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Abstract
We consider a 1-D linear transport equation on the interval (0, L), with an internal scalar control.

We prove that if the system is controllable in a periodic Sobolev space of order greater than 1, then
the system can be stabilized in finite time, and we give an explicit feedback law.

1 Introduction
We study the linear 1-D hyperbolic equation{

yt + yx + a(x)y = u(t)ϕ̃(x), x ∈ [0, L],

y(t, 0) = y(t, L), ∀t ≥ 0,
(1)

where a is continuous, real-valued, ϕ̃ is a given real-valued function of space, and at time t, y(t, ·) is the
state and u(t) is the control. As in [38], the system can be transformed into{

αt + αx + µα = u(t)ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,
(2)

through the state transformation
α(t, x) := e

∫ x
0
a(s)ds−µxy(t, x),

where µ =

∫ L

0

a(s)ds, and with

ϕ(x) := e
∫ x
0
a(s)ds−µxϕ̃(x),

so that we focus on systems of the form (2) in this article.

1.1 Notations and definitions
We note `2 the space of summable square series `2(Z,C). To simplify the notations, we will note L2 the
space L2(0, L) of complex-valued L2 functions on the interval (0, L), with its hermitian product

〈f, g〉 =

∫ L

0

f(x)g(x)dx, ∀f, g ∈ L2, (3)

and the associated norm ‖ · ‖. Functions of L2 can also be seen as L-periodic functions on R, by the usual
L-periodic continuation: in this article, for any f ∈ L2 we will also note f its L-periodic continuation on
R.
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We also use the following notation

en(x) =
1√
L
e

2iπ
L nx, ∀n ∈ Z, (4)

the usual Hilbert basis for L2. For a function f ∈ L2, we will note (fn)n∈Z ∈ `2 its coefficients in this
basis:

f =
∑
n∈Z

fnen.

Note that with this notation, we have

f̄ =
∑
n∈Z

f−nen,

so that, in particular, if f is real-valued:

f−n = fn, ∀n ∈ Z.

We will use the following definition of the convolution product on L-periodic functions:

f ? g =
∑
n∈Z

fngnen =

∫ L

0

f(s)g(· − s)ds ∈ L2, ∀f, g ∈ L2, (5)

where g(x− s) should be understood as the value taken in x− s by the L-periodic continuation of g.
Let us now note E the space of finite linear combinations of the (en)n∈Z. Then, any sequence (fn)n∈Z

defines an element f of E ′:
〈en, f〉 = fn, ∀n ∈ Z. (6)

On this space of linear forms, we can extend our previous definition of convolution:

〈en, f ? g〉 = fngn (7)

derivation can be defined by duality from (6):

f ′ =

(
2iπn

L
fn

)
, ∀f ∈ E ′. (8)

We also define the following spaces:

Definition 1.1. Let m ∈ N. We note Hm the usual Sobolev spaces on the interval (0, L), equipped with
the Hermitian product

〈f, g〉m =

∫ L

0

fḡ + ∂mf∂mg, ∀f, g ∈ Hm,

and the associated norm ‖ · ‖m.
For m ≥ 1 we also define Hm

(pw) the space of piecewise Hm functions, that is, f ∈ Hm
(pw) if there exists

a finite number d of points (σj)1≤j≤d ∈ [0, L] such that, noting σ0 := 0 and σd+1 := L, f is Hm on every
[σj , σj+1] for 0 ≤ j ≤ d. This space can be equipped with the norm

‖f‖m,pw :=

d∑
j=0

‖f|[σj ,σj+1]‖Hm(σj ,σj+1).

Note that this expression does not depend on the choice of the (σj), and thus is well-defined. For s > 0,
we also define the periodic Sobolev space Hs

per as the subspace of L2 functions f =
∑
n∈Z

fnen such that

∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
|fn|2 <∞.
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Hs is a Hilbert space, equipped with the Hermitian product

〈f, g〉s =
∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
fngn, ∀f, g ∈ Hs,

and the associated norm ‖ · ‖s, as well as the Hilbert basis

(esn) :=

 en√
1 +

∣∣ 2iπn
L

∣∣2s
 .

Note that for m ∈ N, Hm
per is a closed subspace of Hm, with the same scalar product and norm, thanks

to the Parseval identity. Moreover,

Hm
per =

{
f ∈ Hm, f (i)(0) = f (i)(L),∀i ∈ {0, · · · ,m}

}
.

1.2 Main result
To stabilize (2), we will be considering linear feedbacks, that is, formally,

〈α(t), F 〉 =
∑
n∈Z

Fnαn(t) =

∫ L

0

F̄ (s)α(s)ds

where F ∈ E ′ and (Fn)n∈Z ∈ CZ are its Fourier coefficients, and F is “real-valued”:

F−n = Fn, ∀n ∈ Z.

In fact, the integral notation will appear as purely formal, as the (Fn)n∈Z will have a prescribed growth,
so that F /∈ L2. The associated closed-loop system now writes{

αt + αx + µα = 〈α(t), F 〉ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0.
(9)

This is a linear transport equation, which we seek to stabilize with an internal, scalar feedback, given by
a real-valued feedback law. In [38], we proved the following theorem for system (2):

Theorem 1.1 (Rapid stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ Hm
(pw) ∩H

m−1
per such that

c√
1 +

∣∣ 2iπn
L

∣∣2m ≤ |ϕn| ≤ C√
1 +

∣∣ 2iπn
L

∣∣2m , ∀n ∈ Z, (10)

where c, C > 0. Then, for every λ ≥ 0 there exists a stationary feedback law F such that for all α0 ∈ Hm
per

the closed-loop system (9) has a solution α(t) which satisfies

‖α(t)‖m ≤
(
C

c

)2

e(µ+λ)Le−λt‖α0‖m, ∀t ≥ 0.

If c and C are sharp for (10), then the above estimate is sharp.

Now, notice that, for λ > 0, the corresponding feedback law obtained using the backstepping method
is the linear form Fλ−µ ∈ E ′ defined by

Fλ−µn := −K(λ− µ)

ϕn
, ∀n ∈ Z, (11)
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where

K(λ− µ) :=
2

L

1− e−(λ−µ)L

1 + e−(λ−µ)L
−−−−→
λ→∞

2

L
, (12)

so that
Fλ

E′−−−−→
λ→∞

F∞ (13)

where
F∞n := − 2

ϕnL
, ∀n ∈ Z. (14)

Moreover, when λ→∞, the stability estimate in Theorem 1.1 becomes, for t > L,

‖α(t)‖m = 0.

This would suggest that taking the limit feedback F∞ could result in finite-time stabilization of (2).
This is indeed the case, and in this article we will prove the following theorem:

Theorem 1.2 (Finite-time stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ Hm
(pw)∩H

m−1
per satisfying

(10) for some c, C > 0. Then, if the feedback law is defined by (14), for any initial data α0 ∈ Hm
per the

corresponding closed-loop system (9) has a solution α(t) which satisfies

‖α(t)‖m = 0, ∀t ≥ L.

1.3 Related results
To investigate the stabilization of infinite-dimensional systems, there are three main types of approaches.

The first type of approach relies on abstract methods, such as the Gramian approach and the Riccati
equations (see for example [33, 32, 21]). Although quite powerful, it seems that these methods fail to
obtain the stabilization of nonlinear systems from the stabilization of their linearized systems.

The second approach relies on Lyapunov functions. Many results on the boundary stabilization of first-
order hyperbolic systems, linear and nonlinear, have been obtained using this approach: see for example
the book [2], and the recent results in [17, 18]. However, this approach can be limited, as it is sometimes
impossible to obtain an arbitrary decay rate using Lyapunov functions (see [14, Remark 12.9, page 318]
for a finite dimensional example).

The third approach is the backstepping method. This name originally refers to a way of designing, in
a recursive way, more effective feedback laws, for systems for which one already has a Lyapunov function
and a feedback law which globally asymptotically stabilizes the system, see [14, 30] for an overview of the
finite-dimensional case, and [7] or [23] for applications to partial differential equations. Another way of
applying this approach to partial differential equations was then developed in [3] and [1]: when applied
to the discretization of the heat equation, the backstepping approach yielded a change of coordinates
which was equivalent to a Volterra transformation of the second kind, a tool that was already used for
pole displacement on hyperbolic systems in , although the ideas already appear in [29]. Backstepping
then took yet another successful form, consisting in mapping the system to stable target system, using a
Volterra transformation of the second kind (see [22] for a comprehensive introduction to the method):

f(t, x) 7→ f(t, x)−
∫ x

0

k(x, y)f(t, y)dy.

This was used to prove a host of results on the boundary stabilization of partial differential equations:
let us cite for example [20] and [27] for the wave equation, [35, 36] for the Korteweg-de Vries, [2, chapter
7] for an application to first-order hyperbolic systems, and also [16], which combines the backstepping
method with Lyapunov functions to prove finite-time stabilization in H2 for a quasilinear 2×2 hyperbolic
system.

In some cases, the method was used to obtain stabilization with an internal feedback. This was done
in [31] and [34] for parabolic systems, and [37] for first-order hyperbolic systems. The strategy in these
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works is to first apply a Volterra transformation as usual, which still leaves an unstable source term in
the target, and then apply a second invertible transformation to reach a stable target system. Let us note
that in the latter reference, the authors study a linear transport equation and get finite-time stabilization.
However, their controller takes a different form than ours, and several hypotheses are made on the space
component of the controller so that a Volterra transformation can be successfully applied to the system.
This is in contrast with our result, where the assumption we make on the controller simply corresponds
to the exact null-controllability of the system.

More recently, the backstepping approach has been applied, using another type of linear transforma-
tions, namely, Fredholm transformations:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy.

These are more general than Volterra transformations, but they require more work: indeed, Volterra
transformations are always invertible, but the invertibility of a Fredholm transformation is harder to
check. Even though it is sometimes more involved and technical, the use of a Fredholm transformation
proves more effective for certain types of control: for example, in [12] for the Korteweg-de Vries equation
and [11] for a Kuramoto-Sivashinsky, the position of the control makes it more appropriate to use a
Fredholm transformation. Other boundary stabilization results using a Fredholm transformation can be
found in [9] for integro-differential hyperbolic systems, and in [10] for general hyperbolic balance laws.
Fredholm transformations have also been used in [8], where the authors prove the rapid stabilization of
the Schrödinger equation with an internal feedback.

The backstepping method has the advantage of providing explicit feedback laws, which makes it
a powerful tool to prove other related results, such as null-controllability or small-time stabilization
(stabilization in an arbitrarily small time). This is done in [13], where the authors give an explicit
control to bring a heat equation to 0, then a time-varying, periodic feedback to stabilize the equation in
small time. In [36], the author obtains the same kind of results for the Korteweg-de Vries equation. In
this article, we use the explicit feedback laws obtained by the backstepping method in [38] to design an
explicit feedback law that achieves finite-time stabilization.

1.4 Structure of the article
In Section 2, we derive an expression for the exponentially stable semigroup corresponding to the explicit
feedback laws obtained in [38] for exponential stabilization. Then, in Section 3, we study the semigroup
obtained when λ→∞. In particular, we derive its infinitesimal generator and prove that it corresponds
to a closed-loop system which goes to 0 in finite time, which yields a feedback law achieving stabilization
in finite time. Finally, Section 4 is devoted to some comments on the result, and on further questions.

2 The exponentially stable semigroup
We recall some specifics of Theorem 1.1, which can be found in more detail in [38].

2.1 Backstepping transformation
To prove Theorem 1.1, the backstepping method was used. This method consists in mapping our system
into a stable target system, here {

zt + zx + λ′z = 0, x ∈ (0, L),

z(t, 0) = z(t, L), t ≥ 0,
(15)

with λ′ > 0. To find an invertible transformation that does this, the idea is to write it as a Fredholm
operator:

T : α(t, x) 7→
∫ L

0

k(x, y)α(t, y)dy
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so that the mapping condition becomes a partial differential equation in k (the kernel equation). This
equation contains non-local terms, which are resolved by adding a constraint to the kernel equation, called
the TB = B condition: ∫ L

0

k(x, y)ϕ(t, y)dy = ϕ(x), ∀x ∈ [0, L].

From this kernel equation, conditions on F for the invertibility of T can be derived. Then, using a weak
version of the TB = B condition, a suitable feedback is computed, so that a candidate for the backstepping
transformation can be derived:

Tλα =
∑
n∈Z

αnFλnΛλ−n ? ϕ, ∀α ∈ Hm
per, (16)

where λ := λ′ − µ, Fλn is defined by (11), and

Λλn(x) :=

√
L

1− e−λL
e−λnx = Λ(x)e−n(x), ∀n ∈ Z, ∀x ∈ [0, L), (17)

where
λn = λ+

2iπn

L
, ∀n ∈ Z, (18)

and where Λ is the L-periodic function defined by

Λ(x) =
L

1− e−λL
e−λx, ∀x ∈ [0, L).

2.2 Well-posedness of the closed-loop system
Now that a candidate for the backstepping transformation has been determined, it must be proved that
is indeed a backstepping transformation, and that the closed-loop with the feedback defined above is
well-posed. We first define the domains

Dλ
m :=

{
α ∈ τϕ(Hm+1

(pw) ) ∩Hm
per, −αx − µα+ 〈α, F 〉ϕ ∈ Hm

per

}
(19)

where τϕ is the diagonal operator defined by the eigenvalues

τϕ0 := 1

τϕn :=
1√
L

∂m−1ϕ(L)− ∂m−1ϕ(0) +

d∑
j=1

e−
2iπ
L nσj (∂m−1ϕ(σ−j )− ∂m−1ϕ(σ+

j ))

 , ∀n ∈ Z∗.

In [38], we investigate the regularity of the feedback law, using the controllability condition (10). This
helps to prove that the associated operator

A+BK := −∂x − µI + 〈·, Fλ〉ϕ

is densely defined and closed. Finally, to check that the mapping property between systems (9) and (15)
is verified, one proves the operator equality

Tλ(−∂x + 〈·, Fλ〉ϕ)α = (−∂x − λI)Tλα in Hm
per, ∀α ∈ Dλ

m. (20)

This operator equality helps prove the dissipativity of A+BK and its adjoint. Then the Lumer-Phillips
theorem implies that A+BK generates a semigroup Sλ(t) of contractions for the norm ‖Tλ · ‖m on Dλ

m,
hence the well-posedness of (9), and the exponential stability then follows from the operator equality.
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2.3 Expression of the semigroup
To study what happens when λ→∞, let us first derive an expression for Sλ(t).

First, we derive from (16) and (17) the following expression for the backstepping transformation:

Tλα = ϕ ?
(

Λ(α ? F̃λ)
)
, ∀α ∈ Hm

per, (21)

where F̃λ ∈ E ′ is defined by:
〈en, F̃λ〉 = Fλn , n ∈ Z.

Then, by definition of Fλ, it follows that

(Tλ)−1α =
1

K(λ)2
ϕ ?

(
1

Λ
(α ? F̃λ)

)
, ∀α ∈ Hm

per. (22)

Now, recall that for all initial data z0 ∈ Hm
per, the solution of system (15) can be written

z(t, x) = e−λ
′tz0(x− t), ∀(t, x) ∈ R+ × (0, L). (23)

Thus, by the mapping property of Tλ (see subsection 2.1 of [38]), for all initial data α0 ∈ Dλ
m, the

solution of system (9) can be written:

α(t, x) = (Tλ)−1e−λ
′t(Tλα0)(x− t), ∀(t, x) ∈ R+ × (0, L). (24)

Now, notice that convolution and translation commute, so for (t, x) ∈ R+ × (0, L), we get, using (21)

α(t, x) =
1

K(λ)2
ϕ ?

(
1

Λ

(
F̃λ ?

(
e−λ

′t
(
ϕ ?

(
Λ(α0 ? F̃λ)

)
(· − t)

))))
= − e

−λ′t

K(λ)
ϕ ?

(
1

Λ

((
Λ(α0 ? F̃λ)

)
(· − t)

))
= − e

−λ′t

K(λ)
ϕ ? (χ[0,t]e

λ(t−L)α0 ? F̃λ(x− t+ L) + χ[t,L]e
λtα0 ? F̃λ(x− t))

= − e−µt

K(λ)
ϕ ?

(
χ[0,t]e

−λLα0 ? F̃λ(x− t+ L) + χ[t,L]α
0 ? F̃λ(x− t)

)
.

This expression is derived for α0 ∈ Dλ
m, but it actually defines a semigroup on all of Hm

per. Note that this
semigroup is the extension of the semigroup of contractions generated by A + BK on Dλ

m (see section
2.2):

Sλ(t)α0 = − e−µt

K(λ)
ϕ?
(
χ[0,t]e

−λLα0 ? F̃λ(x− t+ L) + χ[t,L]α
0 ? F̃λ(x− t)

)
, ∀t ≥ 0, ∀α0 ∈ Hm

per. (25)

3 The limit semigroup
Now, notice that, from (12) and (14),

Fλ =
LK(λ)

2
F∞,

so that we can write

Sλ(t)α = −Le
−µt

2
ϕ ?

(
χ[0,t]e

−λLα ? F̃∞(x− t+ L) + χ[t,L]α ? F̃∞(x− t)
)
, ∀t ≥ 0, ∀α ∈ Hm

per.

Then it is clear from the above that

Sλ(t)α
Hm−−−−→
λ→∞

S∞(t)α := −Le
−µt

2
ϕ ?

(
χ[t,L]α ? F̃∞(x− t)

)
, ∀t ≥ 0, ∀α ∈ Hm

per.

Hence we have defined a new semigroup S∞(t) on Hm
per, which we now study in order to establish

Theorem 1.2.
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3.1 A useful semigroup
Consider the semigroup given by

S0(t)α = e−µtχ[t,L]α(x− t), ∀t ≥ 0, ∀α ∈ L2.

This is actually a contraction semigroup, the infinitesimal generator of which is given by

D(A0) =
{
α ∈ H1, α(0) = 0

}
A0 = −∂x − µI

(26)

where the derivative is to be understood as the usual derivative of a Sobolev function, not as the derivative
in E ′. Note that this semigroup is associated to the following transport equation:{

yt + yx + µy = 0, x ∈ [0, L],

y(t, 0) = 0, ∀t ≥ 0,
(27)

and that in particular
S0(t)α = 0, ∀t ≥ L, ∀α ∈ L2. (28)

3.2 Infinitesimal generator
Now let us compute the infinitesimal generator of S∞. First, notice that

S∞(t)α = −L
2
ϕ ? S0(t)

(
α ? F̃∞

)
. (29)

Now, let us define the following domain, in the same spirit as in section 2.1:

D∞m :=
{
α ∈ τϕ(Hm+1

(pw) ) ∩Hm
per, −αx − µα+ 〈α, F∞〉ϕ ∈ Hm

per

}
. (30)

This domain is dense in Hm
per, as it contains the following dense subspace (see [38, Proposition 3.1]):{

α ∈ Hm+1
per , 〈α, F 〉 = 0

}
.

Let us now prove that on this domain, S∞ has an infinitesimal generator. For α ∈ D∞m , we have

r := F̃∞ ? (−αx − µα+ 〈α, F∞〉ϕ) ∈ L2. (31)

Thus, taking the Fourier coefficients, we get:

αnF∞n = −rn + µαnF∞n(
2iπn
L

) + i
〈α, F∞〉
πn

, ∀n 6= 0.

Now, note that ∑
n∈Z∗

i
〈α, F∞〉
πn

en(x) =
2

L
〈α, F∞〉

(
x√
L
−
√
L

2

)
,

so that

α ? F̃∞ = r̃ +
2

L
〈α, F∞〉

(
x√
L
−
√
L

2

)
, (32)

where

r̃ =
α0F

∞
0√
L
−
∑
n∈Z∗

rn + µαnF∞n(
2iπn
L

) en ∈ H1
per. (33)
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Hence, α ? F̃∞ ∈ H1, and, from (32) and (33) we get

(α ? F̃∞)x = −
(
r − r0√

L
+ µα ? F̃∞ − µα0F

∞
0√
L

)
+

2

L
√
L
〈α, F∞〉.

Now, by (31), (14) and by definition of the convolution product,

r0 = −µF∞0 α0 −
2〈α, F∞〉

L
,

so that, again by (31),

(α ? F̃∞)x = −r + µα ? F̃∞ = −F̃∞ ? (−αx + 〈α, F∞〉ϕ) in L2. (34)

On the other hand, we know, by the Dirichlet convergence theorem (see [19]) applied to α ? F̃∞ ∈ H1 at
point 0, that

α ? F̃∞(0) + α ? F̃∞(L)

2
=
∑
n∈Z

αnF∞n√
L

=
〈α, F∞〉√

L
.

On the other hand, by (32),

(α ? F̃∞ − r̃)(0) = −〈α, F
∞〉√
L

= −(α ? F̃∞ − r̃)(L), (35)

thus, as r̃ is periodic,

r̃(0) =
α ? F̃∞(0) + α ? F̃∞(L)

2
=
〈α, F∞〉√

L
. (36)

From (35) and (36), we get

α ? F̃∞(0) = r̃(0)− 〈α, F
∞〉√
L

= 0,

so that α ? F̃∞ ∈ D(A0).
We can now compute the infinitesimal generator of S∞: let α ∈ D∞m . Then, thanks to the above,

α ? F̃∞ ∈ D(A0), which means in particular that

S0(t)(α ? F̃∞)− (α ? F̃∞)

t

L2

−−−−→
t→0+

−(α ? F̃∞)x − µ(α ? F̃∞).

This, together with (29) and (10), implies that

S∞(t)α− α
t

= −L
2
ϕ ?

(
S0(t)(α ? F̃∞)− (α ? F̃∞)

t

)
Hm−−−−→
t→0+

L

2
ϕ ?

(
(α ? F̃∞)x + µ(α ? F̃∞)

)
.

By (34), we have

ϕ ?
(

(α ? F̃∞)x + µ(α ? F̃∞)
)

= ϕ ? (−F̃∞) ? (−αx − µα+ 〈α, F∞〉ϕ) =
2

L
(−αx − µα+ 〈α, F∞〉ϕ)

so that, finally,
S∞(t)α− α

t

Hm−−−−→
t→0+

−αx − µα+ 〈α, F∞〉ϕ.

This, together with (30), means that the infinitesimal generator of S∞(t) can be given by the domain D∞m
and the unbounded operator −∂x − µI + 〈·, F∞〉ϕ. Hence, S∞(t) corresponds to the closed loop system{

αt + αx + µα = 〈α(t), F∞〉ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0.
(37)

which is well-posed. Moreover, by (28) and (29),

S∞(t)α0 = 0, ∀t ≥ L,∀α0 ∈ Hm
per,

which proves Theorem 1.2.
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4 Comments and further questions

4.1 Backstepping and finite-time stabilization
As we have mentioned in the introduction, one of the advantages of the backstepping method is that it
can provide explicit eedback laws for exponential stabilization. This allows the construction of explicit
controls for null controllability ([35, 13]) as well as time-varying feedbacks that stabilize the system in
finite time T > 0 ([36, 13]).

The general strategy in these articles is to divide the interval [0, T ] in smaller intervals [tn, tn+1] on
which the feedback corresponding to some λn > 0 is applied. The idea is then to chose the tn so that
the length of the intervals [tn, tn+1] tends to 0 fast enough to compensate the growth of the norm of
the feedback law as λn → ∞. Building from this, the authors design a time-varying feedback law that
stabilizes the system in finite-time.

Here, the feedback is stationary, and we do not need to define it piecewise: indeed, the norm of the
feedback law Fλ is bounded when λ → ∞. This comes from the fact that we used a special type of
convergence to define the feedback law, using the TB = B condition. Indeed, in [38], we set

ϕ(N) :=

N∑
n=−N

ϕnen ∈ Hm
per, ∀N ∈ N.

Then,

Tλϕ(N) =

N∑
n=−N

−ϕnFλnΛλ−n ? ϕ

=

N∑
n=−N

∑
p∈Z

−ϕnFnϕp
λ−n+p

ep

=
∑
p∈Z

ϕp

(
N∑

n=−N

−ϕnFn
λ−n+p

)
ep.

and Fλ is defined by
1

−ϕnFλn
= lim
N→∞

N∑
n=−N

1

λ−n+p

in order to have
〈Tλϕ(N), en〉 −−−−→

N→∞
ϕn, n ∈ Z.

Now, if the convergence of the right-hand side had been absolute, the limit would have gone to 0 when
λ→∞. However, here the sum converges in a special way due to the Dirichlet convergence theorem (see
for example [19]), which is why it remains positive (and thus Fλ remains bounded) when λ→∞.

Hence, a weaker TB = B condition seems to allow for better behavior of the feedback law when
λ→∞.

4.2 Regularity of the feedback law
A remarkable point of this application of the backstepping method, both for rapid and finite-time stabi-
lization, is that the feedback law is not regular on the state space: indeed, it is continuous for ‖ · ‖m+1

but not for ‖ · ‖m.
On the other hand, it seems that a continuous feedback law would have a more restricted action on

the eigenvalues of the system. Indeed, in [29] it is proved that if the sequence of complex numbers (ρn)n∈Z
satisfies (∣∣∣∣∣ρn − 2iπn

L

ϕn

∣∣∣∣∣
)
∈ `2, (38)
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then there exists a bounded feedback law such that the resulting closed-loop system has eigenvalues
(ρn)n∈Z. It is clear that (38) does not allow for a uniform pole-shifting as we have done in [38]. But even
though (38) is not a necessary condition, subsequent works such as [28, 6, 26] turn to unbounded feedback
laws, as they are proved to allow for more eigenvalue displacement, and in particular uniform pole-shifting.
A fortiori, the stronger notion of finite-time stabilization, in which case the operator associated to the
closed-loop system has an empty spectrum (see for example [28, Theorem 3 and comments]), probably
requires an unbounded feedback law.
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