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ABSTRACT

In the recent past years, innumerable techniques more complex than the others have emerged in computer vision.
They have been applied to many fields and, thanks to the tremendous computational power one has access to
nowadays, have made possible more and more elaborate applications. In this article, we propose a classification
tool, using hand-crafted interpretable (statistical and digital imaging) features, in order to confirm or invalidate
the presence of passengers on skilift vehicles in moutain ranges. More precisely, Linear Discriminant Analysis,
which is a dimensionality reduction alongside classification technique, and its less restrictive variant Quadratic
Discriminant Analysis, are applied. One of the paper’s objectives consists in illustrating the famous law of
parsimony, also known as Occam’s razor, in the sense that the simpler solutions should be considered first and
more complex models should be built afterwards if needed.
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1. INTRODUCTION

Computer vision is widely used nowadays, from quality control of processes or products in industry to human
surveillance and navigation. A digital camera is indeed rather easy and cheap to set up. Further algorithms allow
us to deduce information about the observed scene. Numerous techniques have been developed throughout the
years in order to provide more and more accurate results. However, it naturally implies an increase in complexity.

A question we can ask ourselves is the next: does a gain in assessment justify some raise in complexity? In this
paper, we illustrate Occam’s razor (or law of parsimony) which can be summarized as following: simpler theories
should be preferred to more complex ones, not because they are more realistic or give better understanding, but
because they can be tested in an easy manner.

We apply this idea to mountain ranges and more specifically to the detection of passengers on skilift vehicles.
We propose a simple machine learning process, namely linear classification, and compare it to a more evolved
technique which makes use of deep learning. The results are naturally different but have to be compared with
respect to the required resources.

The remainder of this article is organized as follows: section 2 explains the context of our application. The
proposed method is detailed in section 3 and results are given in section 4.

2. CONTEXT

Ensuring security in mountain ranges has become a concerning and challenging task for the last decades. Most
of the accidents in this field are indeed mainly due to human behaviour. It is specifically the case for skilifts:
people often forget to lower the security railing, the chair (generally referred to as vehicle) can be overcharged,
that means it hosts more persons than the number of available seats, a passenger loses one of his/her ski, etc.
All those cases can lead to a hazardous situation.
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Figure 1: Variability demonstrated through 3 images taken from each of 4 different skilifts (top-left, top-right,
bottom-left and bottom-right). Blur is intentional for privacy reasons.

To prevent accidents, a computer vision system has been developed by a French company from Grenoble in
the Alps: a camera, positioned around the first skilift pylon, monitors each vehicle departure, analyzes several
features of the scene (i.e. a sequence of 30 to 100 frames) and concludes to a dangerous or a safe situation with
a certain reliability. An audible alarm is triggered whenever such a sequence is detected: that way, the skilift
operator is aware that a potential danger can occur and thus pays more attention, while the passengers secure
the vehicle (put the safety rail down for instance).

One of the main scene features obviously is the presence of passengers: as a matter of fact, if the vehicle
does not transport any skier, further post-processing is not needed. This paper provides a simple albeit effec-
tive method which aims at establishing whether the chair is occupied or not. We show this classification can
be achieved without implementing complex and computationally expensive techniques such as deep learning
approaches.

3. PROPOSED METHOD

3.1 Details on the dataset

As explained in section 2, a digital Red-Green-Blue camera observes the boarding from the first pylon of the
skilift. Examples of camera frames are given in figure 1: it depicts 3 images before desaturation taken at various
times for each of 4 skilifts. One can clearly notice how difficult our problem is: the different variabilities appear,
either the intra-skilift ones (weather, ligthning, passengers, season, etc) or the ones highlighting the differences
between all skilifts (vehicle size, skilift geometry, front or back view, etc).

The dataset is divided into 19 skilifts in 3 different resorts. The names are kept secret for privacy reasons.
Table 1 summarizes the dataset. One can notice how unbalanced it is: the number of available images are
oscillating between 10k to 140k and the percentage of each class can be quite different from 50%.

3.2 Linear Discriminant Analysis

The proposed method makes use of Fisher’s famous Linear Discriminant Analysis (LDA).1 Its different steps are
summarized here.

Let us first consider a set of N examples {(x1, y1), . . . , (xN , yN )}, where xj is the d-dimensional feature
vector and yj its associated label, i.e. the class xj belongs to. We consider a C classes problem. Each class
i = 1 . . . C contains Ni data points. The mean of the whole dataset is µ.

In real terms, the Linear Discriminant Analysis can be broken down into six steps.



Table 1: Details on the dataset. The first column is the identifier of each skilift. n images represents the number
of available images and n empty images the number of images with empty vehicles. The same information is
given as a percentage of n images in the last column.

Skilift n images n empty images % empty

Skilift 1 87143 53735 61.7
Skilift 2 11161 3032 27.2
Skilift 3 14330 7575 52.9
Skilift 4 22315 12953 58.1
Skilift 5 36493 17567 48.1
Skilift 6 33803 4792 14.2
Skilift 7 139058 61324 44.1
Skilift 8 102605 58293 56.8
Skilift 9 20718 10574 51.0
Skilift 10 39596 23329 58.9
Skilift 11 29957 9078 30.3
Skilift 12 9862 7146 72.5
Skilift 13 97572 56770 58.2
Skilift 14 93357 40646 43.5
Skilift 15 26669 22688 85.1
Skilift 16 100492 86811 86.4
Skilift 17 17399 10207 58.7
Skilift 18 67771 42636 62.9
Skilift 19 25013 19129 76.5

1. For each class i = 1 . . . C, compute the mean vector µi ∈ Rd and the scatter matrix

Si =
∑

xj s.t. yj=i

(xj − µi)(xj − µi)
T (1)

2. Compute the within-class scatter matrix

Sw =

C∑
i=1

Si (2)

3. Compute the between-class scatter matrix

Sb =

C∑
i=1

Ni(µ− µi)(µ− µi)
T (3)

4. Obtain the eigenvalues λ and eigenvectors v of the matrix S−1
w Sb. This operation aims at determining the

axis, represented by the eigenvectors v, which lead to the minimum intra-class variance, that means how
gathered the data points of each class are, and the maximum inter-class variance, i.e. how far each class
lies from one another.

5. Sort the eigenvalues in descending order and keep the first k corresponding eigenvectors in a matrix P .
The choice of k is usually motivated by the explained variance ratio.

6. The matrix P , of size d × k, allows to project the original d-dimensional data onto a reduced space of
dimension k ≤ d.
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(a) The data points which belong to class 0 are represented by
red crosses, while the ones from class 1 are depicted with blue
circles. The axis plotted in black is the Linear Discriminant
Analysis output.
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(b) Projection of the original bidimensional data points onto
unidimensional axis. The two classes are subsequently easily
separable.

Figure 2: Example of a Linear Discriminant Analysis applied to a bidimensional dataset with 2 classes.

Eventually, the computed projection allows the best discrimination between data from different classes.The
whole process is illustrated on a trivial example in figure 2. The bidimensional dataset, made up of 2 classes,
can be separated by the projection onto the LDA axis, depicted in black in both subfigures. To sum up, LDA
consists in dimensionality reduction alongside classification.

3.3 Chosen features

The main point when applying any machine learning method is the choice of the variables (or features). In this
paper, after converting the input color images (like those depicted in figure 1) to gray levels, the idea is to mix
statistical indicators and image processing metrics. Thus, considering an image I = (Iij) (i = 1 . . . h, j = 1 . . . w),
the chosen features are:

• Mean

µ =
1

hw

h∑
i=1

w∑
j=1

Iij (4)

• Maximum
max = max

i=1...h,j=1...w
Iij (5)

• Minimum
min = min

i=1...h,j=1...w
Iij (6)

• Standard-deviation

σ =
1

hw

h∑
i=1

w∑
j=1

(Iij − µ)2 (7)



• Skewness

sk =
1

hw

h∑
i=1

w∑
j=1

(Iij − µ
σ

)3
(8)

• Kurtosis

kt =
1

hw

h∑
i=1

w∑
j=1

(Iij − µ
σ

)4
(9)

• Michelson contrast (or visibility)2

c =
max−min
max+min

(10)

• Blur level3

• Number of connected components

• Contours variance

• Contours length

4. EXPERIMENTS

This section describes the conducted experiments and gives results.

As explained in subsection 3.1, many variabilities affect the content of the images. In order to thwart them,
at least the inter-skilift ones, we decided to work on each skilift independently and to build different models.

For each skilift, we proceed as following. The images are divided into two subsets of equivalent size, each
of those has the same empty/non-empty ratio as the whole skilift dataset. This way one guarantees that the
learned model is representative of every kind of situation. The aforementioned model is trained on the first part
then tested on the second.

4.1 Metrics

In order to assess the quality of the model, as we measure binary classification results, we naturally make use
of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) counters. Those are
reminded in table 2. For instance, FN represents the number of data points which are predicted as members of
class 0 while actually belonging to class 1.

Table 2: Definition of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)
counters.

0 1 Groundtruth
0 TN FN
1 FP TP

Prediction

Consequently, the metrics used are Precision, Accuracy, Recall and F-measure:

Precision =
TP

TP + FP
(11)

Accuracy =
TN + TP

TP + TN + FP + FN
(12)

Recall =
TP

TP + FN
(13)

F -measure =
2 . P recision .Recall

Precision+Recall
(14)



The F-measure is in fact the harmonic mean between Precision and Recall. This criterion is needed and
meaningful in our case as the classes are unbalanced. Class 1 represents images with empty vehicles while images
with passengers belong to class 0.

4.2 Results

Table 3 presents an excerpt of the results obtained for the 19 different chairlifts. The whole process is repeated 30
times for each skilift, with the train and test subsets chosen randomly at each iteration, the mean and standard
deviation are displayed for each of the aforementioned metrics. The last row of the table shows the averaged
Precision, Recall, Accuracy and F-measure over the whole dataset.

Table 3: Linear Discriminant Analysis applied to skilift images. Precision, recall, accuracy and F-measure are
given for each skilift (mean and standard-deviation, as the process is repeated 30 times). The last row gives the
average measures over the whole dataset.

Skilift Precision Recall Accuracy F-measure

Skilift 1 0.805 ± 0.025 0.832 ± 0.013 0.839 ± 0.009 0.818 ± 0.013
Skilift 2 0.8 ± 0.016 0.82 ± 0.018 0.781 ± 0.011 0.81 ± 0.01
Skilift 3 0.857 ± 0.003 0.968 ± 0.014 0.835 ± 0.009 0.909 ± 0.006
Skilift 4 0.737 ± 0.019 0.755 ± 0.036 0.737 ± 0.015 0.745 ± 0.018
Skilift 5 0.677 ± 0.011 0.813 ± 0.025 0.661 ± 0.013 0.739 ± 0.012
Skilift 6 0.804 ± 0.025 0.732 ± 0.022 0.864 ± 0.008 0.766 ± 0.014
Skilift 7 0.878 ± 0.004 0.986 ± 0.004 0.869 ± 0.004 0.929 ± 0.002
Skilift 8 0.736 ± 0.011 0.83 ± 0.015 0.712 ± 0.007 0.78 ± 0.006
Skilift 9 0.944 ± 0.011 0.982 ± 0.007 0.955 ± 0.006 0.962 ± 0.005
Skilift 10 0.725 ± 0.012 0.821 ± 0.018 0.692 ± 0.012 0.77 ± 0.012
Skilift 11 0.841 ± 0.029 0.829 ± 0.024 0.91 ± 0.008 0.834 ± 0.013
Skilift 12 0.943 ± 0.018 0.985 ± 0.019 0.946 ± 0.017 0.963 ± 0.012
Skilift 13 0.894 ± 0.021 0.933 ± 0.013 0.906 ± 0.012 0.913 ± 0.01
Skilift 14 0.767 ± 0.013 0.869 ± 0.02 0.77 ± 0.008 0.814 ± 0.007
Skilift 15 0.753 ± 0.01 0.809 ± 0.018 0.734 ± 0.007 0.779 ± 0.007
Skilift 16 0.928 ± 0.015 0.944 ± 0.009 0.901 ± 0.013 0.936 ± 0.008
Skilift 17 0.893 ± 0.014 0.976 ± 0.007 0.932 ± 0.008 0.933 ± 0.007
Skilift 18 0.886 ± 0.034 0.919 ± 0.025 0.971 ± 0.006 0.902 ± 0.02
Skilift 19 0.829 ± 0.01 0.824 ± 0.011 0.847 ± 0.005 0.826 ± 0.006

Average (Ours) 0.822 0.863 0.831 0.841

4.3 Improving results

The linear classification detailed in this paper can also be approached from a probabilistic point of view. One
can indeed consider the probabilities of a new example x belonging to class 0 p(x|y = 0) and class 1 p(x|y = 1).
These probabilities are subsequently modeled by multivariate normal distributions N (µ0; Σ0) and N (µ1; Σ1),
where µj and Σj respectively are the mean and covariance matrix of all data points that belongs to class j.



Thus, comparing these values leads to:

p(x|y = 0)
1

≶
0
p(x|y = 1)

⇐⇒ 1

(2π)d/2|Σ0|1/2
exp (−1

2
(x− µ0)TΣ−1

0 (x− µ0))
1

≶
0

1

(2π)d/2|Σ1|1/2
exp (−1

2
(x− µ1)TΣ−1

1 (x− µ1))

⇐⇒ −1

2
ln |Σ0| −

1

2
(x− µ0)TΣ−1

0 (x− µ0)
1

≶
0
−1

2
ln |Σ1| −

1

2
(x− µ1)TΣ−1

1 (x− µ1)

⇐⇒ ln |Σ0|+ (x− µ0)TΣ−1
0 (x− µ0)

0

≶
1

ln |Σ1|+ (x− µ1)TΣ−1
1 (x− µ1)

(15)

For enhancing further processing, the Linear Discriminant Analysis makes use of the homoscedasticity hy-
pothesis, that means the covariance matrices are assumed to be equal (Σ0 = Σ1 = Σ). Applying this assumption
to equation 15, one can derive:

xTΣ−1(µ0 − µ1)
1
≶
0

1

2
(µT

0 Σ−1µ0 − µT
1 Σ−1µ1) (16)

We can notice how equation 16 depends linearly on x, hence the LDA name. However, this homoscedasticity
assumption is not needed: we then refer to this method (see equation 15) as Quadratic Discriminant Analysis
(QDA).4 Therefore, for our application, we combine Linear and Quadratic Discriminant Analyzes. Results are
given in table 4. Furthermore, we display in the last row the scores obtained by deep learning techniques.5

Table 4: Averaged metrics over the whole dataset when LDA only is applied and when LDA is combined with
QDA. One can see the improvement brought by the use of both methods. The last row also gives the average
measures over the whole dataset for the deep learning approach.5

Precision Recall Accuracy F-measure
Average (LDA only) 0.822 0.863 0.831 0.841

Average (LDA + QDA) 0.840 0.881 0.846 0.859
Average5 0.946 0.889 0.987 0.917

Obviously, the results produced by our linear classification do not compete with the ones obtained with
neural networks. However they have to be put in contrast to the complexity of the model (more than 20 million
parameters for5) and the duration of the training phase (4 to 5 hours versus less than an hour in our case).

5. CONCLUSION & PERSPECTIVES

We presented in this paper a classification tool that, applied to skilift images, allows to distinguish between
the ones representing empty vehicles and the ones with passengers onboard. We deliberately chose one of the
simplest model available, e.g. Linear Discriminant Analysis. Although not ideal, the results are satisfactory,
especially when considering the simplicity and the speed of the model and the fact that interpretable features
are used.

Perspectives are numerous in order to improve our results. First, it is crucial to investigate other features.
One can think about spatial ones such as Signal-to-Noise Ratio, Total Variation, local contrast, histogram (gray
level and color). It can also be interesting to consider the frequential content of each image (using Gabor filters
for instance). Another perspective would be the work on local patches instead of considering the image as whole
as the emptiness decision can be enhanced when looking at the heads or feet of the passengers. Finally, the
results can be improved by making use of more elaborate classification tools such as Support Vector Machines6

or Random Forests.7
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