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Abstract

In this paper, we propose a transductive bound over the risk of the majority
vote classifier learned with partially labeled data for the multi-class classification.
The bound is obtained by considering the class confusion matrix as an error indi-
cator and it involves the margin distribution of the classifier over each class and a
bound over the risk of the associated Gibbs classifier. When this latter bound is
tight and, the errors of the majority vote classifier per class are concentrated on a
low margin zone; we prove that the bound over the Bayes classifier’ risk is tight.
As an application, we extend the self-learning algorithm to the multi-class case.
The algorithm iteratively assigns pseudo-labels to a subset of unlabeled training
examples that have their associated class margin above a threshold obtained from
the proposed transductive bound. Empirical results on different data sets show the
effectiveness of our approach compared to the same algorithm where the threshold
is fixed manually, to the extension of TSVM to multi-class classification and to a
graph-based semi-supervised algorithm.

1 Introduction

In many real-life applications, the labeling of training examples for learning is costly
and sometimes even not realistic. For example, in medical diagnosis or biological data
analysis, labeling data may require very expensive tests so that only small labeled data
sets are generally available. In many other cases, like web oriented applications, huge
amount of observations arrive sequentially and there is not enough time to label data for
different information needs; while unlabeled data are abundant.

Learning with labeled and unlabeled data, or semi-supervised learning, has been a
subject of growing interest in the machine learning community over the last twenty years
[Chapelle et al., [2010]. In this case, labeled training examples are generally assumed to
be very few, leading to an inefficient supervised model, while unlabeled training examples



contain valuable information about the prediction problem and it is generally expected
that their exploitation leads to an increase of prediction performance.

Considering an input space X C R? and a discrete output space ), we assume avail-
able a set of labeled training examples Z; = {(x;,4;)}\_; € (X x Y)!, identically and
independently distributed (i.i.d.) with respect to a fixed yet unknown probability distri-
bution D over X x ), and a set of unlabeled training examples X;; = {x] éi}ﬁrl SV
supposed to be drawn i.i.d. from the marginal distribution Px(x), over the domain X". If
Xy, is empty, then the problem reduces to supervised learning. The other extreme case
is the situation where Z, is empty and which corresponds to unsupervised learning.

Most studies in semi-supervised learning have focused on the binary classification
problem, whereas just few ones are devoted to the multi-class framework, i.e. |Y| > 2 with
some recent studies considering the learnability of multi-class semi-supervised learning
algorithms under some specific assumptions. For example, Maximov et al.|[2018] proved
the consistency of the Empirical Risk Minimization principle in some cases by bounding
the true risk of the trained classifier. However such bounds are not usable in practice as
they are generally too loose.

In this paper, we propose a transductive bound for the multi-class majority vote
classifier, which to the best of our knowledge, is a first attempt in this direction. The
bound is based on the risk of the associated Gibbs classifier and by considering the class
confusion matrix as an error indicator as proposed in Morvant et al.[[2012]. This bound is
obtained by analytically solving a linear program and it comes out that in the case where
the bound over the risk of the Gibbs classifier is tight and when the Bayes classifier makes
most of its errors on low margin examples, the obtained bound is tight. From this result,
we then propose to automatically find a threshold for which the risk of the majority vote
classifier is the lowest. This finding allows to consider the output of the Bayes classifier,
or its margin, as an indicator of confidence and to extend self-learning algorithms to the
multi-class case. The proposed strategy iteratively learns a Bayes classifier by assigning
at each iteration pseudo-labels to unlabeled examples having their margin above a certain
threshold obtained from the proposed transductive bound.

The paper is organized as follows. In Section [2f we introduce the problem statement
and the proposed framework. In Section [3| we present a bound over the transductive risk
of the multi-class majority vote classifier. In Section [4] we present empirical evidence
showing that the extended self-learning algorithm learned using the proposed bound is
effective compared to the same algorithm where the threshold is fixed manually, to the
extension of TSVM to multi-class classification and to a graph-based semi-supervised
algorithm on difference data sets. Finally, in Section [5| we discuss the outcomes of this
study and give some pointers to further research.

2 Framework and Definitions

In this study, we consider learning algorithms that work in a fixed hypothesis space
H = {h: X — Y} of multi-class classifiers (defined without reference to the training
data). After observing the training set S = Z; U Xy, the task of the learner is then to



choose a posterior distribution @) over H such that the Q-weighted majority vote classifier
(also called Bayes classifier)

BQ(X) = argmeaigc [EhNQ]]-h(x):c} , VxeX, (1)

will have the smallest possible risk on examples of X;,. Together with that, we consider
the associated Gibbs classifier G that for any x € X chooses randomly a classifier h € H
according to ). We accordingly define the transductive error rateof By and G over an
unlabeled set by:

1
Eu(Bq) = - D Uiy (2)
x'eXy
1
EM(GQ) = a Z EhNQ]lh(xl)7éy/, (3)
x'eXy

For an observation x, we further define its unsigned margin my, = (mg(x,c))X, which
measures the confidence in each class of the classifier as

mQ(X7 y) = EhNQ]lh(x):y- (4)

The proposed bound follows a bound on the joint Bayes error rate which given a
vector 8 = (0,)5_, € [0,1]%, is defined as,

1
Eune(Bg) = D Ingeerty Lmg e Bo(x) 26,

x'eXy

where 3’ is the true unknown class label of x’. One of the practical issues that arises
from this result is the possibility to define a set of thresholds 8 for which the bound is
optimal and that we use in a self-learning algorithm by iteratively assigning pseudo-labels
to unlabeled examples having the highest class margin above the corresponding threshold.

However, as we work with multi-class data, the error rate does not describe the dis-
persion of errors regarding each class over all the others. We rather use the confusion
matrix, which provides a richer information. For a classifier h, the transductive confusion
matriz CY = (¢;;); j=q1,..xy2 is defined as follows:

Lo i=j
v Ru(ha%]) Z%]’

where for a classifier h, for each class pair (i,5) € {1,..., K}? s.t. i # j, the transductive
conditional risk Ry is defined by:

. 1
Ru(h%]) = U_ Z ]lh(x/):j]ly’:i7
¢ x'eXy

with u; = ZX,GXM 1,—; is the size of class i € ).



Similarly, the transductive conditional Gibbs risk is defined as

R(GQ,i,j) = EhNQR(h,i,j).

The transductive joint Bayes confusion matriz C%ge = (Cij)ij=(1,... k)2 given a vector
0= (0,5, 6¢cl0,1]¥ is defined as:

0 i =J
Cij = Coy .
! RM/\G(BQaly.]) Z%jv
where the transductive joint Bayes conditional risk Ryne(Bg,1, j) for the class pair (7, j) €
{1,...,K}? s.t. i # j, is defined as follows:

o 1
RLI/\B(-BQ)Zaj) = U_ Z ]lBQ(x’)zj]ly’:i]lmQ(x’,j)29j'

t x'eXy

Thus, the transductive joint Bayes conditional risk counts an example as wrongly clas-
sified, if its true label is ¢ and the majority vote classifier predicts the class j with the
margin mq(x’, j) > 6;. Generally, the majority vote classifier is supposed to make errors
by predicting the label j mostly on examples with a low value of mg(x’, j). Then, if 6,
is high enough, the joint conditional risk computes the probability to make a mistake on
high margin ”confident” observations.
To work with matrices, we use the spectral norm, defined by, for a matrix A of size
n x m:
JAll = sup flAx), = sup 12X
x€ER™ x€R™ ||XH2
[[x[l,=1
It corresponds to the matrix’s largest singular value.
We conclude this section by the following proposition, which links the error rate to
the confusion matrix.

Proposition 1. Let By be the Bayes classifier. Given a vector 6 € [0,1)%, for p :=
{u; /u}E,, we have:

T
ot () o],

3 Transductive Bounds on the risk of the Multi-class
Majority Vote Classifier

In this section we propose a transductive bound for the majority vote classifier in multi-
class setting. The bound is based on the margin distribution as well as a bound of the
transductive conditional Gibbs risk, which we suppose given. First, we give a theorem
that provides a bound for the transductive joint Bayes conditional risk, which leads to
a bound for the transductive conditional risk of the majority vote classifier. Then, a
corollary is derived, proposing upper bounds for the Bayes confusion matrix and the
Bayes error rate. Finally, we propose a setting under which the bound on the conditional
risk of the Bayes classifier becomes tight.



Main Result

Theorem 1. Let Bg be the Q-weighted majority vote classifier. Suppose an upper bound
of the transductive conditional Gibbs risk RS(Gg,i,j) that holds with probability 1 — ¢ is
given. Then for any Q and V6 € (0,1],v0 € [0,1]%, V(i,5) € V?, with probability at least
1 — 6 we have:

Ru(Bosi,j) < int {155’@(0,7) + 2 ((85, ~ M50) J+}, (5)

~v€[0,1]

Ruro(Bovisj) < inf {f,<,§’<><ej,v>+§m<f<5 M<<w>+Mi,<j<ej>>J+}, (©)

v€E8;,1]
where
Ki,j = Ru(GQv 27]) — Eij;

1 .
€ij = w Z lBQ(x’);éj]ly/ZimQ(Xlaj)a
v x'eXy

1
Ii(;l,qz)(t’ S) — u_ Z ]ly i]ltqlmQ(x”j)QzLﬁ
v x'eXy
(<]1,<]2> E {<7 §}27
Z Tyl (e )<t Mo (X', ),
x'eXy

LxJJr =T ]1:E>07

l

From spectral norm properties, the following corollary is easily deduced:

Corollary 1. Let U? (0) be the upper bound for the transductive joint Bayes conditional
risk from Theorem' that holds V(i,7) € Y*,V§ € (0,1],V0 € [0, 1], with probability at
least 1 —6:

v = i {500+t - g el b @

v€[0;,1]

Introduce the confusion matriz UY which (i, 7)-entry is 0, if i = j, and Uf’j(B) otherwise.
We consider the spectral norm. Then, we have:

ICEL I < 1Us |l and [|C5, 11 < [1Ug, I,

where Ok 1s the K-size vector of zeros.
Moreover, we have:

Euno(Bq) < [[(Us)" pll, and Eu(Bo) <||(Us,)" pll,

where p = {u;/u}k,.



In the following proposition, we assume that the classifier makes most of its error on
unlabeled examples with low margin. Then, considering that the margin is an indicator
of confidence, the bound becomes tight.

Proposition 2. For all x' € Xy there exists C' € [0,1] such that for all (i,j) € V?, for
all v > 0:

_Z]IBQX’—jyz]lmng #0:>

X’EX{,{
_E:]IBQ _JylmQXJ >C_§:1 ’LmQX]) (8)
ZX’GXM 7lX’E)(M

Then, with probability at least 1 — § the following inequality holds:

RS (Gg,i,7) — Ru(Gg,i,j)
7 ’

. -C .
}73] - RU(BQ7'Laj) < RU(BQ7Zaj) + (9)

where

o v =P where p := sup {w e {1,.. .,Nj}|b§f§) + 0}.

. <,
o Bl =il {15909 + 1|55, - M50 ).

In the next section, proofs are provided.

Proofs

Proof of Theorem[1 This proof relies on two lemmas. The first one connects the con-
ditional Gibbs risk and the conditional joint Bayes risk. The second one provides an
analytic solution of a linear program.

Lemma 1. Let I'. :={v.| 3% € Xyy : 7. = mq(x',¢)}, where c € Y, and N, := |I'.|. Let
enumerate its elements such that they form an ascending order:

1) AP < S,

(n) ._ 1 .. )
Denote b, := - D oxeXy ]]'BQ(X/):j]ly/:i]lmQ(x’,j):’yj(-m' Then, ¥(i,7) € V2

Nj
Ry(Gg,i,j) :Z w’yj —1—52,], (10)
5
Rure(Bg.i,j) =y b7, (11)
n=k+1

where

(=}



® Sij = Lwexy LBote)ily=ima(X', 1)

. {o if {nhy"” < 6;} =0

max{nh](n) < 6;} otherwise.

Proof. Formula ((10)) is derived through conditioning by the value of the majority vote
classifier.

Formula is get by considering k, the index of the smallest ~ larger than the
threshold 6:

RL{/\Q(BQalaj Z Z ]]‘BQ(X/) ] mo(x!,j)= ,y(n)'
i 1 x e Xy ’
We conclude by definition of bg;-) .
[l

Lemma 2 (Lemma 4 in |Amini et al|[2008]). Let (g;)icq1,..,n} be such that 0 < g1 < go <
- < gn-1 < gn < 1. Consider alsop; >0,i=1,...,N, B>0, ke {l,...,N}. Then,
the optimal solution of the linear program:

N
MaXy.—(q,,...qn) F(q) = maxy, gy Zi:kJrl 4di

Zij\i1 ¢9i < B

gi

will be g* defined as Vi < k: ¢ =0,Vi>k: ¢ =min <pi, LMJ )
+

Now we combine those two lemmas to prove Theorem [I]

First, notice that Eq. is easily derived from Eq. (€] using that M;5(0) = 0.

To prove Eq. @, we consider two cases.

First, V(i, j), VO € [0, 1], when the mistake is maximized, using Lemma , we get:

N;
Rypo(Bq.i,j) = Zb < mm%)zbﬁ), (12)
”v 0457 n=k

with % is equal to 0 when {nm(") < 60;} =0, and max{nhj(") < 0;} otherwise.

Consider the upper bound R2(Gg,i,7) of the Gibbs conditional risk Ry (Gg,i,7) that
holds with probability 1 — 4. Denote K?; = R(Gq,i,j) — &;; and
By = Jl ZX’GXM ]ly/:i]lmQ (/)= We are interested in the following linear program
task:

b(")
b(1)ma)((N ) Z

1,7 7" ’1]

N
st. Vn, 0 < b§3> < BZ-(Z) and Zbﬁz)%(.") < Kf,j' (13)



As Zk<w<n%(w)B( w) = M35y (n)) M5 (9]-) with k& = maX{wh] < t}, we get the

irj
followmg solution of the linear program (13| by using Lemmal with p = max{n|K

M5 (™) + M55 (0;) > 0},

o
S

IN
&

S

B" nelk+1,p),
L (KD - MS(P) + M5(0;) n=p,

J

<

) _
o) =

S 2
S
\Y
s

This formulae is used to rewrite Eq. (12)), as Sl w1 B ( = I (£<) (05,7):
o 1
Rupo(Bayi,5) < 157 (0;,7") + — (K7, — M5(3,") + M5(6)).
7
Consider the function: v — T; () = I(< <)(9],’Y) + %L(ng = M5(v) + Mij(ej))J+’ To

prove the theorem, it remains to check that Vy € [0;,1], T ; (fy](-p)) < T, (). For this,

let’s consider 7](-1”), we{l,...,N;}

If w > p, then
< w
7,57 < 1590;,47) < T (™).

If w < p, then

(") =)

p
n 1 w

=Zb§,f——<w)< — M50 + M56,)

= v

p w—1
- me‘ - Z bw ’Vy Z % big)

n= 1 n=k+1 n=k+1

1 (w) (n),_ ()
_7(10 wa 7 wa%

J n=w

Summing up, we derive for Ryag(Bg,1,j) the upper bound T; ; (Vj(p )), which, in addition,
is the infimum of 7} ; on v € [6;, 1].
O

Proof of Proposition[3. First, let’s show that, V(i,7) € V?,

o 1 1 .
Ry(Bg,t,7) > o Z 1o )= Ly=ilmg(x gy<r + — [ Ky — M5(v") ]+, (14)
v x'eXy ’7
Where Ki,j = RM(GQ, Z,]) — 5i,j and 5i,j = u% Zx’eXu ]lBQ(x/)?gj]ly/:imQ(X/,j)
Denote v* = %(p)' We apply Lemma |l and get that Ry(Gg,i,7) = b” 7] )+

— 1 () _
£ij, where bi,j = Zx’eXu 1, x)=jly=il =) Then, we can erte by, =

mqQ (X/ 5]

8



(Kz}j -y ibg? n)/vj . Since — Y P~ 1bl(7;)7](n) > —M5(y (p)), we deduce a lower
bound for bi’j:
e

1,7 —

1 "
,Y_LKi,j - Mf](’Y )+ (15)
Also, taking into account Lemma , one can notice that Ry(Bg,i,j) =
bgf}) + ui ZX’EXL{ IBox)=jly=ilmy(x',jy<y+- Combining this fact and Eq. we deduce
Eq

Usmg the initial assumptions and following the definition of I, <'1’<2)(t s) we deduce

from Eq. (14 .

P b(”)

n=1 "i,j

Ru(Bq,i,j) = C-15°(0,7") + o L = M5 (7)) (16)

Notice that F?; < IZ»(JS-K)(O,W*) + o+ L(Kf’j - ij(fy*))JJr. Subtracting Eq. from this
inequality we obtain:

. o, 1 " x
~ Ru(Ba,id) < (1= 5D 077) + (L(K;‘J - M50, - K - M50 )J+> ,
which holds with probability 1 — §.
Then, as by definition R,(Gg) > Ry (Gg) holds with probability 1 — §, we obtain:
K} — Kij = Ry(Go.i.j) — Ru(Ga,i,j) = 0. (17)

In addition, since for any non-negative real numbers a,b,m € R™ with b > a, it is true
that [b—m], —[a—m]|, <b—a, we deduce that

(KD = M50M) ||~ Koy = M507)| | < Rl(Ga.ivd) — RulGq.icg).  (18)

+

L Ry(Bg,i,j). Taking into account

Q=

Finally, from Eq. . we derive that I, J< <)(O 7)<
this fact as well as Eq. . we infer Eq. @D
[

Proposition states that if Condition holds, the difference between the conditional
Bayes risk and its upper bound does not exceed an expression that depends on a constant
C. If we assume that the Gibbs conditional risk bound is as tight as possible and the
majority vote classifier makes most of its mistake for the class j on observations with the
low value of mg(x’, j), we obtain that Condition (8) accepts a high value C' (close to 1),
and the bound becomes tight. From theoretical point of view it makes sense to assume
that the majority vote classifier mistakes mostly on low margin region, since if the class
got a relatively high vote from the hypotheses, we expect that it is predicted correctly.



4 Multi-class Self-Learning Algorithm

Algorithm

Pseudo-labelling is considered in this paper to increase the labeled set and improve per-
formances. We introduce the conditional Bayes error rate Ey9(Bg), defined by:

Evnre(Bq)
m(mq(x', k) > 0;)’

Eue(Bg) ==

where m(mq(x', k) > 01) = 3 vex, Imote k=0, and k = Bq(x'), to make a trade-off
between the value of the joint Bayes error rate and the number of pseudo-labeled ex-
amples. The numerator reflects proportions of mistakes on the unlabeled set when the
threshold is equal to 8, whereas the denominator computes the proportions of unlabeled
observations with the margin no less than the threshold for the predicted class. One would
use the bound get in Theorem [I, but two algorithmic drawbacks of the theorem have to
be highlighted. First, the bound depends on the true labels of the observations. Finally,
the theorem assumes that a bound for the Gibbs conditional risk is given. To avoid these
issues, we take into consideration the non-deterministic case, namely, we suppose the pos-
terior distribution Py (y|x) defined over ). Then, we replace the deterministic 1,_; value
by the corresponding probabilistic Py (i|x) one. In practice, Py (y|x) is approximated by
mq(X,y), saying that the confidence get by the margin are used as probabilities. Remark
that if the space describes the problem poorly, the majority vote classifier is not able
to give good margins, and then the pseudo-labelling approach can not provide a high
increase in performance.

Similarly to the self-learning algorithm introduced in |/Amini et al. [2008], in practice,
to find an optimal 6* we perform grid search that is the exhaustive search over the grid of
values within the interval (0,1]. The same algorithm is used for computing the optimal
v* that provides the value of an upper bound for the conditional risk (see Theorem .
In contrast to the self-learning algorithm, the direct grid search in the multi-class setting
is costly (O(SE), where S is the sampling rate of the grid). As

= Eyf)(Ba)
Fuo (o) = azl m{(mq(x', ) 2 0;) AN (Bo(X') = j)}

where Eg/)\o(BQ) = Zfil “ Rune(Bg,1,7), the sum might be minimized term by term,
tuning independently each component of . This replaces the K-dimensional minimiza-
tion task by K tasks of 1-dimensional minimization. Then, the time complexity of the
threshold search is O(K?2S5%u).

The extended strategy denoted by MLSA is described in Algorithm EE]

!The code source of the algorithm can be found at https://github.com/vfeofanov/
trans—-bounds-maj-vote.
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Algorithm 1 Multi-class self-learning algorithm (MLSA)

Input:
labeled data set Z,
Unlabeled observations X;,
Initialisation:
A set of pseudo-labeled instances, Zy < ()
A classifier H trained on Z,
repeat
1. Compute the margin threshold 8* that minimizes the conditional Bayes error
rate:

0" = arg min Eye(Bp).
gee(o,l]K uw( Q)

2. S+ {(xy)|x € Xy; [mo(x',y') > 0y Ay = argmax.cy mg(x', ¢)|}
3. ZM%ZMUS, Xu(—Xu\S

4. Learn a classifier H with the following loss function:

L+ 2y L+ | Zy|

‘C(Ha Zﬁ) +

L(H, Zy)

until X, or S are ()
Output: The final classifier H

Data set  # of labeled examples, |Z,| # of unlabeled examples, |Xy| Dimension, d # of classes, K

Vowel 99 891 10 11
DNA 31 3155 180 3
Pendigits 109 10883 16 10
MNIST 175 69825 900 10
SensIT 49 98479 100 3

Table 1: Characteristics of data sets used in our experiments ordered by the size of the
training set (|S| = |Zz| + [Xul).

Experimental Results

In our experiments, we considered the Random Forest model with 200 trees and the
maximal depth of trees [Breiman, 2001|, denoted by H in Algorithm , as the majority
voted classifier with uniform posterior distribution. In this case, the margin my of an
observation is evaluated by the mean vector of votes that the trees of the forest give to
each class. As the size of the labeled training examples (|Z,|) is small, we did not tune
the hyperparameters of the classifier and left them by their default values.

The proposed MSLA algorithm, with margin thresholds estimated by minimizing the
conditional Bayes error rate, is compared with

e a supervised Random Forest (RF) trained using only labeled examples. The ap-

11



proach is obtained at the initialization step of MSLA and once learned it is directly
applied to predict the class labels of the whole unlabeled set;

e a scikit-learn implementation of the graph based, label propagation |[Pedregosa et al.,
2011] approach (denoted by LP);

e the one-versus-all extension of TSVM [Joachims, |1999] denoted by OVA-TSVM. In
some cases, the convergence time was too long, we stopped learning the model
when the convergence took more than one hour;

e the multi-class extension of the classical self-learning approach (denoted by FSLA)
described in |T1r et al.| [2005] with the margin thresholds fixed to the best threshold
(0.7 for all classes) that we found on the unlabeled set, after testing different values
manually over a predefined set of thresholds in the set {0.1,0.2,...,0.9}.

Data set | Score | RF LP OVA-TSVM FSLAg_o 7 MSLA
Yool ACC | .58324.0261 .5768 %+ .0268 NA 516Y +.0429  .5918 + .0267
owe F1 57164 .0275 568 + .0261 NA 4934% + 0459 5804 + .0298
DA ACC | .6932% + .0721 5383+ 4 .0387 .81254.0386 .5164%+.0899 .7059* 4+ .0826
F1 65' 4+ .1086  .5348% + .0437 .8119 4+ .0375 .3724% + .0959 .6631% + .1177
bondipite | ACC | 86391+£.022 7767V L.0515 .G67V+.0225 .8474'+.0352 .8866 £ .019
& F1 8613+ +.0252  .7564% 4 0687 .6562F +.0213 .8415% + .0424 .8851 + .0198
— ACC | .8647* + .0176 NA NA 79984 + .0587 .9085 + .0182
F1 8633+ + .0193 NA NA 77434 4+ 077 .9086 + .0182
Senall ACC 674 .0291 NA NA 6192 + .0366 .6745 + .0288
F1 654 4 .0448 NA NA 5784 + .0683  .6599 + .0421

Table 2: The result table of the classification performance on different data sets described
in Table [ The performance is computed using two score functions: accuracy and F1.
The sign + shows if the performance is statistically worse than the best result on the level
0.01 of significance. NA indicates the case when the algorithm does not converge.

Experiments are conducted on 5 publicly available data sets [Dheeru and Karra Taniskir
dou, 2017, |Chang and Lin, 2011]. The associated applications are image classification,
with the MNIST and the Pendigits databases of handwritten digits; a signal processing
kind of application with the SensIT data set for vehicle type classification, speech recog-
nition using the Vowel database and finally DNA prediction using the DNA data set. We
use available preprocessed versions [Chang and Lin| 2011] of all data sets, except MNIST,
for which we extracted HOG-features |Dalal and Triggs|, 2005] with the following param-
eters: cells of size (4, 4), blocks of size (5, 5) and the number of orientations was fixed to
4. The main characteristics of these data sets are summarized in Table [l

Each experiment is conducted 20 times, by randomly splitting the labeled and the
unlabeled training sets from the original data sets by keeping fixed their respective size (I

12



and u) at each iteration. Results are evaluated over each unlabeled set using the accuracy
(ACC) and the standard F1 measure (F1) [Baeza-Yates and Ribeiro-Neto| [1999], which is
the harmonic average of precision and recall. Reported performances are averaged over
the 20 trials.

Table [2| summarizes results obtained by RF, FSLA, LP, OVA-TSVM and MSLA. We used
bold face to indicate the highest performance rates and the symbol | indicates that the
performance is significantly worse than the best result, according to Mann-Whitney U
test [Mann and Whitney, 1947] used at the p-value threshold of 0.01. From these results
it comes out that

e compared to the fully supervised approach, RF, unlabeled training data may degrade
performance in some cases. This may be due to the fact that the learning hypotheses
of the learning algorithms are not met regarding the data sets where the decrease
is observed;

e LP and OVA-TSVM did not pass the scale over larger data sets (SensIT and MNIST).

e Self-training approaches are more robust to the large-scale problem and MSLA pro-
vides significantly better results than other approaches on Pendigits, SensIT and
MNIST.

e On DNA, with a very few number of labeled training examples , OVA-TSVM outper-
forms MSLA.

Our analysis of these results is that the self-training algorithm does better pass the scale
but it is extremely sensitive to the choice of the initial classifier and the threshold used
for pseudo-labeling. On DNA the number of labeled examples is too small, leading to a
bad initialization of the first classifier trained over the labeled training set. The poor
estimation of the margin mg(x,y) leads to a bad approximation of the conditional prob-
ability Py (y|x) used in pseudo-labeling. On SensIT, Pendigits and MNIST collections
(especially the two last), the initial RF classifier is efficient, but compared to FSLA, it
comes out that the choice of the threshold for pseudo-labeling is crucial, and that using
the conditional Bayes error rate, the margin of observations are good indicators to find
such efficient thresholds. In the case of MNIST, the increase in performace compared to
RF is about 4% on both the accuracy and the F1 measure.

We also analyze the behavior of the various algorithms for growing initial amounts
of labeled data in the training set. Figure (1] illustrates this by showing the accuracy on
a subsample of 3500 observations on MNIST of RF, FSLAy_~ and MSLA with respect to
the percentage of the labeled training examples. As expected, all performance curves
increase monotonically with respect to the additional labeled data. When there are
sufficient labeled training examples, all algorithms actually converge to the same accuracy
performance, suggesting that the labeled data carries out sufficient information and no
additional information could be extracted from unlabeled examples.

For a low number of labeled training data, the contribution of FSLAy_y7; and MSLA
that use unlabeled data is clearly shown. Even when the initial supervised RF classifier is
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Figure 1: Classification accuracy over a subset of 3500 observations of the MNIST collec-
tion. On the graphs, dots represent the average performance on the unlabeled training
set over 20 random splits.

efficient, an inexact threshold used for pseudo-labeling will lead to an addition of extra
noise, making that the Random Forest trained over the augmented noisy data set becomes
less effective than RF itself.

5 Conclusion

In this paper we proposed a bound over the transductive risk of a multi-class voted
majority classifier. We showed how the bound can be obtained by considering the class
confusion matrix as an error indicator, by involving the margin distribution of the classifier
over each class and a bound over the risk of the associated Gibbs classifier. From our
study, it came out that when the latter bound is tight and the errors of the majority vote
classifier per class are concentrated on a low margin zone, the bound over the risk of the
Bayes classifier is tight. We further showed that this bound can be solved analytically
using a linear program. From this result, we then proposed to extend the self-training
algorithm to the multi-class case by automatically finding a threshold for which the risk
of the majority vote is the lowest. We provided empirical evidence of the extended
algorithm compared to the case where the threshold is fixed manually, to a graph based
semi-supervised approach and to the one-vs-all extension of TSVM. From the numerical
results, it came out that the self-learning algorithm can better pass the scale but it is
highly sensitive to the choice of the initial classifier trained over the labeled training set
and to the threshold upon which unlabeled examples are pseudo-labeled. These results
suggest that, considering the margin is effectively interesting.
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