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DATA DEPTH FOR MEASURABLE NOISY RANDOM FUNCTIONS

STANISLAV NAGY1 AND FRÉDÉRIC FERRATY2

Abstract. In the literature on data depth applicable to random functions it is usu-
ally assumed that the trajectories of all the random curves are continuous, known at
each point of the domain, and observed exactly. These assumptions turn out to be
unrealistic in practice, as the functions are often observed only at a finite grid of time
points, and in the presence of measurement errors. In this work, we provide the neces-
sary theoretical background enabling the extension of the statistical methodology based
on data depth to measurable (not necessarily continuous) random functions observed
within the latter framework. It is shown that even if the random functions are discontin-
uous, observed discretely, and contaminated with additive noise, many common depth
functionals maintain the fine consistency properties valid in the ideal case of completely
observed noiseless functions. For the integrated depth for functions, we provide uniform
rates of convergence over the space of integrable functions.

1. Introduction

In functional data analysis it is usually assumed that the random curves are observed
perfectly, i.e. that the functional values are known precisely, at all points of their domain
(also referred to as time), see the monographs of Ramsay and Silverman (2005), Ferraty
and Vieu (2006), or Horváth and Kokoszka (2012), or the recent surveys of Cuevas (2014)
and Goia and Vieu (2016). While this assumption is appropriate for the development of
basic methodology for dealing with functions, in practice it is seldom satisfied. On the
contrary, real functional datasets are never observed continuously in time, and often a
substantial amount of additive noise, introduced by the measurement procedure, prevents
from observing these values accurately. If the functions are observed densely enough to
permit the reconstruction of their original trajectories, data analysis is routinely per-
formed after a preprocessing step. Here the discrete, inaccurately observed values are
smoothed to approximate the unobservable, supposedly regular function. Nonetheless,
such data imputation may disturb the correctness of the subsequent statistical analy-
sis. In the present contribution, we consider the field of statistical depth for functional
data, and provide theoretical justification for the use of pre-smoothed functional data in
combination with the analysis based on depth.

Statistical depth is a nonparametric instrument applicable to multivariate (and infinite-
dimensional) data. For these, it aims to introduce a generalization of quantiles. By iden-
tifying points in the sample space located “centrally” with respect to a given probability
distribution P , it is capable of distinguishing “typical” and “potentially outlying” obser-
vations by assigning to them very high, or very low values of depth, respectively. For a
general account on data depth in the classical setup of finite-dimensional spaces see Zuo
and Serfling (2000), and the references therein.
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2 DATA DEPTH FOR MEASURABLE NOISY RANDOM FUNCTIONS

The first extension of depth to functional data analysis is due to Fraiman and Muniz
(2001). Since then, numerous depth functionals have been proposed, mostly in the space
of continuous functions over a compact interval. Let us mention the work of Cuevas and
Fraiman (2009), López-Pintado and Romo (2009, 2011), Mosler (2013), Claeskens et al.
(2014), Chakraborty and Chaudhuri (2014) and a recent article of Narisetty and Nair
(2016). Most of these diverse approaches can be classified into three groups of depths
following similar ideas, as discussed in Gijbels and Nagy (2015) and Nagy et al. (2016b):
(i) integrated depths, (ii) band depths, and (iii) infimal depths.

In some fields of functional data analysis, noisy random functions have already been
studied intensively; a body of literature on this topic encompassing functional linear
regression, functional principal components, continuous additive models, etc. can be
found in Yao et al. (2005), Crambes et al. (2009), Paul and Peng (2009), Jiang and Wang
(2010), Li and Hsing (2010), Wu et al. (2010), Müller et al. (2013), Radchenko et al.
(2015), Hsing and Eubank (2015) and Zhang and Wang (2016), among others. In those
works, noisy functional data are typically either (i) pre-smoothed in the first step, and
then statistical analysis is performed for the smoothed approximants of the data curves;
or (ii) the statistical procedure in question is revisited, and suitably applied directly to
the available discrete noisy observations. The latter approach is usually less versatile, and
requires a specific type of data (such as random curves in Hilbert spaces decomposable
into their functional principal components). In this paper, we thus follow the former
method, and explore its potential in the field of functional data depth.

For functional data depth, no theoretical results of this kind are available. Though,
also here the pre-smoothing step is very common, and known to give good results in
practice, see Cuevas et al. (2006, 2007), Hyndman and Shang (2010), Sun and Genton
(2011, 2012), López-Pintado and Wei (2011), Ieva and Paganoni (2013), López-Pintado
et al. (2014), Claeskens et al. (2014) and Narisetty and Nair (2016). In the present paper
we bridge the concepts of noisy functional data and data depth, and provide theoretical
properties of depth computed from pre-smoothed functions. To this end, we focus on
the main categories of depth functionals (integrated depths, band depths, and infimal
depths), and establish the mathematical background necessary for depth-based analysis
of discretely observed and contaminated curves.

In Section 2 we gather the preliminaries and notation. Then, the first result estab-
lishing mild conditions for the weak convergence of the empirical measures based on the
reconstructions of the noisy curves is given. This is a non-trivial extension of the classical
theorem of Varadarajan (1958) to functional data. Considering noisy (hence discontinu-
ous) curves, it is necessary to abandon the framework of depths defined in the space of
continuous functions. In Section 3, extensions of the main representatives of integrated
and band depths into the space of integrable functions are given, and their properties are
examined. Some new consistency results for these are provided. In particular, it is shown
that under suitable conditions both integrated, and (adjusted) band depths retain the
fine consistency properties valid in the space of perfectly observed continuous functions.
In Section 4 we focus on integrated depths. For the first time, we provide the rate of
convergence of a depth functional over the whole functional space. Using an extension of
the theory from Section 2 we derive the rate of convergence of the integrated depth in the
setup of noisy random functions, and demonstrate that if the noisy curves are observed
densely in time, then the same rate of convergence as for perfectly observed data can
be achieved. Some interesting extensions of our theory are discussed in Section 5. A
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simulation study illustrating the performance of the proposed methodology is given in
Section 6. Its complete results can be found in the Supplementary Material accompanying
the paper. The proofs are provided in the Appendix.

2. Weak Convergence for Noisy Functional Data

Let (Ω,F ,P) be the probability space on which all random elements are defined. For
a measurable space S, P (S) is the set of all probability measures defined on S, and
X ∼ P ∈ P (S) stands for a random variable X in S with distribution P . For P ∈ P (S),
ω ∈ Ω and n ≥ 1, Pn(ω) = Pn ∈ P (S) denotes the empirical measure of the random
sample X1, . . . , Xn from P corresponding to ω. The weak convergence of a sequence
{Pν}∞ν=1 ⊂ P (S) to P ∈ P (S) is denoted by Pν

w−−−→
ν→∞

P . The space of continuous

functions over [0, 1] is denoted by C ([0, 1]). L2 ([0, 1]) is the space of measurable functions
x : [0, 1]→ R for which x2 is Lebesgue integrable. For λ the Lebesgue measure on R, the
norm of x ∈ L2 ([0, 1]) is denoted by

(1) ‖x‖ :=

√∫ 1

0

x(t)2 dλ(t).

For X ∼ P ∈ P (L2 ([0, 1])), Pt ∈ P (R) stands for the marginal distribution of X(t) for
t ∈ [0, 1], and Ft for its distribution function. The marginal distribution of the empirical
measure Pn at t ∈ [0, 1] is denoted by Pn,t ∈ P (R), and its distribution function by Fn,t.

Consider a random function X ∼ P ∈ P (L2 ([0, 1])), that is a mapping

X : [0, 1]× Ω→ R : (t, ω) 7→ X(t, ω), (B([0, 1])×F)-measurable,

such that X(·, ω) ∈ L2 ([0, 1]) for P-almost all ω ∈ Ω. B([0, 1]) stands for the Borel sets in
[0, 1]. Note that we assume that X is measurable with respect to the product σ-algebra.
This technical assumption is needed to assure proper measurability of all the considered
quantities, especially with respect to the integrated depth for discontinuous functions (see
Nagy, 2017a). When not necessary, the argument of the random element ω in X will be
omitted.

Let X1, . . . , Xn be independent random functions distributed as X. Assume that the
complete set of functional values {Xi(t) : t ∈ [0, 1]}, i = 1, . . . , n, cannot be observed
directly. Instead, for each i, only the finite vector

(2)
(
X∗i,1, . . . , X

∗
i,mi

)
= (Xi(Ti,1) + εi,1, . . . , Xi(Ti,mi

) + εi,mi
) ∈ Rmi ,

is known to the observer. Here, mi ≥ 1 is an integer and (Ti,1, . . . , Ti,mi
) ∈ [0, 1]mi is

a random sample of size mi from a distribution T ∼ PT ∈ P ([0, 1]). εi,1, . . . , εi,mi
are

independent, centred random variables such that Var εi,j = σ2(Ti,j), where σ2 : [0, 1] →
[0,∞) is a deterministic function. In what follows, all the variables εi,j, Ti,j and Xi are
assumed to be independent; a more general scenario will be discussed in Section 5. The
choice σ2 ≡ 0 covers the case when the random functions are observed discretely without
noise. This setup was considered by Nagy et al. (2016a) in the space C ([0, 1]), and in
the present contribution we extend these results substantially to discontinuous functions
contaminated with measurement errors, using very different proof techniques.

Though the number of the observed functional values mi in (2) can be considered fixed
for a single function Xi, it will typically grow as the sampling process from P continues,
i.e. mi −−−→

i→∞
∞. Random functions observed within this setup are in the literature often
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called dense functional data (Li and Hsing, 2010), in contrast to sparse functional data
(Yao et al., 2005), where mi is bounded as i grows.

The assumption of having a non-random mi in (2) is made for mere notational con-
venience. In what follows mi could be replaced by its stochastic counterpart, and where
applicable, mi −−−→

i→∞
∞ can always be replaced by mi

a.s.−−−→
i→∞

∞ for mi independent of the

other random variables. Likewise, it is possible to consider a related model, where in the
random sample X1, . . . , Xn the function Xi is observed at mi,n points. In this case, one
can proceed analogously as pursued here, the only assumption being mi,n ≥ mi for all
i ≥ 1 and n ≥ i, for some mi −−−→

i→∞
∞. Note that in (2) we do not have to require the usual

mi,n −−−→
n→∞

∞ for all i ≥ 1. That is, in our setup, for i ≥ 1 fixed the ith sampled function

is not bound to be observed at more points as the sampling process continues. Therefore,
the currently developed theory naturally embeds also the commonly considered setup of
increasingly dense functional data (where mini=1,...,nmi,n −−−→

n→∞
∞).

For the random vector (2), a reconstruction of the unobserved curve Xi ∈ L2 ([0, 1])
based on these points is necessary in order to perform statistical inference on the original
distribution P . This is often done by nonparametric smoothing. Here, we mainly focus
on the kernel estimator of Xi (for other smoothing methods see Section 5) — for a kernel
K : R→ [0,∞) and a bandwidth hmi

> 0, we approximate Xi by

(3) X̃i(t) :=

∑mi

j=1X
∗
i,jK ((t− Ti,j)/hmi

)∑mi

j=1K ((t− Ti,j)/hmi
)

for t ∈ [0, 1].

After all the curves Xi are approximated by X̃i, Pn ∈ P (L2 ([0, 1])) based on X1, . . . , Xn

can be estimated by the measure of empirical type P̃n ∈ P (L2 ([0, 1])) concentrated

in the smoothed functions X̃1, . . . , X̃n. In the following theorem we formulate a weak

convergence result for P̃n. For this, we need the following assumptions:

(A1) EX(T )2 <∞.
(A2) There exist constants 0 < r ≤ R and 0 < b < B such that for the kernel K

B I [−R ≤ u ≤ R] ≥ K(u) ≥ b I [−r ≤ u ≤ r] for all u ∈ R.

(A3) PT has a density over [0, 1] bounded from below by cT > 0.
(A4) supt∈[0,1] σ

2(t) ≤ σ2 for some σ2 <∞.
(A5) hmi

−−−→
i→∞

0 and mihmi
−−−→
i→∞

∞.

Theorem 1. Under the assumptions (A1)–(A5), P
(
P̃n

w−−−→
n→∞

P
)

= 1, that is the se-

quence of empirical measures
{
P̃n(ω)

}∞
n=1

converges to P weakly in P (L2 ([0, 1])) for

P-almost all ω ∈ Ω.

As will be seen in Section 3 below, the Varadarajan’s type of result displayed in The-
orem 1 can be directly applied to the problem of consistency of depth functionals. In
Section 4, under slightly stricter assumptions imposed on X, the rates of convergence of

the sequence of approximating functions
{
X̃n

}∞
n=1

to the sequence of independent real-

isations of X are investigated. As such, these results provide a quantitative version of
Theorem 1.
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3. Depth Functionals in L2 ([0, 1])

In the literature on depth for functional data, numerous approaches to depth com-
putation have been proposed. Though most of these are constructed in the setup of
continuous random functions (that is for x,X ∈ C ([0, 1])), their extensions to the space
of measurable functions are rather straightforward. We begin by defining rigorously
some representatives of the most widely studied depth functionals, extended to the space
L2 ([0, 1]). These include a general univariate integrated depth (Nagy et al., 2016b), the
h-mode depth, and the adjusted band depth, the latter two taking the form of band
depths for functions (Gijbels and Nagy, 2015).

Many other depths follow the ideas behind these two general classes of functionals.
Namely, the original band depths (López-Pintado and Romo, 2009), the corrected band
depths (López-Pintado and Jornsten, 2007), the sparse band depths (López-Pintado and
Wei, 2011), the local band depths (Agostinelli and Romanazzi, 2011), various versions of
multivariate band depths (Ieva and Paganoni, 2013, López-Pintado et al., 2014), the half-
region depths (López-Pintado and Romo, 2011), the set band depths (Whitaker et al.,
2013), and other related functionals all fall logically into the setup of general band depths
for functional data. On the other hand, the so-called modified versions of all these band
depths, the modified volume depth (Genton et al., 2014), and the integrated depths of
Cuevas and Fraiman (2009) and Claeskens et al. (2014) are representatives of depths
of integrated type. Theoretical properties of all these functionals in L2 ([0, 1]) can be
derived from the results given in the present section in an analogous manner. For band
depths, however, adjustment as proposed by Gijbels and Nagy (2015) is necessary to be
introduced into the depth evaluation to avoid consistency issues.

In the definitions below, assume that the depth of the function x ∈ L2 ([0, 1]) with
respect to (w.r.t.) the distribution of the random function X ∼ P ∈ P (L2 ([0, 1])) is
to be determined. We start with a generic definition of a depth functional of integrated
type based on a univariate depth.

Definition (Fraiman and Muniz, 2001, Cuevas and Fraiman, 2009, Nagy et al., 2016b).
The integrated depth of x w.r.t. P is given by

(4) aD (x;P ) :=

∫ 1

0

D1 (x(t);Pt) dλ(t).

As for the choice of the univariate depth in the definition of aD, the only assumptions
we make are that D1 : R × P (R) → [0, 1] : (u,Q) 7→ D1(u;Q) is a (depth) mapping
that is jointly measurable in its domain, weakly continuous in the distribution argument,
and universally consistent (see Nagy et al., 2016b, Sections 4.6 and 5.2). The latter
two conditions mean that D1 satisfies supu∈R|D1 (u;Qν) − D1 (u;Q)| −−−→

ν→∞
0 whenever

Qν
w−−−→

ν→∞
Q in P (R) such that Q is absolutely continuous, and that supu∈R|D1 (u;Qn)−

D1 (u;Q)| a.s.−−−→
n→∞

0 for any Q ∈ P (R) and the sequence of the associated empirical

measures {Qn}∞n=1. It is easy to show that these conditions are obeyed for most univariate
depths. In particular, writing FQ for the distribution function of Q ∈ P (R), they are
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true (Nagy et al., 2016b, Appendix A) for any of

(5)

Da
1(u;Q) := 1/2− |1/2− FQ(u)| ,

Db
1(u;Q) := min

{
FQ(u), 1− lim

v→u−
FQ(v)

}
,

Dc
1(u;Q) := FQ(u)

(
1− lim

v→u−
FQ(v)

)
,

Dd
1(u;Q) :=

1

J − 1

J∑
j=2

P

(
u ∈

[
min
i=1,...,j

Ui, max
i=1,...,j

Ui

])
,

where in the last expression J ≥ 2 and U1, . . . , UJ is a random sample from Q. The
depth Da

1 was introduced into (4) by Fraiman and Muniz (2001). If FQ is continuous it
is equivalent with Db

1, the well-known halfspace depth (Tukey, 1975) in R. The depth Dc
1

relates to the simplicial depth (Liu, 1990) in R. In (4) it was used by Cuevas and Fraiman
(2009). Dd

1 forms in (4) the modified band depth for functional data (López-Pintado and
Romo, 2009). For J = 2, Dd

1 is equivalent with Dc
1.

In the definitions of band depths that follow, KD : [0,∞) → [0,∞) is a continuous
function such that limt→∞KD(t) = 0. It plays the role of a smoothing kernel, and can
differ from the kernel K utilized to recover the random functions in Section 2.

Definition (Cuevas et al., 2006, 2007). The h-mode depth of x w.r.t. P is given by

(6) hD (x;P ) :=
1

h(P )
EKD

(
‖x−X‖
h(P )

)
,

where h : P (L2 ([0, 1])) → (0,∞) is a bandwidth such that h(Pν) −−−→
ν→∞

h(P ) whenever

Pν
w−−−→

ν→∞
P in P (L2 ([0, 1])).

Definition (Gijbels and Nagy, 2015). The adjusted band depth of order J ≥ 1 of x w.r.t.
P is given by

(7) bD (x;P ) := EKD (d (x,B (X1, . . . , XJ))) ,

where X1, . . . , XJ are independent random functions from P ,

B(x1, . . . , xJ) :=
⋃

N⊂[0,1]
λ(N)=1

⋂
t∈N

{
y ∈ L2 ([0, 1]) : min

j=1,...,J
xj(t) ≤ y(t) ≤ max

j=1,...,J
xj(t)

}

=

{
y ∈ L2 ([0, 1]) : min

j=1,...,J
xj ≤ y ≤ max

j=1,...,J
xj λ-almost everywhere

}
is the band of functions x1, . . . , xJ ∈ L2 ([0, 1]) and

d (x,B (x1, . . . , xJ)) := inf {‖x− y‖ : y ∈ B (x1, . . . , xJ)}
is the distance between x and the band of functions.

The depth bD for J = 1 is the same as hD for the choice h(P ) = 1 for all P ∈
P (L2 ([0, 1])). The sample versions of all the defined depths are formed by substituting
the population measure P by the empirical measure Pn in (4), (6), and (7), respectively,
if Pn is observed. If the complete curves are not available, the empirical measure of

their reconstructions P̃n is used. Note that in the list of depths applicable to integrable
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functions we omitted any version of the infimal type of depth functionals (Mosler and
Polyakova, 2012, Gijbels and Nagy, 2015) such as the basic infimal depth for functions
(Mosler, 2013)

(8) iD (x;P ) := inf
t∈[0,1]

D1 (x(t);Pt) ,

for x ∈ L2 ([0, 1]), P ∈ P (L2 ([0, 1])) and D1 as for aD. Other representative of infimal
depths that can be found in the literature is the functional halfspace depth discussed in
Dutta et al. (2011). Also, the extremal depth (Narisetty and Nair, 2016) is based on a
related idea. These depths are not defined well for x ∈ L2 ([0, 1]), since the functional
values of x in (8) are given uniquely only for almost every t ∈ [0, 1]. More importantly,
even if the definition of the depth was modified accordingly, it can be shown that these
functionals suffer from serious consistency issues in the case of discontinuous observations.
To illustrate this, consider the example of X ∼ P ∈ P (L2 ([0, 1])) defined such that the
functional value X(0) is standard normally distributed, and X(t) = W (t) for t > 0, where
W is a standard Wiener process on [0, 1], independent of X(0). For this random function,
say D1 = Da

1 , and x ≡ 0, we get D1 (x(t);Pt) = 1/2 for all t ∈ [0, 1]. Nonetheless, for
any finite random sample from P and its empirical measure Pn, there exists a subset
S of [0, 1] of positive Lebesgue measure such that D1 (x(t);Pn,t) = 0 for all t ∈ S (see
Gijbels and Nagy, 2015, Example 5). Thus, neither the depth iD, nor its version with
an essential infimum in (8), can be consistent in L2 ([0, 1]). Furthermore, the consistency
difficulties of the infimal depths can be shown to persist also for smoothed versions of
the functional data, as can be seen by obvious modifications of Nagy et al. (2016a,
Example 5). These results are true even though all the marginal distributions Pt are
absolutely continuous, which is sufficient for the consistency of iD in C ([0, 1]) (Gijbels
and Nagy, 2015, Theorem 5).

The next theorem deals with the sample version consistency of all the considered depth
functionals (except from iD) in L2 ([0, 1]) in the case when the random functions are
observed completely (that is when Pn is observable). It provides a unified extension of
several consistency results scattered in the literature (see, for instance, Nagy, 2017b).

Theorem 2. Let D be one of the functional depths aD, hD or bD. For any P ∈
P (L2 ([0, 1]))

sup
x∈L2([0,1])

|D(x;Pn)−D(x;P )| a.s.−−−→
n→∞

0

If the distribution of X ∼ P is such that X is P-almost surely continuous over [0, 1],
also the supremum norm (equivalent with the L∞ ([0, 1]) norm)

(9) ‖x‖∞ := sup
t∈[0,1]

|x(t)| for x ∈ C ([0, 1])

can be used in both the h-mode and the adjusted band depth to evaluate the depth of
functions in C ([0, 1]). A proof analogous to that of Theorem 2 can be used to show that
in this case both hD and bD are universally consistent over C ([0, 1]). In Section 6 we
use both L2 ([0, 1]) and C ([0, 1]) versions of these two depths to assess their performance
when the sample functions are approximated.

While in Theorem 2 we were able to state the universal consistency results without any
distributional assumptions, in what follows for aD it is necessary to make one additional
assumption:
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(A6) The marginal distributions Pt of P ∈ P (L2 ([0, 1])) are absolutely continuous for
all t ∈ [0, 1].

With (A6) we are able to formulate the consistency result also for depths based on noisy
observations. This theorem substantially improves on the related consistency results for
discretely observed noiseless random functions in C ([0, 1]) provided in Nagy et al. (2016a).

Theorem 3. Let P ∈ P (L2 ([0, 1])). Then

sup
x∈L2([0,1])

∣∣∣D(x; P̃n)−D(x;P )
∣∣∣ a.s.−−−→

n→∞
0

if (A1)–(A5) are satisfied and D is hD or bD. Moreover, if also (A6) is true, then the
result holds true also for D = aD.

To see that (A6) cannot be dropped for aD, consider X ∼ P ∈ P (L2 ([0, 1])) with
P (X ≡ 0) = 1, K(u) = I [|u| ≤ 1], and PT the uniform distribution on [0, 1]. Then,
using∗ Db

1, D
c
1 or Dd

1 for D1 in (4) one gets for x ≡ 0 that aD (x;P ) = 1. One the

other hand, for P̃n based on kernel smoothed noisy random functions (with positive noise
variance) we have by the usual (univariate) central limit theorem that

lim
i→∞

P
(
X̃i(t) < 0

)
= lim

i→∞
P
(
X̃i(t) > 0

)
= 1/2 for all t ∈ [0, 1],

and thus for P-almost all ω ∈ Ω we have lim supn→∞aD
(
x; P̃n(ω)

)
< 1 = aD (x;P ).

4. Rates of Convergence

In the present section we focus on the integrated depth aD based on the univariate
depth D1 = Da

1 from (5). It constitutes the simplest representative of integrated depths
for functions. Extensions of the present results for other univariate depth functions D1

as considered in Section 3 are possible using analogous techniques. Initially, we state
the uniform rate of convergence of the integrated depth over L2 ([0, 1]). As far as we are
aware, it is the first result of this kind for a depth constructed for functional data.

Theorem 4. For any P ∈ P (L2 ([0, 1]))

sup
x∈L2([0,1])

|aD(x;Pn)− aD(x;P )| = OP
(
n−1/2

)
.

4.1. Rate of Convergence for Smoothed Random Functions. Now, a theorem
concerning the rates of convergence of the reconstructed random curves towards the
noiseless random functions will be stated. For this, a refinement of the condition (A1) is
necessary in what follows.

(A1∗) There exist constants M,L > 0 and β ∈ (0, 1] such that

sup
t∈[0,1]

EX(t)2 ≤M, and

P
(
|X(s)−X(t)| ≤ L |s− t|β for all s, t ∈ [0, 1]

)
= 1.

∗The depth Da
1 (·;Q) is not well suited for Q ∈ P (R) whose distribution function is discontinuous;

for instance, for Q supported in a singleton Da
1 (u;Q) = 0 for all u ∈ R.
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Theorem 5. Let conditions (A1∗), (A2)–(A5) be satisfied. Then there exists a constant
c > 0 such that

E
∥∥∥Xi − X̃i

∥∥∥2 ≤ c
σ2 +M

mihmi

+ L2h2βmi
.

As a corollary of Theorem 5 we obtain that for the optimal choice of bandwidth in our
setup (see Györfi et al., 2002)

(10) hmi
= O

(
m
−1/(2β+1)
i

)
we have for some C > 0

(11) E
∥∥∥Xi − X̃i

∥∥∥ ≤√E
∥∥∥Xi − X̃i

∥∥∥2 ≤ Cm
−β/(2β+1)
i for all i ≥ 1.

This is the optimal rate of convergence attainable in the nonparametric regression setting
as derived by Stone (1982) for β ≤ 1, see also the discussion in Kohler et al. (2009). In
the sequel, for simplicity we restrict ourselves only to the case of the optimal choice of
bandwidths (10). Though, all the computations are straightforward to be adapted for a
general sequence {hmi

}∞i=1.

4.2. Rate of Convergence of Depth for Noisy Functions. Recall that for a random
function X ∼ P ∈ P (L2 ([0, 1])) and t ∈ [0, 1], Ft stands for the distribution function of
the univariate random variable X(t). Assume that (A1∗) and (A6) are satisfied for P .
Then we may proceed as in the proof of Gijbels and Nagy (2015, Theorem 4) and show
that the collection of all marginal distribution functions {Ft : t ∈ [0, 1]} of P is in fact a
collection of uniformly equicontinuous functions, i.e.

lim
ε→0+

sup
t∈[0,1]

sup
|s−s′|≤ε

|Ft(s)− Ft(s′)| = 0.

Therefore, it is possible to find a deterministic, continuous and non-decreasing function
δF : [0,∞)→ [0,∞) depending only on P such that δF (0) = 0, and

(12) sup
t∈[0,1]

sup
|s−s′|≤ε

|Ft(s)− Ft(s′)| ≤ δF (ε) for ε > 0.

The function δF is called a uniform modulus of continuity of the collection {Ft : t ∈ [0, 1]}.
In what follows, we need to manipulate with the Legendre transform of the function

g(ν) := δF (1/ν), ν > 0. Recall that for g its Legendre transform g∗ is a function defined
by

(13) g∗(µ) := sup
ν>0

(νµ− g(ν))

for µ ∈ R such that the right hand side is finite. Now, we are ready to state the main
result of the contribution — the uniform rate of convergence of the integrated depth for
noisy random functions.

Theorem 6. Let X ∼ P ∈ P (L2 ([0, 1])) be such that (A1∗), (A2)–(A6) are satisfied.

(i) Then

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ = OP

(
max

{
−g∗

(
− 1

n

n∑
i=1

m
−β/(2β+1)
i

)
, n−1/2

})
.
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(ii) If δF (ε) = Kεα for some α ∈ (0, 1] and K > 0, then

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ = OP

( 1

n

n∑
i=1

m
−β/(2β+1)
i

)α/(1+α)
 .

(iii) If, furthermore, mn ∼ nr for some r > 0, then

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ =


OP
(
n−rαβ/((1+α)(2β+1))

)
if r < (2β + 1)/β,

OP
(

(log(n)/n)α/(1+α)
)

if r = (2β + 1)/β,

OP
(
n−α/(1+α)

)
if r > (2β + 1)/β.

The rate in part (iii) of Theorem 6 is the optimal rate OP
(
n−1/2

)
from Theorem 4

if α = 1 and r > (2β + 1)/β, in all other cases it is slower. For Lipschitz continuous
random functions (β = 1) this corresponds to r > 3. So, if mn is much larger than n,
then the contamination does not degrade the rate of convergence; in other words, the
high-dimensional setting (i.e. mn � n) is a blessing in the contaminated functional data
problem. In part (iii) of Theorem 6 we consider only polynomial rate of convergence
for mn; analogous results can be easily obtained under different assumptions. In that
case, it is possible to see that if mn converges fast and the distribution of P is smooth
enough (α = 1), the oracle rate of convergence from Theorem 4 is attainable also for the
reconstructed curves based on observations contaminated by noise.

5. General Approximation Results

In Sections 2, 3 and 4, our attention was focused on the analysis using the standard
Nadaraya-Watson kernel smoother (3), under the assumptions of independence of the
error terms εi,1, . . . , εi,mi

, and the random design of the observation times Ti,j in (2).
Though, our main results are not restricted to this setting. Indeed, it is not difficult
to generalise our findings to many other scenarios, such as those concerning (i) other
nonparametric smoothing methods, and (ii) approximation setups with possibly fixed
observation points, or correlated errors terms.

Similarly as in Section 2, let X̃i be an approximant of the unobserved functional datum

Xi based on some information available about Xi. Denote by P̃n ∈ P (L2 ([0, 1])) the

probability measure concentrated in the smoothed functions X̃1, . . . , X̃n, corresponding
to a random sample X1, . . . , Xn. The following general version of Theorems 1, 3 and 6
can be devised.

Theorem 7. Let X1, X2, . . . be independent random functions distributed as X ∼ P ∈
P (L2 ([0, 1])). Suppose that

(14) an := E
∥∥∥Xn − X̃n

∥∥∥ = o(1) as n→∞.

Then P
(
P̃n

w−−−→
n→∞

P
)

= 1, and

sup
x∈L2([0,1])

∣∣∣D(x; P̃n)−D(x;P )
∣∣∣ a.s.−−−→

n→∞
0
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for D either hD or bD. If, moreover, the random function X is P-almost surely contin-
uous over [0, 1] and (A6) is true, then

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ = OP

(
max

{
−g∗

(
− 1

n

n∑
i=1

ai

)
, n−1/2

})
.

Finally, if also δF (ε) = Kεα for some α ∈ (0, 1] and K > 0, then

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ = OP

( 1

n

n∑
i=1

ai

)α/(1+α)
 .

The proof of Theorem 7 is omitted, as it follows closely the derivations in the proofs
of Theorems 1, 3 and 6 in the Appendix.

Under sets of assumptions similar to our conditions (A1)–(A6) for the Nadaraya-
Watson kernel smoother, condition (14) can be verified for many other nonparametric
smoothing methods. For instance, for the local polynomial fitting procedure and inde-
pendent errors in model (2), formula (14) can be obtained from the theory provided in
Fan and Gijbels (1996). Likewise, if the points Ti,j in (2) are not chosen randomly, well-
established results in fixed-design nonparametric regression problems provide conditions
under which (14) can be verified. If additional smoothness assumptions, such as the ex-
istence and boundedness of a higher-order derivative of the random function X can be
guaranteed P-almost surely, rates of convergence faster than those in Theorem 5 can be
found using Theorem 7.

Finally, some extensions of our theory may be obtained also in the situation when the
error terms εi,1, . . . , εi,mi

are allowed to be dependent in (2). Then, one deals with the
problem of nonparametric regression with correlated errors. Under suitable assumptions
on the correlation structure of the random errors, also in that case condition (14) can be
recovered. For a general account of results of this type we refer to Liu (2001), Opsomer
et al. (2001), or a recent paper of De Brabanter et al. (2018).

6. Simulation Study

We complete this paper by illustrating the performance of the proposed method on a
small simulation study. It constitutes part of a larger study, including various choices
of error variances, and an infinite-dimensional model for the random functions. The
complete results of the study, including all its source codes, can be found in the Sup-
plementary Material. The study is performed in R 3.4.2 (R Core Team, 2015) using
efficient Fortran implementations for kernel smoothing and functional depth computa-
tion, developed by the authors. Most of these functions are freely available as part of R

package ddalpha (Pokotylo et al., 2017).
Consider the model for densely observed functional data as described in Section 2,

in combination with the functional depths introduced in Section 3. Our main aim is
to compare possibilities for evaluating depth of discretely observed functional data, and
to identify scenarios under which the depth based on complete realisations of functions
is well approximated by the depth based on the reconstructions of these. The random
variable X ∼ P ∈ P (L2 ([0, 1])) is given by

X(t) = (5t)2(3/4− t) + A cos(Bπt)/2 + C sin(Dπt/3) for t ∈ [0, 1],
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where A, B, C and D are independent standard Gaussian random variables. Consider a
random sample X1, . . . , Xn from P of size n = 50. For the sake of computer processing,
in R, the complete function Xi is represented by a vector of size d = 1001 of its functional
values taken at d equidistant points in [0, 1].

In the analysis, Xi is assumed to be observed discretely at mi = d50+i/5e independent
random observation points as discussed in Section 2. These are distributed according to

(T1) the uniform distribution over [0, 1];
(T2) the beta distribution with parameters 2 and 2; and
(T3) the beta distribution with parameters 0.7 and 0.9.

In setup (T1) the observation points are spread almost regularly over the domain. This
makes the reconstruction of Xi rather simple, at least for larger values of mi. In (T2) the
majority of the observed points concentrates in the centre of the domain, while in (T3)
mostly points near the boundaries of the interval are given.

For the noise variance we consider three different scenarios

(V1) σ2
1(t) = τ 2;

(V2) σ2
2(t) = τ 2(1 + t2)2; and

(V3) σ2
3(t) = τ 2 I [t ∈ [min{U1, U2},max{U1, U2}]], where U1 and U2 are two indepen-

dent uniformly distributed random variables in [0, 1], different for each Xi.

The constant τ is in this section always set to τ = 1/2. In the extended study we consider
also the case τ = 1/4. Scenarios (V1) and (V2) correspond to typical homoscedastic and
heteroscedastic noise, respectively. (V3) represents the situation when the noise level
varies with the sampling process, and each function Xi is contaminated in a different
subset of its domain. Note that in scenario (V3) the variance of the noise term σ2

3(t) is
random, and therefore it technically does not satisfy condition (A4). Though, it is easy
to see that for a random quantity σ2(t) a condition like E supt∈[0,1] σ

2(t) ≤ σ2 < ∞ is
enough for all the presented results to hold true. In the short simulation study presented
here we consider only the situation when the error terms εi,j in (2) are independent; in
the Supplementary Material we provide also some results for the case of correlated errors.

In each of the scenarios above, the sample curves are reconstructed using five methods:

(S1) constant only approximation

X̃i(t) =
1

mi

mi∑
j=1

X∗i (Ti,j) for all t ∈ [0, 1],

denoting X∗i (Ti,j) = X∗i,j;
(S2) piecewise linear interpolation, that is

X̃i(t) = X∗i (Ti,(j)) +
t− Ti,(j)

Ti,(j+1) − Ti,(j)
(
X∗i (Ti,(j+1))−X∗i (Ti,(j))

)
for t ∈ [Ti,(j), Ti,(j+1)),

where 0 = Ti,(0), 1 = Ti,(mi+1), Ti,(1), . . . , Ti,(mi) is the ordered sample of the
observation points of Xi, X

∗
i (Ti,(0)) = X∗i (Ti,(1)) and X∗i (Ti,(mi+1)) = X∗i (Ti,(mi));

(S3) kernel smoothing described in detail in Section 2, with the Gaussian kernel

(15) K(u) = (2π)−1/2 exp
(
−u2/2

)
;

(S4) local linear smoothing (Fan and Gijbels, 1996), with the Gaussian kernel (15);
and
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Figure 1. For each of the scenarios (T1)–(T3), (V1)–(V3), a single ran-
dom function Xi (thick dashed), and its piecewise linear reconstruction (S2)
based on the corresponding mi = 50 discrete contaminated observations
(thin solid) are displayed. For (V3), the vertical dashed lines represent the
realised values of the variables U1 and U2 controlling the noise level.

(S5) local linear smoothing in the presence of correlated errors, described in De Bra-
banter et al. (2018, Section 5), based on a consecutive application of a bimodal
kernel function K(u) = 2u2 exp(−u2)/

√
π and a Gaussian kernel K(u) from (15).

Method (S1) is used only as a benchmark — the results for the remaining methods
should be compared taking into account the performance of this most naive reconstruction
method. Method (S5) is an adaptation of the local linear smoother (S4) that is capable of
dealing with correlated errors. Here, it is used mainly for comparison with (S4); for some
simulations where method (S5) bears great relevance see the Supplementary Material.

In (S3)–(S5) the bandwidths are taken to be different for each function Xi. In (S3)
and (S4) they are selected using the standard leave-one-out cross-validation. For (S5) the
complete description of the bandwidth selection procedure can be found in De Brabanter
et al. (2018). All these bandwidth selection methods typically provide sufficiently accurate
results, in combination with an acceptable computational cost. A fast version of the
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kernel smoothing method (S3) is taken from the R package ddalpha (Pokotylo et al.,
2017); the fast local polynomial smoothers (S4) and (S5) implemented in R package
locpol (Cabrera, 2012) are considered. For a single random function from models (T1)–
(T3), (V1)–(V3), and its piecewise linear interpolation (S2) based on the corresponding
contaminated points see Figure 1.

Five depth functionals are considered in the simulations:

aD: the integrated depth using the univariate depth Da
1 from (5);

hD1: the h-mode depth with the L2 ([0, 1]) norm (1), the Gaussian kernel KD as in (15)

and h
(
P̃n

)
chosen as the 20th percentile of the distribution of

∥∥∥X̃i − X̃j

∥∥∥, i 6= j

(in accordance with the choice of Cuevas et al., 2007);
hD2: the h-mode depth with the supremum norm (9), kernel (15), and bandwidth as

for hD1;
bD1: the adjusted band depth with the L2 ([0, 1]) norm (1), J = 2 and KD(u) =

exp(−u);
bD2: the adjusted band depth with the supremum norm (9), J = 2 and KD(u) =

exp(−u).

In the comparison, these depths are computed with respect to the empirical measure
Pn based on the original (noiseless) curves X1, . . . , Xn, and then also with respect to the

empirical measure P̃n based on the reconstructed curves X̃1, . . . , X̃n. A reasonable recon-
struction method should provide a good approximation of the depth values D(Xi;Pn) for
each i.

(S1) (S2) (S3) (S4) (S5)

(V1)

aD 0.602 (0.094) 0.890 (0.026) 0.932 (0.018) 0.940 (0.017) 0.936 (0.020)

hD1 0.585 (0.108) 0.898 (0.029) 0.922 (0.026) 0.933 (0.034) 0.937 (0.030)

hD2 0.522 (0.113) 0.788 (0.065) 0.761 (0.074) 0.748 (0.081) 0.783 (0.068)

bD1 0.758 (0.110) 0.960 (0.020) 0.966 (0.018) 0.960 (0.056) 0.965 (0.048)

bD2 0.630 (0.104) 0.850 (0.054) 0.825 (0.061) 0.796 (0.074) 0.829 (0.063)

(V2)

aD 0.595 (0.104) 0.836 (0.044) 0.903 (0.027) 0.910 (0.026) 0.902 (0.029)

hD1 0.599 (0.107) 0.832 (0.044) 0.870 (0.041) 0.880 (0.042) 0.889 (0.036)

hD2 0.539 (0.113) 0.615 (0.107) 0.640 (0.097) 0.617 (0.103) 0.668 (0.096)

bD1 0.766 (0.100) 0.916 (0.037) 0.935 (0.032) 0.932 (0.045) 0.941 (0.028)

bD2 0.640 (0.105) 0.686 (0.094) 0.718 (0.082) 0.692 (0.091) 0.741 (0.083)

(V3)

aD 0.606 (0.103) 0.963 (0.012) 0.971 (0.009) 0.977 (0.008) 0.974 (0.009)

hD1 0.604 (0.104) 0.934 (0.024) 0.954 (0.021) 0.972 (0.016) 0.979 (0.008)

hD2 0.537 (0.112) 0.707 (0.072) 0.766 (0.083) 0.845 (0.077) 0.912 (0.044)

bD1 0.768 (0.088) 0.977 (0.011) 0.983 (0.009) 0.987 (0.015) 0.989 (0.014)

bD2 0.637 (0.094) 0.703 (0.063) 0.829 (0.065) 0.866 (0.078) 0.932 (0.039)

Table 1. Means and standard deviations (in brackets) of ρ in the simula-
tion study, scenario (T1).
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Figure 2. Plots of the true depth values D(Xi;Pn) against some of

the estimated depths D(X̃i; P̃n) for one run of the simulation study, sce-
nario (T2), (V2). The dashed-dotted line represents the axis of the first
quadrant in R2. For curves reconstructed by (S2) the depth hD1 tends to be
biased upwards, while the bD depths are underestimated; for (S3) and (S4),
no systematic bias is observed for depths based on the L2 ([0, 1]) norm.

To measure the approximation error, we use the Pearson correlation coefficient ρ

between
(
D(X1, Pn), . . . , D(Xn, Pn)

)
and

(
D(X̃1, P̃n), . . . , D(X̃n, P̃n)

)
. Other associ-

ation/loss measures (such as the Spearman correlation, or MSE) provide the same con-
clusions, see the extended simulation study in the Supplementary Material.

In Tables 1–3 we see the results of the simulation study for scenarios (T1)–(T3), re-
spectively. The reported values are the mean and the standard deviation (in brackets) of
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(S1) (S2) (S3) (S4) (S5)

(V1)

aD 0.717 (0.074) 0.863 (0.036) 0.916 (0.024) 0.924 (0.021) 0.920 (0.022)

hD1 0.700 (0.082) 0.809 (0.060) 0.829 (0.054) 0.768 (0.092) 0.807 (0.074)

hD2 0.623 (0.094) 0.655 (0.093) 0.580 (0.107) 0.400 (0.138) 0.458 (0.130)

bD1 0.852 (0.081) 0.881 (0.058) 0.891 (0.051) 0.791 (0.116) 0.849 (0.085)

bD2 0.724 (0.079) 0.778 (0.067) 0.691 (0.084) 0.508 (0.118) 0.557 (0.109)

(V2)

aD 0.708 (0.083) 0.804 (0.054) 0.886 (0.031) 0.888 (0.033) 0.884 (0.035)

hD1 0.693 (0.088) 0.741 (0.084) 0.777 (0.074) 0.689 (0.109) 0.732 (0.097)

hD2 0.617 (0.100) 0.566 (0.119) 0.507 (0.119) 0.347 (0.128) 0.400 (0.132)

bD1 0.842 (0.071) 0.825 (0.072) 0.846 (0.070) 0.717 (0.126) 0.770 (0.116)

bD2 0.711 (0.084) 0.670 (0.096) 0.618 (0.099) 0.464 (0.114) 0.508 (0.113)

(V3)

aD 0.727 (0.075) 0.946 (0.020) 0.960 (0.013) 0.971 (0.010) 0.968 (0.012)

hD1 0.711 (0.078) 0.857 (0.050) 0.869 (0.049) 0.890 (0.063) 0.913 (0.056)

hD2 0.638 (0.092) 0.604 (0.098) 0.597 (0.109) 0.644 (0.122) 0.713 (0.112)

bD1 0.853 (0.055) 0.916 (0.048) 0.922 (0.047) 0.888 (0.107) 0.920 (0.084)

bD2 0.725 (0.073) 0.644 (0.090) 0.710 (0.087) 0.676 (0.114) 0.740 (0.108)

Table 2. Means and standard deviations (in brackets) of ρ in the simula-
tion study, scenario (T2).

(S1) (S2) (S3) (S4) (S5)

(V1)

aD 0.579 (0.087) 0.885 (0.030) 0.922 (0.024) 0.933 (0.022) 0.927 (0.025)

hD1 0.569 (0.109) 0.894 (0.032) 0.912 (0.031) 0.934 (0.031) 0.937 (0.025)

hD2 0.507 (0.118) 0.781 (0.068) 0.725 (0.078) 0.786 (0.081) 0.818 (0.069)

bD1 0.734 (0.104) 0.957 (0.025) 0.959 (0.025) 0.967 (0.033) 0.968 (0.024)

bD2 0.609 (0.107) 0.846 (0.056) 0.796 (0.064) 0.831 (0.077) 0.861 (0.063)

(V2)

aD 0.573 (0.099) 0.833 (0.051) 0.892 (0.039) 0.901 (0.034) 0.889 (0.039)

hD1 0.553 (0.111) 0.823 (0.065) 0.850 (0.059) 0.862 (0.054) 0.869 (0.051)

hD2 0.487 (0.118) 0.596 (0.123) 0.595 (0.111) 0.594 (0.112) 0.655 (0.098)

bD1 0.717 (0.117) 0.903 (0.054) 0.914 (0.051) 0.912 (0.062) 0.919 (0.051)

bD2 0.585 (0.110) 0.686 (0.097) 0.686 (0.095) 0.676 (0.100) 0.731 (0.090)

(V3)

aD 0.576 (0.114) 0.959 (0.014) 0.967 (0.013) 0.974 (0.010) 0.970 (0.011)

hD1 0.564 (0.128) 0.925 (0.030) 0.941 (0.027) 0.959 (0.035) 0.972 (0.019)

hD2 0.500 (0.135) 0.683 (0.093) 0.726 (0.079) 0.829 (0.089) 0.909 (0.054)

bD1 0.729 (0.120) 0.970 (0.024) 0.975 (0.021) 0.970 (0.048) 0.983 (0.026)

bD2 0.600 (0.121) 0.683 (0.084) 0.796 (0.066) 0.850 (0.092) 0.927 (0.057)

Table 3. Means and standard deviations (in brackets) of ρ in the simula-
tion study, scenario (T3).

ρ, computed from 100 independent runs. In each setup we clearly see that the naive con-
stant interpolation (S1) provides rather faltering results. While linear interpolation (S2)
improves on these, kernel and local polynomial estimators (S3), (S4) and (S5) certainly
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outperform their competitors in most considered scenarios, for all depth functions. No-
table exceptions are scenarios (T2), (V1) and (V2), where especially the local polynomial
estimators (S4) and (S5) perform rather poorly for the depths based on the supremum
norm (9). This is explained by the fact that the local polynomial estimators are known to
break down easily in the extrapolation task. If no points are observed near the boundary
of [0, 1], the extrapolants (S4) and (S5) lose their stability, which affects the supremum
distance between the curves profoundly.

In most of the scenarios, however, the reconstruction methods (S3)–(S5) perform well.
Moreover, the variability of the results typically decreases for (S3)–(S5). This is confirmed
also by Figure 2, and by additional simulations given in the Supplementary Material.

To illustrate the “dimensionality blessing” effect mentioned in Section 4.2, we perform
another, short simulation study. Here, under the settings as above with (T1) and (V1)
we compare three choices for the number of time points

(M1) mi = d20 + i/5e for i = 1, . . . , n;
(M2) mi = d50 + i/5e for i = 1, . . . , n; and
(M3) mi = d100 + i/5e for i = 1, . . . , n.

Scenario (M2) was considered previously. As confirmed in Table 4 (and the corresponding
part of Table 1 for scenario (M2)), the more high-dimensional the discrete observations
are, the more accurately the functional data depth can be observed.

(S1) (S2) (S3) (S4) (S5)

(M1)

aD 0.466 (0.120) 0.832 (0.051) 0.850 (0.046) 0.871 (0.042) 0.858 (0.049)

hD1 0.469 (0.124) 0.789 (0.079) 0.768 (0.083) 0.799 (0.080) 0.813 (0.074)

hD2 0.420 (0.130) 0.588 (0.122) 0.526 (0.124) 0.538 (0.126) 0.590 (0.109)

bD1 0.624 (0.144) 0.853 (0.085) 0.839 (0.085) 0.827 (0.115) 0.859 (0.098)

bD2 0.515 (0.132) 0.701 (0.096) 0.622 (0.108) 0.606 (0.115) 0.654 (0.104)

(M3)

aD 0.683 (0.085) 0.913 (0.026) 0.961 (0.012) 0.966 (0.011) 0.962 (0.013)

hD1 0.661 (0.090) 0.929 (0.022) 0.967 (0.013) 0.974 (0.012) 0.972 (0.011)

hD2 0.587 (0.100) 0.854 (0.043) 0.867 (0.050) 0.863 (0.063) 0.876 (0.054)

bD1 0.829 (0.071) 0.981 (0.009) 0.987 (0.008) 0.988 (0.008) 0.987 (0.006)

bD2 0.691 (0.083) 0.902 (0.036) 0.909 (0.041) 0.898 (0.055) 0.911 (0.046)

Table 4. Means and standard deviations (in brackets) of ρ in the simu-
lation study, scenarios (M1) and (M3). Corresponding results in scenario
(M2) can be found in Table 1, part (V1).

Altogether, we may conclude that in accordance with the theoretical developments
obtained in Sections 2–4, pre-smoothing of discretely observed noisy random functions
is a reasonable method of preprocessing in order to obtain information about functional
depth. Moreover, depths defined using the L2 ([0, 1]) norm (1) are generally more com-
putationally stable than the corresponding depths defined via the supremum norm (9).
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López-Pintado, S. and Romo, J. (2009). On the concept of depth for functional data. J.
Amer. Statist. Assoc., 104(486):718–734.
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López-Pintado, S. and Wei, Y. (2011). Depth for sparse functional data. In Recent
advances in functional data analysis and related topics, Contrib. Statist., pages 209–
212. Physica-Verlag/Springer, Heidelberg.



20 DATA DEPTH FOR MEASURABLE NOISY RANDOM FUNCTIONS

Mosler, K. (2013). Depth statistics. In Becker, C., Fried, R., and Kuhnt, S., editors,
Robustness and complex data structures, pages 17–34. Springer, Heidelberg.

Mosler, K. and Polyakova, Y. (2012). General notions of depth for functional data. arXiv
preprint arXiv:1208.1981.

Müller, H.-G., Wu, Y., and Yao, F. (2013). Continuously additive models for nonlinear
functional regression. Biometrika, 100(3):607–622.

Nagy, S. (2015). Consistency of h-mode depth. J. Stat. Plan. Inference, 165:91 – 103.
Nagy, S. (2017a). Integrated depth for measurable functions and sets. Statist. Probab.

Lett., 123:165–170.
Nagy, S. (2017b). An overview of consistency results for depth functionals. In Aneiros,

G., Bongiorno, E. G., Cao, R., and Vieu, P., editors, Functional Statistics and Related
Fields, pages 189–196. Springer International Publishing, Cham.

Nagy, S., Gijbels, I., and Hlubinka, D. (2016a). Weak convergence of discretely observed
functional data with applications. J. Multivariate Anal., 146:46 – 62. Special Issue on
Statistical Models and Methods for High or Infinite Dimensional Spaces.

Nagy, S., Gijbels, I., Omelka, M., and Hlubinka, D. (2016b). Integrated depth for func-
tional data: statistical properties and consistency. ESAIM Probab. Stat., 20:95–130.

Narisetty, N. N. and Nair, V. N. (2016). Extremal depth for functional data and appli-
cations. J. Amer. Statist. Assoc., 111(516):1705–1714.

Opsomer, J., Wang, Y., and Yang, Y. (2001). Nonparametric regression with correlated
errors. Statist. Sci., 16(2):134–153.

Paul, D. and Peng, J. (2009). Consistency of restricted maximum likelihood estimators
of principal components. Ann. Statist., 37(3):1229–1271.

Pokotylo, O., Mozharovskyi, P., Dyckerhoff, R., and Nagy, S. (2017). ddalpha: Depth-
Based Classification and Calculation of Data Depth. R package version 1.3.1.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Radchenko, P., Qiao, X., and James, G. M. (2015). Index models for sparsely sampled
functional data. J. Amer. Statist. Assoc., 110(510):824–836.

Ramsay, J. O. and Silverman, B. W. (2005). Functional data analysis. Springer Series in
Statistics. Springer, New York, Second edition.

Stone, C. J. (1977). Consistent nonparametric regression. Ann. Statist., 5(4):595–645.
Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression.

Ann. Statist., 10(4):1040–1053.
Sun, Y. and Genton, M. G. (2011). Functional boxplots. J. Comput. Graph. Statist.,

20(2):316–334.
Sun, Y. and Genton, M. G. (2012). Adjusted functional boxplots for spatio-temporal

data visualization and outlier detection. Environmetrics, 23(1):54–64.
Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the

International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages
523–531. Canad. Math. Congress, Montreal, Que.

Varadarajan, V. S. (1958). On the convergence of sample probability distributions.
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Appendix A. Proofs of the Theoretical Results

A.1. Proof of Theorem 1. Without loss of generality, assume that in (A2) B ≤ 1,
otherwise continue with the kernel K/B. Using the independence of the random function
X, observation points T and the noise ε we can write

(16)

cT E
∥∥∥X̃n −Xn

∥∥∥2 = E

∫ 1

0

(
X̃n(t)−Xn(t)

)2
cT dλ(t)

≤ E

∫ 1

0

(
X̃n(t)−Xn(t)

)2
dPT (t).

Let us first show that the last term above vanishes with n→∞.
For a fixed x ∈ L2 ([0, 1]) observed within the design

x∗j = x(Tj) + εj for j = 1, . . . ,m

we can write for wj(t) = K
(
t−Tj
hm

)
/
∑m

k=1K
(
t−Tk
hm

)
the following

Eε,T

∫ 1

0

(x̃(t)− x(t))2 dPT (t) ≤ 2 Eε,T

∫ 1

0

x̃(t)2 dPT (t) + 2 Eε,T

∫ 1

0

x(t)2 dPT (t)

= 2 Eε,T

∫ 1

0

(
m∑
j=1

wj(t)x
∗
j

)2

dPT (t) + 2 ET x(T )2

≤ 2 Eε,T

∫ 1

0

m∑
j=1

wj(t)
(
x∗j
)2

dPT (t) + 2 ET x(T )2

= 2

∫ 1

0

m∑
j=1

Eε,T wj(t) (x(Tj) + εj)
2 dPT (t) + 2 ET x(T )2

≤ 4

∫ 1

0

m∑
j=1

Eε,T wj(t)
(
x(Tj)

2 + ε2j
)

dPT (t) + 2 ET x(T )2

≤ 4

(
σ2 +

∫ 1

0

m∑
j=1

ET wj(t)x(Tj)
2 dPT (t)

)
+ 2 ET x(T )2.

Now, in the first expression on the right hand side we have the kernel estimate for the
function x2 based on the observations x2(Tj) for j = 1, . . . ,m (without noise, that is
σ2(t) = 0 for all t ∈ [0, 1]). For this term, it is known (see Györfi et al., 2002, proof of
Theorem 5.1) that for some C > 0 for any x ∈ L2 ([0, 1]) such that

(17) ET x(T )2 <∞

and for any m ≥ 1 we can bound∫ 1

0

m∑
j=1

ET wj(t)x(Tj)
2 dPT (t) ≤ C ET x(T )2,

meaning that we can continue the chain of inequalities above by writing

(18) Eε,T

∫ 1

0

(x̃(t)− x(t))2 dPT (t) ≤ 4σ2 + (4C + 2) ET x(T )2.



DATA DEPTH FOR MEASURABLE NOISY RANDOM FUNCTIONS 23

Since (18) is valid for any x ∈ L2 ([0, 1]) such that (17) is true, we may as well replace
the fixed function x by the random function X ∼ P , apply expectation with respect to
X to both sides of (18), and get

(19) E

∫ 1

0

(
X̃(t)−X(t)

)2
dPT (t) ≤ 4σ2 + (4C + 2) EX(T )2,

where the right hand side is finite by (A1) and (A4). Note that (17) is necessarily true
for P-almost all realisations of X by (A1).

By Stone (1977, Theorem 1) using (A2)–(A5) for any fixed xn ∈ L2 ([0, 1]) (here, the
subscript n stands for the fact that x is assumed to be observed at (Tn,1, . . . , Tn,mn) with
the additive noise (εn,1, . . . , εn,mn))

Eε,T

∫ 1

0

(x̃n(t)− xn(t))2 dPT (t) −−−→
n→∞

0,

see also Györfi et al. (2002, Theorem 4.1 and Theorem 5.1). To allow for the replacement
of x by the random X as above, it is enough to apply the expectation with respect to X
to this formula. The dominated convergence theorem (see Dudley, 2002, Theorem 4.3.5)
then asserts that

E

∫ 1

0

(
X̃n(t)−Xn(t)

)2
dPT (t) −−−→

n→∞
0.

The boundedness assumption of the integrand function for the dominated convergence
theorem was verified in (19).

The rest of the proof is straightforward. By (16) and the previous results

lim
n→∞

E
∥∥∥X̃n −Xn

∥∥∥2 = 0.

Consequently, by the Chebyshev inequality (see Dudley, 2002, 8.3.1) for any ε > 0

lim
n→∞

P
(∥∥∥X̃n −Xn

∥∥∥ > ε
)

= 0,

and by Dudley (2002, Proposition 9.3.5) we can conclude that X̃n converges in law to X.
The assertion of Theorem 1 then follows by the same argument as Nagy et al. (2016a,
Theorem 1, Part (ii)).

A.2. Proof of Theorem 2. The proof is based on the following lemma establishing the
uniform qualitative robustness of all the concerned depths over the space L2 ([0, 1]).

Lemma 1. Let Pν
w−−−→

ν→∞
P in P (L2 ([0, 1])). Then

sup
x∈L2([0,1])

|D(x;Pν)−D(x;P )| −−−→
ν→∞

0,

if D is hD or bD. Moreover, if also (A6) is true for P , then the result holds true also
for D = aD.

Proof. As shown in Nagy (2015, proof of Theorem 1){
x1 7→

1

h(P )
KD

(
‖x− x1‖
h(P )

)
: x ∈ L2 ([0, 1])

}
is a set of uniformly equicontinuous, and uniformly bounded functionals L2 ([0, 1])→ R.
Therefore, for hD, the result follows from Dudley (2002, Corollary 11.3.4).
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For bD, we show a similar continuity result for the set

(20)
{

(x1, . . . , xJ) 7→ KD (d (x,B (x1, . . . , xJ))) : x ∈ L2 ([0, 1])
}
.

First of all, notice that KD is uniformly continuous and thus its minimal modulus of
continuity

δKD
(α) = sup

|s−t|≤α
|KD(s)−KD(t)|

vanishes as α→ 0. From the definition of δKD
we have

(21)
|KD (d (x,B (x1, . . . , xJ)))−KD (d (x,B (y1, . . . , yJ)))|
≤ δKD

(d (x,B (x1, . . . , xJ))− d (x,B (y1, . . . , yJ))) .

Assume now that for ε > 0 it is true that

(22) ‖xj − yj‖ ≤ ε for all j = 1, . . . , J.

Denote by m ∈ B(x1, . . . , xJ) the function for which d (x,B(x1, . . . , xJ)) = ‖x−m‖.
Such a function exists because of the construction of the band of functions. In what
follows we show that if (22) is true, then

(23) d (m,B (y1, . . . , yJ)) ≤ 4Jε,

meaning that

d (x,B (y1, . . . , yJ)) ≤ ‖x−m‖+ d (m,B (y1, . . . , yJ)) ≤ d (x,B (x1, . . . , xJ)) + 4Jε.

Because in the beginning the role of B (x1, . . . , xJ) and B (y1, . . . , yJ) is symmetric, the
last expression implies that if (22) is in order, then the right hand side in (21) can be
bounded from above by δKD

(4Jε). Because the modulus δKD
(α) vanishes as α→ 0, the

uniform continuity of (20) follows.
To show (23), consider first lx ∈ L2 ([0, 1]) defined by lx(t) = minj=1,...,J xj(t) for

t ∈ [0, 1], and ly ∈ L2 ([0, 1]) given analogously for functions yj. Partition [0, 1] into two
disjoint subsets Ix and Iy given by

Ix = {t ∈ [0, 1] : lx(t) ≤ ly(t)} ,
Iy = {t ∈ [0, 1] : ly(t) < lx(t)} .

Then, partition the set Ix further into Ixj = {t ∈ [0, 1] : xj(t) = lx(t)} and the set Iy
accordingly. Assume that the sets Ix1 , . . . , IxJ , Iy1 , . . . , IyJ do not overlap; if they do,
modify them by assigning the points in the intersections to one of the intersecting sets so
that the new partition consists of pairwise disjoint measurable sets whose union is [0, 1].
This is always possible, since we deal with a finite number of measurable functions.

Writing I [Ix] for I [t ∈ Ix] etc., we can use the construction of the partition above
and (22) and bound∥∥(lx − ly) I

[
Ixj
]∥∥ =

∥∥(xj − ly) I
[
Ixj
]∥∥ ≤ ∥∥(xj − yj) I

[
Ixj
]∥∥ ≤ ‖xj − yj‖ ≤ ε

leading to

‖lx − ly‖ = ‖(lx − ly) I [Ix]‖+ ‖(lx − ly) I [Iy]‖

=
J∑
j=1

∥∥(lx − ly) I
[
Ixj
]∥∥+

J∑
j=1

∥∥(lx − ly) I
[
Iyj
]∥∥ ≤ 2Jε.

Analogously, one can prove that also for functions ux(t) = maxj=1,...,J xj(t) and uy(t) =
maxj=1,...,J yj(t) it holds true that ‖ux − uy‖ ≤ 2Jε.
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Now, consider m ∈ B(x1, . . . , xJ) and similarly as before, define three disjoint sets
partitioning [0, 1]

I1 = {t ∈ [0, 1] : m(t) < ly(t)} ,
I2 = {t ∈ [0, 1] : ly(t) ≤ m(t) ≤ uy(t)} ,
I3 = {t ∈ [0, 1] : uy(t) < m(t)} .

With this notation, one can write for m ∈ B(x1, . . . , xJ)

d (m,B (y1, . . . , yJ)) ≤ ‖(m− ly) I [I1]‖+ ‖(m−m) I [I2]‖+ ‖(m− uy) I [I3]‖
≤ ‖(lx − ly) I [I1]‖+ ‖(ux − uy) I [I3]‖ ≤ 4Jε.

Hence, by showing (23) the uniform continuity of (20) is verified.
To conclude the proof for bD, for any P ∈ P (L2 ([0, 1])) denote the Jth product

measure of P by P J ∈ P
(
L2 ([0, 1])J

)
, where L2 ([0, 1])J is the Jth Cartesian product

of the space L2 ([0, 1]). Now it is enough to use the result of Billingsley (1999, Theorem

2.8) which provides that if Pν
w−−−→

ν→∞
P , then P J

ν
w−−−→

ν→∞
P J . The assertion of the theorem

for bD then follows from Dudley (2002, Corollary 11.3.4).
For the integrated depth one can modify the proof of Nagy et al. (2016b, Theorem

11) using the measurability result established in Nagy (2017a, Theorem 1) to obtain the
result. Note that for the consistency of the integrated depth, the condition (A6) is not
necessary. �

Having established Lemma 1, the assertions for hD and aD follow directly by applica-
tion of the Varadarajan theorem (see Dudley, 2002, Theorem 11.4.1).

For bD, the proof is slightly more complicated because the sample version of the depth
takes the form of a U-statistic. For this, we need to introduce some additional notation.

Recall that for P ∈ P (L2 ([0, 1])) and J ≥ 1, P J ∈ P
(
L2 ([0, 1])J

)
stands for the

Jth product measure of P . For Pn = Pn(ω) ∈ P (L2 ([0, 1])) the empirical measure
of X1, . . . , Xn ∈ L2 ([0, 1]), define the Jth U-empirical measure (see Eichelsbacher and
Schmock, 2003) as

LJn =
1

n(J)

∑
i1,...,iJ∈I(J,n)

δ(Xi1
,...,XiJ ).

Here, n(J) =
∏J−1

k=0(n − k), I(J, n) ⊂ {1, . . . , n}J consists of all J-tuples with pairwise

different components, and δx is the Dirac measure of x ∈ L2 ([0, 1])J . It is possible to
write

bD (x;Pn) =

∫
L2([0,1])J

KD (d (x,B (y1, . . . , yJ))) dLJn(y1, . . . , yJ),

bD (x;P ) =

∫
L2([0,1])J

KD (d (x,B (y1, . . . , yJ))) dP J(y1, . . . , yJ).

The measure LJn can be also written as

(24) LJn =
nJ

n(J)

P J
n +

(
1− nJ

n(J)

)
QJ
n,

where QJ
n = QJ

n(ω) ∈ P
(
L2 ([0, 1])J

)
is the uniform probability measure over those

(Xi1 , . . . , XiJ ) ∈ L2 ([0, 1])J such that ij = ik for some j 6= k. The next lemma will be
used to assert the equivalence of the weak convergence of LJn and P J

n .
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Lemma 2. Let Pν , Qν , P ∈ P
(
L2 ([0, 1])J

)
and {αν}∞ν=1 ⊂ [0, 1] be such that αν −−−→

ν→∞
1.

Then ανPν + (1− αν)Qν
w−−−→

ν→∞
P if and only if Pν

w−−−→
ν→∞

P .

Proof. For the proof, consider the Kantorovich-Rubinstein norm (Bogachev, 2007, Chap-
ter 8.3) ‖·‖0 generating the weak topology on the space of non-negative measures on

L2 ([0, 1])J . For the “if” part of the proof we can write

0 ≤ ‖ανPν + (1− αν)Qν − P‖0 ≤ αν ‖Pν − P‖0 + (1− αν) ‖Qν − P‖0
≤ ‖Pν − P‖0 + (1− αν)2,

and as ν →∞, the right hand side vanishes.
For the opposite implication we can find a similar bound

0 ≤ ‖Pν − P‖0 ≤ ‖Pν − ανPν − (1− αν)Qν‖0 + ‖ανPν + (1− αν)Qν − P‖0
≤ (1− αν)2 + ‖ανPν + (1− αν)Qν − P‖0 ,

yielding the result. �

Applying Lemma 2 to the decomposition of LJn from (24) asserts that for any ω ∈ Ω

fixed LJn(ω)
w−−−→

n→∞
P J is equivalent with P J

n (ω)
w−−−→

n→∞
P J . The latter is, by Varadarajan’s

theorem (Dudley, 2002, Theorem 11.4.1) and Billingsley (1999, Theorem 2.8), true for
P-almost all ω ∈ Ω. Therefore, we obtain that

P
(
LJn

w−−−→
n→∞

P J
)

= P
(
P J
n

w−−−→
n→∞

P J
)

= 1.

This formula together with Lemma 1 provides the assertion for bD.

A.3. Proof of Theorem 3. Apply Theorem 1 together with Lemma 1. For bD, modify
the proof according to the proof of Theorem 2.

A.4. Proof of Theorem 4. First, notice that

sup
x∈L2([0,1])

|aD(x;Pn)− aD(x;P )| = sup
x∈L2([0,1])

∣∣∣∣∫ 1

0

D1 (x(t);Pn,t)−D1 (x(t);Pt) dλ(t)

∣∣∣∣
≤
∫ 1

0

sup
u∈R
||1/2− Ft (u)| − |1/2− Fn,t (u)|| dλ(t)

≤
∫ 1

0

sup
u∈R
|Fn,t (u)− Ft (u)| dλ(t).

By Lemma 3 given in Appendix A.7 and

P

(
sup

x∈L2([0,1])

|aD(x;Pn)− aD(x;P )| > ε√
n

)
≤ P

(∫ 1

0

ξn(t) dλ(t) > ε

)
for all n ≥ 1,

where ξn is defined in (30), we obtain the desired result.
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A.5. Proof of Theorem 5. By a straightforward modification of Györfi et al. (2002,
Theorem 5.2 and Problem 5.6), under the conditions assumed in Theorem 5, the rate of
convergence as stated holds true for a single fixed function x. Notice that in the proof
of Györfi et al. (2002, Theorem 5.2), by taking EX on the both sides of the last chain of
inequalities in the proof and using (16), we see that (in our notation, for β = 1 and the
naive kernel as considered in the proof presented in the book)

cT E
∥∥∥Xn − X̃n

∥∥∥2 ≤ 2σ2 c̃

mnhmn

+ L2h2mn

+ EX

∫ 1

0

X(t)2 (1− PT ([t− hmn , t+ hmn ]))mn dPT (t),

for some constant c̃ > 0. Here, the last summand can be bounded from above using
Fubini’s theorem, (A1∗) and (A3) by∫ 1

0

EX X(t)2 (1− PT ([t− hmn , t+ hmn ]))mn dPT (t)

≤M

∫ 1

0

(1− PT ([t− hmn , t+ hmn ]))mn dPT (t)

≤M

∫ 1

0

exp (−mnPT ([t− hmn , t+ hmn ])) dPT (t)

≤M sup
u>0

(u exp(−u))

∫ 1

0

1

mnPT ([t− hmn , t+ hmn ])
dPT (t)

≤ M

exp(1)

1

2mnhmncT
,

Independence of X and the remaining random quantities then enables to proceed as in
the proof of Theorem 1 to obtain the result.

A.6. Proof of Theorem 6.

A.6.1. Proof of part (i). For t ∈ [0, 1] and i ≥ 1, denote ai(t) =
∣∣∣Xi(t)− X̃i(t)

∣∣∣. Using

the argumentation as in the proof of Bott et al. (2013, Theorem 1) it can be shown that
for any ε > 0

sup
u∈R

∣∣∣F̃n,t(u)− Ft(u)
∣∣∣ ≤ 1

ε n

n∑
i=1

ai(t) + ηn(t) + sup
|s−s′|≤ε

|Ft(s)− Ft(s′)| ,

where ηn(t) = supu∈R |Fn,t(u)− Ft(u)| and F̃n,t stands for the distribution function of

P̃n,t ∈ P (R). This allows us to write
(25)

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ ≤ ∫ 1

0

sup
u∈R

∣∣∣Ft(u)− F̃n,t(u)
∣∣∣ dλ(t)

≤ 1

ε n

n∑
i=1

∫ 1

0

ai(t) dλ(t) +

∫ 1

0

ηn(t) dλ(t) +

∫ 1

0

sup
|s−s′|≤ε

|Ft(s)− Ft(s′)| dλ(t).

Because (25) holds true for any positive ε, it is also true if we take an infimum over the
set {ε > 0} on both sides of the inequality. Bounding further the last summand in (25)
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by (12),

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ ≤ inf
ε>0

(
1

ε n

n∑
i=1

∫ 1

0

ai(t) dλ(t) + δF (ε)

)
+

∫ 1

0

ηn(t) dλ(t).

The first term on the right hand side relates to the Legendre transform (13), as can be
seen from

inf
ε>0

(
1

ε n

n∑
i=1

∫ 1

0

ai(t) dλ(t) + δF (ε)

)
= − sup

ε>0

(
− 1

ε n

n∑
i=1

∫ 1

0

ai(t) dλ(t)− δF (ε)

)

= − sup
ν>0

(
−ν 1

n

n∑
i=1

∫ 1

0

ai(t) dλ(t)− g(ν)

)

= −g∗
(
− 1

n

n∑
i=1

∫ 1

0

ai(t) dλ(t)

)
.

Thus, we may write
(26)

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ ≤ −g∗(− 1

n

n∑
i=1

∫ 1

0

ai(t) dλ(t)

)
+

∫ 1

0

ηn(t) dλ(t).

Using (11) we have for some C > 0

E
1

n

n∑
i=1

∫ 1

0

ai(t) dλ(t) ≤ E
1

n

n∑
i=1

√∫ 1

0

ai(t)2 dλ(t) =
1

n

n∑
i=1

E
∥∥∥Xi − X̃i

∥∥∥
≤ 1

n

n∑
i=1

Cm
−β/(2β+1)
i ,

yielding

(27)
1

n

n∑
i=1

∫ 1

0

ai(t) dλ(t) = OP

(
1

n

n∑
i=1

m
−β/(2β+1)
i

)
.

By Lemma 4 from Appendix A.7, (27) implies

(28) − g∗
(
− 1

n

n∑
i=1

∫ 1

0

ai(t) dλ(t)

)
= OP

(
−g∗

(
− 1

n

n∑
i=1

m
−β/(2β+1)
i

))
.

For the second term on the right hand side of (26), by Lemma 3 from Appendix A.7
we know that

(29)

∫ 1

0

ηn(t) dλ(t) = OP
(
n−1/2

)
.

The rate of convergence then follows by combination of (26) with (28) and (29).
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A.6.2. Proof of part (ii). The Legendre transform of g(ν) = Kν−α takes the form

g∗ (ν) = −K(1 + α)
(
− ν

Kα

)α/(1+α)
for ν < 0.

Formula (26) can then be rewritten as

sup
x∈L2([0,1])

∣∣∣aD (x; P̃n

)
− aD (x;P )

∣∣∣ ≤ K(1 + α)

(
1
n

∑n
i=1

∫ 1

0
ai(t) dλ(t)

Kα

)α/(1+α)

+

∫ 1

0

ηn(t) dλ(t),

which by (27) and (29) provides the assertion, since the term (27) is dominant. To see
this, note that for any positive sequence {an}∞n=1 we have that∣∣∣∣∣ 1n

n∑
i=1

ai

∣∣∣∣∣ ≥ a1
n
,

meaning that Cesàro’s means never converge faster than O(n−1), see also Lemma 5 in
Appendix A.7. Hence, for any α ∈ (0, 1] for some C > 0

−g∗
(
− 1

n

n∑
i=1

m
−β/(2β+1)
i

)
= C

(
1

n

n∑
i=1

m
−β/(2β+1)
i

)α/(1+α)

≥ Cn−α/(1+α) ≥ Cn−1/2.

A.6.3. Proof of part (iii). Apply Lemma 5 from Appendix A.7 to (27) and use part (ii).

A.7. Auxiliary Results for the Proofs from Section 4. Firstly, we state a useful
technical lemma concerning the rate of convergence of an integral of marginal distribution

functions of P . Here, for t ∈ [0, 1] we write Fn,t and F̃n,t for the distribution functions of

the marginal empirical distributions Pn,t and P̃n,t, respectively.

Lemma 3. For any P ∈ P (L2 ([0, 1]))∫ 1

0

sup
u∈R
|Fn,t (u)− Ft (u)| dλ(t) = OP (n−1/2).

Proof. Denote for t ∈ [0, 1] and n ≥ 1

(30) ξn(t) =
√
n sup
u∈R
|Fn,t (u)− Ft (u)| .

For the sequence of random processes {ξn(t)}∞n=1 the Dvoretzky-Kiefer-Wolfowitz inequal-
ity (see Dudley, 1999, Section 6.5) gives us that for any v > 0

sup
t∈[0,1]

P (ξn(t) > v) ≤ 2 exp
(
−2v2

)
.

Using this inequality we can compute

(31) E ξn(t)2 =

∫ ∞
0

P
(
ξn(t)2 > v

)
dλ(v) ≤ 1 for all n ≥ 1, t ∈ [0, 1].

By the classical Donsker’s theorem for the empirical cumulative distribution function
processes (see Dudley, 1999, Theorem 1.8) we know that for any t ∈ [0, 1] the sequence
of measures {ξn(t)}∞n=1 ⊂ P (R) converges weakly to a measure in P (R). This, together
with (31) enables us to use a general result of Grinblat (1976, Theorem 3), see also
Ivanov (1980, Theorem 1), stating that for any continuous functional φ : L1 ([0, 1]) → R
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the distribution of φ (ξn) converges to the distribution of the corresponding functional of
the limit process. Here, of course, L1 ([0, 1]) stands for the space of measurable functions
over [0, 1] whose absolute value is Lebesgue integrable. Applying this result to φ(x) =∫ 1

0
x(t) dλ(t), we obtain that the sequence of random variables

{∫ 1

0
ξn(t) dλ(t)

}∞
n=1

is

tight in P (R), and the assertion follows. �

Lemma 4. Let the functions δF , g and g∗ be defined as in Section 4.2, and let {an}∞n=1

and {An}∞n=1 be sequences of positive numbers and random variables, respectively. If
An = OP (an), then −g∗ (−An) = OP (−g∗ (−an)).

Proof. Denote h(µ) = −g∗(−µ), and recall that for any µ > 0

h(µ) = inf
ε>0

(µ
ε

+ δF (ε)
)
.

First we show that the function h is non-decreasing over (0,∞). Fix 0 < µ ≤ µ′ < ∞.
Then for any ε > 0

µ

ε
+ δF (ε) ≤ µ′

ε
+ δF (ε),

and by taking infimum over all ε > 0 we get h(µ) ≤ h(µ′).
Now, consider M ≥ 1 and take µ > 0 and ε > 0 arbitrary. By similar argumentation,

inf
ε>0

(
µ

ε
+
δF (ε)

M

)
≤ inf

ε>0

(µ
ε

+ δF (ε)
)

= h(µ).

Multiplying the last inequality by M , we get

(32) h(Mµ) = inf
ε>0

(
Mµ

ε
+ δF (ε)

)
≤Mh(µ) for all µ > 0,M ≥ 1.

Now, assume that An = OP (an), i.e. for any ε > 0 there exists C > 0 such that

1− ε ≤ P (An ≤ Can) ≤ P (An ≤ max{C, 1}an) for all n ≥ 1.

Since h is non-decreasing and (32) is true, we may write for M = max{C, 1}

P (An ≤Man) ≤ P (h(An) ≤ h(Man)) ≤ P (h(An) ≤Mh(an)) ,

which enables us to conclude

P (h(An) > Mh(an)) < ε for all n ≥ 1.

�

Follows a technical lemma stating the rate of convergence of the sequence of Cesàro’s
means of a given deterministic sequence. This will be utilized in the proof of Theorem 6.

Lemma 5. For r ∈ R and a sequence an = O(nr) as n → ∞, consider a sequence
bn = 1/n

∑n
j=1 aj, n ≥ 1. Then as n→∞

bn =


O(nr) if r > −1,

O (log(n)/n) if r = −1,

O (n−1) if r < −1.
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Proof. By assumptions, there exists c > 0 such that for all n large enough |an| ≤ cnr.
We can write

|bn| ≤
1

n

n∑
j=1

|aj| ≤
c

n

n∑
j=1

jr.

Now, it suffices to bound the sum in the last expression, and the desired result follows
by application of Euler’s summation formula (see Apostol, 1976, Theorem 3.2). �
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