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An Algorithm for Nonlinear, Nonparametric
Model Choice and Prediction

Frédéric FERRATY Peter HALL

We introduce an algorithm which, in the context of nonlinear regression

on vector-valued explanatory variables, aims to choose those combinations

of vector components that provide best prediction. The algorithm is con-

structed specifically so that it devotes attention to components that might

be of relatively little predictive value by themselves, and so might be ignored

by more conventional methodology for model choice, but which, in combi-

nation with other difficult-to-find components, can be particularly beneficial

for prediction. The design of the algorithm is also motivated by a desire

to choose vector components that become redundant once appropriate com-

binations of other, more relevant components are selected. Our theoretical

arguments show these goals are met in the sense that, with probability con-

verging to 1 as sample size increases, the algorithm correctly determines a

small, fixed number of variables on which the regression mean, g say, de-

pends, even if dimension diverges to infinity much faster than n. Moreover,

the estimated regression mean based on those variables approximates g with

an error that, to first order, equals the error which would arise if we were told

in advance the correct variables. In this sense the estimator achieves oracle

performance. Our numerical work indicates that the algorithm is suitable

for very high dimensional problems, where it keeps computational labour in

check by using a novel sequential argument, and also for more conventional

prediction problems, where dimension is relatively low.
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1. INTRODUCTION

For more than 30 years statisticians have sought to identify the relevant vector components

in relatively high-dimensional prediction problems. Today, in the case of data from fields

such as genomics, astronomy and consumer preference modeling, the challenges are greater

than in the past, with the ratio of dimension to sample size often being higher than every

before. In the present paper we suggest a new, highly adaptive algorithm that can be used

to build predictive models in both contemporary and classical settings. Our approach is

designed specifically for cases where the response is a nonlinear function of the predictors,

and where we wish to be economical in our choice of variables.

Particularly in cases where dimension is greater than sample size, a great deal of

attention has been devoted in the last 15 years to model choice in the framework of

linear models. In this setting, Tibshirani’s (1996) lasso was the starting point for the

development of many techniques: coordinate descent methods (Fu, 1998, Friedman et

al., 2007), smoothly clipped absolute deviation (Fan and Li, 2001), least angle regression

(Efron et al., 2004), the elastic net (Zou and Hastie, 2005), the adaptive lasso (Zou, 2006),

the Dantzig selector (Candès and Tao, 2007), the relaxed lasso (Meinshausen, 2007), the

group lasso (Yuan and Lin, 2008), and the multi-step adaptative lasso (Bühlmann and

Meier, 2008). Overviews of this work have been provided by Hastie et al. (2009), Fan and

Lv (2010) and Bülhmann and van de Geer (2011).

These variable selection tools have been applied successfully to various high-dimensional

datasets, but their effectiveness can be hindered by the assumption of a linear relationship

between response and covariates. One problem is that the high-dimensional setting makes

it difficult to validate the existence of the linear relationship. Moreover, it is common to

encounter nonlinear structure even in standard, relatively low-dimensional multivariate

regression models, and there is no a priori reason why such structure should not occur in

high-dimensional cases.

However, it can be very challenging to investigate nonlinear relationships when there

are many variables. There exists a literature on additive modeling, which often is treated

as an extension of the lasso by combining the group lasso with basis expansion of each

one-dimensional additive component. See, for example, the work of Meier et al. (2009),
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Ravikumar et al. (2009) and Huang et al. (2010).

Ferraty et al. (2010) endeavoured to go beyond these techniques by developing method-

ology that captures interactions, using a stepwise forward search algorithm founded on

minimizing a cross-validation criterion. However, although this approach enjoys good per-

formance in many cases, it fails in a worrying number of settings, where small submodels

are not detected.

The new algorithm suggested in this paper is based on enlarging the class of possible

combinations of covariates retained at each step, while keeping the run time within rea-

sonable bounds. This is an important issue from a practical viewpoint. Our methodology

is given in Section 2, where our approach to building and selecting submodels is discussed

first in overview and then described in detail. The technique is illustrated in Section 3 by

application to a real genomics dataset, and in Section 4 in a simulation study. Theoretical

issues are treated in Section 5.

2. METHODOLOGY

2.1 Measuring mean squared variation.

Given independent and identically distributed data pairs (Xi, Yi) for i ∈ S = {1, . . . , n},
where Xi = (Xi1, . . . , Xip) is a p-vector and Yi is a scalar, we wish to choose a small

number of vector components, or variables or features, of Xi on which to regress Yi, with

the aim of predicting a future Y for a given x = (x1, . . . , xp).

Our methodology is built around an algorithm, discussed in Section 2.2 and defined

concisely in Section 2.3, for determining the extent to which a given subset, Xij1, . . . , Xijℓ

say, of the components of Xi successfully predict Yi. Each step of the algorithm in-

volves using our favorite nonparametric function estimator, for example a local linear

approach or a spline, to construct a predictor γ̂j1,...,jℓ(xj1 , . . . , xjℓ) of Y from the dataset

{(Xij1, . . . , Xijℓ , Yi); i ∈ S}, where (xj1 , . . . , xjℓ) is a subvector of x. Then compute the

standard cross-validation criterion,

S(j1, . . . , jℓ) =

n∑

i=1

{Yi − γ̂−i
j1,...,jℓ

(Xij1, . . . , Xijℓ)}2wℓ(Xij1 , . . . , Xijℓ) , (2.1)
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which measures the success of γ̂−i
j1,...,jℓ

(Xij1, . . . , Xijℓ) in predicting Yi where γ̂
−i
j1,...,jℓ

is the

leave-one-out estimator derived from S\{i}. In our theoretical study, the function wℓ in

(2.1) is taken to be nonnegative, whereas in our implementation, wl is set to 1.

In order to simplify notation, let J = {j1, . . . , jℓ} be a subset of {1, . . . , p} so that, for

any p-dimensional vector u = (u1, . . . , up) of R
p, uJ stands for the subvector (uj1, . . . , ujℓ).

Then, (2.1) may be written in an equivalent way as

S(J ) =
∑

i∈T

{Yi − γ̂−i
J (XJ

i )}2w|J |(X
J
i ) , (2.2)

where |J | is the size of J .

If J1, . . . ,Jk are distinct subsets of indices then the permutation of J1, . . . ,Jk that is

used in each of the steps in Section 2.3, for different values of k, is that which places the

values of S(J1), . . . , S(Jk) in increasing order. In the subsequent step of the algorithm

we merge J1, . . . ,Jk in a pairwise manner, creating new subsets of indices J1 ∪ J2, . . .,

J1 ∪ Jk, . . ., Jk−1 ∪ Jk that are rearranged again to rank the corresponding predictive

values; and we repeat this process until we obtain a subset J with a sufficiently small

value of S(J ).

2.2 Overview of algorithm.

The first step of the algorithm involves searching over all single subsets {1}, . . . , {p}, the
next over all combinations {j, j′}, the third over all combinations of the previous ones

(i.e. {j1, j′1} ∪ {j2, j′2}), and so on. Normally this would be prohibitively expensive from

a computational viewpoint. Indeed, in many problems doing even the O(p2) search over

pairs of indices would be out of the question. However, we use the following “trick” to

reduce labour. Having searched over single subsets and ranked the variables there, we

look only at the top
√
p variables when constructing the sets {j, j′} over which we search

in the next step. There are only O(
√
p2) = O(p) subsets of indices constructed in this

way, and so the search over sets {j, j′} is not much more onerous than it was in the case

of the single subsets.

In Section 2.3 we note that O(p) may not, in general, be a good description of the

upper bound to the capability of our computational resources. Instead we take O(q) to
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be that bound, where q might be larger than p if our resources are relatively extensive, or

less than p if the inherent multiplier of a power of n, which for simplicity we omitted from

the arguments above, is problematic. In this case our algorithm “sniffs out” the trace

of potentially significant variables among the first
√
q variables when building bivariate

predictors, and subsequently also when constructing predictors of higher order. For now,

however, we assume that q = p.

It should be stressed that the steps in our algorithm rely on the variables that are

“useful” for prediction making themselves known, to at least some extent, when we are

experimenting with prediction based on a single variable. Experimentation is described

in Step 1 in Section 2.3. Variables that are useful for building higher-order predictors

do not have to be present in the top few of the p variables, but some of them should

be apparent with sufficient strength to lie among the top
√
p variables. It is difficult to

see how this constraint can be removed without using a relatively a crude, model-based

approach to variable selection. The advantage of our alternative approach is that, if a

variable shows itself to be just slightly useful for prediction in isolation, in particular if it

lies among the top
√
p variables, then we have an opportunity to detect its importance

even if its main contributions are felt only when it operates in conjunction with one or

more other variables. In contrast, conventional approaches to feature selection, based on

linear models, can completely overlook variables that have a major impact only through

interaction with one or more other variables.

2.3 Details of algorithm.

Step 1: Prediction based on a single variable. Consider the p singletons J1 = {1}, . . . ,Jp =

{p}, and compute the permutation ̂1(1), . . . , ̂1(p) of the indices 1, . . . , p that represents

the ranking S{J 1(1)} ≤ . . . ≤ S{J 1(p)}, with J 1(k) = Ĵ1(k) for 1 ≤ k ≤ p and where

S is defined as at (2.1). If ̂1(k1) < ̂1(k2) then Xî1(k1) better explains Yi, in a particular

sense, than does Xî1(k2). In this sense, a regression of Y on the ̂1(1)th component of X

produces the “best” predictor based on a single variable.

Step 2: Prediction based on two variables. Assume that our computing resources are

limited to O(q) calculations, multiplied by a low power of n, and put p1 =
√
q. From

the top p1 subsets J 1(1), . . . ,J 1(p1), build the set of all p∗2 = 1
2
p1 (p1 − 1) = O(q)
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pairs J1 = J 1(1) ∪ J 1(2), . . . ,Jp1−1 = J 1(1) ∪ J 1(p1),Jp1 = J 1(2) ∪ J 1(3), . . . ,Jp∗
2
=

J 1(p1 − 1) ∪ J 1(p1). Then, compute the permutation ̂2(1), . . . , ̂2(p
∗
2) of the indices

1, . . . , p∗2 that places the values S(Ĵ2(k)), for 1 ≤ k ≤ p∗2, in increasing order, and retain

for the next step only the p2 = p1 =
√
q top subsets J 2(1) = Ĵ2(1), . . . ,J 2(p2) = Ĵ2(p2).

A regression of Y on XJ 2(1) provides the “best” predictor based on just two variables.

Steps 3,4,. . .: Prediction based on ℓ ≥ 3 variables. In step 1, or respectively step 2,

the procedure builds only singletons, or respectively pairs. However, in step ℓ ≥ 3 the

algorithm may generate subsets J of indices such that ℓ ≤ |J | ≤ 2ℓ−1. For instance,

if we consider the sets J 2(1) = {j1, j2}, J 2(2) = {j1, j3}, J 2(3) = {j2, j4}, . . ., the

third step of our algorithm will build a new family of subsets containing J 2(1)∪J 2(2) =

{j1, j2, j3},J 2(1) ∪ J 2(3) = {j1, j2, j4}, . . . ,J 2(2) ∪ J 2(3) = {j1, j2, j3, j4}, . . ., which

produces subsets of size 3 or 4. Assume we have constructed, in the previous step,

an ordered sequence of subsets J ℓ−1(1), . . . ,J ℓ−1(pℓ−1) where all indices of each sub-

set are listed in increasing numerical order and the subsets are ordered so that the

corresponding values of S{J ℓ−1(j)} are increasing. The new family of subsets J1 =

J ℓ−1(1) ∪ J ℓ−1(2), . . . ,Jpℓ−1−1 = J ℓ−1(1) ∪ J ℓ−1(pℓ−1), Jpℓ−1
= J ℓ−1(2) ∪ J ℓ−1(3), . . .

is filtered in order to retain only p∗ℓ distinct subsets, where p∗ℓ ≤ 1
2
pℓ−1 (pℓ−1 − 1), and

the indices in each subset form a strictly increasing sequence. Then, the permutation

̂ℓ(1), . . . , ̂ℓ(p
∗
ℓ) of 1, . . . , p

∗
ℓ is carried out so that S(Ĵℓ(1)) ≤ . . . ≤ S(Ĵℓ(p

∗

ℓ
)), and we retain

for the next step only the pℓ = min(p1, p
∗
ℓ) top subsets J ℓ(1) = Ĵℓ(1), . . . ,J ℓ(pℓ) = Ĵℓ(pℓ).

The algorithm can be terminated when a predetermined percentage of the mean

squared variation among the Yis is explained by the regressions, or when the difference

between two successive measures of that variation falls below a given level, or there is a

marked “kink” in a graph of the minimum value of S{J ℓ(1)} against ℓ. The second of

these three rules can be interpreted as stopping as soon as, for some ℓ ≥ 1,

S{J ℓ(1)} − S{J ℓ+1(1)}
S{J ℓ(1)} ≤ t , (2.3)

where t = t(n) is a user-choosable threshold expressing a necessary minimum gain in

going to the next step. The estimator ĝ is then computed in a standard way, using the

“favorite nonparametric function estimator” referred to in Section 2.1, from the data pairs
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(X
J ℓ(1)
i , Yi) for 1 ≤ i ≤ n, where X

J ℓ(1)
i = (Xij)j∈J ℓ(1). The “kink” approach is commonly

used to determine a stopping point for clustering algorithms, where the value of S at (2.1)

is replaced by a measure of the tightness of a cluster.

From now on, this nonparametric variable selection method will be referred to as

NOVAS.

2.4 Practical issues.

Our method is computationally intensive; launching it with a very large dataset may be

time consuming. One way to speed up computation is to parallelize the algorithm. Indeed,

as soon as a computer is equipped with a multicore processor, which is the case for most

current computers, parallelization allows us to process independent tasks simultaneously.

The running time is then divided by the number of independent tasks that the multicore

processor is able to manage. The programming language R (R Development Core Team,

2011) offers packages that make such a parallelization easy; see for instance the R package

“doSNOW” of Revolution Analytic (2011). In addition, since R is freeware and used

intensively by academic researchers, this programming language is one of the most popular

in the statistical community.

For these reasons we decided to use the R programming language to implement our

variable selection method. All results presented with respect to the real data application

(see Section ??) were obtained using a laptop with a 4-core, 2 GHz processor with 4 GB

RAM. For both real and simulated data, the default threshold parameter t = 0.05 is used

throughout, except when one addressing the influence of t in Section 4.3.. To give an

impression of the run time, the R routine NOVAS was repeated for an artificial dataset

containing p = 100, 500, 1,000, 5,000, 10,000 and 50,000 covariates, in such a way that

ℓ = 4 steps were run systematically for each p with n = 100. Seven parallel jobs were

launched, this being an efficient number for the laptop we were using. The corresponding

run times, in seconds, are 8, 45, 86, 481, 1041 and 5648. It is worth noting there is

an almost perfect linear relationship between the logarithm of the number of variables,

i.e. log p, and the corresponding log run time. Consequently, considering only p = 100

and p = 500 is adequate for obtaining a good approximation to the run time for much

higher dimensional cases. The simulation study, which requires substantial computation,
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was made possible by access to a supercomputer; see the acknowledgements.

The nonparametric regression estimator γ̂J , introduced in (2.1), is the usual local lin-

ear one (see e.g. Fan and Gijbels, 1996). In order to speed up computation, the covariates

were standardized and, for each subset J , we chose a common smoothing parameter,

among a given set of candidates, to minimize the cross-validation criterion S(J ), defined

at (2.2) with w|J | ≡ 1. The kernel estimator is adaptive in the sense that the smoothing

parameter is defined in terms of nearest neighbors.

Material for implementing NOVAS using real or simulated data is available online

at http://www.math.univ-toulouse.fr/~ferraty. Click on the link “Softwares & Materials

Online” in the left menu, and online resources will appear.

3. GENOMICS DATASET

This dataset was discussed by Bushel et al. (2007). It is also addressed in the R package

mixOmics, which is designed to explore and integrate omics data and was developed by

Dejean et al. (2011). The dataset treats liver toxicity and contains the expression levels

of 3116 genes, or covariates, and nine clinical measurements, or scalar responses, for 64

rats. The original dataset included supplementary clinical responses, but these were not

used since only three distinct values were available.

Our aim was to select, for each scalar response, the genes leading to the best predictor

in terms of the cross-validation criterion at (2.1). Table ?? details stages of NOVAS when

the aim is to predict the level of urea nitrogen. As pointed out earlier, the final model

may involve variables not necessarily identified as the most predictive ones in the previous

stages. Table ?? gives, for each clinical measurement, the gene numbers, i.e. the subset Ĵ ,

Table 1: The table gives, at each stage, the best predictive subset of variable num-
ber(s) and corresponding leave-one-out cross-validation criterion.

Stage number Selected gene numbers cv

1 1165 6.83
2 1866 2050 5.22
3 1000 1167 1837 1957 3.76
4 1000 1167 1837 1899 1957 3.27

selected by NOVAS, together with values of the corresponding cross-validation criterion,
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i.e. S(Ĵ ), where the clinical response abbreviations were defined as follows: BUN, urea

Table 2: NOVAS selected models for each clinical measurement.

Clinical measurement Selected gene numbers

BUN 1000 1167 1837 1899 1957

TP 1159 1970 2020 2173 2923 2927 2971

ALB 1038 1165 1992 2020 2105 2669 2867 2921

ALT
1846 1871 1883 1909 1910 1911 1915 1921
2042

SDH 764 1145 1624 1866 1940 1992 1996 2894

AST
977 1116 1161 1335 1826 1891 1909 1961 2197
2201

ALP 1064 1484 1817 1823 2007 2385 2819

TBA 1891 1913 1916 1917 1954 2200 2205

CHOL 1836 1875 2044

nitrogen; TP, total protein; ALB, albumin; ALT, alanine aminotransferase; SDH, sorbitol

dehydrogenase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; TBA, total

bile acids; and CHOL, cholesterol. Two clinical responses, BUN and CHOL, require three

or five genes. Other clinical measurements, including AST, involve many more genes.

Figure ?? displays, for each clinical variable, the observed values plotted against the

leave-one-out predictions. As can be seen, clinical responses are well explained by the

selected genes.

An important question arises: is the quality of the leave-one-out predictions high? To

answer this question we compared the leave-one-out cross-validation criterion, i.e. S(Ĵ ),

obtained by NOVAS, with various alternative predictive methods:

• Partial least squares regression, PLS, which is a non-selective iterative linear method

and derives successive linear combinations, or loadings, of covariates maximizing its

correlation with the response. It was originally developed by Wold (1966) for appli-

cations in economics and became a popular tool in the chemometrics community;

see, for instance, Geladi and Kowalski (1986) or Martens and Naes (1989).

• A sparse version of PLS, sPLS, including a lasso step leading to sparse loadings,

developed by Lê Cao et al. (2008), who experimented with this genomics dataset.
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Figure 1: Observations (horizontal axis) plotted against leave-one-out predictions
for each clinical measurement.

• Least angle regression, LAR, introduced by Efron et al. (2004), which is one of the

most popular selective linear regression methods.

• Most predictive design points, MPDP, which is also an existing nonparametric al-

ternative method and which we shall discuss in Section 4.5.

The PLS method requires the choice of only one parameter, the total number of loadings,

whereas sPLS needs several variables, specifically the total number of loadings and the

sparsity expressed as the number of zeros for each loading. The LAR procedure requires

choice of the optimal fraction of nonzero values in the vector of parameters. For all these

competing methods, the parameters were optimized so as to minimize the predictive leave-

one-out criterion, and Table 3 gives the smallest leave-one-out cross-validation values

obtained for each procedure. It can be seen that NOVAS outperforms alternative linear

methods, since it is able to take nonlinearities into account.
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Table 3: Leave-one-out cross-validation values for each clinical measurement, or
response, and each method. Minimum values in each row are given in bold.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵❵

Responses
Methods

PLS sPLS LAR MPDP NOVAS

BUN 6.62 8.106 8.67 2.62 3.27
TP 0.104 0.115 0.117 0.072 0.045

ALB 0.0351 0.0378 0.044 0.02 0.015

ALT 1236163 1260917 1709814 46834 60621
SDH 19736.38 23512.95 21314.9 2669.6 1404.7

AST 5232362 6131264 92534432 2580580 318682

ALP 3097.81 3194.96 3203.1 1225.4 1043.7

TBA 138.26 118.63 153.12 67.50 39.73

CHOL 76.91 72.87 94.96 26.77 40.68

To enable predictive performances to be visualized, Figure ?? compares, for each

method, the results of leave-one-out estimation applied to a sample of four clinical mea-

surements: TP, SDH, AST and CHOL. Clearly, the two nonparametric selection proce-

dures, NOVAS and MPDP, have significantly greater predictive performance than the

linear procedures, and NOVAS outperforms MPDP six times out of nine. For example,

NOVAS leads to more accurate predictions in most cases, and enjoys spectacular per-

formance when applied to predicting the clinical measurement AST. However, MPDP is

superior for three clinical measurements out of nine. An appropriate methodology con-

sists of boosting NOVAS by comparing it systematically with MPDP, so as to be sure to

select the best predictive model.

4. ASSESSING PERFORMANCE

4.1 Simulated regression models.

We consider five models, indexed by a superscript m in square brackets and having the

form

Yi = γ
[m]
1,2,3(Xi1, Xi2, Xi3) + ε

[m]
i , i = 1, . . . , nm ,
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Figure 2: Four observed responses, TP, SDH, AST and CHOL, against leave-one-out
estimations.

where

γ
[1]
1,2,3(Xi1, Xi2, Xi3) = X2

i1 +X2
i2 +X2

i3 ,

γ
[2]
1,2,3(Xi1, Xi2, Xi3) = |Xi1Xi2|+ |Xi1Xi3|+ |Xi2Xi3| ,

γ
[3]
1,2,3(Xi1, Xi2, Xi3) = |Xi1Xi2Xi3| ,

γ
[4]
1,2,3(Xi1, Xi2, Xi3) =

|Xi1Xi2|+X2
i3

2 +Xi1Xi2Xi3
,

γ
[5]
1,2,3(Xi1, Xi2, Xi3) =

|Xi1Xi2|+ |Xi1Xi3|
2 + |Xi2Xi3|

.

The vector components Xij are taken to be independent and identically distributed as

uniform [−1, 1], and the errors ε
[m]
i are independent and identically distributed as nor-
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mal N(0, σ2
m), where σ

2
m = 0.05 var{γ[m]

1,2,3(Xi1, Xi2, Xi3)}. Different sample sizes will be

considered in the simulation study, to take into account the varying complexities and

dimensionalities of these models.

4.2 Influence of the sample size, n, and the number, p, of co-

variates.

Is NOVAS able to recognize the correct subset, J = {1, 2, 3}, even for large values of p?

To answer this question our selected procedure was launched for each of the five models,

with four sample sizes, n = 50, 100, 150, 200; three different sets of covariates, of sizes

p = 100, 1,000, 10,000; and with the threshold parameter t, defined at (2.3), set equal to

0.05 for each run. We then considered 5 × 4 × 3 situations, and the simulation scheme

was repeated 100 times, producing 100 datasets in each situation. Table ?? presents the

results in order of sample size. It can be seen that the higher the complexity of the

model, the larger should be the the sample size if the model is to be identified correctly.

So, the role played by the sample size reflects what happens usually in statistics: for

higher dimensional models, larger sample sizes are needed to obtain good results. For too

small a sample size, i.e. n = 50, NOVAS is unable to recognize models with a good degree

of accuracy, except in the case of Model 1 when p = 100. At the opposite end of the

spectrum, when considering a relatively large sample size, specifically n = 200, we obtain

good results for all models, even for large sets of covariates. The influence of p on NOVAS

is clear: the higher the number of covariates, the lower the frequency with which NOVAS

selects the correct model. However, for a sufficiently large sample size, the influence of p

is more modest; for any p = 100, 1,000, 10,000, one obtains good and stable results for

models 1 and 2 when n = 100, for model 3 when n = 150, and for models 4 and 5 when

n = 200.

4.3 Influence of the threshold t.

As noted in the previous section, considering different sample sizes allows us to reduce the

effect on NOVAS of the dimension of the simulated models; see Table ??. A high value of

t results in the procedure being stopped too early, in which case NOVAS retains too small

13



Table 4: Number of times, out of 100, that NOVAS selected the correct model.

n = 50 n = 100 n = 150 n = 200

Model 1
p = 100 84 99 100 100
p = 1000 46 100 100 100
p = 10000 12 100 100 100

Model 2
p = 100 49 100 100 100
p = 1000 25 99 100 100
p = 10000 1 97 100 100

Model 3
p = 100 4 89 100 100
p = 1000 2 79 100 100
p = 10000 0 56 99 100

Model 4
p = 100 18 78 97 100
p = 1000 6 58 91 98
p = 10000 0 34 74 95

Model 5
p = 100 2 46 76 97
p = 1000 1 28 67 90
p = 10000 0 1 54 76

Table 5: Number of times, out of 100, that NOVAS selected the correct model when
p = 1000.

t 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Model 1 (n = 100) 100 100 100 100 100 98 95 72 46 12 8
Model 2 (n = 100) 99 100 99 100 98 87 69 41 25 5 1
Model 3 (n = 150) 100 100 99 99 94 88 61 44 9 1 0
Model 4 (n = 200) 98 98 99 94 69 38 12 6 1 0 0
Model 5 (n = 200) 92 90 87 89 84 75 45 17 2 1 0

a set of variables. When the cross-validation criterion (2.2) decreases slowly around its

minimum, a low value of t results in the selected model incorporating too large a number

of variables. However, as we shall show, NOVAS is not particularly sensitive to the value

of t. As indicated in Table ??, there is a range of values for t, i.e. t ≤ 0.2, where NOVAS

provides stable results. This encouraged us to use the default value t = 0.05.

4.4 Influence of noise-to-signal ratio.

Noise-to-signal ratio is defined by nsr = σ2
m/var{γ

[m]
1,2,3 (Xi1, Xi2, Xi3)}. Up to now, nsr =

0.05 has been used in our numerical experiments. Table ?? summarises the influence of

noise-to-signal ratio on the behaviour of NOVAS, and it can be seen that performance

decreases by 10 to 54% as noise-to-signal ratio increases by 100 to 700%. Nevertheless,
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Table 6: Number of times, out of 100, that NOVAS selected the correct model when
p = 1000.

nsr 0.05 0.1 0.2 0.4

Model 1 (n = 100) 100 100 100 78
Model 2 (n = 100) 100 98 91 58
Model 3 (n = 150) 100 100 96 84
Model 4 (n = 200) 98 96 99 89
Model 5 (n = 200) 90 96 75 41

the performance of NOVAS remains stable with respect to noise-to-signal ratio; when

nsr = 0.1, the ability of NOVAS to recognise the true subset is very good for all models;

when nsr = 0.2, NOVAS is still largely correct for models 1 to 4; and when nsr = 0.4,

the results for models 1, 3 and 4 are reasonable. The performance of NOVAS, and of the

competing methods that we shall discuss in the next section, degrades for higher values

of nsr.

4.5 Comparison with other methods.

In this section we compare NOVAS with the competing methods introduced in Section 3:

PLS, sPLS, LAR and MPDP, which is a nonparametric selection technique called “most

predictive design points”, introduced by Ferraty et al. (2010). Originally developed for

functional data, the method remains valid in the more conventional high-dimensional

setting of the present paper. The idea is to select, one by one, several variables among a

large number of candidates, in order to predict nonparametrically a scalar response. The

first step of MPDP chooses the most predictive variable by minimizing (2.1), and updates

the subset of candidates by dropping it; the second step selects the most predictive variable

among the new subset of candidates, with respect to (2.1), and again updates the subset

of candidates; and so on. This procedure is repeated until the relative gain, measured by

the cross-validation criterion, between two consecutive steps does not exceed some given

threshold; see (2.3). The nonparametric regression estimator suggested for MPDP is the

local linear one. The fundamental difference from NOVAS comes at the second step; for

any ℓ > 1, NOVAS may drop at step ℓ + 1 some covariates selected at step ℓ, whereas

that is not possible with the sequential feature of MPDP.
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In order to implement a comparison study, a family of regression models,

Yi = γα1,2,3(Xi1, Xi2, Xi3) + εi ,

indexed by a scalar α, was simulated, with

γα1,2,3(Xi1, Xi2, Xi3) = 3 + α (Xi1 +Xi2 +Xi3) + (1− α)
(
X2

i1 +X2
i2 +X2

i3

)
,

where the Xijs and the εis are defined according to the same scheme described in Section

4.1. We took n = 50, p = 1,000 and snr = 0.1. This family of models allows us to consider

the purely nonlinear situation, α = 0, as well as the purely linear setting, α = 1. We

also took into account intermediate semilinear models, by setting α = 0.35; this value

allowed us to balance the contributions to variability from linear and nonlinear parts.

Only variables 1, 2, and 3 were active. For each value of α, 100 datasets were simulated.

This particular simulation scheme tested the selective procedures rather severely, since

most of the time they were not able to detect the exact set of active covariates; see

Table ??.

LAR clearly outperforms both MPDP and NOVAS in the purely linear case. However,

in the purely nonlinear setting, the behavior of MPDP and NOVAS is much better than

LAR (this was expected, since LAR is not designed for nonlinear relationships), with

NOVAS having a significant advantage. In fact, most of the time, MPDP selected extra

Table 7: Number of times, out of 100, that the correct model is selected.

α = 0 (nonlinear) α = 0.35 (semilinear) α = 1 (linear)
LAR 0 2 50
MPDP 28 23 0
NOVAS 44 51 0

covariates outside the active ones. In order to better assess the selective performance of

these methods, Table ?? details how many times, out of 100, each active covariate was

selected, and does this for each α. Of course, when tabulating all selected models, in

addition to the active variables 1, 2, and 3, a number of other covariates are retained,

three times at most; see the column “others” in Table ??.

Simulating as many as 1000 variables has, in a variety of settings, the effect of unduly
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Table 8: Number of times, out of 100, that indicated covariates are selected; the
column “others” gives the maximum number of times that an extra covariate is
selected over the 100 runs.

Covariates

LAR
MPDP
NOVAS

α = 0 (nonlinear)
1 2 3 others

0 1 0 3
48 51 52 2
70 69 70 2

α = 0.35 (semilinear)
1 2 3 others

38 46 39 3
69 74 72 2
82 84 89 2

α = 1 (linear)
1 2 3 others

100 100 100 2
79 76 77 4
93 90 93 3

activating some of them, essentially randomly, simply because there are so many of them.

Hence, the algorithm may select some them without apparent reason. This phenomenon

also occurs with the linear LAR procedure, but since MPDP and NOVAS are more flexible

than LAR, both these nonlinear methods tend to suffer more than does LAR, which

behaves more systematically, particularly when the sample size is small. Most importantly,

the true model is often included in the selected set by NOVAS (and less frequently in the

case of MPDP).

One way of overcoming this over-selection issue is to launch MPDP using a higher

threshold (for instance, t = 0.2) on the preselected set using NOVAS, in order to retain

only covariates that significantly improve the prediction criterion. The resulting run time

is practically the same, since MPDP operates on a very small set of covariates, and the

number of runs needed to select correctly the linear model is much larger (78 out of 100

instead of 0).

Table ?? compares the predictive performance of NOVAS with that of all competing

methods. To obtain these results the mean of the cross-validation estimator of average

prediction error, defined at (2.1) and (2.2), was computed over 100 simulated datasets for

each value of α. It can be seen from Table ?? that PLS, sPLS and LAR perform simi-

larly, although the predictive performance of PLS in the linear setting is poor. Naturally,

in the unfavorable setting of the nonlinear model, linear methods fail; PLS, sPLS and

LAR perform almost exactly the same as the simple leave-one-out empirical mean of the

responses, where for any i, Yi is predicted naively by (n− 1)−1
∑

j 6=i Yj . When compar-

ing NOVAS with MPDP, it seems that both methods have similar predictive behavior,

although NOVAS enjoys smaller variances in all cases.

The superiority of NOVAS, relative to MPDP, includes an ability to correctly identify
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Table 9: mean and variance, in parentheses, of cross-validation criterion, out of 100
simulated datasets.

α = 0 (nonlinear) α = 0.5 (semilinear) α = 1 (linear)
PLS 0.30 (0.004) 0.27 (0.004) 1.07 (0.037)
sPLS 0.38 (0.023) 0.25 (0.007) 0.18 (0.004)
LAR 0.28 (0.004) 0.23 (0.003) 0.21 (0.006)
MPDP 0.11 (0.001) 0.07 (0.001) 0.15 (0.043)
NOVAS 0.10 (0.0005) 0.06 (0.0002) 0.11 (0.004)

the variables on which the regression actually depends, but using a shorter running time.

Indeed, it is easy to see that, for achieving k steps when dealing with a set of p covariates,

MPDP requires estimation of kp − 0.5k(k − 1) + 1 regression models, whereas NOVAS

involves only kp/2 models, essentially half the previous number. Here, for this comparative

study, MPDP needs on average one step more than NOVAS, which implies that the overall

MPDP run time is at least twice as long as the NOVAS one.

Another difference between MPDP and NOVAS is noticed when one has to deal with

redundant variables that are correlated with non-redundant ones. To illustrate this as-

pect, we simulated data from model 4 with different sample sizes, as in Section ??

(n = 50, 100, 150, 200), with nsr = 0.05, and with 1,000 covariates. We replaced the

1,000th explanatory variable by a combination of both the first two: For i = 1, . . . , n we

took Xi 1000 = X2
i 1 |Xi 2|1/3. This 1,000th variable contains redundant information which

can mask the main role played by variables 1 and 2 in the simulated regression model.

Table ?? details the selected variables, over 100 runs for each sample size.

Table 10: Number of times, out of 100, that the indicated subsets were selected;
Jno intruder is one of {1, 3, 1000}, {2, 3, 1000} and {3, 1000}, and Jintruder represents
any subset containing intruder(s) (i.e. j with j /∈ {1, 2, 3, 1000}).

{1, 2, 3} {1, 2, 3, 1000} Jno intruder Jintruder

n MPDP NOVAS MPDP NOVAS MPDP NOVAS MPDP NOVAS
50 1 1 0 0 6 19 93 80
100 7 38 2 1 17 33 74 28
150 2 79 18 2 19 15 71 4
200 0 96 43 4 23 0 34 0

Note that the ability of MPDP to identify variables 1, 2, and 3, but most of the time

combined with variable 1000, increases with n; for instance, {1, 2, 3, 1000} is selected 43

times, out of 100, when n = 200. The artificially redundant 1,000th covariate acts as a
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“trap” for MPDP, which looks for the most predictive variable at each step. Moreover, this

mechanism leads systematically to selecting variable 3 at the first step, and variable 1,000

at the second step, for the largest sample size. Consequently, MPDP selects variables

1, 2 and 3 only rarely, and never chooses them for large n, whereas the performance of

NOVAS increases significantly with n.

Another weakness of MPDP is its propensity to retain, essentially arbitrarily, extra

covariates which have no connection with the variables involved in the model. Even if this

trend is reduced for large sample sizes, it still occurred 34 times out of 100 for the largest

sample size in our simulation study. The algorithm NOVAS is much less sensitive to this

trap, because it allows quite new models, built from submodels which are not necessarily

the most predictive, to be selected.

5. THEORETICAL PROPERTIES

5.1. Reminder of notation. Recall from section 2 that our algorithm reorders the compo-

nents of the vectors Xi, and that the reordering alters from step to step until we terminate

the algorithm. If J = {j1, . . . , jℓ} ⊆ {1, . . . , p} then, at any given step (where J depends

not only on that step but on the steps that preceded it), the reordered Xi is denoted by

XJ
i , where for a general p-dimensional vector u = (u1, . . . , up) of R

p, uJ denotes a partic-

ular subvector of length ℓ: (uj1, . . . , ujℓ). The reader is referred to the discussion on either

side of (2.2) for details of the argument used to define uJ . In particular, as noted there, in

successive steps of the algorithm we merge sets J1, . . . ,Jk “in a pairwise manner, creating

new subsets of indices J1 ∪ J2, . . ., J1 ∪ Jk, . . ., Jk−1 ∪ Jk that are rearranged again to

rank the corresponding predictive values; and we repeat this process until we obtain a

subset J with a sufficiently small value of S(J ),” where S(J ) is defined at (2.2), and

practical definitions of “sufficiently small” are given in the paragraph containing (2.3).

In consequence, in step ℓ the algorithm generates subsets J of indices such that

ℓ ≤ |J | ≤ 2ℓ−1. In the development in section 2.3 these subsets were written as

Ĵℓ(1), . . . ,Ĵℓ(p
∗

ℓ
), where ̂ℓ(1), . . . , ̂ℓ(p

∗
ℓ) was a permutation of a subset of 1, . . . , p de-

termined by working through the first ℓ steps.

5.2. Main result. In the discussion in this section, and in the proof of Theorem 1,
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we simplify notation by writing ̂ℓ(1), . . . , ̂ℓ(p
∗
ℓ) as simply j1, . . . , jℓ, and dropping the

superscript notation involving J on the Xis. In this notation we take γ̂j1,...,jℓ, in (2.1), to

be a conventional local linear estimator in a regression on ℓ variables, i.e.

γ̂j1,...,jℓ(x) = Ȳ (x) + {X̄(x)− x}T Σ̂(x)−1 T (x) , (5.1)

where

X̄(x) =

∑
i K{(x−Xi)/h}Xi∑
i K{(x−Xi)/h}

, Ȳ (x) =

∑
i K{(x−Xi)/h} Yi∑
i K{(x−Xi)/h}

,

Σ̂(x) =

∑
i {Xi − X̄(s)} {Xi − X̄(s)}TK{(x−Xi)/h}Xi∑

i K{(x−Xi)/h}
,

K(u1, . . . , uℓ) = K1(u1) . . .K1(uℓ), K1 is a univariate, uniformly bounded, compactly

supported, symmetric probability density, and h is a bandwidth.

This relieves us of the very complex notational task of recording in detail all the

changing permutations mentioned in section 5.1, as we progress through the steps of the

algorithm. Thus, when in Theorem 1 below we refer to “the first r components of Xi

alone” we do not mean the first r components of the original p-vector Xi in the model

introduced in the first paragraph of section 2.1, but the first r components of the p-vector

after its components have been permuted repeatedly by steps 1, . . . , ℓ of the algorithm,

where ℓ is taken to increase until, as the theorem asserts, the algorithm terminates.

For simplicity we use the same bandwidth for each component, although of course we

could be more ambitious. Our assumptions, (5.4), (5.5) and (5.6) are stated and discussed

in Sections 5.3–5.5. The theorem is proved in Appendix A.

Theorem 1. If (5.4), (5.5) and (5.6) hold then, with probability converging to 1 as

n→ ∞, the algorithm correctly concludes that g(Xi) = E(Yi |Xi) is a function of the first

r components of Xi alone, and in particular the algorithm terminates at Step r.

It is straightforward to prove from the theorem that, if the assumptions there hold,

then the regression estimator based on the components to which the algorithm leads has,

to first order, the same asymptotic properties as an oracle procedure based on being

told in advanced that E(Yi |Xi) is a function of the first r components of Xi alone. In

particular, the asymptotic bias and variance of estimators of g that are founded on the
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conclusion of the algorithm are first-order equivalent to their counterparts for an oracle

estimator.

5.3. Assumptions (5.4) and (5.5). These are the main conditions for the theorem. To

state (5.4), let f denote the p-variate density of X , and, given j1, . . . , jℓ, let φj1,...,jℓ(x1,

. . . , xp) be the p-variate density proportional to f(x1, . . . , xp)wℓ(xj1 , . . . , xjℓ), where wℓ

is as in (2.1). Define ψj1,...,jℓ(xj1 , . . . , xjℓ) to be the integral of φj1,...,jℓ(x1, . . . , xp) over

xi for each i /∈ {j1, . . . , jℓ}, and let γj1,...,jℓ(xj1 , . . . , xjℓ) be the value that E{g(Xi) |Xij1

= xj1 , . . . , Xijℓ = xjℓ} would take if X had density φj1,...,jℓ rather than f :

γj1,...,jℓ(xj1 , . . . , xjℓ) =

∫
g(x1, . . . , xr)φj1,...,jℓ(x1, . . . , xp) dx

′′

ψj1,...,jℓ(xj1 , . . . , xjℓ)
, (5.2)

where x′′ is the (p − ℓ)-vector that remains after xj1, . . . , xjℓ have been removed from

(x1, . . . , xp). Define

uℓ(j1, . . . , jℓ) =

∫
{g(x1, . . . , xr)− γj1,...,jℓ(xj1 , . . . , xjℓ)}2

× φj1,...,jℓ(x1, . . . , xp) dx1 . . . dxp , (5.3)

u0 = E{g(X)−Eg(X)}2 .
We assume that, for a subset Sℓ of IR

ℓ that we take to be a finite union of nondegen-

erate compact spheres,

(a) Among all ℓ-vectors (j1, . . . , jℓ) satisfying 1 ≤ j1 < . . . < jℓ ≤ p and

1 ≤ ℓ ≤ r, the choice (1, . . . , r) uniquely minimises uℓ(j1, . . . , jℓ), in the

sense that the minimum over all choices exceeds ur(1, . . . , r) by at least

a fixed constant B3 > 0, uniformly in n; (b) for some η > 0, and for

1 ≤ ℓ ≤ r, the number of distinct ℓ-vectors j1, . . . , jℓ, with 1 ≤ j1 <

. . . < jℓ ≤ p, for which uℓ(j1, . . . , jℓ) > nη−{4/(ℓ+4)}, is of strictly smaller

order than
√
q, and, for 1 ≤ ℓ ≤ r, this includes all ℓ-vectors of distinct

integers chosen from 1, . . . , r; (c) for each ℓ = 1, 2, . . . , r+1 there exists

a constant Cℓ > 1 such that, for all distinct j1, . . . , jℓ ∈ {1, . . . , p}, the
joint density of fj1,...,jℓ is bounded below Cℓ and above C−1

ℓ on Sℓ.

(5.4)

Finally we impose basic conditions on the univariate kernel K1, bandwidth h and

weight function wℓ in (2.1), and on the manner in which the algorithm is terminated.
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Recall that Sℓ was introduced prior to (5.4).

(a) K1 is a symmetric, compactly supported, Hölder continuous prob-

ability density; (b) the bandwidth h = h(n), when used to construct

the ℓ-variate regression estimator γ̂j1,...,jℓ at (5.1), equals a constant

multiple of n−1/(ℓ+4); (c) the support of the weight function wℓ equals

Sℓ, and wℓ is bounded and twice differentiable there; (d) we termi-

nate the algorithm using the rule at (2.3), where t = t(n) satisfies

nη+{ℓ/(ℓ+4)} ≤ t ≤ B5 n, 0 < B5 < B3, B3 is as in (5.4)(a) and η is as in

(5.4)(b).

(5.5)

5.4. Discussion of assumptions (5.4) and (5.5). An example where (5.4)(a) fails, and

our algorithm consequently has difficulty, arises when g(x) = x1 . . . xr, the first r com-

ponents of X are independent of one another and distributed symmetrically about zero,

wℓ(t1, . . . , tℓ) = v(t1) . . . v(tℓ) where the nonnegative function v is symmetric, and Sℓ is

a sphere centered at the origin. Then the fitted function γj1,...,jℓ, whenever 1 ≤ j1 <

. . . < jℓ ≤ r and 1 ≤ ℓ ≤ r − 1, equals 0, and so approximating g by its expected value,

conditional on one or more of the first r− 1 variables, is ineffective. In particular, no one

variable has a visible advantage over any other, and so there is no clear opportunity for

choosing the correct variables. However, this difficulty evaporates if we take the functions

w1, . . . , wr to be sufficiently asymmetric. This example points to the potential influence of

wℓ in (2.1); for example, it can be used to counteract the negative effects that symmetry

has on the algorithm.

Property (5.4)(a) implies that the choice ℓ = r and jk = k for 1 ≤ k ≤ r uniquely

minimises asymptotic mean square prediction error, but by itself (5.4)(a) does not ensure

that the algorithm in Section 2.3 takes us to that particular combination of variables.

However, the latter property is guaranteed by (5.4)(b), which implies that, with high

probability, the singletons (j), for 1 ≤ j ≤ r; the doublets (j1, j2), for 1 ≤ j1 < j2 ≤ r;

and so on up to the r-tuple (1, . . . , r); are, with probability converging to 1, present

among the vectors of indices treated in Steps 1, 2, . . . , r, respectively, in the algorithm.

Additionally, property (5.6)(d) in section 5.4, which tells us that Y equals a function

of the first r components of X alone, plus an independent error, implies that passing
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from these r components to r + 1 components produces, with probability converging

to 1, at most a negligibly small decrease in prediction error. In consequence, the rule

(2.3) for terminating the algorithm will, with probability converging to 1, lead to a halt

immediately after we have concluded, in Step r, that the r-vector (1, . . . , r) is appropriate.

Assumption (5.5)(d), below, also helps in this regard.

More generally, the implication from (5.6)(d) and (5.4)(a) that the choice of variable

indices (j1, . . . , jℓ) = (1, . . . , r) uniquely minimises uℓ(j1, . . . , jℓ) allows us to investigate

an oracle property of conventional type; see the theorem below. That is, there exists a

unique choice of variables that leads to best prediction of Y . Without (5.6)(d) and (5.4)(a)

there could exist many different choices that produced the same asymptotic minimum

mean squared prediction error. For example, without the uniqueness part of (5.4)(a)

there could exist components of the p-vector X that were simply copies of the first r

components but were positioned quite differently in that vector. On the other hand, if we

were not interested in establishing such a result then we could relax (5.4) and (5.6).

Assumption (5.4)(b) guarantees that, although the number of variables that can be

used effectively to at least partially explain Y may diverge with increasing n, the number is

not so large that extraneous variables fatally confuse the algorithm given in Section 2.3,

resulting in the algorithm not correctly identifying the variable indices (j1, . . . , jℓ) =

(1, . . . , r) that best predict a future value of Y .

Condition (5.4)(c) asks merely that the features have the sorts of joint distribu-

tions that enable reasonable nonparametric estimation of conditional means such as

E{g(Xi) |Xij1, . . . , Xijℓ}. To appreciate the reason for the bandwidth choices made in

(5.5)(b) we note that, when computing a point estimator γ̂j1,...,jℓ of γj1,...,jℓ, the bias is of

order h2 (since we assumed, in (5.4)(b) and (5.4)(e), that fj1,...,jℓ and g have two bounded

derivatives), and the error about the mean is of size (nhℓ)−1/2; here we used (5.4)(c).

Therefore the optimal bandwidth for point estimation of γj1,...,jℓ is of size n−1/(ℓ+4), and

that is the size assumed in (5.5)(b). The resulting estimator of uℓ, n
−1 Sℓ(j1, . . . , jℓ), is

in error by Op{(nhℓ)−1/2 + h2}. Actually the term (nhℓ)−1/2 here can be replaced by a

quantity of smaller order, and the overall accuracy improved by using a smaller band-

width, but in practice it will often be the case that the bandwidth is chosen to optimise

performance for estimating γj1,...,jℓ rather than estimating uℓ, and so it is appropriate to
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proceed as suggested above.

5.5. Assumption (5.6). Condition (5.6) is standard, except perhaps for the assertion in

(5.6)(d) that g(x1, . . . , xp) depends only on the first r components x1, . . . , xr. However,

since our algorithm is invariant under reorderings of vector components then this assump-

tion is made without loss of generality. It allows us to take g to not depend on n.

(a) p = p(n) is a function of n, diverging at a rate no faster than nB1 , for

some B1 > 0, as n increases; (b) the data pairs (Xi, Yi), for 1 ≤ i ≤ n,

are independent and identically distributed, with a common distribu-

tion that can depend on n; (c) for all choices of j1 < . . . < jℓ from

1, . . . , p, each subvector (Xij1, . . . , Xijℓ) of Xi has a well-defined prob-

ability density fj1,...,jℓ (which may depend on n), and, for each fixed

ℓ, all second derivatives of fj1,...,jℓ are bounded uniformly in distinct

choices of j1, . . . , jℓ from 1, . . . , p; (d) Yi = g(Xi1, . . . , Xir) + σ(Xi) ǫi,

where the fixed function g is uniformly bounded and has two uniformly

bounded derivatives, the function σ (which may depend on n) is uni-

formly bounded, and, conditional on Xi, the errors ǫi have a distri-

bution depending on neither Xi nor n, with zero mean and satisfying

E|ǫi|B2 <∞ for a sufficiently large constant B2 > 2.

(5.6)

APPENDIX A: PROOF OF THEOREM

To simplify notation we assume throughout that the function σ, in (5.6)(d), is identically 1.

Let γ̂j1,...,jℓ, γj1,...,jℓ and uℓ be as at (5.1), (5.2) and (5.3), respectively, define Sℓ as at (2.1),

and let the random variable ǫ have the common distribution of the errors ǫi in (5.6)(d).

Take η1 to satisfy 0 < η1 < η, where η is as in (5.4)(b). Then, in view of the assumption

of uniform boundedness of second derivatives in (5.6)(c) and (5.6)(d), and the assumption

about the support of the density fj1,...,jℓ in (5.4)(c),

n−1 Sℓ(j1, . . . , jℓ) = uℓ(j1, . . . , jℓ) + E
(
ǫ2
)
+Op

(
nη1−{4/(ℓ+4)}

)
, (A.1)

uniformly in 1 ≤ j1, . . . , jℓ ≤ p and 1 ≤ ℓ ≤ r + 1. To prove (A.1) we need the

constant B2 in (5.6)(d) to be chosen sufficiently large, depending on B1 in (5.6)(a)
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and η1 in (A.1). The proof uses Markov’s inequality to bound the probability that

|n−1 Sℓ(j1, . . . , jℓ)−{uℓ(j1, . . . , jℓ)+E(ǫ2)}| exceeds nη2−{4/(ℓ+4)}, and observes that, since

p ≤ nB1 (see (5.6)(a)), then, for 1 ≤ ℓ ≤ r + 1, the number of vectors (j1, . . . , jℓ) being

considered is no larger than O(n(r+1)B1).

In Step 1 of the algorithm we take ℓ = 1 and rank values of S1(j) in order of size.

It follows from (5.4)(b) and (A.1) that, with probability converging to 1 as n → ∞, all

the indices j for which u1(j) ≥ nη−(1/5) are listed among the
√
q indices for which S1(j)

achieves its
√
q highest values. Similarly, in Step 2 of the algorithm we conclude with

a list of ranked pairs of indices, containing all pairs chosen from among 1, . . . , r; and so

on, until the rth step, when the list of selected r-vectors (j1, . . . , jr) includes 1, . . . , r. It

now follows from (5.4)(a) that, with probability converging to 1 as n→ ∞, the algorithm

will give (1, . . . , r) the highest rank in Step r, and, from (5.4)(a) and (A.1), that with

probability converging to 1 as n→ ∞, the inequality in (2.3) holds for the first time when

ℓ = r + 1. Therefore, with probability converging to 1 Step r is the last step, and the

r-tuple that is ranked most highly there, i.e. (1, . . . , r), is the vector of component indices

with which the algorithm concludes.
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