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Abstract

We estimate two well-known risk measures, the Value-at-risk and the expected shortfall, condi-

tionally to a functional variable (i.e., a random variable valued in some semi(pseudo)-metric space).

We use nonparametric kernel estimation for constructing estimators of these quantities, under general

dependence conditions. Theoretical properties are stated whereas practical aspects are illustrated on

simulated data: nonlinear functional and GARCH(1,1) models. Some ideas on bandwidth selection

using bootstrap are introduced. Finally, an empirical example is given through data of the S&P 500

time series.
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1 Introduction

A major concern for regulators and owners of financial institutions is the risk analysis. The Value-at-Risk

(VaR) (Embrechts et al., 1997) is one of the most common risk measures used in finances. It measures

down-side risk and is determined for a given probability level p. In a typical situation, measuring losses,

the VaR is the lowest value which exceeds this level (that is, the quantile of the loss distributions). The

expected shortfall (ES) (Acerbi, 2002) is the expected loss given the loss exceeds the VaR threshold.

From the Basel Accords (1996, 2006), the VaR (and more recently the ES) forms the essential basis of

the determination of market risk capital. Many banks compute VaR for managing the financial hazard

of their portfolios (Gilli and Këllezi, 2006). Several methods have been developed to calculate the VaR.

See, for example, the paper of Bao et al. (2006) for an exhaustive description of up to 16 methods to

estimate the VaR, with applications to different financial time series.

Usually, one collects additional information I (i.e., past observed returns, economical exogenous

covariates, etc.) and to take into account such relevant information I, the conditional VaR (CVaR) of

the variable Yt (being Yt the risk or loss variable which can be the negative logarithm of returns at time t)

is defined, for a fixed level p, as the value νp(t) such that P (Yt > νp(t)|I) = p. The conditional ES (CES)

is defined as µp(t) = E[Yt|Yt > νp(t), I]. Most studies estimate CVaR through quantile estimation (see

for instance Gaglianone et al., 2009 and references therein). When the conditional information is a finite-

dimensional predictor, Scaillet (2004 and 2005) proposed to estimate CES and CVaR nonparametrically

by using kernel estimators. Other works based on nonparametric estimators are those of Chen (2007),

Chen and Tang (2005) or Cai and Wang (2008). A related approximation is that of Cosma et al. (2007),

where they introduce a new approach on shape preserving estimation of cumulative distribution functions

and probability density functions, using the wavelet methodology for multivariate dependent data (these

estimators preserve shape constraints such as monotonicity, positivity and integration to one, and allow
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for low spatial regularity of the underlying functions). The paper also discusses CVaR estimation for

financial time series data. Other noteworthy works are those of Fermanian and Scaillet (2005), discussing

nonparametric estimation of the VaR and the expected shortfall in a credit environment where netting

agreements are present; or Linton and Xiao (2011) and Zhu and Galbraith (2011), estimating the expected

shortfall in the heavy tail case. Comparable studies of nonparametric functional techniques applied to

quantile estimation (but in an environmental setting) can be seen in Quintela and Francisco (2011).

In this paper, we consider the estimation of the CES and CVaR when one has at hand a covariate

X valued in some semi-metric1 space (F , d(·, ·)). Such a random variable is called functional covariate.

This amounts equivalently to considering an infinite-dimensional covariate instead of a finite one as in

Cai and Wang (2008). This situation may occur when a continuous process of returns {Zt}t∈[0,(n+1)τ) is

cut into n + 1 pieces Xi = {Xi(δ) = Z(i−1)τ+δ; 0 ≤ δ < τ} (i = 1, . . . , n + 1). This mechanism which

consists in building the process {Xi}i=1,...,n of functional variables (also called functional process) from

the continuous process {Zt}t∈(0,nτ ] is quite standard now (for more details, see the monograph of Bosq,

2000, and precursor references therein). Moreover, for i = 1, . . . , n, the building of a Xi+1-measurable real

random variable (r.r.v.) Yi allows us to consider a new statistical sample of n pairs (X1, Y1), . . . , (Xn, Yn)

identically distributed but not necessarily independent. Various choices for the Yi’s are possible: a

future return (i.e., Yi = Xi+1(δ) with δ ∈ [0, τ)), or the supremum return over a future range (i.e.,

Yi = supδ∈[0,τ)Xi+1(δ)), or any other interesting scalar quantity computed from Xi+1. It makes sense

now to study features of the distribution of the r.r.v. Y conditionally to the functional variable X . This

statistical issue has been thoroughly investigated in the functional data literature, and the reader can

find numerous works dealing with conditional cumulative distribution, conditional density, conditional

mean, conditional mode or conditional quantiles (for general overviews, see the monograph of Ferraty

1A semi-metric (also called pseudo-metric) d(·, ·) is a metric allowing d(χ1, χ2) = 0 for some χ1 6= χ2

3



and Vieu, 2006, and the collective book edited by Ferraty and Romain, 2011; for more recent advances,

see for instance Lemdani et al., 2009, or Ferraty et al., 2010). In such a conditional functional situation,

the CVaR is the quantity νp(χ) such that 1−F (νp(χ)|χ) = p where F (·|χ) is the cumulative distribution

function (c.d.f.) conditionally to X = χ and the CES is given by

µp(χ) = E(Y |Y > νp(χ), X = χ) =

∫ ∞
νp(χ)

y f(y|χ) dy/p, (1)

where f(y|χ) is the conditional probability distribution function of Y given X = χ.

This work is organized in the following way. In Section 2 a nonparametric estimation of the CES is

proposed based on a functional kernel estimator of the CVaR. In Section 3 the asymptotic optimality

properties for these estimates are established. Section 4 proposes a discussion about asymptotic dis-

tribution and more complex situations. In Section 5, some advantages of our functional proposals in

practice are highlighted, through two simulation studies. The first one is in line to that developed in Cai

and Wang (2008), regarding the CVaR and CES estimation in a nonlinear functional regression model

(Subsection 5.1). The second one investigates the functional estimates for a widely considered model in

financial time series, like the GARCH(1,1) (Subsection 5.3). In Subsection 5.2, a quick look at bandwidth

selection is taken by a bootstrap procedure. The performance in real applications is investigated with a

data sample of the financial index S&P 500 in Subsection 5.4. Section 6 is devoted to conclusions. In a

final Appendix some details of the proofs are exposed.

2 Kernel estimation of CVaR and CES

In this section, we focus on the nonparametric estimation of the conditional value-at-risk and the condi-

tional expected shortfall. To this end, let us first consider n pairs (Xi, Yi)i=1,...,n identically distributed as

(X , Y ) where X is the functional covariate and Y the r.r.v. of interest. The adopted estimating procedure
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is based on the conditional kernel estimator F̂ (·|χ) of the conditional c.d.f. F (·|χ) (see Ferraty et al.,

2005 and 2006) which is defined by the following weighted average:

F̂ (y|χ) =

n∑
i=1

Wh(χ,Xi)H
(
g−1(y − Yi)

)
, (2)

where Wh(χ,Xi) = Ka

(
h−1d(χ,Xi)

)
/
∑n

i=1Ka

(
h−1d(χ,Xi)

)
, Ka(·) is an asymmetrical kernel function,

H(·) is a cumulative distribution function such that H(v) =
∫ v
−∞Ks(u) du with Ks(·) a symmetrical

kernel function, and h and g are two positive smoothing parameters (bandwidths).

According to the definition of the CVaR, it is clear that νp(χ) = F−1((1− p)|χ). So, from F̂ (·|χ), it

is easy to derive the nonparametric estimator of νp(χ) as

ν̂p(χ) = F̂−1((1− p)|χ). (3)

Once an estimator of the CVaR is obtained, and by remarking that f̂(y|χ) = ∂F̂ (y|χ)/∂y is a kernel

estimator of the p.d.f. f(y|χ), one can define the nonparametric estimator of µp(χ) as:

µ̂p(χ) =

∫ ∞
ν̂p(χ)

y f̂(y|χ) dy/p. (4)

This nonparametric functional data estimator can be written without an integral term, in a more

computationally tractable form. From the expression of f̂(y|χ) one can write:

µ̂p(χ) = (p g)−1
n∑
i=1

Wh(χ,Xi)
∫ +∞

ν̂p(χ)
y Ks

(
y − Yi
g

)
dy (5)

= (p g)−1
n∑
i=1

Wh(χ,Xi)

{
g

∫ +∞

ν̂p(χ)

(
y − Yi
g

)
Ks

(
y − Yi
g

)
dy + Yi

∫ +∞

ν̂p(χ)
Ks

(
y − Yi
g

)
dy

}
, (6)

which allows us to get

µ̂p(χ) = p−1
n∑
i=1

Wh(χ,Xi)
{
g G

(
ν̂p(χ)− Yi

g

)
+ Yi

[
1−H

(
ν̂p(χ)− Yi

g

)]}
, (7)

with G(v) =

∫ +∞

v
uKs(u) du.
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3 Almost complete asymptotic properties

In this section, we focus on the almost complete 2 asymptotic properties of the CVaR and the CES. Let

us first introduce assumptions before giving the main results. Let B(χ, h) be the ball centered at χ and

of radius h, let S be a fixed compact subset of R such that ∃η > 0, νp(χ) + η ∈ S and let Nχ be a fixed

neighborhood of χ.

Assumptions on the distributions of the variables.

(H0) ∀h > 0, P (X ∈ B(χ, h)) = φχ(h) > O,

(H1) (Xi, Yi)i∈N is a strong mixing3 sequence with arithmetic coefficient:

∃κ > 3, ∃C > 0 : ∀n ∈ N, α(n) ≤ C n−κ, (8)

(H2) sup
i 6=j

P {(Xi,Xj) ∈ B(χ, h)×B(χ, h)} = O
(
φ2−1/(κ+1)
χ (h)

)
,

(H3) ∀i 6= i′, the conditional density of (Yi, Yi′) given (Xi,Xi′) is continuous at (νp(χ), νp(χ)) uniformly

on (Xi,Xi′) ∈ Nχ×Nχ. In addition, one assumes that, for m ∈ {1, 2}, E (|Y |m|X ) = σm(X ) where

σm(·) is a bounded continuous function and E (|Y1| |Y2| |X1,X2) = σ12(X1,X2) where σ12(·, ·) is also

a bounded continuous (with respect to both arguments) function.

Nonparametric regularity assumptions.

The value j > 1 exists such that:

2We consider the almost complete convergence: Let (zn)n be a sequence of real r.v.’s; we say that zn converges almost

completely (a.co.) to zero if and only if, ∀ε > 0,
∑∞
n=1 P (|zn| > ε) < ∞. Moreover, let (un)n be a sequence of positive real

numbers; we say that zn = O(un) a.co. if and only if ∃ε > 0,
∑∞
n=1 P (|zn| > εun) < ∞. This kind of convergence implies

both almost sure convergence and convergence in probability.
3A sequence (Zn)n∈Z is called strong mixing sequence if and only if limn→+∞ α(n) = 0 where α(n) =

supk∈Z supA∈T k
−∞

sup
B∈T +∞

k+n
|P (A ∩ B) − P (A)P (B)| and for any (i, j) ∈ Z2 such that −∞ ≤ i ≤ j ≤ +∞, T ji is the

σ-algebra generated by (Zl, i ≤ l ≤ j)
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(H4) F (·|χ) is strictly increasing and j-times continuously differentiable in S,

(H5) ∃C > 0/∀(y1, y2) ∈ S × S, ∀(χ1, χ2) ∈ Nχ ×Nχ,

|F (j)(y1|χ)− F (j)(y2|χ)| ≤ C
{
d(χ1, χ2)

β1 + |y1 − y2|β2
}

,

(H6) ∀l, 1 ≤ l < j, F (l)(νp(χ)|χ) = 0 and |F (j)(νp(χ)|χ)| > 0.

Assumptions on the kernel estimator.

(H7) The asymmetrical kernel Ka(·) is a bounded continuous function on its support (0, 1) such that

0 < C1 < Ka(t) < C2 < +∞,

(H8) The symmetrical kernel function Ks(·) has a compact support [−1, 1], satisfies m0(Ks) = 1,

m1(Ks) = 0, m2(Ks) < ∞ with mk(Ks) =
∫
ukKs(u)du, and

∫
|u|β2Ks(u)du < ∞. In addition,

∀l ≥ j, K(l−1)
s (·) exists and is bounded,

(H9) The integrated kernel function H(·) is strictly increasing such that:

• ∀(y1, y2) ∈ S × S, |H(y1)−H(y2)| ≤ C |y1 − y2| and
∫
R |t|

β2H(1)(t) dt < +∞,

• ∀(y1, y2) ∈ S × S, |H(j)(y1)−H(j)(y2)| ≤ C |y1 − y2| and

∃ω > 0/∀j′ ≤ j − 1, limy→+∞ |y|1+ω
∣∣∣H(j′)(y)

∣∣∣ = 0, and H(j′)(·) is bounded,

(H10) limn→∞ h = 0, limn→∞ log n(nφχ(h))−1 = 0 and g2 = O
(
(nφχ(h))−1

)
.

Theorem 3.1 If the conditions (H0)-(H10) hold, and if η > 0 exists such that g φχ(h) ≥ C n
3−κ
κ+1

+η, we

get that:

(i) the conditional estimated c.d.f. is consistent with the rate

sup
y∈S
|F̂ (y|χ)− F (y|χ)| = O

(
hβ1
)

+O
(
gβ2
)

+Oa.co.

(√
log n

nφχ(h)

)
, (9)
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(ii) the successive derivatives of the conditional estimated c.d.f. are consistent with the rate

sup
y∈S
|F̂ (j)(y|χ)− F (j)(y|χ)| = O

(
hβ1
)

+O
(
gβ2
)

+Oa.co.

(√
log n

nh2j−1 φχ(h)

)
, (10)

(iii) the estimated CVaR is consistent with the rate

ν̂p(χ)− νp(χ) = O
(
hβ1/j

)
+O

(
gβ2/j

)
+ Oa.co.

((
log n

nφχ(h)

)1/(2 j)
)
. (11)

The proof of this theorem is a straightforward extension of the work of Ferraty et al. (2005). They

obtained the almost sure pointwise convergence of the conditional c.d.f. and its successive derivatives as

well as the conditional quantiles under arithmetic strong mixing dependence. Because one is interested in

getting uniformity over a compact subset of R, by using standard techniques (which involves a recovery

of S; see for instance Ferraty et al., 2006), it is easy to derive a uniform version of the results given in

Ferraty et al. (2005). However, the reader will find in the Appendix the main guidelines to have an idea

on how to obtain these results.

Theorem 3.2 Under the Assumptions (H0)-(H10), and if the following inequalities

∃η > 0, C n
3−κ
κ+1

+η ≤ g φχ(h) and φχ(h) ≤ C ′ n
1

1−κ (12)

are satisfied with κ > (5 +
√

17)/2, we get that:

µ̂p(χ)− µp(χ) = O(g2) +Oa.co.

(√
log n

nφχ(h)

)
+O

(
(ν̂p(χ)− νp(χ))2

)
. (13)

4 Towards asymptotic normality and more complex situation

Towards asymptotic normality. Asymptotic distribution is an interesting issue but not central in our

work. Indeed, detailing such theoretical property needs additional technical conditions which would

affect the clarity of our purpose and mask the main idea of this work: the usefulness of introducing a
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functional data approach in estimating CVaR and CES. Nevertheless, one can give the scheme used to

derive the asymptotic normality for the CVaR. On the one hand, one combines the uniform convergence

of the conditional kernel estimator f̂(·|χ) (Theorem 3.1 (ii) with j = 1), the almost complete convergence

of CVaR (Theorem 3.1-(iii)) and the pointwise asymptotic normality of the conditional kernel estimator

F̂ (·|χ) stated in Theorem 6 in Quintela-del-Rio (2008). On the other hand, it is possible to extend

Theorem 2.1 in Berlinet et al. (2001) to the case of functional covariate. Then, as soon as f(νp(χ)|χ) 6= 0

and under additional conditions that the reader can find in Quintela-del-Rio (2008), it suffices to combine

this last result with the previous ones to get the asymptotic normality of the CVaR:√
nφχ(h)

log n
(ν̂p(χ)− νp(χ))

d−→ N
(

0,
F (νp(χ)|χ)(1− F (νp(χ)|χ)

f2(νp(χ)|χ)

)
.

For the asymptotic normality of the conditional expected shortfall µ̂p(χ), things are not so easy and it is

still an open problem. However, one can expect deriving such result with the following guidelines. The

first step consists in stating the exact dominant terms in the bias and variance of µ̂p(χ). In a second

step, one has to use the standard small/large blocks decomposition (see for instance Masry, 2005, or

Quintela-del-Rio, 2008) to show that: 1) the asymptotic dominant term is deduced from the large blocks,

2) the variables based on the summations over the large blocks are asymptotically independent and fulfill

the Lindeberg-Feller condition. Once all these results are stated, one will be able to directly conclude

the asymptotic normality.

Towards more complex situation. Note that the pairs (Xi, Yi)i=1,...,n fulfill a strong mixing dependency

condition (see H1); the pairs are identically distributed but dependent. As explained in the Introduction,

such pairs may be built from some continuous process Zt, and supposing the pairs identically distributed

remain to consider Zt as a stationary process. An interesting question would be: what happens when

the root continuous process Zt is not stationary? In other words, are we able to extend our results when

the pairs (Xi, Yi)i=1,...,n are not identically distributed? Of course, if for any (i, i′) the distribution of
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(Xi, Yi) differs from (Xi′ , Yi′), it is not possible to state the consistency of the kernel estimators of CVaR

or CES because our method is based on the estimator of the conditional distribution. Nevertheless,

our estimators and results can be extended in some cases when the data are not identically distributed.

One can consider the situation when one observes a dataset where the pairs (Xi, Yi) are blockwisely

identically distributed. For instance, the root continuous process Zt (from which the pairs are extracted)

is not stationary but it is possible to cut it into K pieces where the stationarity is fulfilled. Then, the

sample of data can be split into K subsamples, in each subsample the data being identically distributed

(each subsample corresponding to a stationary piece of the process Zt). To estimate CES and CVaR

conditionally to some χ, it suffices to identify the subsample corresponding to this χ. Then, use only the

data contained in this subsample for estimating CES and CVaR.

5 Simulations and applications

5.1 Autoregressive functional regression model

In the first part of our simulation experiments, we focus on an autoregressive nonlinear regression model,

used in Ferraty et al. (2012). Let us consider the process Zt generated as

Zt = 0.9Zt−1 + at, at ∼ N (0, 0.1), (14)

and next the average

Z∗t =
Zt + Zt+1 + Zt+19

20
, t = 1, ..., N (15)

We consider a total sample size of N = 100× n consecutive times. Splitting the total series into n paths

of size 100, we get n trajectories χi = {χi(t) = Z∗(t + 100 × (i − 1)), t = 1, . . . , 100}, i = 1, . . . , n, that

are the n observations of the functional explanatory variable in our experiment. In Figure 1 we show

an example of the resulting process; in Figure 1(a) the total time series with size N, and in Figure 1(b)
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some of the functional data χi.

[FIGURE 1 OVER HERE]

Some real valued response Y can be associated with each path of the process, and a natural statistical

question could be to predict Y given some new trajectory of the process. This is really a functional

problem in the sense that the explanatory variable (the whole past path) can be seen as a realization

of a continuous random function. Such a modelling has many practical impacts including various fields

of applied statistics. The reader may find for instance in Linton and Sancetta (2009) some specific real

data problem, linked with risk analysis, for which there is real evidence for using infinite dimensional

regressors in time series analysis.

In our case, the responses are generated by

Yi = r(Xi) + εi, i = 1, . . . n, with r(X ) =

∫
X (t)2 cos(t)dt and εi ∼ N(0, σ0). (16)

Each time a sample data E = {(χi, Yi)}ni=1 is generated, we also generate one new functional fixed

datum χ0, in which we calculate the CVaR and the CES. From model (16) we can check that, for fixed

χ0, the conditional density f(y/χ0) is Gaussian with mean r(χ0) and standard deviation σ0. Several

econometric models for volatility dynamics assume the conditional normality, as for instance J.P. Morgan’s

Riskmetrics (Riskmetrics, 1995) (see Subsection 5.3 below).

Thus, the CVaR and the CES can be exactly computed as

νp(χ0) = F−1((1− p)/χ0), F ∼ N(0, 1) (17)

and

µp(χ0) = p−1
∫ +∞

νp(χ0)
y

1

σ0
√

2π
e(y−r(χ0))2/2σ2

0dy. (18)
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Therefore, the accuracy of our estimates can be calculated by means of the absolute errors between

the true quantities and their estimations, that is,

AE(E , νp) = |νp(χ0)− ν̂p(χ0)| AE(E , µp) = |µp(χ0)− µ̂p(χ0)| . (19)

The various parameters of the methods were chosen in the following ways:

- The kernel function Ka was taken to be the uniform density on (0, 1) and Ks the usual Epanechnikov

kernel.

- The semi-metric d(·, ·) was taken to be the usual L2 distance between curves.

A general discussion about the choice of the kernel functions and the semi-metrics is given in the

book of Ferraty and Vieu (2006) and its companion R package from which all the routines used

here have been extracted.

- The bandwidth parameters were selected in the intervals [d1, d2], being d1 = min {d(χi, χj)}ni,j=1

and d2 = max {d(χi, χj)}ni,j=1 for h, and g in [g1, g2] with g1 = (max(Yi) − min(Yi))/20 and

g2 = (max(Yi) −min(Yi))/2 (see Quintela et al., 2011). We constructed an equidistant partition

(20 values) of these intervals and we chose the bandwidths as those minimizing the error (19) defined

before.

- σ0 was chosen so it corresponds to a signal-to-noise ratio of 0.1.

- The selected value for p was 0.1 here and throughout the simulation study.

Results. For different sample sizes, from n = 100 to n = 500, we replicate this experiment r = 500 times

(i.e., 500 samples E1, . . . , E500 are built). In Figure 2 we show the boxplot of the distributions of the

absolute errors for three sample sizes (100, 250 and 500).
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[FIGURE 2 OVER HERE]

From Figure 2, even if the averaged errors are quite stable, we can observe the improvement of the

estimations in terms of variance when the sample size increases, confirming the asymptotic theory about

the consistency of the proposed estimators.

In a second step, instead of a single datum, we generated a grid of m new functional points χ1
0, ...,

χm0 , and we calculated the performance of the estimators in terms of the mean absolute deviation error,

defined as MAE(E , νp) = m−1
∑m

k=1

∣∣νp(χk0)− ν̂p(χk0)
∣∣ for the CVaR (the same definition for the CES).

We also ran the estimating procedure with several values for n, for m (from 10 to 50), and we replicated

the experiment r = 500 times. The obtained results largely agree with the above conclusions for only

one datum χ0, and are available upon request (we omit them to save space).

5.2 Some advances in bandwidth selection

We follow the ideas of Beirlant et al. (2004) in a related setting, and we use the bootstrap to choose

the bandwidth for a data set at hand. From a functional data sample {(χi, Yi)}ni=1, generated as in

(16), we calculate the estimates ν̂p(χ0) and µ̂p(χ0). Next, we throw with replacement a bootstrap sample{
(χbi , Y

b
i )
}n
i=1

and we calculate ν̂p(χ0)
b and µ̂p(χ0)

b. This procedure is replicated from 1 to B times,

calculating thus B estimates.

Because each estimate ν̂p(χ0) (resp. µ̂p(χ0)) depends on two bandwidths h and g, we choose the

bootstrap bandwidths as

(hOPT , gOPT ) = arg min
h,g

MSE(ν̂p(χ0)(h, g)) (resp. arg min
h,g

MSE(µ̂p(χ0)(h, g)), (20)

being

MSE(ν̂p(χ0)(h, g)) =
1

B

B∑
b=1

(ν̂p(χ0)
b(h, g)− ν̂p(χ0))

2 (21)
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and

MSE(µ̂p(χ0)(h, g)) =
1

B

B∑
b=1

(µ̂p(χ0)
b(h, g)− µ̂p(χ0))

2. (22)

To test this method, we repeat the simulation experiment of Section 5.1. The sample size was n = 50,

the replication number 500 and the size of the bootstrap resamples was B = 200. The boxplot of the

results for the bootstrap errors and the minimal ones is presented in Figure 3.

[FIGURE 3 OVER HERE]

Both the form of the distributions and the mean values are closer, indicating the potential interest of

the bootstrap selection method. However, the high effort in computation time (we need to minimize a

two-dimensional function by some numerical algorithm) means that the bootstrap methodology should

be explored more exhaustively in subsequent works. See Ferraty et al. (2010b) for the first theoretical

advances in bootstrap for nonparametric functional regression.

5.3 Garch models

Our second simulation experiment is based on the generation of GARCH models. Let {Xt, t ∈ Z} be

a strictly stationary real time series, representing daily observations of a financial asset price. Suppose

that the dynamics of Xt is given by

Xt = µ+ σtZt, (23)

where the innovations Zt are i.i.d. variables with zero mean and unit variance, and σt are non-negative

random variables such that σt is a function ofXt, Xt−1, Xt−2... Then, EXt = µ and V ar(Xt/Xt−1, Xt−2...) =

σ2t . The ARCH model was introduced by Engle (1982), where it is supposed that the conditional variance

σ2t follows an autoregressive process of the ε2t . The GARCH model (Bollerslev, 1986) arises specifying σ2t

not only as a function of past values of ε2t , but also from σ2t . In a GARCH(1, 1) process, the conditional
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variance of the mean-adjusted series εt = Xt − µ is given by

σ2t = α0 + α1ε
2
t−1 + βσ2t−1, (24)

with the three parameters α0, α1 and β > 0. One main interest of these kinds of models is that the

volatilities can be relatively well predicted (Danielsson and de Vries, 2000). These can be used both to

forecast the returns and to predict quantiles (Engle and Patton, 2001). Berkowitz and O’Brien (2002)

established that the GARCH(1, 1) is precise in fitting several financial series, against more complicated

models, and the CVaR and the CES in these models are significantly correlated with the volatility of

the returns. The intensive use of this class of models in the econometric literature makes appealing the

exploration of nonparametric functional techniques with the same.

Here, with the aim of comparing the functional techniques with other classical ones, we select two

widely known methods to estimate the CVaR: the empirical quantile (named historical simulation) and

the parametric fitting. We are interested in the quantiles and expected shortfall for the 1-step prediction

distribution, that is, FXt/I(·).

1. Historical Simulation (HS). The idea consists in assuming that the distribution of the time series

Xt will remain the same in the past and in the future, and hence, the empirical distribution of

historical values will be used in forecasting the CVaR (see, e.g., Jorion, 2000). The interest of this

technique lies in the fact that 75% of financial institutions in Europe, Canada and US that disclose

their value-at-risk use historical simulation methods (Perignon and Smith, 2008). The historical

simulation uses the 1-year data to compute the CVaR with the sample quantile of value p, ν̂t(p),

of the 250 previous data.

2. Garch fitting. If we suppose that the data are generated by a GARCH(1, 1) model, we can proceed
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to estimating the CVaR and the CES by the following formulas (McNeil and Frey, 2000):

ν̂p(t) = µ̂t + σ̂tzp, (25)

µ̂p(t) = µ̂t + σ̂tE[Z/Z > zp], (26)

where zp is the (1 − p)-quantile for Zt. The parameters can be estimated by a pseudo-maximum-

likelihood approach. Also, if we assume some specific distribution for the innovations, such as the

Normal or T, the values zp and E[Z/Z > zp] can be estimated by calculating the residuals (after

parameters estimation). Some type of extreme value analysis could be also done with the estimated

residuals to avoid suppositions in this sense. Here, we will work with Gaussian innovations. An

initial parameter estimation uses the first 250 data, and a model re-estimation is done every 50

days. This is known as a rolling window scheme (Giot and Laurent, 2003; Raggi and Bordignon,

2006). In these last papers, shorter lags have been experimented and show very little differences.

3. NFDE techniques. A general prediction problem in time series can be tackled by functional methods

(Ferraty et al., 2005). If a real time series Xt is observed at N discretized times, X1, ..., XN , we

can construct a (d+ 1)−dimensional sample
{

( ~Xi, Yi)
}R
i=1

(of size R = N − d+ 1) as follows:

~Xi = (Xi−d, ..., Xi−1), Yi = Xi. (27)

and, for predicting a future value, the problem consists of a standard prediction problem of response

Y given a d−dimensional explanatory variable. The goodness of classical parametric methods

(e.g., ARIMA models) or nonparametric ones is seriously damaged by the curse of dimensionality.

This drawback can be avoided using a functional model, considering a functional data sample

{(χi, Yi)}Ri=1, where χi = ~Xi as in (27) and Yi = Xi. Next, we can consider χ0 = (Xt−d+1, ..., Xt),

and calculate ν̂p(t) = ν̂p(χ0) and µ̂p(t) = µ̂p(χ0) as in (3) and (4) in Section 2.
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We tested several values of d = 10, ..., 50. Here, we will only show d = 25 because similar results were

always obtained. It is important to remark that, in practice, we would not be able to carry out this

procedure with classical nonparametric regression (as in Cai and Wong, 2008), because of the curse of

the dimensionality problem. Here, the bandwidths of the nonparametric estimators were selected using

the bootstrap method of Section 5.2 above.

Results. Firstly, one particular simulation example is shown. We generate 1000 data corresponding to

model (23) with the variance adjusted by (24). The parameters are µ = 0, α0 = α1 = 0.05 and β = 0.9

and the innovations Zt standard Gaussian (Berkowitz and O’Brien, 2002). We use the 250 first data

as the in-sample, and the 750 remaining data as the out-of-sample to backtest for the CVaR estimate.

Figure 4 displays the simulated data and the estimated values for the CVaR: the top one corresponding

to the HS method; the middle one to the GARCH fitting, and the bottom for the NFDE. As expected,

the best estimation is that provided by the GARCH parametric fitting. The NFDE estimation provides a

stable one that is always close to the GARCH values. The high variability of the HS estimates provides,

in general, extreme results.

[FIGURE 4 OVER HERE]

For the CES estimates, we show, in Figure 5, the GARCH estimates (top) and the NFDE estimates

(bottom). The first estimates faithfully reflect the volatility of the time series, and the NFDE shows a

similar behavior to that in the CVaR estimation above.

[FIGURE 5 OVER HERE]

A detailed analysis of the sequence of the CES nonparametric estimates shows that they are clearly

concentrated around zero, revealing also good properties as they must accomplish (see McNeill and Frey,

17



2000). Concretely, tests of randomness and zero mean were carried out for the residuals, in those index

t ∈ T such that Xt > ν̂p(t). The p-value was high in both cases, in favor of the null hypothesis.

Now, we proceed to replicate this experiment r = 1000 times, calculating the CVaR estimates,

and computing the errors (19) for each sample. Next, we show in Table 1 the average over the 1000

replications of the total differences (N − R)−1
∑N

t=R+1 |ν̂p(t)− νp(t)| between the real and estimated

values (the standard deviation appears in parentheses) for each method.

[TABLE 1 OVER HERE]

In Table 2, we compare the CES estimates for Methods 2 and 3. As in the above occasions, we show

the performance of the estimates by computing (N −R)−1
∑N

t=R+1 |µ̂p(t)− µp(t)| and averaging over the

1000 replications.

[TABLE 2 OVER HERE]

The results agree with those obtained in the case of the CVaR estimates. The overestimated results

for the NFDE method (Figure 5) is reflected in a higher value for the average of the errors. We want to

emphasize the upcoming possibilities, because the results could probably be improved by better selecting

the semi-metric considered and its corresponding parameters, and by having a good automatic bandwidth

selection method. Some ideas in this direction were outlined in Section 5.2 below, but a complete study

would require a more exhaustive analysis, which remains open for further research.

5.4 A real data application

Our empirical analysis is based on the daily returns of the international financial index S&P 500. This

index has been considered several times in the literature (Gaglianone et al., 2010, and references therein).

This time series is an example of heavy tailed distribution, and has illustrative features of financial
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data (volatility, skewness, excess kurtosis, non-normality, etc.). We will consider the dates between

07/April/1986 and 31/August/2010 (6156 data). With this period we have a long enough time series that

contains some financial crisis periods, including the market crash of ”Black Monday” (19/October/1987)

(see the long spike at the left of Figure 6 below). The bull market of the second half of the 1990s, the

bear market between 2000 and 2003, and the recent critical episodes since 2007 also appear.

For the sake of comparison with the other well-studied methodologies in calculating the CVaR and

CES of the Section 5.3 before, we consider as the time series Xt = −100 log(yt/yt−1) ( yt are the prices

of the index series), and our results could be compared with others using the same index data (McNeill

and Frey, 2000; Dettling and Bühlmann, 2004). Figure 6 displays the time series data (where the trend

of the original series is removed).

[FIGURE 6 OVER HERE]

Backtesting. The precision of one particular model to estimate the CVaR of a financial time series

(where we do not know the true theoretical value of this quantity) will be measured by a backtesting

procedure. Basel Accords recommends financial institutions to use an in-sample of R past data (e.g.,

R =250 past days or one year) to “backtest” the accuracy of their methods of loss evaluation of the

CVaR. More specifically, they must estimate a maximal possible loss over a period of 1 or 10 days at

p% confidence level. The backtesting consists in the quantification, in some way, of how many times the

level equal to p%-CVaR is exceeded. Because of the difficulty in calculating, in practice, the loss level

over a 10-day period, the financial institutions only compute a daily estimation of the CVaR, or at most,

some estimation based on the ”square-root-of-time” method, i.e., obtaining a multi-period prediction by

multiplying the one day prediction by the square root of the length of the time horizon.

Backtesting is based on comparing the estimated values with the theoretical ones, for the out-of-

sample data from t = R+ 1, ..., N. Formally, this is usually achieved by means of the ”check” function of
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Koenker and Bassett (1978), consisting in calculating the expected loss of the quantile for a given level

p by

Q(p) = E[1(Xt>νp(t)) − p][Xt − νp(t)]. (28)

Following Bertail et al. (2004), this function can be regarded as a ”predictive” quasi-likelihood,

and measures the lack-of-fit of a quantile model. From a real time series, it can be evaluated from the

out-of-sample CVaR forecasts by

Q̂(p) =
1

N −R

N∑
t=R+1

∣∣1(Xt>ν̂p(t)) − p∣∣ |Xt − ν̂p(t)| . (29)

For a concrete p, the model that provides the forecasts {ν̂p(t)}Nt=R+1 with the minimum total value for

Q̂(p) will be considered the best model.

To check the accuracy of the CES estimators, we have to analyze the sequence of the CES estimators

for the out-of-sample data, in those indexes t ∈ T such that Xt > ν̂p(t). If the model is correctly specified,

the average of the observed values greater than vp(t) should be approximately equal to the predicted

values. The sample quantile will be used as a benchmark for the comparison (Zhu and Galbraith, 2011)

between the parametric (GARCH) and nonparametric (NFDE) estimators. Thus, we will compute the

mean absolute error, as a measure of predictive out-of-sample performance:

MAE(p) =
1

J

N∑
t=R+1

|µ̂p(t)−OES(p)| 1(Xt>vp(t))), (30)

where OES(p) corresponds to the observed expected shortfall

OES(p) =
1

J

N∑
t=R+1

Xt1(Xt>vp(t))),where J =

N∑
t=R+1

1(Xt>vp(t)),

that is, the sample value for the true CES (considering as the unknown vp(t) the sample quantile).

Therefore, the mean absolute error (30) allows us to directly compare the results between parametric

and nonparametric predictions.
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Results. We compute the SH, GARCH(1,1) and NFDE estimates and their respective loss (29) for

typical values of p = 0.1 and 0.05. The results appear in Table 3. For both values of p the values of

the expected loss are similar, with a slight advantage for the nonparametric procedure. Despite the big

differences with the better performance of the GARCH fitting to estimate the real quantiles (see Table 1

above), NFDE can perform even better in terms of the expected loss Q̂(p), showing the good expectations

for this methodology in this financial field.

[TABLE 3 OVER HERE]

A plot of some estimates appears in Figures 7 and 8 (dotted lines). Figure 7 shows the SH and

GARCH estimates of the CVaR. Figure 8 shows the NFDE estimates of CVaR and CES.

[FIGURE 7 OVER HERE]

[FIGURE 8 OVER HERE]

With respect to the CVaR estimation, the GARCH model shows more variability, better adjusting

to the real values, versus the conservative behavior of the nonparametric estimates. This is pointed out

by the smoothness of the nonparametric estimator, while the parametric one is more affected by high

short-run variations. The good performance of the GARCH fitting for this particular time series was

indicated by several authors (e.g., Berkowitz and O’Brien, 2002). In general, GARCH fitting behaves

better in crisis periods, while NFDE predicts the quantiles well in calm periods. The behavior in the risk

overestimation or underestimation can also be studied checking that, except in high crisis periods, both

models capture, in general, the quantile violations at the time when they occur.

The form of the CES estimates is similar to that of the CVaR above. The results for the mean

absolute errors (30) are shown in Table 4, with better results for the nonparametric estimates in both
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values of p. The nonparametric estimates of the CES rarely overestimate the quantile threshold, and this

is the principal reason why the nonparametric estimates get better results in the averaged absolute error.

[TABLE 4 OVER HERE]

From the results of Tables 3 and 4, we verify the competitiveness of our nonparametric procedure

with other classical ones. It is clear that more detailed studies could be performed using other more

complex parametric models (Bao et al., 2006; Zhu and Galbraith, 2011), and that the effectiveness of

functional methods could be extended through new bandwidth selection methods. Both issues should be

investigated further.

6 Conclusions

CVaR and CES are, nowadays, two valuable factors in decision making of market analysis. Many math-

ematical methods have been studied to approximate these two parameters. When no knowledge of the

shape of their theoretical form is assumed, nonparametric estimation can be performed directly through

a time series of one or several portfolio returns. Here, we have worked with nonparametric methods

combined with functional data. Based on a functional scheme, nonparametric techniques can consider

more information of past series without being affected by dimensionality problems. The functional non-

parametric estimators of the CVaR and CES have been proven to be asymptotically optimal, under

general dependence conditions (mixing) and in an almost complete sense. The performance in practice

of the proposed estimators has been examined under a nonlinear functional regression model and for a

parametric GARCH(1,1) time series model. In general, the approaches proposed in this paper yielded

good estimates of the parameters of interest, checked by the absolute errors and the backtesting results.

Moreover, as seen in related works (Ferraty et al., 2010b), bootstrap appears as a promising approach to
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obtain bandwidth parameters for a data set at hand, perhaps penalized by a high computation time. Of

course, this work aims to be just a teaser of what appears to be a new way of estimating parameters of

interest in financial series. Further work should be focused on comparing this method with different and

more advanced parametric models, as well as on the development of computationally efficient techniques

for bandwidth selection.
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A Details of proofs

Before going on, note the Fuk-Nagaev inequality (see for instance Rio, 2000), which is used several times

throughout the proofs. Let (Wn)n∈N−{0} be an α-mixing sequence of zero mean identically distributed

r.r.v. with arithmetic coefficient κ. If M < +∞ exists such that |W1| ≤ M , then, for any r ≥ 1 and for

some C < +∞, one has:

P

(∣∣∣∣∣
n∑
i=1

Wi

∣∣∣∣∣ > ε

)
≤ C

{(
1 +

ε2

r s2n

)−r/2
+
n

r

(r
ε

)κ+1
}
, (31)

where s2n =
∑n

i=1

∑n
i=1 |Cov (Wi,Wj)|.

An additional property used throughout the proofs is the following one:

∀p > 0, ∃C1 > 0 and C2 > 0, C1 φχ(h) < EKp
a,1 < C2 φχ(h), (32)
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which is a direct consequence of (H7).

Finally, to simplify the notation, one sets for i = 1, . . . , n: Gi = G

(
νp(χ)− Yi

g

)
, G′i = G′

(
νp(χ)− Yi

g

)
,

Hi = H
(
νp(χ)−Yi

g

)
, H ′i = H ′

(
νp(χ)− Yi

g

)
and Ka,i = Ka

(
h−1d(χ,Xi)

)
.

guidelines on the proof of Theorem 3.1.

• Theorem 3.1-(i). We use the standard decomposition

F̂ (y|χ)− F (y|χ) =
1

F̂ (y|χ)

{(
F̂N − EF̂N

)
−
(
F (y|χ)− EF̂N

)}
+
F (y|χ)

F̂D

(
EF̂D − F̂D

)
, (33)

with F̂N = (nEKa,1)
−1∑n

i=1Ka,iHi and F̂D = (nEKa,1)
−1∑n

i=1Ka,i. By remarking that

P
(∣∣∣F̂D − EF̂D

∣∣∣ > ε
)
≤ P

(∣∣∣∣∣
n∑
i=1

(Ka,i − EKa,i)

∣∣∣∣∣ > nφχ(h) ε

)
, (34)

the Fuk-Nagaev inequality (31) gives:

P
(∣∣∣F̂D − EF̂D

∣∣∣ > ε
)
≤ C


(

1 +
ε20 g nφχ(h) log n

r s2n

)−r/2
︸ ︷︷ ︸

T1

(35)

+
n

r

(
r

ε0
√
ε20 g nφχ(h) log n

)κ+1

︸ ︷︷ ︸
T2

 , (36)

with Wi = Ka,i − EKa,i, ε = ε0

√
nφχ(h) log n

nφχ(h)
. It is easy to control the quantity

s2n =

n∑
i=1

n∑
j=1

|Cov (Ka,i,Ka,j)| .

Indeed,

s2n ≡ s2n (Ka,1, . . . ,Ka,n; un) =
∑

0<|i−j|<un

|Cov (Ka,i,Ka,j)| (37)

+
∑

|i−j|>un

|Cov (Ka,i,Ka,j)| +
n∑
i=1

V ar (Ka,i) , (38)
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and taking un = φχ(h)−1+1/(κ+1) we conclude that s2n = O (nφχ(h)). Now, set r = C (log n)2 in

(36). We have that T1 = O
(
n−1−ζ

)
(ζ > 0) for large enough ε0, and the same holds for T2 as soon

as g φχ(h) ≥ n
3−κ
κ+1

+η. It comes:

F̂D − EF̂D = Oa.co.

(√
log n

nφχ(h)

)
. (39)

Similar arguments can be used to get

F̂N − EF̂N = Oa.co.

(√
log n

nφχ(h)

)
. (40)

The uniformity over S is obtained by involving a standard coverage of S combined with the Lipschitz

feature of H(·) which leads to:

sup
y∈S

∣∣∣F̂N − EF̂N
∣∣∣ = Oa.co.

(√
log n

nφχ(h)

)
. (41)

Lastly, regularity assumptions on H(·) and F (·|χ) allow us to yield:

sup
y∈S

∣∣∣F (y|χ)− EF̂N
∣∣∣ = O

(
hβ1
)

+O
(
gβ2
)
. (42)

Finally, (39)-(42) achieves the proof of Theorem 3.1-(i).

• Theorem 3.1-(ii). Just remark that F̂ (j)(y|χ) = F̂
(j)
N /F̂D. It suffices to follow similar arguments as

those used for stating Theorem 3.1-(i) to get Theorem 3.1-(ii).

• Theorem 3.1-(iii). As in Ferraty et al. (2005), it is straightforward to deduce that

(νp(χ)− ν̂p(χ))j = Oa.co

(
F̂ (νp(χ)|χ)− F (νp(χ)|χ)

)
, (43)

which combined with Theorem 3.1-(ii) achieves the proof of Theorem 3.1-(iii).

Proof of Theorem 3.2. The proof of Theorem 3.2 is based on the following lemmas. The first one

proposes a decomposition of µ̂p(χ) whereas the third one gives the asymptotic behavior of each term
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occurring in this decomposition. The second lemma gives intermediate results allowing to state Lemma

3.

Lemma 1 Under assumptions of Theorem 3.2, one has:

p µ̂p(χ) = Q1 +Q2 +O
(
(ν̂p(χ)− νp(χ))2

)
, (44)

with Q1 = g
n∑
i=1

Wh(χ,Xi)G
(
νp(χ)− Yi

g

)
and Q2 =

n∑
i=1

Wh(χ,Xi) ξi,

where ξi = (Yi − νp(χ))
(

1−H
(
νp(χ)−Yi

g

))
+ p νp(χ) and G(u) =

∫ +∞

u
v Ks(v) dv.

Lemma 2 (i) E
(
Kp
a,1 |G1|q

)
= O (g φχ(h)), ∀p > 0, ∀q > 0,

(ii) E (Ka,1|Y |pHq
1) = O (φχ(h)), ∀p ∈ {1, 2}, ∀q > 0.

Lemma 3 Under the assumptions of Theorem 3.2, one gets:

(i) Q1 = O(g2) +Oa.co.

(
g

√
g log n

nφχ(h)

)
,

(ii) Q2 = p µp(χ) +O(g2) +Oa.co.

(√
log n

nφχ(h)

)
.

Proof of Lemma 1. From (7), using standard Taylor expansions and according to the links between

G(.) and H(.) with Ks(.) (i.e., G′(v) = −v Ks(v), G”(v) = −Ks(v) − vK ′s(v), H ′(v) = Ks(v)), it exists

θ ∈ (min{νp(χ), ν̂p(χ)},max{νp(χ), ν̂p(χ)}) such that:

G

(
ν̂p(χ)− Yi

g

)
= Gi +

ν̂p(χ)− νp(χ)

g
G′i +

1

2

(
ν̂p(χ)− νp(χ)

g

)2

G”

(
θ − Yi
g

)
= Gi −

νp(χ)

g

(
ν̂p(χ)− νp(χ)

g

)
Ks

(
νp(χ)− Yi

g

)
+
Yi
g

(
ν̂p(χ)− νp(χ)

g

)
Ks

(
νp(χ)− Yi

g

)
−1

2

(
ν̂p(χ)− νp(χ)

g

)2

Ks

(
θ − Yi
g

)
+
Yi
2 g

(
ν̂p(χ)− νp(χ)

g

)2

K ′s

(
θ − Yi
g

)
− θ

2 g

(
ν̂p(χ)− νp(χ)

g

)2

K ′s

(
θ − Yi
g

)
,
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and

H

(
ν̂p(χ)− Yi

g

)
= Hi +

ν̂p(χ)− νp(χ)

g
H ′i +

1

2

(
ν̂p(χ)− νp(χ)

g

)2

H”

(
θ − Yi
g

)
= H

(
νp − Yi
g

)
+
ν̂p(χ)− νp(χ)

g
Ks

(
νp(χ)− Yi

g

)
+

1

2

(
ν̂p(χ)− νp(χ)

g

)2

K ′s

(
θ − Yi
g

)
.

This leads us to:

p µ̂p(χ) =
n∑
i=1

Wh(χ,Xi)
{
g Gi + Yi (1−Hi)− νp(χ)

(
ν̂p(χ)− νp(χ)

g

)
Ks

(
νp(χ)− Yi

g

)
(45)

−g
2

(
ν̂p(χ)− νp(χ)

g

)2

Ks

(
θ − Yi
g

)
− θ

2

(
ν̂p(χ)− νp(χ)

g

)2

K ′s

(
θ − Yi
g

)}
(46)

=
n∑
i=1

Wh(χ,Xi)Yi (1−Hi)− νp(χ)(ν̂p(χ)− νp(χ))f̂(νp(χ)|χ) +Q1 (47)

−1

2
(ν̂p(χ)− νp(χ))2

{
f̂(θ|χ) + θf̂ ′(θ|χ)

}
. (48)

By using Theorem 3.1-(ii), it is clear that the last term on the right hand side of (48) isO
(

(ν̂p(χ)− νp(χ))2
)

.

A standard Taylor expansion of F̂ (·|χ) combined with Theorem 3.1-(ii) leads to

p = 1− F̂ (νp(χ)|χ)− (ν̂p(χ)− νp(χ)) f̂(νp(χ)|χ) +O
(

(ν̂p(χ)− νp(χ))2
)
, (49)

which implies that

−νp(χ)(ν̂p(χ)− νp(χ))f̂(νp(χ)|χ) = p νp(χ)− νp(χ)
n∑
i=1

Wh(χ,Xi) (1−Hi) (50)

+O
(

(ν̂p(χ)− νp(χ))2
)
. (51)

Now, by combining (48) with (51) one gets

p µ̂p(χ) = Q1 + Q2 +O
(

(ν̂p(χ)− νp(χ))2
)
, (52)

which ends the proof of Lemma 1.
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Proof of Lemma 2.

(i). We have

E
(
Kp
a,1 |G1|q

)
≤ E

{
Kp
a,1E (|G1|q|X1)

}
=

∫
B(χ,h)

Kp
a

(
d(χ, z)

h

){∫
R

∣∣∣∣G(νp(χ)− y
g

)∣∣∣∣q f(y|z)
}
dP (z).

Now, because of (H4) and (H7), it is easy to get

∫
R

∣∣∣∣G(νp(χ)− y
g

)∣∣∣∣q f(y|z) dy ≤ C g f(νp(χ)|z) +O(g2), (53)

which implies that

E
(
Kp
a,1 |G1|q

)
≤ C g

∫
B(χ,h)

Kp
a

(
d(χ, z)

h

)
f(νp(χ)|z) dP (z) (54)

≤ C ′ g f(νp(χ)|χ)E
(
Kp

1,a

){
1 +O(hβ1)

}
+ E

(
Kp

1,a

)
O(g2), (55)

the last inequality coming from (H5). The combination of (32) with (55) leads us to:

E
(
Kp
a,1 |G1|q

)
= O (g φχ(h)) . (56)

(ii). Since Hq
1 ≤ 1, one has:

E (Ka,1|Y1|pHq
1) ≤ EKa,1E (|Y1|p|X1)

≤ EKa,1 |σp(X1)− σp(χ)|+ σp(χ)EKa,1.

We get E (Ka,1|Y1|pHq
1) = O (φχ(h)), which ends the proof of Lemma 2-(ii).

Proof of Lemma 3.

• Lemma 3-(i). First of all, (39) implies that

Q1 = (Q11 +Q12)

{
1 +Oa.co.

(√
log n

nφχ(h)

)}
, (57)
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with Q11 =
g

EKa,1

n∑
i=1

Ka,iGi − EKa,1G1︸ ︷︷ ︸
Zi

 and Q12 =
g

EKa,1
EKa,1G1. On the one hand,

(32) and Lemma 2-(i) imply that |Cov(Zi, Zj)| = O
(
g2 φχ(h)2−1/(κ+1)

)
for i 6= j and V ar(Zi) =

O (g φχ(h)). On the other hand, the Davydov covariance inequality (see Rio 2000, formula 1.12a)

allows us to get |Cov(Zi, Zj)| = O (|i− j|−κ). Then, by using a similar decomposition as in (37), it

comes:

s2n(Z1, . . . , Zn; un) = O (g nφχ(h)) , (58)

where one sets un = g−1 φχ(h)−1+1/(κ+1). By remarking that

P
(
g−1 |Q11| > ε

)
≤ P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > nφχ(h) ε

)
, (59)

the use of the Fuk-Nagaev inequality (31) with ε = ε0

√
g nφχ(h) log n

nφχ(h)
and r = C (log n)2 leads

to:

Q11 = Oa.co.

(
g

√
g log n

nφχ(h)

)
. (60)

In addition, (32) and Lemma 2-(i) allow us to get Q12 = O
(
g2
)
, which combined with (60) implies

that:

Q1 = O
(
g2
)

+ Oa.co.

(
g

√
g log n

nφχ(h)

)
. (61)

• Lemma 3-(ii).

Q2 =
n∑
i=1

Wh(χ,Xi) (ξi − E (ξi|Xi))︸ ︷︷ ︸
Q21

+
n∑
i=1

Wh(χ,Xi)E (ξi|Xi)︸ ︷︷ ︸
Q22

. (62)

On the one hand,

E (Yi (1−Hi) | Xi = χ) = p µp(χ)− g2

2

(
f(νp(χ)|χ) + νp(χ) f ′(νp(χ)|χ)

)
m2(Ks) + o(g2), (63)

and on the other hand,

E ((1−Hi) | Xi = χ) = F (νp(χ)|χ)− g2

2
f ′(νp(χ)|χ)m2(Ks) + o(g2), (64)
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which implies that

E (ξi|Xi = χ) = p µp(χ)− g2

2
f(νp(χ)|χ)m2(Ks) + o(g2). (65)

Moreover,

Xi ∈ B(χ, h) ⇒
n∑
i=1

Wh(χ,Xi)E (ξi|Xi) =
n∑
i=1

Wh(χ,Xi)E (ξi|Xi = χ) + o(g2). (66)

This last result combined with (65) leads to

Q22 = p µp(χ) + O
(
g2
)
. (67)

Now, according to (39), one has

Q21 =
1

EKa,1

n∑
i=1

Ka,i (ξi − E (ξi|Xi))︸ ︷︷ ︸
T

{
1 +Oa.co.

(√
log n

nφχ(h)

)}
, (68)

where nEKa,i T =
n∑
i=1

Wi,1,1 − νp(χ)
n∑
i=1

Wi,0,1 + p νp(χ)
n∑
i=1

Wi,0,0 with

Wi,k,l = Ka,i Y
k
i H

l
i − Ka,i E(Y k

i H
l
i | Xi) and H i = 1 − Hi. Use again (32) with Lemma 2-(ii)

to derive that, for any (k, l) ∈ {0, 1}2, the decomposition of the covariances between the Wi,k,l’s

satisfies:

s2n (W1,k,l, . . . ,Wn,k,l; un) = O (nφχ(h)) , (69)

where un = φχ(h)−1+1/(κ+1). Now, the Fuk-Nagaev inequality with (69),

ε = ε0

√
nφχ(h) log n

nφχ(h)
and r = C (log n)2 allows us to write:

P

(∣∣∣∣∣
n∑
i=1

Wi,k,l

∣∣∣∣∣ > nφχ(h) ε

)
= Oa.co.

(√
nφχ(h) log n

)
. (70)

Now, according to definition of T , with (32) and (70) it comes:

T = Oa.co.

(√
log n

nφχ(h)

)
. (71)
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This last result combined with (68) allows us to get

Q21 = Oa.co.

(√
log n

nφχ(h)

)
. (72)

The proof of Lemma 3-(ii) is achieved by gathering (62), (67) and (72).
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Table Captions:

Table 1: Average and standard deviation of the absolute errors for the three considered CVaR esti-

mates, for 1000 replications of the simulated GARCH(1,1) model.

Table 2: Average and standard deviation of the absolute errors for the CES estimates, for 1000

replications of the simulated GARCH(1,1) model.

Table 3: Expected loss (29) for the three considered CVaR estimates, for the S&P 500 Index time

series. Values of p = 0.05 and 0.01 were used.

Table 4: Mean absolute error (30) for the parametric and nonparametric CES estimates, for values

of p = 0.05 and 0.01, for the S&P500 Index time series.

Figure Captions:

Figure 1: (a) The generated time series, according to Model (14). (b) Five particular functional data

χi.

Figure 2: Boxplot of the 500 absolute errors between the true values and their nonparametric esti-

mates, for three particular sample sizes, n = 100, 250 and 500. Left panel: CVaR estimates. Right panel:

CES estimates.

Figure 3: Boxplot of the 100 absolute errors, using the optimal and the estimated bootstrap band-

widths.

Figure 4: Estimation of the CVaR for a simulated GARCH(1,1) model, for the three considered meth-

ods: Historical simulation (top), GARCH fitting (center) and NFDE (bottom). The quantile estimation

is displayed as a dotted line.

Figure 5: Estimation of the CES for a simulated GARCH(1,1) model, by means of a GARCH fitting

(top) and NFDE (bottom). The dotted line corresponds to the CES estimates.

Figure 6: Plot of the S&P500 Index time series data, from 07/April/1986 to 31/August/2010 (6156
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data).

Figure 7: Estimation of the CVaR (dotted line) for the S&P500 Index time series data, using the

Historical Simulation (HS) and the GARCH fitting methods.

Figure 8: Nonparametric estimates for the S&P500 Index time series data. Top: CVaR estimates

(dotted line). Bottom: CES estimates (dotted line).
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HS GARCH NFDE

0.156 (0.069) 0.0062 (0.005) 0.069 (0.063)

Table 1:

GARCH NFDE

0.009 (0.008) 0.116 (0.121)

Table 2:

p Q(HS) Q(GARCH) Q(NFDE)

0.1 0.20 0.22 0.28

0.05 0.13 0.16 0.14

Table 3:
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p GARCH NFDE

0.1 0.85 0.26

0.05 1.15 0.33

Table 4:
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