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Natural rubber is obtained by processing natural rubber latex, a liquid colloidal suspension that rapidly gels
after exudation from the tree. We prepared such gels by acidification, in a large range of particle volume frac-
tions, and investigated their rheological properties. We show that natural rubber latex gels exhibit a unique
behavior of irreversible strain hardening: when subjected to a large enough strain, the elastic modulus increases
irreversibly. Hardening proceeds over a large range of deformations in such a way that the material maintains
an elastic modulus close to, or slightly higher than the imposed shear stress. Local displacements inside the gel
are investigated by ultrasound imaging coupled to oscillatory rheometry, together with a Fourier decomposition
of the oscillatory response of the material during hardening. Our observations suggest that hardening is associ-
ated with irreversible local rearrangements of the fractal structure, which occur homogeneously throughout the
sample.
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INTRODUCTION

Natural Rubber Latex (NRL) is naturally produced by the
Hevea brasiliensis tree, in laticiferous cells located in the tree
bark. This colloidal suspension is released by wounded trees
after tapping and rapidly solidifies to form a protective layer
against further attacks. The composition of the exudate is
complex [1], but the main physical properties are attributed
to rubber particles accounting for more than 90% of the dry
mass. Their diameters range from a few hundred nanome-
ters to a few micrometers. Rubber particles mostly consist
of a poly(cis-1,4-isoprene) rubber core surrounded by a mem-
brane of phospholipids [2, 3] and proteins [4]. Their surface is
negatively charged at native pH (pH ≈ 7), which ensures net
repulsion and therefore latex stability within the tree. After
exudation, the pH rapidly decreases under bacterial acidifi-
cation [5]; the particle surface charge density drops and the
suspension is consequently destabilized. Particles aggregate
in fractal-type clusters, which eventually form a gel [6].

To produce Natural Rubber (NR), NRL gels are compressed
and dried so that the residual water and its soluble non-
isoprene content are extracted. During this process, rubber
particles lose their individuality and the material is described
as a structured network of cis-poly-isoprene chains loosely
cross-linked with non-isoprene compounds (mainly lipids and
proteins) [7, 8]. The cross-link density of these polymeric ma-
terials is further increased during a process called vulcaniza-
tion. Vulcanized NRs can sustain up to 800% deformation
before rupture, and their stress-strain relationship is highly
nonlinear. Above a critical strain, whose value depends on
the preparation process, but is generally above 300%, vulcan-
ized NR exhibits strain stiffening: its apparent elastic modu-
lus increases rapidly with strain. This behavior, also known as

strain hardening, is attributed to strain-induced crystallization
[9],[10]. It is highly sensitive to the supramolecular organi-
zation in the natural product and is called “green strength”
[11]. NR exhibits such unique thermo-mechanical properties
that more than 40% of all the rubber used worldwide is, even
today, of natural origin, despite fundamental drawbacks, such
as its variability. Understanding the structure-properties rela-
tionship in such materials is still a challenge, and requires an
understanding of how the structure is formed at the different
stages of NRL processing into NR.

We focus here on the mechanical properties of NRL gels,
which are soft materials in which rubber particles form a per-
colating network in water. As NRL suspensions are very vari-
able due to agronomic parameters (clone, tapping system), or
edaphoclimatic factors (mainly the season) [12], we work with
a commercially available NRL suspension of pre-vulcanized
rubber particles, which is stabilized in ammonia and far less
variable. In spite of a slightly different composition of the
continuous phase, such commercial suspensions behave sim-
ilarly to the fresh exudate: gelation is observed under simi-
lar acidification conditions and the elastic modulus of the gels
formed from commercial or native NRL are roughly the same.
We induce continuous and controlled acidification of our NRL
suspensions in the Couette geometry of a rheometer, in order
to form gels that can be mechanically characterized in situ,
with no stress history. In previous work focusing on gel for-
mation [6], we showed that such gels display strain hardening
behavior, which is examined in detail in this article.

In the following, we first describe the main features of the
hardening phenomenon under oscillatory shear. We demon-
strate that this behavior is irreversible and occurs over a large
range of deformations. We then show that NRL gels display a
fractal scaling of their elastic modulus at rest. The spring con-
stant between particles determined from this analysis is com-
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patible with known values of rubber elasticity. In the third
section, we show that the hardening amplitude decreases with
the particle volume fraction. We further investigate the nonlin-
ear behavior through a Fourier analysis of the strain response
and show that hardening is associated with the emergence of
odd harmonics, whose strength grows with the imposed stress.
These observations are further discussed in the last section,
where we propose a simplified picture of the structural reor-
ganization that might lie behind this unique behavior.

MATERIALS AND METHODS

Materials

Natural rubber latex was obtained from Dalbe, France
(ref. 4770002). The volume-based diameter 2a of the pre-
vulcanized particles is 1 µm, as measured previously by static
light scattering [6]. To remove ammonia, suspensions were
first diluted with an equivalent amount of Tris-HCl buffer (pH
8.5, ionic strength = 7 mM). TRIS (purity ≥99%, CAS 77-86-
1) and HCl (purity 37%, ≤1 ppm free chlorine) were obtained
from Merck, Germany.

Then, they were dialyzed for 7 days against the same buffer
using a dialysis tube (SpectraPor, cut-off 12-14kDa, diame-
ter 29 mm), before dilution with the buffer to reach the de-
sired volume fraction φv. Suspensions with φv > 0.3 were
obtained by direct dilution of the commercial suspension with
the buffer, without dialysis, which does not impact the final
properties as will be shown in this paper. All the prepared
suspensions were stored at 5◦ C and used within three weeks.

Gelation

Glucono-δ-lactone (GDL, ref G2164, purity ≥99%, Sigma-
Aldrich) was used to reduce the pH of the suspension uni-
formly and gradually. For φv < 0.1, a concentration of 1 %wt
GDL set as a standard condition was used to reach a final pH
close to 4 in less than 1 h. For φv > 0.1, the amount of GDL
was increased to reproduce the standard acidification kinetics
[6]. GDL was dispersed in the suspension by stirring for 1
min, before loading into the Couette cell of the rheometer.

Rheological characterization

Rheological properties were determined using three stress-
controlled rheometers: an AR2000ex (TA Instruments),
equipped with a stainless-steel smooth Couette concentric
cylinder geometry (inner radius 14 mm, outer radius 15 mm
and height 42 mm) and a home-made stainless-steel serrated
Couette geometry (same dimensions with saw tooth serrations
1 mm in depth and 1 mm base on each side) and an ARG2 (TA
Instruments) equipped with a smooth PMMA (Poly(Methyl
MethAcrylate)) Couette geometry (inner radius 23 mm, outer

radius 25 mm and height 60 mm). Thanks to their feedback
loop, these instruments can be used either in strain- or stress-
controlled mode.

Gelation was first monitored for 4 hours thanks to small-
amplitude oscillatory shear at a constant frequency of 1 Hz
and a constant strain amplitude of 0.5%. The results showed
no measurable impact of the oscillation amplitude of 0.5%
on the gelation process and on the final gel properties, par-
ticularly on the elastic modulus at rest G′0. The gel was then
characterized with a frequency sweep from 0.01 to 10 Hz at a
constant strain of 0.5%, which was followed by a stress sweep
at a constant frequency of 1 Hz, starting from 0.02 Pa up to
the fracture of the gel.

Local rheology

We used local oscillatory rheology from echography
(LORE) to reconstruct time-resolved local displacements dur-
ing oscillatory stress experiments [13],[14]. In LORE, rhe-
ological measurements are synchronized with high-frequency
ultrasonic echography in order to map the local strain response
of the NRL gel subject to an oscillatory stress. LORE is per-
formed with the ARG2 (TA Instruments) rheometer equipped
with the PMMA Couette geometry of gap e = 2 mm. The gels
are seeded with almost density matched polystyrene particles
(Dynoseeds TS-20 of diameter 20.00(1) µm) to provide ultra-
sound contrast. Their concentration of 1% wt yields sufficient
ultrasound intensity yet is small enough to prevent multiple
scattering and to ensure that the polystyrene particles do not
affect the mechanical properties of the sample.

In brief, our high-frequency ultrasonic imaging device re-
lies on a linear array of piezoelectric transducers with a total
active length of 32 mm [14, 15]. The transducer array is im-
mersed in a water tank surrounding the Couette cell. Short
ultrasonic plane pulses with a central frequency of 15 MHz
propagate across the gap. These pulses get scattered by the
seeding particles within the gel and the backscattered pressure
signal is recorded by the transducer array, leading to an “ultra-
sonic speckle” signal with 128 measurement lines in the vor-
ticity direction z and 640 sampling points in the radial direc-
tion r. The spatial resolution along the z-direction is 250 µm
and 100 µm in the r-direction with a sampling of 600 images
per oscillation period [14]. For each oscillatory stress experi-
ment, a 2D-ultrasonic scan with 20 sequences of five oscilla-
tion periods each is recorded. The analysis of the ultrasonic
data gives access to the displacement maps ∆ within the Cou-
ette cell as a function of time t and of the position (r, z) across
the gap, where r is the radial distance to the stator and z the
position along the vertical direction. We checked that such
displacement maps are always invariant along the z-direction.
Hence, we focus thereafter on their average over z, ∆(r, t),
from which we compute the local strain γ[14]. Under an im-
posed oscillatory stress, the strain response of the sample may
be nonlinear in contrast to the sinusoidal stress input. This re-
sults in the presence of harmonics in the Fourier series decom-
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position of the strain γ(t) =
∑

k γk cos
[
2πk f t + ϕk

]
, where γk

and ϕk are the amplitude and phase of the kth harmonics.

RESULTS AND DISCUSSION

NRL gels exhibit irreversible hardening under shear

When submitted to some mechanical strain, Natural Rub-
ber Latex gels harden. This is seen through oscillatory shear
rheology where the material is submitted to oscillations of
increasingly large amplitudes in either strain-controlled or
stress-controlled experiments. When the amplitude of the im-
posed oscillations is small, the elastic modulus G′ remains
independent of the oscillation amplitude. This corresponds
to the linear viscoelastic regime. However, for large enough
strain amplitudes, typically γ > 0.2, G′ steeply increases until
material rupture as illustrated for φv = 0.04 in Figure 1. This
behavior clearly differs from the strain hardening of dense
rubber materials, a phenomenon observed at much higher de-
formations (γ > 3) and associated with a transient, and re-
versible, local crystallization of polymer chains [9, 10]. In the
present hardening regime, which is observed on NRL gels in
both strain- and stress-controlled modes, the strain-stress re-
lationship is no longer linear: above the onset of hardening,
for σ > σ0 and γ > γ0, one has γ ∼ σα with α ≈ 0.3 (in-
set of Fig. 1). Correspondingly, the elastic modulus grows
as G′ = σ/γ ∼ γ1/α−1 ∼ γ2.3 at large strains as seen in
Fig. 1. For the stress-controlled experiments, this corresponds
to G′ ∼ σ1−α ∼ σ0.7. Further decomposing of the strain re-
sponse in a Fourier series shows that strain hardening is in
line with the emergence of odd harmonics (insets of Fig. 1).
Lastly, for γ > 1, the gel fails.

We conducted LORE experiments to map local displace-
ments ∆(r, t) in the sample and thereby investigate whether
hardening is localized or homogeneously distributed through-
out the material. For each imposed stress amplitude, local
deformation is recorded during five successive oscillations at
f = 1 Hz. As shown in Fig. 1b (left) for a stress amplitude
σ=1.8 Pa, corresponding to a strain amplitude γ = 0.23 at the
beginning of the hardening regime, the strain response is dis-
torted. Thus the strain response is clearly nonlinear and con-
tains significant higher-order harmonics. Yet the local strain
amplitude ∆ varies linearly across the gap (Fig. 1b, right): the
bulk material undergoes homogeneous deformation. There is
no sign of slip at the walls nor any significant curvature in
∆(r) that could demonstrate some degree of strain localiza-
tion, e.g. through localized strain stiffening or strain thinning,
over length scales larger than the LORE spatial resolution of
about 100 µm. This suggests that the structural reorganization
responsible for hardening is localized at scales below 100 µm
and is homogeneously distributed over the entire material. In
addition, once a stress oscillation is imposed, we do not ob-
serve any temporal change in the strain response over the first
five oscillations. Hardening therefore occurs within the first
oscillation in the bulk material.

Strain hardening has been reported for colloidal gels ob-
tained by fractal aggregation of nanometer-sized polystyrene
beads [16] or globular proteins [17, 18]. Hardening has also
been observed in biopolymer-based hydrogels [19–21]. NRL
gels however exhibit two very specific properties that we now
discuss in more details.

First, the hardening reported here is irreversible: if at a
given strain γmax during material hardening under an upward
strain sweep, one decides to decrease the strain amplitude, the
material remains “harder” and the elastic modulus G′ remains
roughly constant whatever the strain amplitude γ < γmax, as
illustrated in Fig. 2. Increasing the strain amplitude again and
above γmax is associated with further increase of the elastic
modulus, as long as the material is not irreversibly fractured.
To our knowledge, such striking irreversible hardening has
never been reported before: it suggests that in NRL gels, strain
hardening is not associated with a transient increase in σ/γ,
but instead with a permanent increase in the elastic modulus,
together with an extension of the material linear regime up
to γmax, the maximum strain amplitude reached in the mate-
rial previous history. Hardening in NRL gels should therefore
be associated with some irreversible modifications of the mi-
crostructure at the local scale. Note also that during the last
cycles in Fig.2, a slight dip is observed in G’ when the material
is deformed in a range of strains where it has been previously
hardened. This reproducible behavior was observed identi-
cally during a further gradual increase or decrease in strain.

Second, hardening is observed in deformation ranges that
are much larger than previously reported for colloidal gels.
This allows us to investigate large increases in the stress. In
particular, when switching to stress-imposed experiments, we
observe in Fig. 3 that during hardening, the gels elastic mod-
ulus remains of the same order of magnitude as the imposed
stress amplitude. Thus the material adapts to the stress in or-
der to sustain it as long as fracture does not occur. This pro-
vides an elegant way of tuning the elastic modulus of NRL
gels at will, simply by applying an oscillatory stress with an
amplitude of the order of the target modulus. Of course, this
behavior has some limitations: the maximum stress and there-
fore the elastic modulus that a gel can reach depend on its vol-
ume fraction, as seen in Fig. 3. The maximum stress at rupture
is reached for φv ≈ 0.162, and decreases for φv > 0.32. Be-
low, we first characterize NRL gels behavior at rest, before
investigating the hardening behavior in more details.

Fractal scaling of the elastic modulus at rest

We investigated NRL gels for volume fractions ranging
from 0.011 to 0.53. As the minimum volume fraction for gel
formation is φv ≈ 0.01, and the volume fraction at random
closed packing is φrcp ≈ 0.715 [6], this roughly covers the full
range of volume fractions accessible for gel formation. The
elastic modulus at rest spans more than five decades, from
7 × 10−2 Pa to 2.3 × 104 Pa, and scales with the particle vol-
ume fraction φv as G′0 ∼ φ3.3

v (Figure 4). We checked that
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FIG. 1. (a) Evidence for hardening in NRL gels: change in the elastic modulus, G′, under imposed oscillatory strain (open symbols) and under
imposed oscillatory stress (filled symbols) for a NRL gel at φv = 0.04. The continuous line indicates the value G′0 = 5 Pa of the elastic modulus
at rest and the dashed line is the best power-law fit G′ ∼ γ1/α−1 with α=0.32 in the hardening regime, before rupture. Their intersection defines
the onset of hardening (γ0 ,G0). The relative amplitude of the harmonics γk/γ1 obtained from the Fourier decomposition of the strain response
is shown for two stress-imposed measurements in the linear and in the hardening regimes. Inset: stress-strain relationship for the same data
set. (b) local rheology from echography (LORE) in Couette geometry for a stress amplitude σ = 1.8 Pa (corresponding to a strain amplitude
γ = 0.23). Left panel: Local displacements ∆(r, t) (linear color scale from brown at the stator to yellow at the rotor) and strain γ(t) recorded
by the rheometer (black line) in response to oscillatory stress σ(t) (blue dashed line) as a function of the normalized time ft. All quantities are
normalized. Right panel: the amplitude ∆1 of the fundamental Fourier mode of ∆(r, t) as a function of r/e where r is the distance from the
stator and e is the gap width. The dashed line shows the theoretical profile for a linear homogeneous strain field in Couette geometry.
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FIG. 2. Change in the elastic modulus G′ during successive strain
sweeps (from blue to red) for a NRL gel with φv = 0.11. Each cy-
cle consists of (i) a continuous increase in strain amplitude γ (empty
symbols) up to a predetermined maximum strain γmax, followed (ii)
by a continuous decrease in strain amplitude (filled symbols). Each
new cycle (from blue to brown), performed on the same sample
reaches a higher value of γmax.

FIG. 3. Changes in the elastic modulus G′ as a function of the im-
posed stress amplitude σ for increasing particle volume fractions:
0.011 (blue), 0.022 (dark green), 0.055 (green), 0.109 (yellow), 0.162
(red), 0.216 (brown), 0.32 (purple) and 0.53 (black). Vertical dashed
lines indicate the various stresses at gel rupture. The gray dashed line
G′ = σ is drawn for comparison.

measurements conducted in geometries with different materi-
als and different roughnesses lead to the exact same results,
confirming the absence of wall slip. The power-law behavior
of G′0 with φv is reminiscent of fractal gels obtained by col-
loidal aggregation in the diffusion-limited cluster aggregation
regime [22].

In fractal colloidal gels, the elastic modulus is given by
G′0 = (k0/a) φ(1+2ε+db)/(3−df )

v [16, 23–25]. In this equation, k0
is the spring constant between a pair of interacting particles, a
is the particle radius, ε expresses the anisotropy of the back-
bone (from ε = 0 for a straight chain to ε = 1 for a purely
isotropic chain), and db and df are the fractal dimensions of
the backbone and the cluster structure respectively. If the in-

FIG. 4. Elastic modulus at rest G′0 (filled symbols) and maximum
elastic modulus before rupture G′max (empty symbols) as a function
of the rubber particles volume fraction φv. The symbols and colors
correspond to different Couette geometries: smooth stainless-steel
(blues circles), serrated stainless steel (red diamonds) and smooth
PMMA (green triangles). The red vertical dashed line shows the
volume fraction at random close packing, estimated at 0.715 based
on sample polydispersity (see Ref. [6]). The dashed lines represent
the best power-law fits of the data, and the vertical gray line shows
the limit of hardening. Inset: change in the hardening amplitude,
G′max/G

′
0, with φv.

teraction potential between particles is isotropic, aggregation
leads to isotropic structures, hence ε = 1. In this case, the net-
work response to shear stress is controlled by bond-bending
interactions between the primary particles that constitute the
gel, and we obtain (3 + db)/(3 − df) = 3.3. As 1 ≤ db ≤ 5/3
[24], it follows that 1.59 ≤ df ≤ 1.79. This is characteristic
of a diffusion-limited cluster aggregation regime, for which
df ≈ 1.7 − 1.8 [26–28], while the reaction-limited cluster ag-
gregation regime is associated with df ≈ 2.0 − 2.1 [28, 29].

From the values of the elastic modulus, it is also possible
to estimate the spring constant between particles. Previous
works on colloidal gels generally assumes that bending me-
chanics is dominated by contact interactions localized at the
interface between two particles, which strongly depend on the
physico-chemical environment [30]. For rubber particles, the
surface is covered by proteins and polar lipids, such as phos-
pholipids and glycolipids [31, 32]. They play a key role in la-
tex stability and in the specific mechanical properties of dense
rubber. We might therefore expect mechanical properties that
strongly depend on pH or temperature, which strongly affect
protein-protein or protein-phospholipid interactions.

However, we surprisingly observed previously [6] that NRL
gel mechanical properties are not affected by variations in the
physico-chemical environment, for a pH ranging from 3.5 to
5.5, and temperatures ranging from 5 to 40 ◦C. This unique
behavior might originate from the nature of the rubber parti-
cles. In NRL, the core of the particles, composed of poly(cis)
isoprene, is in a rubbery state at room temperature, well above
the polymer glass transition that occurs around -73 ◦C [33].
This is in sharp contrast with most of the colloidal gels in-
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vestigated so far that are made from “hard” colloidal particles
whose core is in a glassy or crystalline state. Consequently, in
NRL gels, polymer chains from two different particles might
locally interpenetrate at their contact point, so that the path
from one center of mass to the other consists of a rubber con-
tinuum. In such a case, the mechanical properties associated
with the overall inter-particle bending rigidity are not con-
trolled by surface interactions, as usually assumed in colloidal
gels, but instead by the rubber elastic modulus itself. If this
holds true, the spring constant k0 between two particle centers
of mass should be equal to the dense rubber elastic modu-
lus, G′rubber, times the distance between two centers of mass,
here equal to two particle radii. Taking G′rubber ≈0.372+/-
0.006 MPa [34] for the rubber elastic modulus of polyisoprene
chains, a value which can vary depending on rubber proper-
ties, we find k0 ≈ 0.37 Pa m.

From our experimental results, we determine the prefactor
of the power law fitted in Fig. 4 as k0/a = 269 kPa. With
a = 0.5 µm, this provides an estimate for k0 of 0.54 Pa m,
in reasonable agreement with the above estimate from rubber
elastic modulus. This strongly suggests that the surface prop-
erties of the primary particles, covered in this case by proteins
and phospholipids, do not play a major role in the linear me-
chanical properties of NRL gels, unlike what is usually ob-
served in colloidal gels.

It is noteworthy that the scaling of the elastic modulus
with φv holds for the full range of accessible volume frac-
tions, while the fractal description should fail at high φv. In-
deed, the average cluster size at the gel point, Rc, follows
RC = aφ−1/(3−df )

v [16]. For volume fractions above 0.14 (for
the case db = 1.59) or 0.28 (for the case db = 1.79), the clus-
ter radius drops below four particle radii, for which the fractal
description is irrelevant. Still, as shown by others studies fo-
cused on internal dynamics of colloidal gels, the scaling for
G′0 remains valid, and there is no sharp mechanical signature
of the transition from the dilute to the concentrated (φv > 0.1)
regime [35].

Hardening amplitude is volume fraction dependent

Let us now turn to the dependence of hardening on the vol-
ume fraction of rubber particles. As shown in the inset of
Fig. 4, the relative amplitude of hardening, measured as the
ratio between the elastic modulus before rupture G′max and the
modulus at rest G′0, decreases sharply with φv. For the lowest
accessible volume fraction φv = 0.01, where the strain hard-
ening amplitude is maximum, G′max is about 200 times greater
than G′0 (see also Fig. 3). By contrast, for φv ≥ 0.25, no strain
hardening is observed. This limit is in the volume fraction
range previously determined for which the fractal description
does not hold anymore, suggesting that the hardening phe-
nomenon originates from the fractal nature of the particulate
stress-bearing network.

The absolute value of G′max also depends on the particle
volume fraction, with G′maxφ

1.64
v . The value of 1.64 is not

compatible with a behavior dominated by bending interac-
tions, for which ε = 1 and the exponent of φv is given by
(3 + db)/(3 − df). Considering the uncertainty surrounding
the measurement of the exponent (about +/-0.05), a precise
quantification of ε, db and df in hardened materials is diffi-
cult. Nevertheless, this value implies that during hardening,
ε decreases, i.e. that structural reorganizations occurring dur-
ing hardening lead to increasing backbone anisotropy. If we
assume that before rupture, the mechanical response is domi-
nated by bond-stretching, i.e. ε ≈ 0 and db ≈ 1 [24, 36], we
obtain df ≈ 1.7 − 1.8, which constitutes the upper limit for
df , suggesting that the cluster fractal dimension is not signifi-
cantly modified by hardening.

Characterization of the hardening effect in the nonlinear regime

To characterize the nonlinear features of the hardening phe-
nomenon, we now focus on the Fourier components of the
strain response as a function of the imposed stress. As shown
previously in Fig.1, the strain response is distorted during
hardening. In Fig. 5a, the amplitude γk of the harmonics of
the strain response is plotted as a function of the amplitude σ
of the sinusoidal stress input.

As already described above in Fig. 1, the low-stress regime
is characterized by a linear scaling of the strain fundamental
amplitude γ1 with the stress amplitude, γ1 = σ/G′0, where
G′0 is the elastic modulus of the gel at rest (Fig. 5a). Above
the onset of hardening, i.e. for σ > σ0 and γ > γ0, one has
γ ∼ σα with α ≈ 0.3 consistently with the scaling observed
in Fig. 1. In the nonlinear regime, hardening is also charac-
terized by the presence of odd harmonics, the amplitude of
which γk increases with σ. At high stress amplitudes, the har-
monic content converges toward γk/γ1 ∼ k−β with β close to
2 (Fig. 5b).

Not surprisingly, the particle volume fraction affects the
properties of the strain response (Fig. 6a). In particular, the
onset stress for hardening σ0 increases with φv (Fig. 6b), as
already observed in Fig. 3. Figure 6b shows that σ0 ∼ φ3.3

v
i.e. the onset stress follows the same scaling as G′0. In
other words, σ0 is linearly related to G′0. In contrast, the
strain amplitude at the onset of hardening γ0 remains constant,
γ0 ≈ 0.2, for all but the smallest volume fraction (φv = 0.011)
for which the gels withstood a higher deformation before
hardening (Fig. 6c). We conclude that above φv = 0.02, the
parameter that controls the hardening is the strain amplitude.

Deep into the hardening regime, the harmonic content be-
haves as γk/γ1 ∼ k−β for all the volume fractions (inset of
Fig. 6a). We observe a slight increase in the exponent β from
1.9 to 2.1 with φv in Fig. 6d. Unfortunately, non-linear mea-
surements at φv > 0.05 were out of reach in the PMMA Cou-
ette cell since the torque exceeded the limit of the rheometer.
Thus, it is not clear whether the exponent β, and therefore the
shape of the strain response, changes significantly with the
particle volume fraction. Still, φv strongly affects the harden-
ing exponent α which increases with φv as α ∼ φ0.42

v . This
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FIG. 5. Strain-stress relationship for φv = 0.04. (a) Change in strain harmonics γk as a function of the applied stress amplitude σ. The dotted
line is the best linear fit γ1 = σ/G′0 in the linear regime with G′0 = 5 Pa. The dashed line is the best power-law fit in the nonlinear regime
γ1 ∼ σ

α with α = 0.32. (b) Change in the relative intensity of odd harmonics γk as a function of their order k. The dashed line is γk/γ1 ∼ k−2.

means that the gel hardening declines as φv increases. This
is also seen in Fig. 3 where the slope of G′ as a function of
σ decreases with φv. These observations are in stark contrast
with the reversible stress stiffening that characterizes collagen
tissues [21], for which the elastic modulus scales linearly with
the stress, implying that α ≈ 0. In the present NRL gels, a very
low value of α, which also implies that the strain amplitude at
rupture is very close to γ0, is only observed for the weakest
NRL gel at φv = 0.01. For all the other gels, hardening is
observed along a significant range of deformations, typically
from γ0 ≈ 0.2 to γmax ≈ 0.6 − 2.

Discussion

In the following, we use the general framework of fractal
gels to interpret our data and draw a simplified picture of the
structural rearrangements that could lie behind strain harden-
ing. This picture is consistent with our rheological observa-
tions but remains hypothetical in the absence of direct struc-
tural characterization of NRL gels during hardening. It should
therefore be considered as a first step prior to complete system
characterization. As already mentioned above, colloidal gels
can be described as a dense packing of fractal clusters pro-
duced in situ by the fractal aggregation of colloidal particles
(Fig. 7a). They have been extensively studied in the litera-

ture [37, 38]. The present results show that the spectacular
irreversible hardening behavior of NRL gels depends on two
control parameters: the particle volume fraction φv and the
strain amplitude γ.

We propose to describe the changes in the gel structure as a
function of strain in four steps, as illustrated in Fig. 7b:

1. At rest, for γ = 0, the gel is described as a continu-
ous network of rubber particles. The characteristic size is the
cluster size, above which the system appears homogeneous.
Clusters are characterized by a fractal dimension, df , which
is independent of φv, and by their radius, Rc, which decreases
with the volume fraction [39]. A fraction of the particles con-
stituting the cluster is involved in the stress-bearing backbone,
which ensures the stability of the self-supported gel. This
backbone is characterized by a fractal dimension, db, with
db < df . Another fraction of the particles is included in dan-
gling strands that do not support stresses. At very high φv,
clusters are made of a very small number of particles. In such
dense materials, it is likely that there are no dangling strands.
However as φv decreases, Rc increases, and the internal den-
sity of the clusters decreases. Consequently, the proportion
of particles involved in dangling strands might be maximum
in the gels prepared at the lowest volume fraction, and almost
negligible in concentrated gels, for which the fractal theory
does not hold anymore.

2. Under small strain, for γ < 0.2, the response to mechan-



8

FIG. 6. (a) Normalized strain-stress relationships for different particle volume fractions. The black dotted line is σ/σ0 = γ/γ0 where σ0 and
γ0 are the stress and strain amplitudes at the onset of hardening. Colored lines are power-law fits γ ∼ σα in the hardening regime. Inset:
Change in the relative intensity of the odd harmonics γk as a function of their order k. Color codes for the volume fraction. The Fourier series
are computed deep into the nonlinear regime for σ ≈ 100σ0. The dashed line is γk/γ1 ∼ k−β with β = 2. (b) σ0 as function of φv. (c) γ0 as
function of φv. (d) β as function of φv. (e) α as function of φv.

ical shear stress or strain is that of a fractal gel. The elastic
modulus scales with φ3.3

v , a relationship that suggests a clus-
ter fractal dimension below 1.8, characteristic of gels formed
in the diffusion-limited cluster aggregation regime. The me-
chanical response is governed by the resistance to bending of
the interparticle bonds that are included in the cluster back-
bone, i.e. the particles that are involved in the stress-bearing
network. In this regime, strain and stress are linearly related.

3. In the hardening regime, for γ > 0.2, the material op-
poses an increasing resistance to deformation. Hardening is
however not observed for high volume fractions, which sug-
gests that it is associated with rearrangements of the fractal
structure rather than with local modifications of the particles
properties themselves. Our hypothesis is that under shear, lo-
cal displacements gather dangling chains on the backbone. As
contacts between rubber particles lead to irreversible aggrega-
tion [6], the backbone reinforcement is also irreversible. As
the proportion of dangling strands should decrease with φv, so
does the maximum relative amplitude of the hardening phe-
nomenon (inset of Fig. 4). This scenario is compatible with
the results obtained from numerical simulations of colloidal

gels by Colombo et al. [40], which predict that before yield-
ing, strain can induce the formation of new bonds responsi-
ble for material stiffening. For even larger deformations, dan-
gling strands could also interact with a neighboring backbone,
creating a new connection between two adjacent backbones.
These new bridges could be under tension when the overall
material is at rest, but relaxed when the material is returned to
the strain under which they were formed. This would explain
the slight but very reproducible dip in G′ observed during the
last cycles in Fig. 2 for strains corresponding to previous hard-
ening, a behavior that was also reported in recent simulations
of soft gels [41].

4. Lastly, when all the dangling strands are included in
the backbone network, stress-bearing backbones behave as
stretched chains, and further deformation leads to gel fracture.

To summarize, the above mechanism is quite unique and
may be linked to two specificities of rubber particles. First,
the irreversible nature of their interaction is such that when
a dangling strand is captured by a neighboring backbone, it
remains “stuck” to the backbone. Second, the core of NRL
particles is in a rubbery state so that particles can locally in-
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FIG. 7. Structural changes in NRL gels during hardening as suggested from their rheological characterization. (a) NRL gels are formed
by space-filling clusters, whose size Rc decreases with the particle volume fraction φv, but whose fractal dimension df is assumed to remain
constant with φv. (b) In the linear regime, material deformation is locally associated with bending between particles. In the hardening regime,
dangling strands are gradually incorporated into the backbone. At very large deformations, the backbone is stretched until it breaks. (c) The
interparticle potential can be represented by a deep attractive well followed by a long tail: the harmonic regime is probed at small deformations
while large deformations probe the anharmonic part of the potential.

terpenetrate and interparticle bonds can sustain a very large
strain before breaking. We can therefore probe large defor-
mations and access the anharmonic part of the interparticle
potential, leading to the emergence of harmonics in the rheo-
logical response (Fig. 7c). These two specificities are directly
linked to the response of the stress-bearing part of the network
under stress, and not to the fractal flocks interactions. They
are therefore not specific to the general framework that we
choose to describe our system, and would remain valid even if
the local structure were better described by the so-called bond-
bending percolation model [42] or by that of a heterogeneous
glass [43].

CONCLUSIONS

In this study, we investigated the rheological properties of
Natural Rubber Latex gels. We discovered a striking hard-
ening behavior under oscillatory shear. Although strain- and
stress-controlled experiments are equivalent, we found that
strain controls hardening as it appears above a characteristic
strain γ0 ≈ 0.2 independent of the volume fraction of rub-
ber particles. We showed that this strain-hardening displays
two unique features: (i) it is fast and irreversible and (ii) it
occurs on an extended range of strains, from γ0 ≈ 0.2 up to
γ ≈ 0.6 − 2. The relative amplitude of hardening decreases
with the particle volume fraction, and ultrasonic imaging un-
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der oscillatory stress showed it to be homogeneously dis-
tributed in the gel on scales larger than a few tens of microme-
ters. Compared to previous reports of strain hardening in col-
loidal gels [16, 18], the irreversible nature of this behavior in
NRL gels enables precise tuning of the material’s mechanical
properties. We proposed a simplified picture based on a fractal
description of the gel to explain these observations. Our hy-
pothesis is that hardening is associated with the gradual incor-
poration of dangling strands into the stress-bearing backbone.
In NRL gels, the persistence of dangling strands at rest (before
deformation) could be associated with the ability of particles
to partially fuse after a prolonged contact. This would explain
the irreversibility of their aggregation, but would also result
in oriented, non-mobile attractive interactions. Indeed, the
Peclet number associated with bending a single bond can be
written as kT/

(
G′rubbera

3
)
≈ kT/

(
k0a2

)
≈ 10−7 in the present

case. It results that a dangling strand, once formed, should
be extremely rigid and only weakly subjected to Brownian
forces.

Strain hardening/stiffening plays a key role in the mechani-
cal behavior and properties of living cells [44], but it has been
rarely reported in colloidal gels composed of isotropic parti-
cles. As NRL gels are composed of large particles that can
be easily observed by confocal microscopy, and because their
structural reorganization under strain is irreversible, a precise
microstructural characterization of these materials before and
after hardening is now within reach. Thus, NRL gels appear as
a model tunable system for thoroughly investigating the local
features of strain-stiffening in future work. Numerical simu-
lations should also help to confirm the microscopic scenario
for hardening proposed in the present work.
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