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An autonomous quantum machine to measure the thermodynamic arrow
of time

Juliette Monsel,1, a) Cyril Elouard,1, 2 and Alexia Auffèves1, b)
1)Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
2)Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627,
USA

(Dated: September 18, 2018)

According to the Second Law of thermodynamics, the evolution of physical systems has a preferred direction, that is
characterized by some positive entropy production. Here we propose a direct way to measure the stochastic entropy
produced while driving a quantum open system out of thermal equilibrium. The driving work is provided by a quantum
battery, the system and the battery forming an autonomous machine. We show that the battery’s energy fluctuations
equal work fluctuations and check Jarzynski’s equality. Since these energy fluctuations are measurable, the battery
behaves as an embedded quantum work meter and the machine verifies a generalized fluctuation theorem involving the
information encoded in the battery. Our proposal can be implemented with state-of-the-art opto-mechanical systems. It
paves the way towards the experimental demonstration of fluctuation theorems in quantum open systems.

Keywords: quantum thermodynamics, quantum optics, opto-mechanics

Irreversibility is a fundamental feature of our physical world.
The degree of irreversibility of thermodynamic transforma-
tions is measured by the entropy production, which is always
positive according to the Second Law. At the microscopic
level, stochastic thermodynamics1,2 has extended this con-
cept to characterize the evolution of small systems coupled
to reservoirs and driven out of equilibrium. Such systems fol-
low stochastic trajectories ~Σ and the stochastic entropy pro-
duction ∆is[~Σ] obeys the integral fluctuation theorem (IFT)〈

exp
(
−∆is[~Σ]

)〉
~Σ

= 1 where 〈·〉~Σ denotes the average over

all trajectories ~Σ. Jarzynski’s equality (JE)3 is a paradigmatic
example of such IFT, that constrains the fluctuations of the en-
tropy produced while driving some initially thermalized sys-
tem out of equilibrium. Experimental demonstrations of JE
especially require the ability to measure the stochastic work
W [~Σ] exchanged with the external entity driving the system.
In the classical regime,W [~Σ] can be completely reconstructed
from the monitoring of the system’s trajectory, allowing for
successful experimental demonstrations4–6.

Defining and measuring the entropy production in the quan-
tum regime is of fundamental interest in the perspective of
optimizing the performances of quantum heat engines and
the energetic cost of quantum information technologies7–10.
However, measuring a quantum fluctuation theorem can be
problematic in the genuinely quantum situation of a coher-
ently driven quantum system, because of the fundamental and
practical issues to define and measure quantum work11–14. So
far the quantum JE has thus been extended and experimen-
tally verified in closed quantum systems, i.e. systems that
are driven but otherwise isolated. In this case work corre-
sponds to the change in the system’s internal energy, accessi-
ble by a two-points measurement protocol11 or the measure-
ment of its characteristic function15–17. Experimental demon-
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strations have been realized, e.g. with trapped ions18,19, en-
semble of cold atoms20, and spins in Nuclear Magnetic Reso-
nance (NMR)21 where the thermodynamic arrow of time was
successfully measured22.

On the other hand, realistic strategies must still be devel-
oped to measure the fluctuations of entropy production for
quantum open systems, i.e. that can be simultaneously driven,
and coupled to reservoirs. Since work is usually assumed to be
provided by a classical entity, most theoretical proposals so far
have relied on the measurement of heat fluctuations, i.e. small
energy changes of the reservoir. Experimentally, this requires
to engineer this reservoir and to develop high efficiency detec-
tion schemes, which is very challenging23–25. Experimental
demonstrations have remained elusive.

In this article, we propose a new and experimentally feasi-
ble strategy to measure the thermodynamic arrow of time for a
quantum open system in Jarzynski’s protocol, that is based on
the direct measurement of work fluctuations. We investigate
a so-called hybrid opto-mechanical system26, that consists in
a two-level system (further called a qubit) strongly coupled
to a mechanical oscillator (MO) on the one hand, and to a
thermal bath on the other hand. Studying single quantum tra-
jectories of the hybrid system, we show that the MO and the
qubit remain in a product state all along their joint evolution,
allowing to unambiguously define their stochastic energies.
We evidence that the mechanical energy fluctuations can be
identified with the stochastic work received by the qubit and
satisfy JE. Therefore the MO plays the role of a quantum bat-
tery, the ensemble of the qubit and the battery forming an au-
tonomous machine27–29. Originally, the battery behaves as an
embedded quantum work meter, encoding information on the
stochastic work exchanges. We show that the evolution of the
complete machine is characterized by a generalized IFT, that
quantitatively involves the amount of extracted information.
This situation gives rise to so-called absolute irreversibility,
in agreement with recent theoretical predictions and experi-
mental results30–33. Our proposal is robust against finite mea-
surement precision34,35 and can be probed with state-of-the-art
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experimental devices.
The paper is divided as follows. Firstly, we introduce hy-

brid opto-mechanical devices as autonomous machines, and
build the framework to model their evolution on average and
at the single trajectory level. Focusing on Jarzynski’s proto-
col, we define stochastic heat, work and entropy production
and study the regime of validity and robustness of JE as a
function of the parameters of the problem and experimental
imperfections. Finally, we derive and simulate an IFT for the
complete machine, evidencing the presence of absolute irre-
versibility. Our results demonstrate that work fluctuations can
be measured directly, by monitoring the energetic fluctuations
of the quantum battery. They represent an important step to-
wards the experimental demonstration of quantum fluctuation
theorem in a quantum open system.

RESULTS
Hybrid opto-mechanical systems as autonomous ma-
chines. A hybrid opto-mechanical system consists in a qubit
of ground (resp. excited) state |g〉 (resp. |e〉) and transition
frequency ω0, parametrically coupled to a mechanical oscil-
lator of frequency Ω � ω0 (See Fig. 1a). Recently, physi-
cal implementations of such hybrid systems have been real-
ized on various platforms, e.g. superconducting qubits em-
bedded in oscillating membranes36, nanowires coupled to di-
amond nitrogen vacancies37, or to semiconductor quantum
dots38. The complete Hamiltonian of the hybrid system reads
Hqm = Hq + Hm + Vqm

26, where Hq = h̄ω0 |e〉〈e| ⊗ 1m

and Hm = 1q ⊗ h̄Ωb†b are the qubit and MO free Hamil-
tonians respectively. We have introduced the phonon annihi-
lation operator b, and 1m (resp. 1q) the identity on the MO
(resp. qubit) Hilbert space. The coupling Hamiltonian is
Vqm = h̄gm |e〉〈e|⊗ (b+b†), where gm is the qubit-mechanical
coupling strength. Of special interest for the present pa-
per, the so-called ultra-strong coupling regime is defined as
gm ≥ Ω, with ω0 � gm. It was recently demonstrated
experimentally38.

The Hamiltonian of the hybrid system can be fruitfully
rewritten Hqm = |e〉〈e| ⊗ He

m + |g〉〈g| ⊗ Hg
m with Hg

m =

h̄Ωb†b and He
m = h̄ΩB†B + h̄(ω0 − g2

m/Ω)1m, with B =
b + (gm/Ω)1m. It appears that the qubit bare energy states
ε = e, g are stable under the dynamics and perfectly deter-
mine the evolution of the MO ruled by the Hamiltonian Hε

m.
Interestingly,Hε

m preserves the statistics of coherent mechani-
cal states, defined as |β〉 = eβ

∗b−βb† |0〉, where |0〉 is the zero-
phonon state and β the complex amplitude of the field. Con-
sequently, if the hybrid system is initially prepared in a prod-
uct state |ε, β0〉, it remains in a similar product state |ε, βεt 〉 at
any time, with |βεt 〉 = exp(−iHε

mt/h̄) |β0〉. The two possible
mechanical evolutions are pictured in Fig. 1b between time
t0 = 0 and t = Ω/2π, in the phase space defined by the mean
quadratures of the MO 〈x̃〉 = 〈b+ b†〉 and 〈p̃〉 = −i〈b− b†〉.
If the qubit is initially prepared in the state |e〉 (resp. |g〉),
the mechanical evolution is a rotation around around the dis-
placed origin (−gm/Ω, 0) (resp. the origin (0, 0)). Such dis-
placement is caused by the force the qubit exerts on the MO,
that is similar to the optical radiation pressure in cavity opto-

mechanics. Defining δβt = βet − β
g
t , it appears that the dis-

tance between the two final mechanical states |δβt| scales like
gm/Ω. In the ultra-strong coupling regime, this distance is
large such that mechanical states are distinguishable, and can
be used as quantum meters to detect the qubit state.

Since the hybrid system remains in a pure product state
at all times, its mean energy defined as Eqm(ε, βεt ) =
〈ε, βεt |Hqm |ε, βεt 〉 naturally splits into two distinct compo-
nents respectively quantifying the qubit and the mechanical
energies:

Eq(ε, βεt ) = h̄ω(βεt )δε,e (1)

Em(βεt ) = h̄Ω|βεt |2, (2)

where δε,e is the Kronecker delta and ω(β) is the effective
transition frequency of the qubit defined as:

ω(βεt ) = ω0 + 2gm Re(βεt ). (3)

The frequency modulation described by Eq. (3) manifests
the back-action of the mechanics on the qubit. Note that
the case gm/Ω � |β0| corresponds to |δβt| � |βgt |: Then
the frequency modulation is independent of the qubit state
and follows ω(βεt ) ∼ ω(β0e

−iΩt), even in the ultra-strong
coupling regime. In what follows, we will be especially
interested in the regime where 1 � gm/Ω � |β0|, where the
mechanical evolution depends on the qubit state, while the
qubit transition frequency is independent of it.

We now take into account the coupling of the qubit to a
bath prepared at thermal equilibrium. The bath of tempera-
ture T consists of a spectrally broad collection of electromag-
netic modes of frequencies ω′, each mode containing a mean
number of photons n̄ω′ = (exp(h̄ω′/kBT )− 1)

−1. The bath
induces transitions between the states |e〉 and |g〉, and is char-
acterized by a typical correlation time τc giving rise to a bare
qubit spontaneous emission rate γ.

The hybrid system is initially prepared in the product state
ρqm(0) = ρq(0) ⊗ |β0〉〈β0|. ρq(0) is the qubit state, taken
diagonal in the {e, g} basis. |β0〉〈β0| is the mechanical state,
that is chosen pure and coherent. In the rest of the paper, we
shall study transformations taking place on typical time scales
t ∼ Ω−1, such that the mechanical relaxation is neglected.
From the properties of the interaction with the bath and the
total hybrid system’s Hamiltonian Hqm, it clearly appears that
the qubit does not develop any coherence in its bare energy
basis. We show in the Supplementary39 that as long as |β0| �
gmt, the MO imposes a well defined modulation of the qubit
frequency ω(β0(t)) with β0(t) = β0e

−iΩt. This defines the
semi-classical regime, where the hybrid system evolution is
ruled by the following master equation39:

ρ̇qm(t) = − i
h̄

[Hqm, ρqm(t)]

+ γn̄ω(β0(t))D[σ† ⊗ 1m]ρqm(t)

+ γ
(
n̄ω(β0(t)) + 1

)
D[σ ⊗ 1m]ρqm(t). (4)

We have defined the super-operator D[X]ρ = XρX† −
1
2{X

†X, ρ} and σ = |g〉〈e|.
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Product states of the form ρqm(t) = ρq(t) ⊗ ρm(t) are nat-
ural solutions of Eq. (4), giving rise to two reduced coupled
equations respectively governing the dynamics of the qubit
and the mechanics:

ρ̇q(t) = − i
h̄

[Hq(t), ρq(t)] + γn̄ω(β0(t))D[σ†]ρq(t)

+ γ
(
n̄ω(β0(t)) + 1

)
D[σ]ρq(t), (5)

ρ̇m(t) =− i
h̄

[Hm(t), ρm(t)]. (6)

We have introduced the effective time-dependent Hamiltoni-
ans: Hq(t) = Trm[ρm(t)(Hq + Vqm)] = h̄ω(β0(t)) |e〉〈e| and
Hm(t) = Trq[ρq(t)(Hm + Vqm)]. The physical meaning of
these semi-classical equations is transparent: The force ex-
erted by the qubit results into the effective HamiltonianHm(t)
ruling the mechanical evolution. Reciprocally, the mechan-
ics modulates the frequency ω(β0(t)) of the qubit (Eq. (3)),
which causes the coupling parameters of the qubit to the bath
to be time-dependent.

The semi-classical regime of hybrid opto-mechanical sys-
tems is especially appealing for quantum thermodynamical
purposes, since it allows modeling the time-dependent Hamil-
tonian ruling the dynamics of a system (the qubit) by coupling
this system to a quantum entity, i.e. a quantum battery (the
MO). The Hamiltonian of the compound is time-independent,
justifying to call it an “autonomous machine”27–29. As demon-
strated in a previous work40, this scenery suggests a new strat-
egy to measure average work exchanges in quantum open
systems. Defining the average work rate received by the
qubit as 〈Ẇ 〉 = Trq[ρq(t)Ḣq(t)], we have shown that this
work rate exactly compensates the mechanical energy vari-
ation rate: 〈Ėm〉 = Trm[ρ̇m(t)Hm] = −〈Ẇ 〉. Remarkably,
this relation demonstrates the possibility of measuring work
“in situ”, directly inside the battery. This strategy offers un-
deniable practical advantages, since it solely requires to mea-
sure the mechanical energy at the beginning and at the end
of the transformation. The corresponding mechanical energy
change is potentially measurable in the ultra-strong coupling
regime gm/Ω� 140, which is fully compatible with the semi-
classical regime gmt� |β0|.

Our goal is now to extend this strategy to work fluctua-
tions. A key point is to demonstrate that the qubit and the
mechanical state remain in a pure product state along single
realizations of the protocol, allowing to unambiguously
define stochastic energies for each entity. This calls for
an advanced theoretical treatment based on the quantum
trajectories picture.

Quantum trajectories. We shall now describe the evolution
of the machine between the time t0 and tN by stochastic quan-
tum trajectories of pure states ~Σ := {|ΨΣ(tn)〉}Nn=0, where
|ΨΣ(tn)〉 is a vector in the Hilbert space of the machine and
tn = t0 + n∆t with ∆t the time increment. To introduce our
approach we first consider the semi-classical regime where the
master equation (4) is valid: The initial state of the machine
|ΨΣ(t0)〉 is drawn from the product state ρq(0) ⊗ |β0〉〈β0|
where ρq(0) is diagonal in the {e, g} basis, and the evolution is
studied over a typical duration (tN−t0)� |β0|g−1

m . Eq. (4) is

Fig. 1. (a) Situation under study: a qubit exchanging work W with
a mechanical resonator and heat Q with a thermal bath at temper-
ature T . The ensemble of the qubit and mechanics constitutes an
autonomous machine. (b) Evolution of the complex mechanical am-
plitude β if the qubit is in the |e〉 (resp. |g〉) and the MO is initially
prepared in the state

∣∣i|β0|
〉
. The mechanics can be used as a meter

to detect the qubit state if gm/Ω� 1 (ultra-strong coupling regime).
The mechanical fluctuations induced by the qubit state are small w.r.t.
the free evolution if |β0| � gm/Ω (semi-classical regime). These
two regimes are compatible (See text) (c) Stochastic mechanical tra-
jectories ~β[~ε ] in the phase space defined by (x̃, p̃) (See text). The
MO is initially prepared in the coherent state

∣∣i|β0|
〉
, and the qubit

state is drawn from thermal equilibrium. Inset: Distribution of fi-
nal states |βΣ(tN )〉 within an area of typical width gm/Ω. Param-
eters: T = 80 K, h̄ω0 = 1.2kBT , Ω/2π = 100 kHz, γ/Ω = 5,
gm/Ω = 100, |β0| = 1000.

unraveled in the quantum jump picture41–45, giving rise to the
following set of Kraus operators {J−1(tn); J+1(tn); J0(tn)}:

J−1(tn) =
√
γ∆t(n̄ω(β0(tn)) + 1) σ ⊗ 1m, (7)

J+1(tn) =
√
γ∆tn̄ω(β0(tn)) σ

† ⊗ 1m, (8)

J0(tn) = 1qm −
i∆t
h̄
Heff(tn). (9)

We have introduced 1qm = 1m ⊗ 1q the identity opera-
tor in the Hilbert space of the machine. J−1 and J+1 are
the so-called jump operators. Experimentally, they are sig-
naled by the emission or absorption of a photon in the bath,
that corresponds to the transition of the qubit in the ground
or excited state respectively. The mechanical state remains
unchanged. Reciprocally, the absence of detection event in
the bath corresponds the no-jump operator J0, i.e. a con-
tinuous, non Hermitian evolution governed by the effective
Hamiltonian Heff(tn) = Hqm + Hnh(tn). Here Hnh(t) =

−(ih̄/2)(J†+1(t)J+1(t) +J†−1(t)J−1(t)) is the non-hermitian
part of Heff.
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Let us suppose that the machine is initially pre-
pared in a pure state |Ψ(t0)〉 = |ε0, β0〉. The quan-
tum trajectory ~Σ is then perfectly defined by the se-
quence of stochastic jumps/no-jump {KΣ(tn)}Nn=1

where K = 0,−1,+1. Namely, |ΨΣ(tN )〉 =(∏N
n=1 JKΣ(tn) |Ψ(t0)〉

)
/

√
P [~Σ|Ψ(t0)] where we have

introduced P [~Σ|Ψ(t0)] =
∏N
n=1P [ΨΣ(tn)|ΨΣ(tn−1)]

the probability of the trajectory ~Σ conditioned to
the initial state |Ψ(t0)〉. P [ΨΣ(tn)|ΨΣ(tn−1)] =

〈ΨΣ(tn−1)|J†KΣ(tn)JKΣ(tn)|ΨΣ(tn−1)〉 denotes the proba-
bility of the transition from |ΨΣ(tn−1)〉 to |ΨΣ(tn)〉 at time
tn. At any time tN , the density matrix of the machine, i.e. the
solution of Eq. (4), can be recovered by averaging over the
trajectories:

ρqm(tN ) =
∑
~Σ

P [~Σ] |ΨΣ(tN )〉〈ΨΣ(tN )| . (10)

We have introduced the probability of the trajectory P [~Σ] =

p[Ψ(t0)]P [~Σ|Ψ(t0)], where p[Ψ(t0)] the probability that the
machine is initially prepared in |Ψ(t0)〉.

Interestingly from the expression of the Kraus operators, it
appears that starting from the product state |ε0, β0〉, the ma-
chine remains in a product state |ΨΣ(tn)〉 = |εΣ(tn), βΣ(tn)〉
at any time tn, which is the first result of this paper. The
demonstration is as follows: At each time step tn, either the
machine undergoes a quantum jump J±1, or it evolves un-
der the no-jump operator J0. In the former case, the qubit
jumps from |εΣ(tn)〉 into |εΣ(tn+1)〉 and the mechanical state
remains unchanged, such as |βΣ(tn+1)〉 = |βΣ(tn)〉. In the
latter case, the evolution of the machine state is governed
by the effective Hamiltonian Heff, whose non-hermitian part
can be rewritten Hnh = (−ih̄/2)1m ⊗ Hq

nh with Hq
nh diago-

nal in the bare qubit energy eigenbasis. It naturally derives
from the evolution rules that Hnh has no effect on a ma-
chine state of the form |εΣ(tn), βΣ(tn)〉, such that the no-
jump evolution reduces to its unitary component defined by
Hqm. As studied above, the qubit energy state is stable under
such evolution, such that |εΣ(tn)〉 = |εΣ(tn+1)〉. Recipro-
cally, the coherent nature of the mechanical field is preserved
by HεΣ(tn)

m . Thus the mechanics evolves into |βΣ(tn+1)〉 =

exp
(
−i∆tHεΣ(tn)

m

)
|βΣ(tn)〉, completing the demonstration.

This result invites to recast the machine trajectory as
a set of two reduced trajectories ~Σ = {~ε, ~β[~ε ]} where
~ε = {|εΣ(tn)〉}Nn=0 is the stochastic qubit trajectory with
εΣ(tn) = e, g. In the semi-classical regime considered
here, the jump probabilities solely depend on ω(β0(t)), such
that the qubit reduced evolution is Markovian. Conversely,
~β = {|βΣ(tn)〉}Nn=0 is the continuous MO trajectory verify-
ing |βΣ(tn)〉 =

∏n−1
k=0 exp

(
−i∆tHεΣ(tk)

m

)
|β0〉. At any time

tN , the mechanical state depends on the complete qubit tra-
jectory ~ε.

Examples of numerically generated mechanical trajec-
tories ~β[~ε ] (See Methods) are plotted in Fig. 1c. As it
appears in the figure, at the final time the mechanical

states |βΣ(tN )〉 are restricted within an area of typical
dimension gm/Ω. Splitting the mechanical amplitude as
βΣ(tN ) = β0(tN ) + δβΣ(tN ), the semi-classical regime
is characterized by |δβΣ(tn)| � |β0(tN )| while in the
ultra-strong coupling regime |δβΣ(tN )| � 1. These two
regimes are compatible, which is the key of our proposal as
we show in the next Section.

Interestingly, the modeling of the machine stochastic
evolution can be extended over timescales t ≥ |β0|g−1

m ,
beyond the semi-classical regime. The key point is that the
trajectory picture allows keeping track of the mechanical
state at each time step |βΣ(tn)〉. Therefore at each time tn, a
master equation of the form of Eq. (4) can thus be derived and
unraveled into a set of trajectory-dependent Kraus operators
similar to Eq. (7), taking now ω(βΣ(tn)) as the qubit effective
frequency. In this general situation, the machine stochastic
evolution still consists in trajectories of pure product states
|ΨΣ(tn)〉 = |εΣ(tn), βΣ(tn)〉, but the mechanical fluctuations
|δβΣ(tn)| cannot be neglected anymore with respect to the
mean amplitude |β0(tn)|. Consequently, Eq.(10) can not be
written as an average product state of the qubit and the MO,
resulting in the emergence of classical correlations between
the qubit and the MO average states. Moreover, the jump
probabilities at time tn now depend on n̄ω(βΣ(tn)), such that
the reduced qubit trajectory ~ε is not Markovian anymore. As
we show below, this property conditions the validity of our
proposal, which is restricted to the Markovian regime.

Stochastic thermodynamics. From now on we focus on the
following protocol: At the initial time t0 the machine is pre-
pared in a product state ρqm(t0) = ρ∞q (β0) ⊗ |β0〉〈β0| where
ρ∞q (β0) is the qubit thermal distribution defined by the effec-
tive frequency ω(β0). Note that ρqm(t0) is not an equilibrium
state of the whole machine. One performs an energy measure-
ment of the qubit, preparing the state |Ψ(t0)〉 = |ε(t0), β0〉
with probability p∞β0

[ε] = exp(−h̄ω(β0)δε,e/kBT )/Z(β0).
Z(β0) = 1 + exp(−h̄ω(β0)/kBT ) is the partition function.
The machine is then coupled to the bath and its evolution is
studied between t0 = 0 and tN = π/2Ω. Depending on
the choice of thermodynamical system, this physical situation
can be studied from two different perspectives, defining two
different transformations. If the considered thermodynami-
cal system is the machine, then the studied evolution corre-
sponds to a relaxation towards thermal equilibrium. Since the
machine Hamiltonian Hqm is time-independent, energy ex-
changes reduce to heat exchanges between the machine and
the bath. On the other hand, if the considered thermody-
namical system is the qubit, then the studied transformation
consists in driving the qubit out of equilibrium through the
time-dependent Hamiltonian Hq(t), the driving work being
provided by the mechanics. In the semi-classical regime,
the qubit evolution is Markovian, such that this last situa-
tion simply corresponds to Jarzynski’s protocol with Hq(t) =
h̄ω(β0(t)) |e〉〈e|.

We now define and study the stochastic thermodynami-
cal quantities characterizing the transformation experienced
by the system (qubit or machine) for the protocol intro-
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duced above. As shown previously, starting from a product
state |Ψ(t0)〉 = |ε0, β0〉 the machine remains in a product
state at any time |ΨΣ(tn)〉 = |εΣ(tn), βΣ(tn)〉. Defining as
Eqm(ΨΣ(tn)) =

〈
ΨΣ(tn)

∣∣Hqm
∣∣ΨΣ(tn)

〉
the machine internal

energy, it thus naturally splits into a sum of the qubit en-
ergy Eq(εΣ(tn), βΣ(tn)) (See Eq. (1)) and mechanical energy
Em(βΣ(tn)) (See Eq. (2)). Along the trajectory, the set of in-
ternal energies can change in two distinct ways. A quantum
jump taking place at time tn stochastically changes the qubit
and the machine energies by the same amount δEq[Σ, tn] =
δEqm[Σ, tn], leaving the MO energy unchanged. Following
standard definitions in stochastic thermodynamics24,46,47, the
corresponding energy change is identified with heat q[Σ, tn]
provided by the bath. Conversely in the absence of jump,
the qubit remains in the same state between tn and tn+1

while its energy eigenvalues evolve in time due to the qubit-
mechanical coupling. Such energy change is identified with
work denoted w[Σ, tn] and verifies δEq[Σ, tn] = w[Σ, tn].
During this time interval, the machine is energetically iso-
lated such that δEqm[Σ, tn] = 0. Therefore the work in-
crement exactly compensates the mechanical energy change
δEm[Σ, tn] = −w[Σ, tn]. Finally, the total work (resp. heat)
received by the qubit is defined as W [~Σ] =

∑N−1
n=0 w[Σ, tn]

(resp. Q[~Σ] =
∑N−1
n=0 q[Σ, tn]). By construction, their

sum equals the qubit total energy change between t0 and tN ,
∆Eq[~Σ] = W [~Σ]+Q[~Σ]. From the analysis conducted above,
it appears that the heat exchange corresponds to the energy
change of the machine, ∆Eqm[~Σ] = Q[~Σ]. Reciprocally, the
work received by the qubit is entirely provided by the mechan-
ics and verifies:

W [~Σ] = −∆Em[~Σ], (11)

which is the second result of this article. Eq. (11) extends the
results obtained for the average work in a previous work40,
and explicitly demonstrates the one-by-one correspondence
between the stochastic work received by the qubit and the
mechanical energy change between the start and the end of
the trajectory. The MO thus behaves as an ideal embedded
quantum work meter at the single trajectory level.

We finally derive the expression of the stochastic entropy
production ∆is[~Σ]. It is defined by comparing the probabil-
ity of the forward trajectory in the direct protocol P [~Σ] to
the probability of the backward trajectory in the time-reversed
protocol P̃ [ ~Σ]48:

∆is[~Σ] = log

(
P [~Σ]

P̃ [ ~Σ]

)
. (12)

The probability of the direct trajectory reads:

P [~Σ] = p∞β0
[εΣ(t0)]

N∏
n=1

P [ΨΣ(tn)|ΨΣ(tn−1)], (13)

The state of the hybrid system averaged over the forward
trajectories at time tN is described by Eq. (10). At the end of

the protocol, the reduced mechanical average state defined as
ρm(tN ) = Trq[ρqm(tN )] thus consists in a discrete distribution
of the final mechanical states {|βΣ(tN )〉}. Introducing the
probability pm[βf] for the mechanical amplitude to end up in
a state of amplitude βf, we shall denote it in the following
ρm(tN ) = Σβfpm[βf] |βf〉〈βf| where Σβfpm[βf] = 1.

Reciprocally, the time-reversed protocol is defined between
tN and t0. It consists in time-reversing the unitary evolu-
tion governing the dynamics of the machine, keeping the same
stochastic map at each time tn. This leads to the expression
of the time dependent reversed Kraus operators47,49–51:

J̃0(tn) = 1qm +
i∆t
h̄
H†eff(tn), (14)

J̃−1(tn) = J+1(tn), (15)

J̃+1(tn) = J−1(tn), (16)

The initial state of the backward trajectory is defined as fol-
lows: The mechanical state |βΣ(tN )〉 is drawn from the final
distribution of states {|βf〉} generated by the direct protocol
with probability pm[βf], while the qubit state is drawn from
the thermal equilibrium defined by βΣ(tN ) with probability
p∞βΣ(tN ). The probability of the backward trajectory reads

P̃ [ ~Σ] = pm[βΣ(tN )]p∞βΣ(tN )[εΣ(tN )]

×
1∏

n=N

P̃ [ΨΣ(tn−1)|ΨΣ(tn)]. (17)

We have introduced the reversed jump probability at time tn
P̃ [ΨΣ(tn−1)|ΨΣ(tn)] = 〈ΨΣ(tn)|J̃†KΣ(tn)J̃KΣ(tn)|ΨΣ(tn)〉.
Based on Eqs. (11), (12), (13), (17), we derive in the
Supplementary39 the following expression for the stochastic
entropy produced along ~Σ:

∆is[~Σ] = σ[~Σ] + ISh[~Σ], (18)

where σ[~Σ] and ISh[~Σ] are defined as

σ[~Σ] = −∆Em[~Σ] + ∆F [~Σ]

kBT
, (19)

ISh[~Σ] = − log(pm[βΣ(tN )]). (20)

We have introduced the quantity ∆F [~Σ] =
kBT log(Z(β0)/Z(βΣ(tN ))) that extends the notion of
the qubit free energy change to cases where the reduced qubit
trajectory ~ε is non-Markovian. In the Markovian regime, we
simply recover Z(tN ) = 1 + exp(−h̄ω(β0(tN ))/kBT ) and
∆F [~Σ] = ∆F . As we show below, in this case σ[~Σ] can
be interpreted as the entropy produced along the reduced
trajectory of the qubit, that gives rise to a reduced JE.
Conversely, ISh[~Σ] measures the stochastic entropy increase
of the MO and is involved in a generalized IFT characterizing
the evolution of the whole machine. We now study in detail
these two fluctuation theorems.
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Fig. 2. Jarzynski’s equality for the qubit. Parameters: T = 80 K,
h̄ω0 = 1.2kBT , Ω/2π = 100 kHz, γ/Ω = 5. (a) Deviation from
JE as a function of

(
gm
Ω

)
/|β0| (|β0| = 5000). The points were com-

puted by increasing the opto-mechanical coupling strength gm/2π
from 1 MHz to 20 MHz, keeping the other parameters constant. (b)
Deviation from JE as a function of |β0| with gm/Ω = 10. Red
squares: Case of a classical external drive imposing the qubit fre-
quency modulation ω(β0(t)) (See text). Blue dots: Eq. (21). Green

diamonds: exp
(
−
〈
σ[~Σ]

〉
~Σ

)
− 1. These green points demonstrate

that JE is not trivially reached because the considered transforma-
tions are reversible.

Reduced Jarzynski’s equality. We first focus on the trans-
formation experienced by the qubit. As mentioned above,
in the Markovian regime the applied protocol corresponds
to Jarzynski’s protocol: The qubit is driven out of thermal
equilibrium while it experiences the frequency modulation
ω(β0(t)). Since the stochastic work W [~Σ] is provided by
the mechanics, one expects the mechanical energy fluctua-
tions to obey a reduced Jarzynski’s equality. We derive in the
Supplementary39 the following IFT:

〈
exp

(
∆Em[~Σ]

kBT

)〉
~Σ

= exp

(
−∆F

kBT

)
. (21)

Eq. (21) corresponds to the usual Jarzynski’s equality, with
the remarkable difference that the stochastic work involved
in σ[~Σ] is now replaced by the mechanical energy change
∆Em[~Σ]. This is the third and most important result of this
paper, which now suggests a new strategy to measure work
fluctuations. Instead of reconstructing the stochastic work
by monitoring the complete qubit trajectory, one can simply
measure the mechanical stochastic energy at the beginning
and at the end of the protocol. This can be done, e.g. in
time-resolved measurements of the mechanical complex am-
plitude through to optical deflection techniques52,53. To do so,

the final mechanical states |βΣ(tN )〉 should be distinguish-
able, which requires to reach the ultra-strong coupling regime.
As mentioned above, this regime has been experimentally
evidenced38 with typical values Ω ∼ gm ∼ 400kHz. The strat-
egy we suggest here is drastically different from former pro-
posals aiming at measuring JE in a quantum open system, that
involved challenging reservoir engineering techniques24,25 or
fine thermometry23 in order to measure heat exchanges.
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Fig. 3. Impact of finite precision readout of the mechanical ampli-
tude. Parameters: δβ = 2, T = 80 K, h̄ω0 = 1.2kBT , Ω/2π = 1
kHz, γ/Ω = 5. 2gm|β0| was kept constant (2gm|β0|/2π = 600
GHz) while increasing gm, such that each point corresponds to the
same mean reduced entropy production 〈σ[~Σ]〉~Σ. Left axis, blue
dots: Deviation from measured JE. Right axis, orange squares: Mu-
tual information I[βf, β

M]. Orange dashed line: Shannon’s entropy
of the final distribution of mechanical states SSh[βf] (See text).

We have simulated the reduced JE (See Fig. 2a). As
expected, JE is verified in the Markovian limit where we
have checked that the action of the MO is similar to a
classical external operator imposing the qubit frequency
modulation ω(β0(t)) (Fig. 2b). On the contrary, the Marko-
vian approximation and JE break down in the regime
(gm/Ω)/|β0| ≥ 10−2. In what follows, we restrict the study
to the range of parameters (gm/Ω)/|β0| < 10−2.

The results presented in Fig. 2 presuppose the experimen-
tal ability to measure the mechanical states with an infinite
precision. To take into account both quantum uncertainty and
experimental limitations, we now assume that the measured
complex amplitude βM corresponds to the mechanical ampli-
tude βf in the end of the protocol with a finite precision δβ.
For our simulations we have chosen δβ = 2 which corre-
sponds to achievable experimental value52,53. To quantify this
finite precision, we introduce the mutual information between
the final distribution of mechanical states pm[βf] introduced
above, and the measured distribution pm[βM], defined as:

I[βf, β
M] =∑

βf,βM

p(βf, β
M) log

(
p(βf, β

M)

pm[βf]pm[βM]

)
. (22)

p(βf, β
M) denotes the joint probability of measuring βM while

the mechanical amplitude equals βf. If the measurement pre-
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cision is infinite, the mutual information I[βf, β
M] exactly

matches the Shannon entropy characterizing the final distribu-
tion of mechanical states SSh[βf] = −

∑
βf
pm[βf] log(pm[βf]).

On the opposite, it vanishes in the absence of correlations be-
tween the two distributions.

The simulation of the measured JE and the mutual infor-
mation I[βf, β

M] are plotted in Fig. 3 for the measurement
precision δβ = 2, as a function of the parameter gm/Ω
(See Methods). We have introduced the measured reduced
entropy production σM[~Σ] = (WM [~Σ] − ∆F )/kBT

where WM [~Σ] is the measured work distribution
WM [~Σ] = −∆EM

m [~Σ] = h̄Ω(|βM
0 |2 − |βM

Σ (tN )|2). As
expected, small values of gm/Ω correspond to a poor abil-
ity to distinguish between the different final mechanical
states, hence to measure work, which is characterized by a
non-optimal mutual information. In this limit, the measured
work fluctuations WM [~Σ] do not verify JE. Increasing the
ratio gm/Ω allows to increase the information extracted on
the work distribution during the readout. Thus the mutual
information converges towards SSh[βf] despite the finite
precision readout. JE is recovered for gm/Ω ∼ 50. Such high
rates are within experimental reach, by engineering modes of
lower mechanical frequency54.
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Fig. 4. Deviation from the integral fluctuation theorem (a) and mean
entropy production (b) for the complete autonomous machine. Pa-
rameters: ω0/2π = 2 THz (amounts to h̄ω0/kBT = 1.2 for T = 80
K used in Fig. 2), Ω/2π = 100 kHz, γ/Ω = 5, gm/Ω = 10 and
|β0| = 5000. In both cases, two different expressions were used.
The blue dots are computed using the final distribution of mechan-
ical states {|βΣ(tN )〉} and mimic an experiment. The red squares
involve the probability of the reversed trajectory, which can only be
the result of a theoretical treatment. (See Methods for more details.)

Generalized integral fluctuation theorem. We finally con-
sider the complete machine as the thermodynamical system
under study. Based on Eq. (12) and (18), we show in the
Supplementary39 that the entropy produced along the stochas-
tic evolution of the hybrid system obeys a modified IFT of the

form: 〈
exp
(
−∆is[~Σ]

)〉
~Σ

= 1− λ. (23)

Following30–33, we have defined the parameter λ as∑
~Σ P̃ [ ~Σ] = 1 − λ. The case λ 6= 0 signals the existence of

backward trajectories ~Σ without any forward counterpart, i.e.
P [~Σ] = 0, a phenomenon that has been dubbed absolute irre-
versibility (See Supplementary39). From Eq. (23) and the con-
vexity of the exponential, it is clear that absolute irreversibility
characterizes transformations associated to a strictly positive
entropy production. This is the case in the present situation,
which describes the relaxation of the machine towards a ther-
mal equilibrium state: Such transformation is never reversible,
unless for T = 0.

The IFT (Eq. (23)) and the mean entropy production〈
∆is[~Σ]

〉
~Σ

are plotted in Fig. 4a and Fig. 4b respectively, as a
function of the bath temperature T (See Methods). The limit
h̄ω0 � kBT corresponds to the trivial case of a single re-
versible trajectory characterized by a null entropy production
and λ → 0. In the opposite regime defined by kBT � h̄ω0,
a mean entropy is produced while λ → 1: In this situation,
most backward trajectories have no forward counterpart. As
we show in the Supplementary39, such effect arises since a
given βf of the final distribution of mechanical states can only
be reached by a single forward trajectory, while it provides a
starting point for a large number of backward trajectories.

As noticed in30,33,51, absolute irreversibility can also ap-
pear in IFTs characterizing the entropy produced by a mea-
surement process. In particular, λ 6= 0 can signal a per-
fect information extraction: This typically corresponds to the
present situation which describes the creation of classical cor-
relations between the qubit reduced trajectory ~ε and the dis-
tributions of final mechanical states ~β[~ε]. Interestingly, the
two FTs (21) and (23) are thus deeply related. To be exper-
imentally checked, Eq. (21) requires the MO to behave as a
perfect quantum work meter, which is signaled by absolute
irreversibility Eq. (23). Therefore absolute irreversibility is
constitutive of the protocol, and a witness of its success.

DISCUSSION
We have evidenced a new protocol to measure stochastic
entropy production and thermodynamic time arrow in a
quantum open system. Based on the direct readout of
stochastic work exchanges within an autonomous machine,
this protocol is experimentally feasible in state-of-the-art
opto-mechanical devices and robust against finite precision
measurements. It offers a promising alternative to former
proposals relying on the readout of stochastic heat exchanges
within engineered reservoirs, which require high efficiency
measurements. Originally, our proposal sheds new light
on absolute irreversibility, which quantifies information
extraction within the quantum work meter and therefore
signals the success of the protocol.

In the near future, direct work measurement may become
extremely useful to investigate genuinely quantum situations
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where a battery coherently drives a quantum open system
into coherent superpositions. Such situations are especially
appealing for quantum thermodynamics since they lead to
entropy production and energetic fluctuations of quantum
nature47,55, related to the erasure of quantum coherences9,10.
Recently, small amounts of average work have been directly
measured, by monitoring the resonant field coherently driving
a superconducting qubit56. Generalizing our formalism to this
experimental situation would relate measurable work fluctua-
tions to quantum entropy production, opening a new chapter
in the study of quantum fluctuation theorems.

METHODS

The numerical results presented in this article were obtained
using the jump and no-jump probabilities to sample the en-
semble of possible direct trajectories45. The average value
of a quantity A[~Σ] is then approximated by

〈
A[~Σ]

〉
~Σ
'

1
Ntraj

∑Ntraj
i=1 A[~Σi] where Ntraj = 5 × 106 is the number of nu-

merically generated trajectories and ~Σi denotes the i-th trajec-
tory.

The reduced entropy production σ[~Σ] used in Fig. 2 and 4
was calculated with the expression (19), using the numerically
generated values of β0 and βΣ(tN ) in the trajectory ~Σ. One
value of βΣ(tN ) can be generated by a single direct trajectory
~Σ: Below we use the equality pm[βΣ(tN )] = P [~Σ]. Using the
expression (17) of the probability of the reversed trajectory,
the average entropy production becomes:

〈
∆is[~Σ]

〉
~Σ

=

〈
log

(
P [~Σ]

P̃ [ ~Σ]

)〉
~Σ

=

〈
− log

(
p∞βΣ(tN )[εΣ(tN )]

×
N∏
n=1

P̃ [ΨΣ(tn−1)|ΨΣ(tn)]

)〉
~Σ

' −1

Ntraj

Ntraj∑
i=1

log

(
p∞βi

Σ(tN )[ε
i(tN )]

×
N∏
n=1

P̃ [Ψi
Σ(tn−1)|Ψi

Σ(tn)]

)
,

and,∑
~Σ

P̃ [ ~Σ] =
∑
~Σ

p∞βΣ(tN )[εΣ(tN )]pm[βΣ(tN )]

×
N∏
n=1

P̃ [ΨΣ(tn−1)|ΨΣ(tn)]

=

〈
p∞βΣ(tN )[εΣ(tN )]

N∏
n=1

P̃ [ΨΣ(tn−1)|ΨΣ(tn)]

〉
~Σ

' 1

Ntraj

Ntraj∑
i=1

p∞βi
Σ(tN )[ε

i(tN )]

×
N∏
n=1

P̃ [Ψi
Σ(tn−1)|Ψi

Σ(tn)].

The plotted error bars represent the statistical error σ/
√
Ntraj,

where σ is the standard deviation.

To obtain Fig. 3, we considered that the preparation of the
initial MO state was not perfect. So instead of starting from
exactly |β0〉, the MO trajectories start from |βΣ(t0)〉 with the
βΣ(t0) uniformly distributed in a square of width 2δβ, cen-
tered on β0. Similarly, the measuring apparatus has a finite
precision, modeled by a grid of cell width 2δβ in the phase
plane (Reβf, Imβf). Instead of obtaining the exact value of
βΣ(tN ), we get βM

Σ (tN ), the center of the grid cell in which
βΣ(tN ) is. The value used to compute the thermodynamical
quantities are not the exact βΣ(t0) and βΣ(tN ) but βM

0 = β0

and βM
Σ (tN ).
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39Monsel, J., Elouard, C. & Auffèves, A. Supplementary Material for “An au-
tonomous quantum machine to measure the thermodynamic arrow of time”.
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SUPPLEMENTARY INFORMATION FOR “AN AUTONOMOUS QUANTUM MACHINE TO
MEASURE THE THERMODYNAMIC ARROW OF TIME”

A. Master equation.

Here we describe the coupling of a hybrid opto-mechanical system to a thermal bath of temperature T . The total Hamiltonian
reads H = Hqm + Hb + Vqb, where Hb =

∑
k h̄ωka

†
kak is the free Hamiltonian of the bath, ak is the annihilation operator of

the k-th electromagnetic mode of frequency ωk. The coupling Hamiltonian between the qubit and the bath in the Rotating Wave
Approximation equals Vqb =

∑
k h̄gk(akσ

†+ a†kσ) , where σ = |g〉〈e| and gk is the coupling strength between the qubit and the
k-th mode. We denote γ =

∑
k g

2
kδ(ω0−ωk) the spontaneous emission rate of the bare qubit in the bath. The typical correlation

time of the bath verifies τc � γ−1, g−1
m ,Ω−1.

The hybrid system is initially prepared in a factorized state ρqm(0) = ρq(0) ⊗ |β0〉〈β0| where ρq(0) is diagonal in the bare
qubit energy basis and |β0〉 is a pure coherent state. We can define a coarse grained time step ∆t, fulfilling τc � ∆t � γ−1

such that under these assumptions, the hybrid system and the bath are always in a factorized state (Born-Markov approximation).
Moreover, the coupling to the bath solely induces transitions between the qubit bare energy states, such that the hybrid system
naturally evolves into a classically correlated state of the form ρqm(t) = Pe(t) |e〉〈e|⊗|βe(t)〉〈βe(t)|+Pg(t) |g〉〈g|⊗|βg(t)〉〈βg(t)|.
{|βε(t)〉}ε=e,g are coherent states of the MO verifying βε = β0e

−iΩt + δβε(t). The mechanical fluctuations after a typical time
t verify |δβε(t)| ∼ gmt. They become potentially detectable as soon as |δβε(t)| ≥ 1, i.e. t ≥ g−1

m . Conversely, the mechanical
fluctuations have no influence on the qubit frequency as long as |δβε(t)| � |β0|, i.e. t� |β0|g−1

m (See main text).

The precursor of the master equation reads

∆ρI
qm(t) = ρI

qm(t+ ∆t)− ρI
qm(t) = − 1

h̄2

∫ t+∆t

t

dt′
∫ t′

t

dt′′ Trb
[[
V I

qb(t′),
[
V I

qb(t′′), ρI
qm(t)⊗ ρb

]]]
,

where we have defined the interaction representation with respect to the free Hamiltonians of the hybrid system and the bath
ρI

qm(t) = eit(Hqm+Hb)/h̄ρqm(t)e−it(Hqm+Hb)/h̄, V I
qb(t) = eit(Hqm+Hb)/h̄Vqb(t)e−it(Hqm+Hb)/h̄. Trb is the trace over the bath’s

Hilbert space and ρb is the bath’s density matrix. We have used that the term of first order in V I
qb vanishes.

Because of the presence of Vqm = h̄gm |e〉〈e| (b + b†) in H0, V I
qb also acts on the MO. It can be split in the following way:

V I
qb(u) = R†b(u) ⊗ S(u) + Rb(u) ⊗ S†(u), with Rb(u) = h̄

∑
k gkake−iωku and S(u) = eiuHqm/h̄(σ ⊗ 1m)e−iuHqm/h̄. Then,

expanding the commutators, the trace over the bath’s degrees of freedom can be computed. For any two times u and v, the
correlation functions of the bath read: Trb[ρbRb(u)Rb(v)] = Trb[ρbR

†
b(u)R†b(v)] = 0, g−(u, v) = Trb[ρbRb(u)R†b(v)] =

h̄2∑
k g

2
k(n̄ωk

+ 1)e−iωk(u−v) and g+(u, v) = Trb[ρbR
†
b(u)Rb(v)] = h̄2∑

k g
2
kn̄ωk

eiωk(u−v). n̄ωk
is the average number of

photon of frequency ωk in the bath. As a result, only terms containing one S and one S† remains in ∆ρI
qm. The integral

∫ t′
t

dt′′

can then be changed into an integral over τ = t′ − t′′:
∫ t′−t

0
dτ . Since gs(u, v) = gs(u − v), with s ∈ {+,−}, is non zero

only for |u − v| <∼ τc � ∆t, the upper bound can be set to infinity. In addition, the coarse-graining time can be chosen such
that ∆t � γ−1, g−1

m ,Ω−1 and the MO does not evolve during the integration. As a consequence, the operator S(u) becomes
S(u) = σe−iω0ue−igm(b+b†)u.

As long as u � |β0|g−1
m , ω(βe(u)) ' ω(βg(u)) ' ω(β0(u)) where ω(β) = ω0 + gm(β + β∗) and β0(t) = β0e

−iΩt.
Moreover, the state of the system ρqm(t) can be approximated by the factorized state ρq(t)⊗ |β0(t)〉〈β0(t)|. Denoting |E(u)〉 =
|e〉〈e| ⊗ |β0(u)〉〈β0(u)| (resp. |G(u)〉 = |g〉〈g| ⊗ |β0〉〈β0| (u)), S(u) thus verifies 〈E(u)|S(u)|E(u)〉 = 〈G(u)|S(u)|G(u)〉 =
〈E(u)|S(u)|G(u)〉 = 0 and 〈G(u)|S(u)|E(u)〉 ' e−iω(β0(u))u. ∆ρI

qm(t) can then be decomposed over the states |E(t)〉,
|G(t)〉 and the integral over τ make the system interacts only with bath photons of frequency ω(β0(t)).

As announced in the main text, the master equation describing the relaxation of the hybrid system in the bath can finally be
written as

ρ̇qm(t) = − i
h̄

[Hqm, ρqm(t)] + γn̄ω(β0(t))D[σ† ⊗ 1m]ρqm(t) + γ
(
n̄ω(β0(t)) + 1

)
D[σ ⊗ 1m]ρqm(t), (24)

where D[X]ρ = XρX† − 1
2{X

†X, ρ}, and n̄ω = (exp(h̄ω/kBT )− 1)
−1.
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B. Entropy production for the autonomous machine.

Starting from the definition ∆is[~Σ] = log
(
P [~Σ]/P̃ [ ~Σ]

)
and using Eqs. (13) and (17) from the main text, the entropy produc-

tion can be written:

∆is[~Σ] = log

(
p∞β0

[εΣ(t0)]

pm[βΣ(tN )]p∞βΣ(tN )[εΣ(tN )]

∏N
n=1 P [ΨΣ(tn)|ΨΣ(tn−1)]∏N
n=1 P̃ [ΨΣ(tn−1)|ΨΣ(tn)]

)
. (25)

From the expressions of the jump and no-jump operators, we obtain

P [ΨΣ(tn)|ΨΣ(tn−1)]

P̃ [ΨΣ(tn−1)|ΨΣ(tn)]
=
〈ΨΣ(tn−1)|J†KΣ(tn)JKΣ(tn)|ΨΣ(tn−1)〉

〈ΨΣ(tn)|J̃†KΣ(tn)J̃KΣ(tn)|ΨΣ(tn)〉
= exp(−q[Σ, tn−1]/kBT ), (26)

and, using the expression of the thermal distribution p∞β [ε] = exp(−h̄ω(β)δε,e/kBT )/Z(β), we get

p∞β0
[εΣ(t0)]

p∞βΣ(tN )[εΣ(tN )]
= exp

(
(∆Eq[~Σ]−∆F [~Σ])/kBT

)
. (27)

The initial and final thermal distributions respectively depend on β0 and βΣ(tN ), which leads to a trajectory-dependent free
energy variation ∆F [~Σ] = kBT log(Z(β0)/Z(βΣ(tN ))). Finally,

∆is[~Σ] = − log(pm[βΣ(tN )]) +
∆Eq[~Σ]−∆F [~Σ]−Q[~Σ]

kBT

= ISh[~Σ]− ∆Em + ∆F [~Σ]

kBT

= ISh[~Σ] + σ[~Σ], (28)

where we used ∆Eq[~Σ] = W [~Σ] +Q[~Σ] and W [~Σ] = −∆Em[~Σ] [Eq. (11) from the main text].

C. Reduced Jarzynski Equality

We show that, in the Markovian limit, the reduced entropy production σ[~Σ ] obeys the Jarzynski like equality:〈
exp
(
−σ[~Σ ]

)〉
~Σ

= 1. (29)

The derivation starts from the sum over all reversed trajectories of the complete machine: 1 =
∑

~Σ P̃ [ ~Σ]. In the limit |β0| �
gm/Ω, the action of the MO on the qubit is similar to an external operator imposing the evolution of the qubit frequency
ω(β0(t)). As a consequence, the reversed jump probability at time tn does not depend on the exact MO state βΣ(tn), but only
on β0(tn) = β0e−iΩtn , which corresponds to the free MO dynamics. Therefore, we can get rid of the state dependencies in the
MO state: P̃ [ΨΣ(tn−1)|ΨΣ(tn)] = P̃ [εΣ(tn)|εΣ(tn+1)] and p∞βΣ(tN )[εΣ(tN )] = p∞β0(tN )[εΣ(tN )]. Therefore,

1 =

 ∑
βΣ(tN )

pm[βΣ(tN )]

∑
~ε

p∞β0(tN )[εΣ(tN )]

N∏
n=1

P̃ [εΣ(tn−1)|εΣ(tn)]

=
∑
~ε

p∞β0(tN )[εΣ(tN )]

N∏
n=1

P̃ [εΣ(tn−1)|εΣ(tn)]

=
∑
~ε

P [~ε ]
p∞β0(tN )[εΣ(tN )]

∏N
n=1 P̃ [εΣ(tn−1)|εΣ(tn)]

p∞β0
[εΣ(t0)]

∏N
n=1 P [εΣ(tn)|εΣ(tn−1)]

.

Since the trajectory of the MO ~β[~ε ] is completely determined by the one of the qubit, we can restore the sum over the trajectories
~Σ of the autonomous machine. Then, from the expressions p∞β [ε] = exp(−h̄ω(β)δε,e/kBT )/Z(β), W [~Σ] = −∆Em[~Σ] and
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P̃ [ΨΣ(tn−1)|ΨΣ(tn)]/P [ΨΣ(tn)|ΨΣ(tn−1)] = exp(−q[Σ, tn−1]) , we get

1 =
∑
~Σ

P [~Σ] exp

(
−

∆Eq[~Σ]−∆F −Q[~Σ]

kBT

)

=

〈
exp

(
∆Em[~Σ] + ∆F

kBT

)〉
~Σ

.

D. Fluctuation theorem for the complete autonomous machine.

(a)

Ue

Ũe

Ug

Ũg

Ũg

Ũe

ρ∞q (t0)⊗|β0〉〈β0| (ρ∞q ⊗ρm)(tN )

|g, β0〉

|e, β0〉

|g, βg〉

|e, βe〉

|e, βg〉

|g, βe〉

|e, β′〉

|g, β′′〉

t
t0 tN

(b)

〈x̃〉

〈p̃〉

••

|e〉

|g〉 |e〉

|g〉

− gm
Ω

0

β0

βg

βe

β′′

β′

Fig. 5. Example of trajectories for the qubit (a) and the MO (b). The solid (resp. dashed) arrows correspond to the direct (resp. reversed)
protocol. For the sake of simplicity, only the trajectories without any jump are represented. βg (resp. βe) is the final state of the MO after
the direct protocol when the qubit is in state |g〉 (resp. |e〉). The expressions of the MO evolution operators are: Uε(t) = exp(−itHε

m) and
Ũε(t) = U†

ε (t), with ε = e, g. The reversed trajectories that do not have a direct counterpart are plotted in red and the corresponding qubit
states with dashed lines. The final MO states for these trajectories are |β′′〉 = Ũg(tN ) |βe〉 and |β′〉 = Ũe(tN ) |βg〉, where β′′ 6= β0 and
β′ 6= β0. ρ∞q (t) (resp. ρm(t)) is the qubit thermal state (resp. the MO average state) at time t.

The IFT for the complete autonomous machine [Eq. (23) from the main text] can be derived starting from the sum over all
reversed trajectories, making appear the ratio P̃ [ ~Σ]/P [~Σ]. To do so, we need to ensure that P [~Σ] 6= 0. This requires to separate
the set Σd = {P̃ [ ~Σ]|P [~Σ] 6= 0} of reversed trajectories with a direct counterpart from the set without:

1 =
∑

~Σ

P̃ [ ~Σ] =
∑
~Σ∈Σd

P [~Σ]
P̃ [ ~Σ]

P [~Σ]
+
∑
~Σ /∈Σd

P̃ [ ~Σ]. (30)

Only the reversed trajectories ~Σ = {|ε̃Σ(tn), β̃Σ(tn)〉}0n=N such that β̃Σ(t0) = β0 verify P [~Σ] 6= 0. Fig. 5 gives examples of
both kinds of trajectories. Denoting λ =

∑
~Σ /∈Σd

P̃ [ ~Σ] and using Eqs. (13) and (17) from the main text we obtain:

1 =
∑
~Σ

(
P [~Σ]pm[βΣ(tN )]

p∞βΣ(tN )[εΣ(tN )]

p∞β0
[εΣ(t0)]

∏N
n=1 P̃ [ΨΣ(tn−1)|ΨΣ(tn)]∏N
n=1 P [ΨΣ(tn)|ΨΣ(tn−1)]

)
+ λ

=
∑
~Σ

P [~Σ] exp

(
−ISh[~Σ]−

∆Eq[~Σ]−∆F [~Σ]−Q[~Σ]

kBT

)
+ λ

=
〈

exp
(
−(σ[~Σ] + ISh[~Σ])

)〉
~Σ

+ λ. (31)

Thus,
〈

exp
(
−∆is[~Σ]

)〉
~Σ

= 1− λ.
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