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We consider a 1-D linear transport equation on the interval (0, L), with an internal scalar control. We prove that if the system is controllable in a periodic Sobolev space of order greater than 1, then the system can be stabilized in finite time, and we give an explicit feedback law.

Introduction

We study the linear 1-D hyperbolic equation

y t + y x + a(x)y = u(t) φ(x), x ∈ [0, L], y(t, 0) = y(t, L), ∀t ≥ 0, (1) 
where a is continuous, real-valued, φ is a given real-valued function of space, and at time t, y(t, •) is the state and u(t) is the control. As in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF], the system can be transformed into

α t + α x + µα = u(t)ϕ(x), x ∈ [0, L],
α(t, 0) = α(t, L), ∀t ≥ 0,

through the state transformation α(t, x) := e x 0 a(s)ds-µx y(t, x),

where µ = L 0 a(s)ds, and with ϕ(x) := e

x 0 a(s)ds-µx φ(x), so that we focus on systems of the form [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] in this article. Hyperbolic systems with an internal control of this form model a variety of physical systems: let us cite the water tank system (introduced in [START_REF] Dubois | Motion planning and nonlinear simulations for a tank containing a fluid[END_REF] and further studied in [START_REF] Coron | Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF][START_REF] Petit | Dynamics and solutions to some control problems for water-tank systems[END_REF]), which is modelled by Saint-Venant equations with boundary conditions analog to our periodic boundary conditions, and the plug-flow reactor system, where the control is the temperature of the reactor, and there is a given input at the boundary (see [START_REF] Orlov | Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional systems with application to chemical tubular reactor[END_REF][START_REF] Pitarch | Distributed nonlinear control of a plugflow reactor under saturation[END_REF]).
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Notations and definitions

We note 2 the space of summable square series 2 (Z, C). To simplify the notations, we will note L 2 the space L 2 (0, L) of complex-valued L 2 functions on the interval (0, L), with its hermitian product

f, g = L 0 f (x)g(x)dx, ∀f, g ∈ L 2 , (3) 
and the associated norm • . Functions of L 2 can also be seen as L-periodic functions on R, by the usual L-periodic extension: in this article, for any f ∈ L 2 we will also note f its L-periodic extension on R.

We also use the following notation

e n (x) = 1 √ L e 2iπ L nx , ∀n ∈ Z, (4) 
the usual Hilbert basis for L 2 . For a function f ∈ L 2 , we will note (f n ) n∈Z ∈ 2 its coefficients in this basis:

f = n∈Z f n e n .
Note that with this notation, we have

f = n∈Z f -n e n ,
so that, in particular, if f is real-valued:

f -n = f n , ∀n ∈ Z.
We will use the following definition of the convolution product on L-periodic functions:

f g = n∈Z f n g n e n = L 0 f (s)g(• -s)ds ∈ L 2 , ∀f, g ∈ L 2 , (5) 
where g(x -s) should be understood as the value taken in x -s by the L-periodic extension of g.

Let us now note E the space of finite linear combinations of the (e n ) n∈Z . Then, any sequence (f n ) n∈Z defines an element f of E :

e n , f = f n , ∀n ∈ Z. (6) 
On this space of linear forms, we can extend our previous definition of convolution:

e n , f g = f n g n (7) 
derivation can be defined by duality from ( 6):

f = 2iπn L f n n∈Z , ∀f ∈ E . ( 8 
)
We also define the following spaces:

Definition 1.1. Let m ∈ N.
We note H m the usual Sobolev spaces on the interval (0, L), equipped with the Hermitian product

f, g m = L 0 f ḡ + ∂ m f ∂ m g, ∀f, g ∈ H m ,
and the associated norm • m .

For m ≥ 1 we also define H m (pw) the space of piecewise H m functions, that is, f ∈ H m (pw) if there exists a finite number d of points (σ j ) 1≤j≤d ∈ [0, L] such that, noting σ 0 := 0 and σ d+1 := L, f is H m on every [σ j , σ j+1 ] for 0 ≤ j ≤ d. This space can be equipped with the norm

f m,pw := d j=0 f |[σj ,σj+1] H m (σj ,σj+1) . (9) 
For s > 0, we also define the periodic Sobolev space H s per as the subspace of

L 2 functions f = n∈Z f n e n such that n∈Z 1 + 2iπn L 2s |f n | 2 < ∞.
Note that [START_REF] Coron | Rapid stabilization of a linearized bilinear 1-D Schrödinger equation[END_REF] does not depend on the choice of a suitable partition (σ j ), so • m,pw is well-defined. Also, H s per is a Hilbert space, equipped with the Hermitian product

f, g s = n∈Z 1 + 2iπn L 2s f n g n , ∀f, g ∈ H s per ,
and the associated norm • s , as well as the Hilbert basis

(e s n ) :=   e n 1 + 2iπn L 2s   .
Finally, for m ∈ N, H m per is a closed subspace of H m , with the same scalar product and norm, thanks to the Parseval identity. Moreover,

H m per = {f ∈ H m , f (i) (0) = f (i) (L), ∀i ∈ {0, • • • , m -1}} . (10) 

Main result

To stabilize (2), we will be considering linear feedbacks, that is, formally,

α(t), F = n∈Z F n α n (t) = L 0 F (s)α(s)ds
where F ∈ E and (F n ) n∈Z ∈ C Z are its Fourier coefficients, and F is "real-valued":

F -n = F n , ∀n ∈ Z.
In fact, the integral notation will appear as purely formal, as the (F n ) n∈Z will have a prescribed growth, so that F / ∈ L 2 . The associated closed-loop system now writes

α t + α x + µα = α(t), F ϕ(x), x ∈ [0, L], α(t, 0) = α(t, L), ∀t ≥ 0. ( 11 
)
This is a linear transport equation, which we seek to stabilize with an internal, scalar feedback, given by a realvalued feedback law. In [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF], we proved the following theorem for system (2) when it is controllable:

Theorem 1.1 (Rapid stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ H m (pw) ∩ H m-1 per such that c 1 + 2iπn L 2m ≤ |ϕ n | ≤ C 1 + 2iπn L 2m , ∀n ∈ Z, (12) 
where c, C > 0. Then, for every λ ≥ 0 there exists a stationary feedback law F λ such that for all initial data α 0 ∈ H m per the closed-loop system (11) has a solution α(t) ∈ H m per which satisfies

α(t) m ≤ C c 2 e (µ+λ)L e -λt α 0 m , ∀t ≥ 0. ( 13 
)
The growth condition [START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF] is equivalent to the exact controllability of (2) (see [START_REF] Russell | Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems[END_REF]Equation (2.19) and pages 199-200] where the author uses the moments method). In particular, one can see that if c (resp. C) is the largest (resp. smallest) constant such that (12) holds, then the constant in [START_REF] Coron | Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation[END_REF], obtained thanks to the constructive proof in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF], can be critical in some cases. Now, for λ > 0, the corresponding feedback law obtained in [40, Section 2.3] using the backstepping method is the linear form F λ-µ ∈ E defined by

F λ-µ n := - K(λ -µ) ϕ n , ∀n ∈ Z, (14) 
where

K(λ -µ) := 2 L 1 -e -(λ-µ)L 1 + e -(λ-µ)L ----→ λ→∞ 2 L , (15) 
so that

F λ E ----→ λ→∞ F ∞ (16) 
where

F ∞ n := - 2 ϕ n L , ∀n ∈ Z. (17) 
Moreover, when λ → ∞, the stability estimate in Theorem 1.1 becomes, for t > L, α(t) m = 0. This would suggest that taking the limit feedback F ∞ could result in finite-time stabilization of (2). This is indeed the case, and in this article we will prove the following theorem:

Theorem 1.2 (Finite-time stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ H m (pw) ∩ H m-1 per , satisfying (12 
) for some c, C > 0. Then, if the feedback law is defined by [START_REF] Hayat | Exponential stability of general 1-D quasilinear systems with source terms for the C 1 norm under boundary conditions[END_REF], for any initial data α 0 ∈ H m per the corresponding closed-loop system (11) has a solution α(t) which satisfies α(t) m = 0, ∀t ≥ L.

Related results

To investigate the stabilization of infinite-dimensional systems, there are three main types of approaches: the Gramian method (see for example [START_REF] Vest | Rapid stabilization in a semigroup framework[END_REF][START_REF] Manuel | Rapid exponential feedback stabilization with unbounded control operators[END_REF][START_REF] Komornik | Rapid boundary stabilization of linear distributed systems[END_REF]), Lyapunov functions (see for example [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], the book [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF], and the recent results in [START_REF] Hayat | Exponential stability of general 1-D quasilinear systems with source terms for the C 1 norm under boundary conditions[END_REF][START_REF] Hayat | On boundary stability of inhomogeneous 2 x 2 1-D hyperbolic systems for the C 1 norm[END_REF], which study the boundary stabilization of hyperbolic systems), and the backstepping method. The latter is derived from a method in finite dimension, also called backstepping, used to stabilize stabilizable systems with an added chain of integrators (see [START_REF] Krstic | Kokotovic, and Ioannis Kanellakopoulos[END_REF][START_REF] Coron | Control and nonlinearity[END_REF][START_REF] Sontag | Mathematical control theory[END_REF] for an overview of the finite-dimensional case, and [START_REF] Coron | Stabilization of a rotating body beam without damping[END_REF] or [START_REF] Wei | Backstepping boundary control of Burgers' equation with actuator dynamics[END_REF] for applications to partial differential equations). Another way of applying this approach to partial differential equations was then pioneered and developed in [START_REF] Balogh | Infinite Dimensional Backstepping-Style Feedback Transformations for a Heat Equation with an Arbitrary Level of Instability[END_REF] and [START_REF] Dejan | Backstepping in infinite dimension for a class of parabolic distributed parameter systems[END_REF]. This new form of backstepping consisted in mapping the system to a stable target system, using a Volterra transformation of the second kind (see [START_REF] Krstić | Boundary control of PDEs[END_REF] for a comprehensive introduction to the method):

f (t, x) → f (t, x) - x 0 k(x, y)f (t, y)dy.
This was used to prove many results on the boundary stabilization of partial differential equations (see for example [START_REF] Krstić | Output-feedback stabilization of an unstable wave equation[END_REF][START_REF] Smyshlyaev | Boundary stabilization of a 1-D wave equation with in-domain antidamping[END_REF][START_REF] Xiang | Null controllability of a linearized Kortewegde Vries equation by backstepping approach[END_REF][START_REF] Xiang | Small-time local stabilization for a Kortewegde Vries equation[END_REF][START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF], and also [2, chapter 7]).

In some cases, the method was used to obtain stabilization with an internal feedback (see [START_REF] Tsubakino | Backstepping control for parabolic pdes with in-domain actuation[END_REF][START_REF] Woittennek | Backstepping design for parabolic systems with in-domain actuation and Robin boundary conditions[END_REF][START_REF] Yu | Backstepping synthesis for feedback control of first-order hyperbolic PDEs with spatial-temporal actuation[END_REF]). We point out that in the latter reference, a system resembling (1) is studied, which leads to finite-time stabilization. However, several hypotheses are made on the space component of the controller so that a Volterra transformation of the second kind can be successfully applied to the system, whereas in this article and in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF], we simply assume the exact controllability of the system.

Another recent development of the backstepping method is the use of Fredholm transformations:

f (t, x) → L 0 k(x, y)f (t, y)dy,
to map the control system to a stable target system (see for example [START_REF] Coron | Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation[END_REF][START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF][START_REF] Coron | Stabilization and controllability of first-order integro-differential hyperbolic equations[END_REF][START_REF] Coron | Finitetime boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF] for boundary stabilization problems, [START_REF] Coron | Rapid stabilization of a linearized bilinear 1-D Schrödinger equation[END_REF] for an internal stabilization problem). These are more general than Volterra transformation of the second kind, but one has to check that the transformation under consideration is actually invertible, whereas Volterra transformations of the second kind are always invertible if the kernel k has enough regularity.

Because backstepping provides explicit feedback laws, it has helped prove null-controllability or small-time stabilization (stabilization in an arbitrarily small time) results for some systems: see [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF] for the heat equation, and [START_REF] Xiang | Small-time local stabilization for a Kortewegde Vries equation[END_REF] for the Korteweg-de Vries equation. In this article, we use the explicit feedback laws obtained by the backstepping method in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF] to design an explicit stationary feedback law that achieves finite-time stabilization.

Structure of the article

In Section 2, we derive an expression for the exponentially stable semigroup corresponding to the explicit feedback laws obtained in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF] for exponential stabilization. Then, in Section 3, we study the semigroup obtained when λ → ∞. In particular, we derive its infinitesimal generator and prove that it corresponds to a closed-loop system which goes to 0 in finite time, which yields a feedback law achieving stabilization in finite time. Finally, Section 4 is devoted to some comments on the result, and on further questions.

The exponentially stable semigroup

We recall some specifics of Theorem 1.1, which can be found in more detail in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF].

Backstepping transformation

To prove Theorem 1.1, the backstepping method was used. This method consists in mapping our system into a stable target system, here

z t + z x + λ z = 0, x ∈ (0, L), z(t, 0) = z(t, L), t ≥ 0, (18) 
with λ > 0. To find an invertible transformation that does this, the idea is to write it as a Fredholm operator:

T : α(t, x) → L 0 k(x, y)α(t, y)dy
so that the mapping condition becomes a partial differential equation in k (the kernel equation). This equation contains non-local terms, which are resolved by adding a natural constraint to the kernel equation:

L 0 k(x, y)ϕ(y)dy = ϕ(x), ∀x ∈ [0, L], (19) 
which turns the non-local terms (left hand side) into local terms (right hand side). This constraint is sometimes called the T B = B condition (see [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF][START_REF] Coron | Rapid stabilization of a linearized bilinear 1-D Schrödinger equation[END_REF]).

From this kernel equation, conditions on F for the invertibility of T can be derived. Then, using a weak version of ( 19) condition, a suitable feedback is computed, so that a candidate for the backstepping transformation can be derived:

T λ α = n∈Z α n F λ n Λ λ -n ϕ, ∀α ∈ H m per , (20) 
where λ := λ -µ, F λ n is defined by ( 14), and

Λ λ n (x) : = √ L 1 -e -λL e -λnx = Λ(x)e -n (x), ∀n ∈ Z, ∀x ∈ [0, L), (21) 
where

λ n = λ + 2iπn L , ∀n ∈ Z, (22) 
and where Λ is the L-periodic function defined by

Λ(x) = L 1 -e -λL e -λx , ∀x ∈ [0, L).

Well-posedness of the closed-loop system

Now that a candidate for the backstepping transformation has been determined, it must be proved that it is indeed a backstepping transformation, and that the closedloop with the feedback defined above is well-posed. We first define the domains

D λ m := {α ∈ τ ϕ (H m+1 (pw) ) ∩ H m per , -α x -µα + α, F λ ϕ ∈ H m per (23)
where τ ϕ is the diagonal operator defined by the eigenvalues

τ ϕ n : = 1 √ L d j=1 e -2iπ L nσj (∂ m-1 ϕ(σ - j ) -∂ m-1 ϕ(σ + j )) + ∂ m-1 ϕ(L) -∂ m-1 ϕ(0) , ∀n ∈ Z.
In [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF], we investigate the regularity of the feedback law, using the controllability condition [START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF]. This helps to prove that the corresponding closed-loop operator

A + BK := -∂ x -µI + •, F λ ϕ
is densely defined and closed. Finally, to check that the mapping property between systems (11) and ( 18) is verified, one proves the operator equality

T λ (-∂ x + •, F λ ϕ)α = (-∂ x -λI)T λ α in H m per , ∀α ∈ D λ m . (24) 
This operator equality implies that the unbounded operator A + BK is a dense restriction of the infinitesimal generator of an exponentially stable semigroup S λ (t). Now, the basic idea is that for a given initial condition α 0 , for each feedback F λ one has a trajectory of the closedloop system

α λ t + α λ x + µα λ = α λ (t), F λ ϕ(x) (25) 
and one hopes that the α λ converge in some sense towards a trajectory α ∞ , which should satisfy the closed-loop equation

α ∞ t + α ∞ x + µα ∞ = α ∞ (t), F ∞ ϕ(x). (26) 
However, one can write equation ( 25) only for α 0 ∈ D λ m , and the to use this equation to study the convergence of the α λ , one would need α ∈ λ>0 D λ m . This is too restrictive since we would like a statement for α 0 ∈ H m per . Thus, rather than consider the equations ( 25), we will work in the more general framework of semigroups.

Expression of the semigroup

In [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF], an expression of the semigroup S λ is given using the transformation T λ . Here, to study what happens when λ → ∞, we need to expand that expression.

First, we derive from ( 20) and ( 21) the following expression for the backstepping transformation:

T λ α = ϕ Λ(α F λ ) , ∀α ∈ H m per , (27) 
where F λ ∈ E is defined by:

e n , F λ = F λ n , n ∈ Z.
Now, define the following operators:

C ϕ f = ϕ f ∈ H m per , ∀f ∈ L 2 , C F λ f = F λ f ∈ L 2 , ∀f ∈ H m per , M Λ f = Λf, ∀f ∈ L 2 .
Then, by definition of F λ , it follows that

C ϕ • C F λ = -K(λ)Id H m per , C F λ • C ϕ = -K(λ)Id L 2 , M Λ • M 1 Λ = Id L 2 , ( 28 
)
where K is defined by [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. Moreover, with these notations, we have

T λ = C ϕ • M Λ • C F λ (29) 
hence

(T λ ) -1 = 1 K(λ) 2 C ϕ • M 1 Λ • C F λ , (30) 
i.e.

(T λ ) -1 α = 1 K(λ) 2 ϕ 1 Λ (α F λ ) , ∀α ∈ H m per .( 31 
)
Now, recall that for all initial data z 0 ∈ H m per , the solution of system (18) can be written z(t, x) = e -λ t z 0 (x -t), ∀(t, x) ∈ R + × (0, L). [START_REF] Sontag | Mathematical control theory[END_REF] Thus, by the expression of the semigroup (see [40, Subsection 3.2]), for all initial data α 0 ∈ D λ m , the solution of system (11) can be written:

α(t, x) = (T λ ) -1 e -λ t (T λ α 0 )(x -t), ∀(t, x) ∈ R + × (0, L). (33) 
Now, notice that convolution and translation commute, so for (t, x) ∈ [0, L] × (0, L), we get, using ( 27) and [START_REF] Smyshlyaev | Boundary stabilization of a 1-D wave equation with in-domain antidamping[END_REF],

α(t, x) = 1 K(λ) 2 ϕ 1 Λ F λ e -λ t ϕ Λ(α 0 F λ ) (• -t) = - e -λ t K(λ) ϕ 1 Λ Λ(α 0 F λ ) (• -t) = - e -λ t K(λ) ϕ χ [0,t] e λ(t-L) α 0 F λ (• -t + L) +χ [t,L] e λt α 0 F λ (• -t) = - e -µt K(λ) ϕ χ [0,t] e -λL α 0 F λ (• -t + L) +χ [t,L] α 0 F λ (• -t) .
This expression is derived for α 0 ∈ D λ m , but it is actually well-defined on all of H m per , as α 0 F λ ∈ L 2 when α 0 ∈ H m per . This gives us an expression for S λ (t) on all of H m per :

S λ (t)α 0 = -e -µt K(λ) ϕ χ [t,L] α 0 F λ (• -t) +χ [0,t] e -λL α 0 F λ (• -t + L) , ∀t ∈ [0, L], ∀α 0 ∈ H m per , (34) 
which defines S λ (t) for t ≥ 0 by the semigroup property.

The limit semigroup

Now, notice that, from ( 15) and ( 17),

F λ = LK(λ) 2 F ∞ ,
so that we can write

S λ (t)α = - Le -µt 2 ϕ χ [0,t] e -λL α F ∞ (• -t + L) +χ [t,L] α F ∞ (• -t) , ∀t ∈ [0, L], ∀α ∈ H m per .
Then it is clear that

χ [0,t] e -λL α F ∞ (•-t+L) L 2 ----→ λ→∞ 0, ∀t ∈ [0, L], ∀α ∈ H m per ,
so that, after convolution with ϕ,

S λ (t)α H m ----→ λ→∞ S ∞ (t)α, ∀t ∈ [0, L], ∀α ∈ H m per ,
where

S ∞ (t)α := - Le -µt 2 ϕ χ [t,L] α F ∞ (• -t) , ∀t ≥ 0, ∀α ∈ H m per ,
with the convention that χ [t,L] ≡ 0 when t ≥ L. Hence we have defined a new semigroup S ∞ (t) on H m per , which we now study in order to establish Theorem 1.2.

A useful semigroup

Consider the semigroup given by

S 0 (t)α = e -µt χ [t,L] α(• -t), ∀t ≥ 0, ∀α ∈ L 2 .
This is actually a contraction semigroup, the infinitesimal generator of which is given by

D(A 0 ) = α ∈ H 1 , α(0) = 0 A 0 = -∂ x -µI (35) 
where the derivative is to be understood as the usual derivative of a Sobolev function, not as the derivative in E . Note that this semigroup is associated to the following transport equation:

y t + y x + µy = 0, x ∈ [0, L],
y(t, 0) = 0, ∀t ≥ 0, [START_REF] Woittennek | Backstepping design for parabolic systems with in-domain actuation and Robin boundary conditions[END_REF] and that in particular

S 0 (t)α = 0, ∀t ≥ L, ∀α ∈ L 2 . ( 37 
)

Infinitesimal generator

Now let us compute the infinitesimal generator of S ∞ . First, notice that

S ∞ (t)α = - L 2 ϕ S 0 (t) α F ∞ . (38) 
Now, let us define the following domain, in the same spirit as in section 2.1:

D ∞ m := { α ∈ τ ϕ (H m+1 (pw) ) ∩ H m per , -α x -µα + α, F ∞ ϕ ∈ H m per . ( 39 
)
This domain is dense in H m per , as it contains the following dense subspace (see [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF]Proposition 3.1]):

α ∈ H m+1 per , α, F = 0 .
Let us now prove that on this domain, S ∞ has an infinitesimal generator. For α ∈ D ∞ m , we have

r := F ∞ (-α x -µα + α, F ∞ ϕ) ∈ L 2 . (40) 
Thus, taking the Fourier coefficients, we get:

α n F ∞ n = - r n + µα n F ∞ n 2iπn L + i α, F ∞ πn , ∀n = 0. Now, note that n∈Z * i α, F ∞ πn e n (x) = 2 L α, F ∞ x √ L - √ L 2 , so that α F ∞ = r + 2 L α, F ∞ x √ L - √ L 2 , (41) 
where

r = α 0 F ∞ 0 √ L - n∈Z * r n + µα n F ∞ n 2iπn L e n ∈ H 1 per . (42) 
Hence, α F ∞ ∈ H 1 , and, from ( 41) and (42) we get

(α F ∞ ) x = -r - r 0 √ L + µα F ∞ -µ α 0 F ∞ 0 √ L + 2 L √ L α, F ∞ .
Now, by ( 40), [START_REF] Hayat | Exponential stability of general 1-D quasilinear systems with source terms for the C 1 norm under boundary conditions[END_REF] and by definition of the convolution product,

r 0 = -µF ∞ 0 α 0 - 2 α, F ∞ L ,
so that, again by [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF],

(α F ∞ ) x = -r + µα F ∞ = -F ∞ (-α x + α, F ∞ ϕ) in L 2 . ( 43 
)
On the other hand, we know, by the Dirichlet convergence theorem (see [START_REF] Kahane | Séries de Fourier et ondelettes[END_REF]) applied to α

F ∞ ∈ H 1 at point 0, that α F ∞ (0) + α F ∞ (L) 2 = n∈Z α n F ∞ n √ L = α, F ∞ √ L .
On the other hand, by (41),

(α F ∞ -r)(0) = - α, F ∞ √ L = -(α F ∞ -r)(L), (44) 
thus, as r is periodic,

r(0) = α F ∞ (0) + α F ∞ (L) 2 = α, F ∞ √ L . (45) 
From ( 44) and (45), we get

α F ∞ (0) = r(0) - α, F ∞ √ L = 0, so that α F ∞ ∈ D(A 0 ).
We can now compute the infinitesimal generator of S ∞ : let α ∈ D ∞ m . Then, thanks to the above, α F ∞ ∈ D(A 0 ), which means in particular that

S 0 (t)(α F ∞ ) -(α F ∞ ) t L 2 ----→ t→0 + -(α F ∞ ) x -µ(α F ∞ ).
This, together with ( 38) and ( 12), implies that

S ∞ (t)α -α t = - L 2 ϕ S 0 (t)(α F ∞ ) -(α F ∞ ) t H m ----→ t→0 + L 2 ϕ (α F ∞ ) x + µ(α F ∞ ) .
By (43), we have

ϕ (α F ∞ ) x + µ (α F ∞ ) = 2 L (-α x -µα + α, F ∞ ϕ)
so that, finally,

S ∞ (t)α -α t H m ----→ t→0 + -α x -µα + α, F ∞ ϕ.
This, together with [START_REF] Yu | Backstepping synthesis for feedback control of first-order hyperbolic PDEs with spatial-temporal actuation[END_REF], means that the infinitesimal generator of S ∞ (t) can be given by the domain D ∞ m and the unbounded operator -∂ x -µI + •, F ∞ ϕ. Hence, S ∞ (t) corresponds to the closed loop system

α t + α x + µα = α(t), F ∞ ϕ(x), x ∈ [0, L], α(t, 0) = α(t, L), ∀t ≥ 0, (46) 
which is well-posed. Moreover, by [START_REF] Xiang | Small-time local stabilization for a Kortewegde Vries equation[END_REF] and [START_REF] Xiang | Null controllability of a linearized Kortewegde Vries equation by backstepping approach[END_REF],

S ∞ (t)α 0 = 0, ∀t ≥ L, ∀α 0 ∈ H m per , (47) 
which proves Theorem 1.2.

An explicit example

Consider the control system

α t + α x = u(t)(L -x), x ∈ [0, L], α(t, 0) = α(t, L), ∀t ≥ 0. (48) 
In this case, ϕ(x) = L -x, so ϕ ∈ H 1 and the Fourier coefficients of the controller are

ϕ n = - iL 3 2 2πn , ∀n ∈ Z * , ϕ 0 = L 3 2
2 .

(49) so that ( 12) is clearly satisfied for m = 1. Now, from (49) and ( 17) we get

F ∞ n = 2 L 2iπn L √ L , ∀n ∈ Z * , F ∞ 0 = - 4 L 5 2 
.

(50)

Now, using the Dirichlet convergence theorem, we have for

α ∈ H 2 ∩ H 1 per , N n=-N F ∞ n α n = - 2 L N n=-N 2iπn L α n 1 √ L - 4 L 5 2 α 0 ----→ N →∞ - α x (0) + α x (L) L - 4 L 5 2 α 0 , (51) 
so that

α, F ∞ = - α x (0) + α x (L) L - 4 L 5 2 α 0 , ∀α ∈ H 2 ∩ H 1 per . (52) 
One can see from the above expression that even though our method defines F ∞ by its Fourier coefficients, with some controllers the feedback law can be expressed quite simply.

Now, let us consider solutions of the closed-loop system (48) with u(t) = α(t), F ∞ , with initial conditions in the domain

D ∞ 1 = α ∈H 2 ∩ H 1 per , -α x + α, F ∞ (L -x) ∈ H 1 per , (53) 
which can be rewritten as

D ∞ 1 = α ∈H 2 ∩ H 1 per , α x (0) = - 2 L √ L α 0 ∈ H 1 per . (54) 
Indeed, -α x + α, F ∞ (L-x) ∈ H 1 , so the above condition simply corresponds to its being periodic in addition.

Let α 0 ∈ D ∞ 1 , and note α(t) the corresponding solution of (48). We can make the following computations for t ≥ 0, using (50) for the first, the periodicity of α, and differentiating the first equation of (48) in space for the second, and (54) for the third:

α(t) F ∞ = - 2 L √ L α x - 4 L 3 α 0 , (α F ∞ ) t = - 2 L √ L α xt - 4 L 3 (α 0 ) t = - 2 L √ L α tx - 4 L 3 √ L L 0 α t = 2 L √ L ((α x -α, F ∞ (L -x)) x ) - 4 L 3 √ L L 0 α t = 2 L √ L (α xx + α, F ∞ ) - 4 L 3 √ L L 0 α, F ∞ (L -x) -α x = 2 L √ L (α xx + α, F ∞ ) - 4 L 3 √ L α, F ∞ L 0 (L -x)dx = 2 L √ L α xx = -(α F ∞ ) x , α(t) F ∞ (0) = - 2 L √ L α x (0) - 4 L 3 α 0 = 0. (55)
So in particular we can see quite clearly how α F ∞ satisfies the equation [START_REF] Woittennek | Backstepping design for parabolic systems with in-domain actuation and Robin boundary conditions[END_REF] with µ = 0. In particular,

α(t) F ∞ = 0, ∀t ≥ L, (56) 
which implies, using the first equation of (55), that α x (t) is a constant function of space, i.e. α(t) is an affine function of space. However, it is also periodic, so we get

α(t) = 0, ∀t ≥ L. (57) 

Comments and further questions

Backstepping and finite-time stabilization

As we have mentioned in the introduction, one of the advantages of the backstepping method is that it can provide explicit feedback laws for exponential stabilization. This allows the construction of explicit controls for null controllability ( [START_REF] Xiang | Null controllability of a linearized Kortewegde Vries equation by backstepping approach[END_REF][START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]) as well as time-varying feedbacks that stabilize the system in finite time T > 0 ( [START_REF] Xiang | Small-time local stabilization for a Kortewegde Vries equation[END_REF][START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]).

The general strategy in these articles is to divide the interval [0, T ] in smaller intervals [t n , t n+1 ] on which the feedback corresponding to some λ n > 0 is applied. The idea is then to chose the t n so that the length of the intervals [t n , t n+1 ] tends to 0 fast enough to compensate the growth of the norm of the feedback law as λ n → ∞. Building from this, the authors design a time-varying feedback law that stabilizes the system in finite-time.

Here, the feedback is stationary, and we do not need to define it piecewise: indeed, the norm of the feedback law F λ is bounded when λ → ∞. This comes from the fact that we used a special type of convergence to define the feedback law, using a weak version of [START_REF] Kahane | Séries de Fourier et ondelettes[END_REF]. Indeed, in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF] [START_REF] Kahane | Séries de Fourier et ondelettes[END_REF]. Now, if the convergence of the right-hand side had been absolute, the limit would have gone to 0 when λ → ∞. However, here the sum converges in a special way due to the Dirichlet convergence theorem (see for example [START_REF] Kahane | Séries de Fourier et ondelettes[END_REF]), which is why it remains positive (and thus F λ remains bounded) when λ → ∞.

Hence, a weaker T B = B condition seems to allow for better behavior of the feedback law when λ → ∞.

Regularity of the feedback law

A remarkable point of this application of the backstepping method, both for rapid and finite-time stabilization, is that the feedback law is not regular on the state space: indeed, it is continuous for • m+1 but not for • m .

On the other hand, it seems that a continuous feedback law would have a more restricted action on the eigenvalues of the system. Indeed, in [START_REF] Russell | Canonical forms and spectral determination for a class of hyperbolic distributed parameter control systems[END_REF] it is proved that if the sequence of complex numbers (ρ n ) n∈Z satisfies

ρ n -2iπn L ϕ n ∈ 2 , (58) 
then there exists a bounded feedback law such that the resulting closed-loop system has eigenvalues (ρ n ) n∈Z . It is clear that (58) does not allow for a uniform pole-shifting as we have done in [START_REF] Zhang | Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback[END_REF]. But even though (58) is not a necessary condition, subsequent works such as [START_REF] Russell | Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory[END_REF][START_REF] Clarke | Control canonical forms and eigenvalue assignment by feedback for a class of linear hyperbolic systems[END_REF][START_REF] Rebarber | Spectral assignability for distributed parameter systems with unbounded scalar control[END_REF] turn to unbounded feedback laws, as they are proved to allow for more eigenvalue displacement, and in particular uniform pole-shifting. A fortiori, the stronger notion of finite-time stabilization, in which case the operator associated to the closed-loop system has an empty spectrum (see for example [START_REF] Russell | Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory[END_REF]Theorem 3 and comments]), probably requires an unbounded feedback law.

and F λ is defined by 1 -

 1 in order to haveT λ ϕ (N ) , e n ----→ N →∞ ϕ n , n ∈ Z,which is the weak version of
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