) and XRD measurements (Figure S3 – Supporting information). TEM results showed that the γ -Fe₂O₃ and γ -Fe₂O₃@OA nanoparticles are nearly spherical, presenting a homogenous size distribution with mean diameters of 7.1 nm and 7.0 nm, respectively.

The crystalline structure of SPIONs was analyzed by powder XRD. A comparison of the XRD results displayed in Figure S3 (Supporting Information) with those of the XRD pattern of a spinel cubic structure (JCPDS N° 77-0435) confirms that the obtained SPIONs have a similar crystalline structure. The XRD pattern is also in agreement with JCPDS data for maghemite (Card N° 39-1346).

Based on Figure S3, and employing the Debye-Scherrer ^[59] equation, the calculated average diameters of γ -Fe₂O₃ and γ -Fe₂O₃@OA were 6.3 and 6.5 nm, respectively, showing a reasonable agreement with TEM results.

The presence of oleic acid/oleate on the surface of maghemite was investigated by FTIR-ATR as shown in Figure 3.

20

Figure 3. FTIR-ATR spectra of: (a) oleic acid, (b) γ -Fe₂O₃, and (c) γ -Fe₂O₃@OA.

22

Table 2

24

In the IR spectrum of γ -Fe₂O₃ (Figure 3b), it is possible to identify characteristic 1 absorption bands at 573 and 3400 cm⁻¹, attributed to the Fe-O and O-H stretching modes of 2 γ -Fe₂O₃ and physisorbed H₂O molecules, respectively ^[60]. The OH bending at 1624 cm⁻¹ can 3 4 be also observed in Figure 3b and it may be associated to bulk OH in iron oxyhydroxides present on the surface of γ -Fe₂O₃^[61]. In the spectrum of γ -Fe₂O₃@OA (Figure 3c) besides the 5 6 vibrational modes observed in Figure 3b, other absorption bands are observed at 1415, 1517, 1722, 2890, 2930 and 3010 cm⁻¹ that are absent in spectrum of Figure 3b (see Table 2). These 7 features are assigned to the oleic acid/oleate ^[62]. 8

According to Nakamoto ^[63], the difference (Δ) in the wavenumbers associated to the carboxylate symmetric and asymmetric stretching modes [$\Delta = (v_{as}(COO^{-}) - v_{s}(COO^{-})]$ indicates the type of carboxylate coordination as depicted in Figure 4. In the present case the obtained Δ value was 102 cm⁻¹ suggesting that the carboxylate moiety interacts with the SPIONs surface as depicted in Figure 4c.

14

Figure 4. Types of metal-carboxylate coordination: (a) Bridging, (b) unidentate, and (c)chelating bidentate.

17

In order to estimate the quantity of oleic acid present on the surface of SPIONs,thermogravimetric measurements were performed and the results are shown in Figure 5.

20

Figure 5. Thermograms of (a) γ -Fe₂O₃ and (b) γ -Fe₂O₃@OA.

22

In agreement with the FTIR measurements, the thermogram of γ -Fe₂O₃@OA indicates the presence of an organic phase (oleic acid) on the maghemite's surface. Comparing the thermograms in Figure 5, one can assume that the observed weight loss (20%) is attributed to

OA degradation, since the γ -Fe₂O₃ shows a great thermal stability (see thermogram in 1 Figure 5 (a)). To evaluate the OA surface coverage, we have considered the following data: i) 2 the amounts of SPIONs (γ -Fe₂O₃) and OA as obtained from the thermograms; ii) it was 3 4 assumed that the SPIONs are spherical with an average diameter (d) of 6,3 nm as determined by XRD ; iii) the density of maghemite, ρ , as 4.9 g·cm⁻³ [64]; iv) the molar mass (MM) of OA 5 as 282.5 g·mol⁻¹) and v) it was assumed that each OA molecule occupies 1 nm² of surface 6 area. With these data, we estimate the total surface area of SPIONs (A_{SPIONs}) and the total area 7 occupied by OA molecules (A_{OA}) using the equations shown in the Supporting Information. 8 Considering the obtained ratio A_{OA}/A_{SPIONs}, we can assume that the SPIONs surface is 9 10 covered by approximately 3 monolayers of OA.

11

12 Table 3

13

The magnetic response of maghemite was evaluated by magnetization measurements. The data were recorded at 300 K and the results presented in Figure 6 showed a saturation magnetization (M_s) of 57 emu·g⁻¹ and agrees with previous literature data for bulk maghemite^[65]. It shows also negligible coercivity and remanent magnetization. Considering these properties, γ -Fe₂O₃ displays superparamagnetic behavior.

19

Figure 6. Hysteresis loop of γ-Fe₂O₃ recorded at 300 K. The inset shows an expanded view of
the magnetization curve.

- 22
- 23

24

1

3.2 Encapsulation of SPIONs (y-Fe₂O₃) by Miniemulsion Polymerization

2

3 The polymer-encapsulated SPIONs were prepared by miniemulsion polymerization using 4 four different compositions of monomeric phase (styrene and AFAME) as shown in Table 1, 5 in order to study the effect of reaction conditions on the properties of the resulting materials. 6 The hydrodynamic diameter (Z-average) of the encapsulated iron oxide particles was 7 evaluated by DLS as shown in Figure 7 and Table 4. 8 Figure 7. Size distribution curves of poly(styrene-*co*-AFAME)/ γ -Fe₂O₃ composite latex 9 particles of various styrene/AFAME ratios as determined by DLS. See Table 1 for detailed 10 experimental conditions. 11 12 Table 4 13 14 15 Figure 7 shows that a unimodal particle size distribution is observed for all systems, from low to higher AFAME contents and this behavior was verified throughout the reactions. This 16 implies that there was no significant Ostwald ripening or coalescence and that a stable colloid 17 18 system was obtained each time. Previous research published by our group shows that the concentration of AFAME had an important influence on the kinetic of the overall 19 conversion.^[54] In agreement with Laurentino et. al.,^[66] the research displays that increasing 20 the AFAME concentration caused a decrease on the overall conversion because the kinetic 21 rate of both monomers are expected to be quite different. Furthermore, based on Table 4 it can 22 be noted that the average particle size slightly increased in cases of high AFAME content. 23 The increase in the particle size is attributed to the high viscosity of AFAME that can turn 24 more difficult the shearing process during the ultrasonication stage. 25

1 TEM and cryo-TEM images of the encapsulated SPIONs presented in Figure 8 show 2 particles with spherical morphology and demonstrate very clearly the proper encapsulation of 3 the SPIONs by the copolymer. Note also that these images suggest a relatively narrow particle 4 size distribution that is coherent with DLS measurements.

5

Figure 8. (a, b) TEM and (c, d) cryo-TEM images of poly(styrene-*co*-AFAME)/γ-Fe₂O₃
composite particles for different compositions. Styrene/AFAME (wt%/wt%) = 100/0 (a), 95/5
(b), 75/25 (c) and 50/50 (d). See Table 1 for detailed experimental conditions.

9

The images in Figure 8 show particles sizes of approximately 92, 90, 102, 97 nm, respectively, for systems containing styrene:AFAME ratios of 100/0, 95/5, 75/25 and 50/50 (wt%). The particles sizes determined by TEM and cryo-TEM are smaller than those ones obtained by DLS since the particle size given by DLS is determined in terms of the hydrodynamics radius. According to Figure 8, as the mass fraction of AFAME is increased the amount of SPIONs dispersed into the copolymer matrix is decreased, which reflects the low compatibility between SPIONs@OA and AFAME.

The quantity of SPIONs effectively incorporated into the polymer particles was determinedby TGA and the obtained thermograms are depicted in Figure S4 (Supporting Information).

The thermograms of encapsulated-SPIONs showed a profile similar to those that had no SPIONs incorporated. However, the curves of magnetic polymers showed a residual mass higher than the non-magnetic polymer. This mass difference is due to the thermally and chemically stable SPIONs.

23 Comparing each thermogram of magnetic and non-magnetic polymers (see Figure S4), it be estimated that nearly 6% of SPIONs were encapsulated the 24 can by poly(styrene-co-AFAME) copolymer. These thermograms also show that the incorporation of 25

γ-Fe₂O₃ decreased with increasing AFAME content. This behavior may be explained by the low affinity between SPIONs@OA and AFAME since the presence of the incorporated acrylate group increases the polar behavior of AFAME while oleic shell on the SPIONs surface shows a non-polar nature. These results are in agreement with the TEM measurements, since a decrease of the amount of SPIONs in the copolymer was observed with increasing the AFAME content.

- DSC/DTA analyses were performed in order to obtain the glass transition temperatures
 (T_g) of magnetic copolymers and the values are shown in Table 5.
- 9

10 Table 5

11

First of all, it is important to mention that the presence of only one glass transition 12 temperature confirms the production of copolymers. The experimental results portrayed in 13 Table 5 clearly show that the T_g of samples with low AFAME content are higher than those 14 with high AFAME content. This effect was expected because polymers based on vegetable 15 oils have normally low glass transitions.^[67] However, comparing the samples containing 16 magnetic particles with their pure polymer counterparts, it is possible to see that the $T_{\rm g}$ of all 17 the magnetic samples are higher than the non-magnetic copolymers. This behavior indicates 18 that the presence of SPIONs into the copolymer promotes an increase of hardness and 19 suggests an interaction between the SPIONs and the copolymer matrix.^[47] 20

The magnetic behavior of the investigated materials is shown in Figure 9 and the corresponding values of magnetization saturation (M_s) , remanence (M_r) and coercivity (H_c) are displayed in Table 6.

Figure 9. Hysteresis loop at 300 K of (a) polystyrene, (b) poly(AFAME) and (c-e)
 poly(styrene-*co*-AFAME)/γ-Fe₂O₃ composite latex suspensions of various compositions.
 Styrene/AFAME (wt%/wt%) = 50/50 (c), 75/25 (d) and 95/5 (e). See Table 1 for detailed
 experimental conditions. The inset shows an amplified region close to zero applied fields.

5

6 Table 6

7

The negligible values of remanence and coercivity suggest that the materials present a superparamagnetic behavior. In addition, the increase in the AFAME content reveals a decrease in the copolymer magnetic response as consequence of a decrease in the incorporation of SPIONs in the copolymer matrix, which was demonstrated by the TGA data (Figure S4 – Supporting Information) and cryo-TEM images (Figure 8) and cryo-TEM images (Figure 8).

As shown in Figure 6, the magnetic response of the bulk maghemite was 57 $emu.g^{-1}$. 14 Compared to bulk maghemite, the magnetic response of the poly(styrene-co-AFAME)/ γ -15 Fe_2O_3 was reduced to 41.5, 31.5, and 26.2 emu.g⁻¹. This effect is manly caused by the 16 decreasing of the presence of SPIONs into the polymeric structure. Considering also the 17 nanosized particles, the surface effect is critical for the magnetic behavior. It is believed the 18 interactions between polymeric fraction (a magnetically dead layer) and SPIONs-surface 19 might contribute to the reduction because this exchange serves to pin the magnetic 20 contribution of the surface without adding additional magnetization to the system.^[68] 21

22

23 Figure 10. Photos of dried poly(styrene-*co*-AFAME)/γ-Fe₂O₃ with ratio (A) 100/0, (B) 95/5

24 (C) 75/25 and (D) 50/50, in absence and presence of a Nd magnet.

1 It is noteworthy that the images of the samples of magnetic polymers shown in Figure 10 were resulted by drying of a small part of obtained latex at the end of polymerization. These 2 3 images show a magnetic behavior of poly(styrene-co-AFAME)/y-Fe₂O₃ for all copolymer compositions as well as the different macroscopic aspects among the polymers as 4 characterized by DSC. As listed in Table 5, as increase of AFAME amount as decrease the T_{g} , 5 the polymer will be consequently softer and more flexible. Thus, poly(styrene-co-AFAME)/y-6 Fe₂O₃ with higher amounts of AFAME can be applied in coatings and resins fields as well as 7 those one with low AFAME ratio could be used as embolic agent, for example. 8

9

10 4. Conclusion

Bio-based poly(styrene-*co*-AFAME)/ γ -Fe₂O₃ magnetic particles with styrene/AFAME initial weight ratios of 100/0, 95/5, 75/25 and 50/50 were obtained by miniemulsion polymerization. To promote the proper dispersion of SPIONs in AFAME comonomer, the strategy used was to modify γ -Fe₂O₃ MNP with OA. TGA analysis showed that the modified γ -Fe₂O₃ MNPs are covered by ca. 3 monolayers of OA and present superparamagnetic behavior.

The poly(styrene-*co*-AFAME)/ γ -Fe₂O₃ composite particles have an average diameter of 18 120 – 150 nm, depending on the styrene:AFAME weight ratio. The larger particles were those 19 with higher AFAME content. In addition, TEM confirmed that the SPIONs were successfully 20 incorporated into the copolymer latex particles. The encapsulation of the SPIONs by the 21 copolymer matrix led to an increase in the T_g suggesting an increase in the hardness of the 22 bio-based magnetic material in comparison to the non-magnetic ones.

23 The poly(styrene-*co*-AFAME)/ γ -Fe₂O₃ bio-based magnetic particles, preserved the 24 superparamagnetic characteristics of the original modified SPIONs. Additionally, it was observed that the based-AFAME copolymer can be used in a sort of fields because it has different properties (e.g. glass transition temperature) depending on AFAME content.

4

5 Acknowledgments

- 6
- 7 The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),

8 Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), and Fundação de Apoio à

9 Pesquisa do Distrito Federal (FAP-DF) for financial support and scholarships.

10

- 11 **Keywords:** bio-based; hybrid; copolymer; γ -Fe₂O₃; miniemulsion.
- 12

13 **5. References**

- 14
- 15 [1] R. H. Kodama, J Magn Magn Mat 1999, 200, 359.
- 16 [2] G. G. Nedelcu, A. Nastro, L. Filippelli, M. Cazacu, M. Iacob, C. O. Rossi, A. Popa, D.
- 17 Toloman, M. Dobromir, F. Iacomi, Appl Surf Sci 2015, 352, 109.
- [3] P. Tiberto, G. Barrera, F. Celegato, M. Coïsson, A. Chiolerio, P. Martino, P. Pandolfi, P.
 Allia, *Eur. Phys. J. B* 2013, *86*, 1.
- 20 [4] Z. Kaiyuan, W. N. Allen, M. Sinani, C. Martinez, D. Peroulis, "Magnetic nanoparticle ink
- for RF integrated inductor applications", in *Microwave Symposium (IMS), 2014 IEEE MTT-S International*, 20141.
- 23 [5] S. Giri, G. Pradhan, N. Das, *J Polym Res* 2014, 21, 1.
- [6] T. A. P. Rocha-Santos, *TRAC-Trends in Analytical Chemistry* **2014**, *62*, 28.
- 25 [7] L. M. G. Rossi, M.A.S.; Vono, L.L.R.;, J. Braz. Chem. Soc. 2012, 23, 1959.
- 26 [8] N. C. Feitoza, T. D. Gonçalves, J. J. Mesquita, J. S. Menegucci, M.-K. M. S. Santos, J. A.
- 27 Chaker, R. B. Cunha, A. M. M. Medeiros, J. C. Rubim, M. H. Sousa, *The Journal of*
- 28 *Hazardous Materials* **2014**, *264*, 153.
- [9] R. Lakshmanan, M. Sanchez-Dominguez, J. A. Matutes-Aquino, S. Wennmalm, G.
 Kuttuva Rajarao, *Langmuir* 2014, *30*, 1036.
- 31 [10] C. Xu, S. Sun, Adv Drug Deliver Rev 2013, 65, 732.
- [11] R. Ladj, A. Bitar, M. M. Eissa, H. Fessi, Y. Mugnier, R. Le Dantec, A. Elaissari, *Int J Pharm* 2013, 458, 230.
- [12] M. K. Lima-Tenório, E. A. Gómez Pineda, N. M. Ahmad, H. Fessi, A. Elaissari, *Int J Pharm* 2015, *493*, 313.
- 36 [13] A. K. Hauser, R. J. Wydra, N. A. Stocke, K. W. Anderson, J. Z. Hilt, *J Control Release*
- **2015**, *219*, 76.
- 38 [14] N. Lee, T. Hyeon, *Chem Soc Rev* **2012**, *41*, 2575.

- 1 [15] X. Chenjie, M. Luye, R. Isaac, M.-N. David, N. Matthias, A. A. James, Z. Weian, M. K.
- 2 Jeffrey, *Nanotechnol* **2011**, *22*, 1.
- 3 [16] J.-J. Luo, I. M. Daniel, *Compos Sci Technol* 2003, 63, 1607.
- 4 [17] H.-L. Tyan, Y.-C. Liu, K.-H. Wei, *Chem Mat* 1999, 11, 1942.
- [18] H. C. Leventis, S. P. King, A. Sudlow, M. S. Hill, K. C. Molloy, S. A. Haque, *Nano Lett* **2010**, *10*, 1253.
- 7 [19] E. Holder, N. Tessler, A. L. Rogach, *J Mat Chem* 2008, *18*, 1064.
- [20] R. J. Nussbaumer, W. R. Caseri, P. Smith, T. Tervoort, *Macromol Mat Eng* 2003, 288, 44.
- [21] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J. M. Kenny, *Polym Degrad Stabil*2010, 95, 2126.
- 12 [22] C. L. Sanchez, B.; Chaput, F.; Boilot, J.-P.;, Adv. Mater. 2003, 15, 1969.
- 13 [23] J. Ban, K. Kim, H. Jung, S. Choe, *J Ind Eng Chem* **2010**, *16*, 1040.
- 14 [24] T. S. Anirudhan, P. L. Divya, J. Nima, *Mat Sci Eng C* 2015, 55, 471.
- [25] V. Chiaradia, A. Valério, P. E. Feuser, D. d. Oliveira, P. H. H. Araújo, C. Sayer, *Colloid Surface A* 2015, 482, 596.
- 17 [26] A. Aqil, S. Vasseur, E. Duguet, C. Passirani, J. P. Benoît, A. Roch, R. Müller, R. Jérôme,
- 18 C. Jérôme, Eur Polym J 2008, 44, 3191.
- [27] G. A. Kloster, D. Muraca, C. Meiorin, K. R. Pirota, N. E. Marcovich, M. A. Mosiewicki,
 Eur Polym J 2015, *72*, 202.
- 21 [28] K. Chen, Y. Zhu, Y. Zhang, L. Li, Y. Lu, X. Guo, *Macromol* 2011, 44, 632.
- [29] G. R. Ferreira, T. Segura, F. G. de Souza Jr, A. P. Umpierre, F. Machado, *Eur Polym J* 2012, 48, 2050.
- 24 [30] L. M. dos Santos, R. Ligabue, A. Dumas, C. Le Roux, P. Micoud, J.-F. Meunier, F.
- 25 Martin, S. Einloft, *Eur Polym J* **2015**, *69*, 38.
- [31] X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, S. A. Asher, *Chem Mat* 2002, *14*, 1249.
- 28 [32] S. Sacanna, A. P. Philipse, *Langmuir* **2006**, *22*, 10209.
- [33] K. Li, P. Y. Dugas, M. Lansalot, E. Bourgeat-Lami, *Macromolecules* 2016, doi: 10.1021/acs.macromol.6b01546.
- [34] R. Y. Hong, B. Feng, G. Liu, S. Wang, H. Z. Li, J. M. Ding, Y. Zheng, D. G. Wei, J
 Alloy Compd 2009, 476, 612.
- 33 [35] Y. Chen, Z. Qian, Z. Zhang, Colloid Surface A 2008, 312, 209.
- 34 [36] Y. Wang, X. Teng, J.-S. Wang, H. Yang, *Nano Lett* 2003, *3*, 789.
- 35 [37] K. Li, P.-Y. Dugas, E. Bourgeat-Lami, M. Lansalot, *Polymer* 2016, doi:
 36 10.1016/j.polymer.2016.07.087.
- 37 [38] D. Nguyen, B. T. T. Pham, V. Huynh, B. J. Kim, N. T. H. Pham, S. A. Bickley, S. K.
- 38 Jones, A. Serelis, T. Davey, C. Such, B. S. Hawkett, *Polymer* **2016**, doi: 10.1016/j.polymer.2016.08.064.
- 40 [39] M. Antonietti, K. Landfester, Prog Polym Sci 2002, 27, 689.
- 41 [40] J. M. Asua, *Prog Polym Sci* **2002**, *27*, 1283.
- 42 [41] P. E. Feuser, L. d. S. Bubniak, M. C. d. S. Silva, A. d. C. Viegas, A. Castilho Fernandes,
- E. Ricci-Junior, M. Nele, A. C. Tedesco, C. Sayer, P. H. H. de Araújo, *Eur Polym J* 2015, 68, 355.
- 45 [42] P. E. Feuser, A. C. Fernandes, M. Nele, A. d. C. Viegas, E. Ricci-Junior, A. C. Tedesco,
- 46 C. Sayer, P. H. H. de Araújo, *Colloid Surface B* **2015**, *135*, 357.
- 47 [43] A. R. Mahdavian, Y. Sehri, H. Salehi-Mobarakeh, *Eur Polym J* 2008, 44, 2482.
- 48 [44] T. Li, X. Han, Y. Wang, F. Wang, D. Shi, Colloid Surface A 2015, 477, 84.
- 49 [45] X. Yang, S. Zhang, W. Li, Prog Org Coat 2015, 85, 216.
- 50 [46] S. Miao, P. Wang, Z. Su, S. Zhang, *Acta biomat* **2014**, *10*, 1692.

- 1 [47] C. Meiorin, D. Muraca, K. R. Pirota, M. I. Aranguren, M. A. Mosiewicki, Eur Polym J
- **2 2014**, *53*, 90.
- 3 [48] A. M. M. S. Medeiros, F. Machado, J. C. Rubim, Eur Polym J 2015, 71, 152.
- 4 [49] E. U. X. Péres, F. G. d. Souza Jr, F. M. Silva, J. A. Chaker, P. A. Z. Suarez, *Ind Crop* 5 *Prod* **2014**, *59*, 260.
- 6 [50] A. L. Drummond, N. C. Feitoza, G. C. Duarte, M. J. A. Sales, L. P. Silva, J. A. Chaker,
- 7 A. F. Bakuzis, M. H. Sousa, *J Nanosci Nanotechnol* **2012**, *12*, 8061.
- 8 [51] E. F. B. Aransiola, E.; Layokun, S.K.; Solomon, B.O.;, *Int. J. Biol. Chem. Sci.* 2010 4.
- 9 [52] A. Campanella, C. Fontanini, M. A. Baltanás, *Chemical Engineering Journal* **2008**, *144*,
- 10 466.
- 11 [53] S. S. Bunker, C.; Willenbacher, N.; Wool, R.;, Int. J. Adhes. Adhes. 2003, 23, 29.
- 12 [54] A. M. M. S. Medeiros, F. Machado, J. C. Rubim, T. F. L. McKenna, *Journal of Polymer*
- 13 Science Part A: Polymer Chemistry **2017**, 55, 1422.
- 14 [55] O. N. Shebanova, P. Lazor, *J Solid State Chem* **2003**, *174*, 424.
- 15 [56] I. Chamritski, G. Burns, *J Phys Chem B* **2005**, *109*, 4965.
- [57] D. L. A. de Faria, S. Venâncio Silva, M. T. de Oliveira, *J Raman Spectrosc* 1997, 28,
 873.
- 18 [58] M. H. Sousa, F. A. Tourinho, J. C. Rubim, *J Raman Spectrosc* 2000, *31*, 185.
- 19 [59] A. L. Patterson, *Phys Rev* **1939**, *56*, 978.
- 20 [60] C. Pereira, A. M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M. P. Fernández-García,
- A. Guedes, P. B. Tavares, J.-M. Grenèche, J. P. Araújo, C. Freire, *Chem Mat* 2012, 24, 1496.
- 22 [61] Y. L. Mikhlin, A. V. Kuklinskiy, N. I. Pavlenko, V. A. Varnek, I. P. Asanov, A. V.
- 23 Okotrub, G. E. Selyutin, L. A. Solovyev, *Geochimic Cosmochim Ac* **2002**, *66*, 4057.
- [62] G. V. M. Jacintho, A. G. Brolo, P. Corio, P. A. Z. Suarez, J. C. Rubim, *The Journal of Physical Chemistry C* 2009, *113*, 7684.
- [63] K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination
 Compounds.", Wiley, New York, 1986.
- 28 [64] J. A. R. M. n. Guivar, A. I.; Anaya, A. O.; Valladares, L. LS.; Félix, L. L.; Dominguez,
- 29 A. B.;, Adv. in Nanoparticles **2014**, *3*, 114.
- [65] I. Nurdin, M. R. Johan, I. I. Yaacob, B. C. Ang, A. Andriyana, *Mater Res Innov* 2014, *18*, S6.
- [66] L. S. Laurentino, A. M. M. S. Medeiros, F. Machado, C. Costa, P. H. H. Araújo, C.
 Saver, *Chemical Engineering Research and Design* 2018, *137*, 213.
- 34 [67] X. Yang, S. Zhang, W. Li, Progress in Organic Coatings 2015, 85, 216.
- [68] B. Issa, I. Obaidat, B. Albiss, Y. Haik, *International Journal of Molecular Sciences* 2013,
 14, 21266.

- 1 Tables
- 2
- 3 Table 1
- 4
- 5 Table 1. Loadings of chemicals used in the miniemulsion polymerizations

Experiment	Styrene (g)	AFAME (g)	AIBN (g)	Hexadecane (g)	$\tau_{\text{SPION}} (\text{wt.\%})^*$
1	10	0	0.2	0.6	10
2	9.5	0.5	0.2	0.6	10
3	7.5	2.5	0.2	0.6	10
4	5	5	0.2	0.6	10

6 * τ = SPIONs content based on the total oil phase.

7

8 Table 2

9

10 Table 2. Tentative vibrational assignment for the IR absorptions observed in the spectra of

Wavenumber (cm ⁻¹)	Tentative assignment	Spectrum
573	Fe-O	(b) and (c)
1415	$\nu_{s}(COO^{-})$	(c)
1462	$d(CH_2)^{[62]}$	(a)
1517	$v_{as}(COO^{-})$	(c)
1624	δ(O-H)	(b)
1722	C=O	(a) and (c)
2890	v _s (CH)	(a) and (c)
2930	$v_{as}(CH_2)$	(a) and (c)
3010	v(=C-H)	(a) and (c)
3400	ν(OH)	(b) and (c)

- 12 *non coordinated OA.
- 13
- 14 Table 3
- 15
- 16 Table 3. Data for calculating quantity of monolayers of OA on SPIONs-surface

		d/cm	$\rho/g \cdot cm^{-3}$	MM/g∙mol ⁻¹	mass/g	A _{SPIONs} /cm ²	A_{OA}/cm^2
	γ-Fe ₂ O ₃	6.3×10^{-7}	4.9	-	7.33x10 ⁻³	1.42×10^4	-
	ŌA	-	-	282.5	1.83×10^{-3}	-	3.9×10^4
17							
18							
19							

11 Figure 2

- 1 Table 4

3 Table 4. Particle size determined by DLS measurements

	Experiment	Styrene/AFAME (wt%/wt%)	Particle size (nm)	PdI [*]
	1	95/5	129	0.13
	2	75/25	123	0.12
	3	50/50	149	0.13
4	* The PdI is a	value provided by Malvern instr	rument and it is used	to describe the

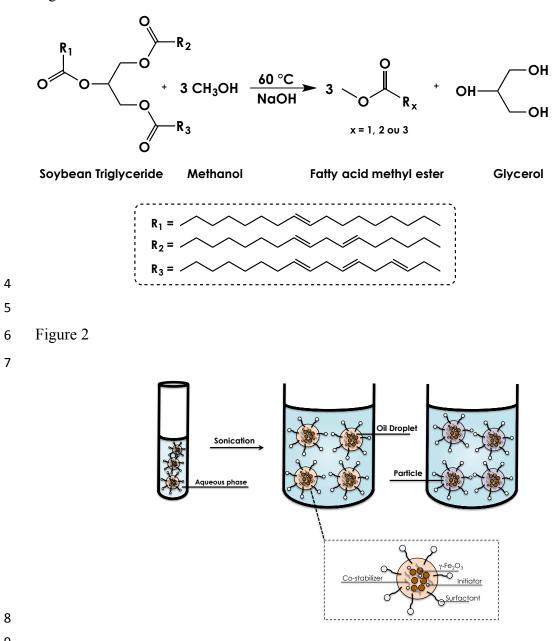
5 width of the particle size distribution around a central value.

7 Table 5

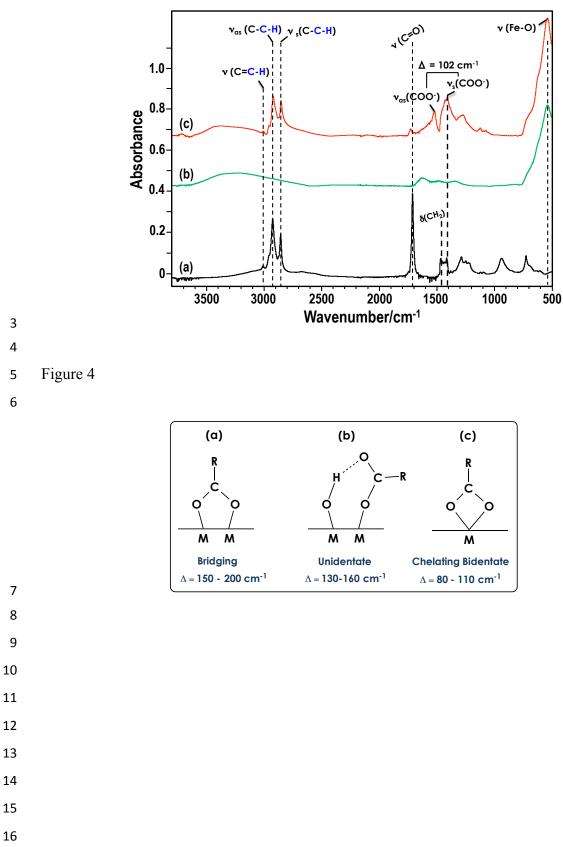
- 9 Table 5. Experimental glass transition temperatures (T_g) of the magnetic and non-magnetic
- 10 samples determined by DSC/DTA

Non-Magnetic sampl	les	Magnetic samples		
Sample	$T_{\rm g}(^{\rm o}{\rm C})$	Sample	$T_{\rm g}(^{\rm o}{\rm C})$	
PolyAFAME	-55,4	-	-	
Polystyrene	104	-	-	
Poly(styrene ₉₅ -co-AFAME ₅)	51.2	poly(styrene ₉₅ -co-AFAME ₅)/γ-Fe ₂ O ₃	61.7	
Poly(styrene ₇₅ -co-AFAME ₂₅)	24.7	poly(styrene ₇₅ -co-AFAME ₂₅)/γ-Fe ₂ O ₃	37.9	
Poly(styrene ₅₀ -co-AFAME ₅₀)	-9.9	poly(styrene ₅₀ -co-AFAME ₅₀)/γ-Fe ₂ O ₃	-4.8	

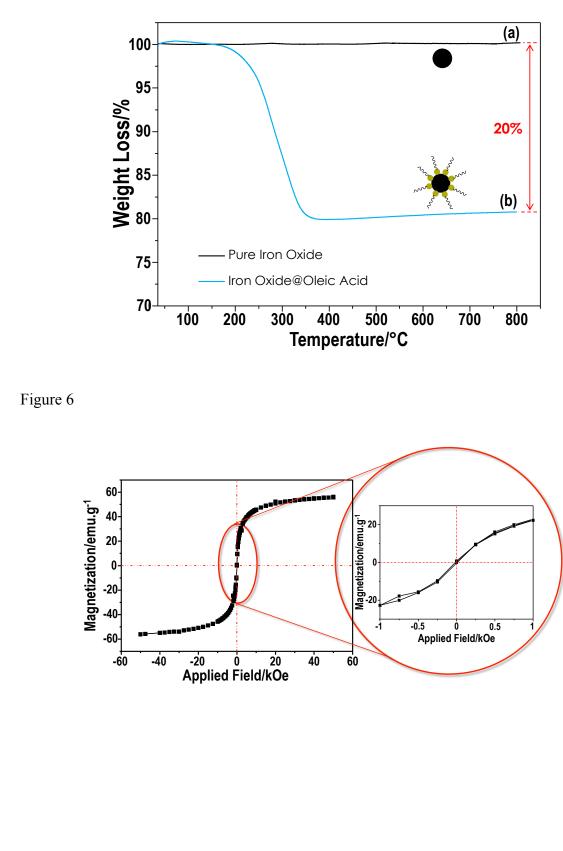
12 Table 6

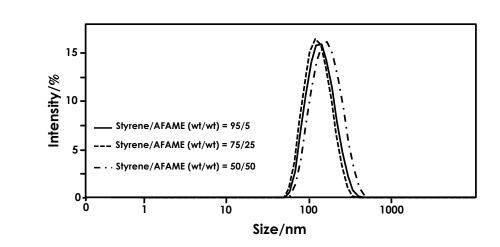

- 14 Table 6. Magnetization saturation (M_s), remanence (M_r) and coercivity (H_c) of poly(styrene-
- co-AFAME)/ γ -Fe₂O₃ composites

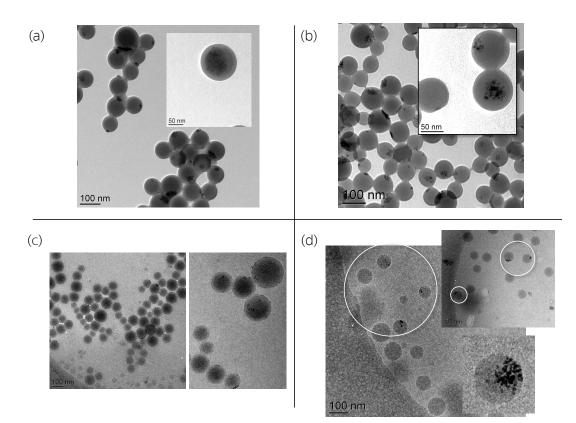
Initial Composition (Styrene/AFAME) (wt%)	M _s (emu·g ⁻¹)	M_r (emu·g ⁻¹)	H _c (kOe)
95/5	41.5	0.1	0.002
75/25	31.5	0.01	3.6x10⁻⁴
50/50	26.2	0.02	3.3x10 ⁻⁴



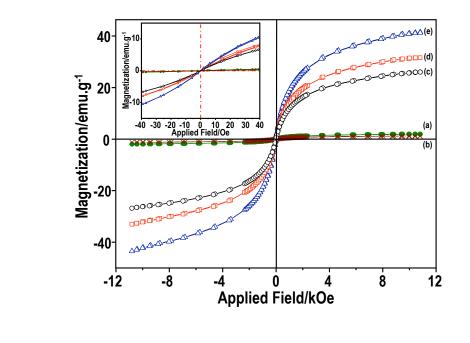
1 Figures

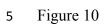

- 3 Figure 1

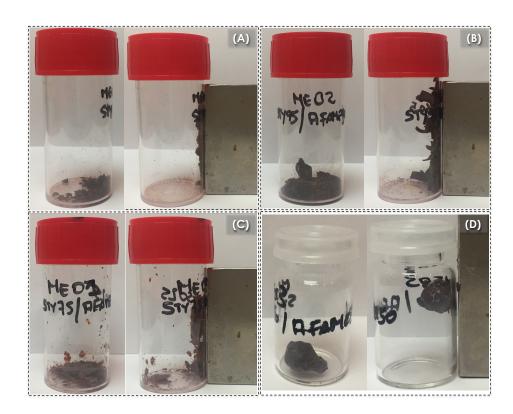



- 1 Figure 5

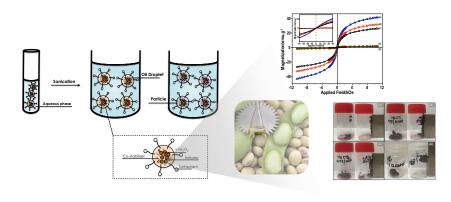
- 1 Figure 7




- 5 Figure 8



1 Figure 9



1 Table of Contents

2

The biomonomer obtained from soybean oil was used for the synthesis of bio-based hybrid
magnetic particles poly(styrene-*co*-AFAME)/γ-Fe₂O₃ by miniemulsion polymerization. As
principal strategy, the superparamagnetic iron oxide nanoparticles γ-Fe₂O₃ were encapsulated
into styrene/AFAME-based copolymer matrix. The properties of poly(styrene-*co*-AFAME)/
γ-Fe₂O₃ can be modulated depending on its use by varying the amount of AFAME.

