Michel Badetti 
  
Abdoulaye Fall 
  
François Chevoir 
  
Jean-Noël Roux 
  
  
  
Shear strength of wet granular materials: macroscopic cohesion and effective stress Discrete numerical simulations, confronted to experimental measurements
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Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value µ 0.09, identified from the behaviour of the dry material. Shear resistance and solid fraction ΦS are recorded as functions of the reduced pressure P * , which, defined as P * = a 2 σ22/F0, compares stress σ22, applied in the velocity gradient direction, to the tensile strength F0 of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with P *independent cohesion c applies in good approximation for large enough P * (typically P * ≥ 2). Numerical simulations extend to different values of µ and, compared to experiments, to a wider range of P * . The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range P * ≥ 0.5 and 0.05 ≤ µ ≤ 0.25. Thus, the internal friction coefficient µ * 0 of the dry material still relates the contact force contribution to stresses, σ cont 12 = µ * 0 σ cont 22 , while the capillary force contribution to stresses, σ cap , defines a generalized Mohr-Coulomb cohesion c, depending on P * in general. c relates to µ * 0 , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent the smaller the friction coefficient. The simple approximation ignoring capillary shear stress σ cap 12 (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.

Introduction

Wet granular materials [START_REF] Mitarai | Wet granular materials[END_REF], in which grains are large enough for colloidal forces to be negligible, differ from dry ones by their cohesion. On the grain scale, this cohesion is due to the pressure in the wetting liquid being lower than in the surrounding atmosphere, and thereby effectively attracting the wet grains to one another. For low liquid contents, the wetting liquid, in the so-called pendular regime, forms isolated bridges joining pairs of grains in contact or separated by a short distance. Those liquid bridges transmit an attractive capillary force, depending on grain geometry, bridge volume and interfacial tension. The value F 0 of this attractive force for contacting grains sets a force scale, which micromechanical models of dry granular materials are usually devoid of. Similarly, at the macroscopic scale, a characteristic stress value c is introduced into the plastic flow criterion, often assumed, for shear flow in direction 1, with velocity gradient in direction 2 (see Fig. 1), to take the celebrated Mohr-Coulomb form relating shear stress σ 12 to normal stress σ 22 in the gradient direction as

|σ 12 | = µ * MC σ 22 + c, (1) 
in which µ * MC is the internal friction coefficient and c, which vanishes for cohesionless materials such as dry sands, is referred to as the macroscopic material cohesion. The absolute value written in [START_REF] Mitarai | Wet granular materials[END_REF] is due to our sign convention for the stress tensor: compressive stresses are positive, and one has σ 12 < 0 in a simple shear flow with velocity field v 1 in direction 1, with gradient ∂v 1 /∂x 2 > 0 (Fig. 1). Over the past decades, some experimental studies [START_REF] Pierrat | Tensile strength of wet granular materials[END_REF][START_REF] Gröger | Modelling and measuring of cohesion in wet granular materials[END_REF][START_REF] Pierrat | Effect of moisture on the yield locus of granular materials: theory of shift[END_REF][START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF] and a larger number of numerical ones [START_REF] Gröger | Modelling and measuring of cohesion in wet granular materials[END_REF][START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF][START_REF] Soulié | Capillary cohesion and mechanical strength of polydisperse granular materials[END_REF][START_REF] Scholtès | Micromechanics of granular materials with capillary effects[END_REF][START_REF] Scholtès | On the capillary stress tensor in wet granular materials[END_REF][START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF][START_REF] Shen | Shear strength of unsaturated granular soils: three-dimensional discrete element analyses[END_REF][START_REF] Roy | A general(ized) local rheology for wet granular materials[END_REF] have been carried out on wet spherical beads, as a model material, to investigate macroscopic cohesion values and explore, in particular, the relation between F 0 and c. Visualizations of liquid bridge networks in such materials have been rendered possible in the laboratory by cleverly designed techniques [START_REF] Kohonen | On capillary bridges in wet granular materials[END_REF][START_REF] Herminghaus | Dynamics of wet granular matter[END_REF][START_REF] Scheel | Morphological clues to wet granular pile stability[END_REF]. Numerical simulations investigate grain-level origins of macroscopic mechanics through the "discrete-element method" (DEM), the granular material analog of molecular dynamics [START_REF] Radjaï | Discrete-element modeling of granular materials[END_REF]. DEM is directly applicable to wet grains in the pendular regime, for which pairwise additive capillary forces have been suitably modeled [START_REF] Lian | A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies[END_REF][START_REF] Willett | Capillary bridges between two spherical bodies[END_REF][START_REF] Pitois | Liquid bridge between two moving spheres: An experimental study of viscosity effects[END_REF][START_REF] Herminghaus | Dynamics of wet granular matter[END_REF].

The idea that capillary forces, by pressing neighbouring grains onto one another, act similarly to an external isotropic pressure applied to the pack of grains leads to the following simple relation, between F 0 and c, involving solid fraction Φ S , grain diameter a and coordination number Z of liquid bridges, and the Mohr-Coulomb internal friction coefficient:

c = µ * MC ZΦ S F 0 πa 2 . (2) 
This relation, to which we refer as the Rumpf formula (as it is often attributed to Ref. [START_REF] Rumpf | Zur Theorie der Zugfestigkeit von Agglomeraten bei der Kraftübertragung an Kontaktpunkten[END_REF]), was discussed, reestablished or reformulated in many publications [START_REF] Gröger | Modelling and measuring of cohesion in wet granular materials[END_REF][START_REF] Pierrat | Effect of moisture on the yield locus of granular materials: theory of shift[END_REF][START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF][START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF], which often found it to provide rather good estimates of the macroscopic cohesion [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF].

The assumption that capillary forces have an effect equivalent to an additional isotropic pressure on the cohesionless grains has nevertheless been criticized, on the ground that the capillary stress on the granular network is not isotropic in conditions of macroscopic yield under shear [START_REF] Scholtès | Micromechanics of granular materials with capillary effects[END_REF][START_REF] Scholtès | On the capillary stress tensor in wet granular materials[END_REF][START_REF] Radjaï | Bond anisotropy and cohesion of wet granular materials[END_REF][START_REF] Shen | Shear strength of unsaturated granular soils: three-dimensional discrete element analyses[END_REF][START_REF] Chareyre | Comment on "Flow of wet granular materials: a numerical study[END_REF]. Those references pointed out that, if the yield condition of the wet material is to be likened to the yield condition of the dry one under some modified, effective stress tensor σ eff , then the capillary tensor, σ cap which defines it at σ eff = σ -σ cap , is not isotropic and has a non-negligible shear component σ cap 12 . These issues are revisited in the present paper, which deals, experimentally and numerically, with wet spherical bead assemblies. We investigate whether wet bead assemblies satisfy the Mohr-Coulomb relation [START_REF] Mitarai | Wet granular materials[END_REF]. We use both experiments and DEM simulations, for which the system choice and experimental or numerical setups are described in Sec. [START_REF] Pierrat | Tensile strength of wet granular materials[END_REF]. Laboratory experiments are used to quantitatively validate the numerical simulations, provided the basic material characteristics are correctly identified. Such identification is carried out in Sec. 3, based on the properties of dry grains in shear flow. In Sec. 4, the applicability of the Mohr-Coulomb criterion is discussed and macroscopic cohesion c is measured for the laboratory system, as well as its numerical counterpart. DEM computations are then used, in Sec. 5, to study the influence of material parameters (intergranular friction coefficient, interfacial tension of the wetting liquid, liquid content) onto macroscopic properties µ * MC and c. Over the explored range of state parameters, we investigate the possible relation, through the definition of some effective stress, of the yield condition of the wet material in quasistatic shear to the one of the dry grains, and relate the macroscopic shear resistance to micromechanical and microstructural variables. Sec. 6 is devoted to the micromechanical origins of the contribution of capillary forces to shear stress, σ cap 12 . In the final part, Sec. 7, the results are summarized and put in perspective.

Methods and parameters

Experimental

We consider assemblies of spherical polystyrene beads, with some narrow diameter distribution about the mean value a = 500 µm (supplied by the Norwegian company Microbeads), wet by a non-volatile liquid, a silicone oil (47V50 provided by Chem+), with interfacial tension Γ = 20.6 mN m -1 , and small wetting angle 2 • ≤ θ ≤ 5 • . A fixed (small) amount of liquid is first mixed with the beads. We denote as Φ L and Φ S the volume fractions of the liquid and of the solid beads in the system. Since the sample is allowed to dilate, both volume fractions vary. We refer to their fixed ratio, Φ L /Φ S as the liquid content. The saturation, S, is given by

S = Φ L 1 -Φ S . (3) 
The wet system is then placed inside a rotative annular rheometer as represented in Fig. 2. This apparatus is the same as the one used in Ref. [START_REF] Fall | Dry granular flows: Rheological measurements of the mu(I) rheology[END_REF], which can be consulted for more details. The annulus-shaped cell containing the grains is limited by smooth cylindrical walls in the radial direction, and by a rough bottom surface underneath. It is closed on top by the inferior rough surface of a mobile lid, which moves in rotation about the axis at a prescribed angular velocity ω, while its vertical position (the coordinate x 2 of the cell "ceiling" in Fig. 2, or the cell height H) is free to adjust in order to exert a controlled vertical force F N onto the granular sample. We measure the torque, T , that is necessary to maintain a fixed, prescribed value of ω, in the steady state, as well as the sample height H. Denoting as R i and R e the inner and the outer radius of the annular cell, and as V S the total volume of the beads, control parameters ω and F N , and measured quantities T and H are translated into more intrinsic rheological terms using the following relations:

σ 22 F N πR 2 e 1 - R 2 i R 2 e σ 12 3T
πR 3 e 1 -

R 3 i R 3 e Φ S = V S πHR 2 e 1 - R 2 i R 2 e γ ω R i + R e 2H . (4) 
Measurements are carried out in the steady state, as torque T and height H remain constant. The material being continuously sheared has then reached constant solid fraction Φ S and shear stress σ 12 . Provided the material state is uniform (which may be checked by comparison with numerical simulations, or on investigating possible size effects on the measured rheology), such steady states are independent of initial conditions. In the quasistatic limit of low shear rate γ, the experiment probes the classical "critical state" of monotonic simple shear, as defined in soil mechanics [START_REF] Wood | Soil Behaviour and Critical State Soil Mechanics[END_REF][START_REF] Andreotti | Granular Media: Between Fluid and Solid[END_REF].

Numerical

We carry out DEM simulations with the same model as in Refs. [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF][START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF]. Monosized beads of diameter a interact at their contacts by elasticity and friction, which are modeled through a standard simplified form of Hertz-Mindlin laws [START_REF] Agnolin | Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks[END_REF], involving the elastic properties of the material which the beads are made of, and an intergranular friction coefficient we simply denote as µ. While contact elasticity is irrelevant to the granular material rheology in the investigated range [START_REF] Roux | Dimensional Analysis and Control Parameters[END_REF] (it would, of course, matter, should we become interested in the elastic properties of the granular assembly), µ is an important parameter, the appropriate value of which for the experiments is identified below in Sec. 3. We consider small liquid contents, and restrict the model to the pendular regime in which the liquid forms disjoint menisci bridging pairs of grains in contact or close to one another (Fig. 3). As a parameter of the numerh Fig. 3. Liquid bridge joining two spherical beads.

ical model, we fix the meniscus volume V 0 . The meniscus is supposed to form, out of the small quantity of liquid coating the small asperities on the grain surfaces, as soon as two grains come into contact. If the grains subsequently move apart from each other, the meniscus deforms and breaks when the distance between their surfaces, h, reaches the rupture threshold [START_REF] Lian | A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies[END_REF],

D 0 = V 1/3 0 . ( 5 
)
The liquid bridge, when present, introduces an attractive capillary force for which we adopt the simple Maugis model [START_REF] Maugis | Adherence of elastomers: Fracture mechanics aspects[END_REF], as in Refs. [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF][START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF]. This model is suitable for small enough V 0 , as tested in Ref. [START_REF] Pitois | Liquid bridge between two moving spheres: An experimental study of viscosity effects[END_REF] 1 . The maximum attractive force (tensile strength), reached for contacting particles, is independent of V 0 and equal to F 0 = πaΓ , Γ denoting the liquid interfacial tension, if perfect wetting is assumed (otherwise one should multiply Γ by the cosine of the wetting angle). The capillary force varies with distance h between particle surfaces as

F cap =            -F 0 if h ≤ 0 (contact) -F 0     1 - 1 1 + 2V 0 πah 2     if 0 < h ≤ D 0 , (6) 
and is only present, for noncontacting grains (h > 0), if they have been in contact in the past and have never been separated by a distance exceeding D 0 since.

The simplifying assumptions adopted for the distribution of liquid in the mixture entail that the conditions of conservation of liquid volume (for non-volatile liquids) 1 With the notations of Fig. 3, the Maugis approximation assumes r1 r2 and very small filling angle φ. From [START_REF] Pitois | Liquid bridge between two moving spheres: An experimental study of viscosity effects[END_REF] we expect it to be correct with errors growing to order 10% for the largest liquid content values.

or the capillary pressure uniformity (for liquids in equilibrium with their vapour) are not satisfied. The consequences of this minor drawback of the model, as assessed in [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF] are however quite innocuous, because moderate changes in liquid contents (±30%), associated with the variations of the number of liquid bonds throughout the investigated states, have negligible effects on rheological properties. Liquid contents as expressed by ratio Φ L /Φ S have to be measured in simulations, depending on V 0 and on the coordination number Z of the liquid bridge network (average number of bridges connecting one grain to its neighbours):

Φ L Φ S = 3ZV 0 πa 3 (7) 
Assemblies of 4000 spherical beads are placed in a cuboidal cell, periodic in all three directions, with an adjustable height H, so that a constant stress σ 22 is maintained, while the Lees-Edwards method is implemented [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF] to impose velocity gradient (shear rate) γ = ∂v 1 ∂x 2 at the macroscopic scale (see, e.g., [START_REF] Peyneau | Frictionless bead packs have macroscopic friction, but no dilatancy[END_REF] for more details on these manipulations of boundary conditions, enforcing normal stress-controlled shear flows within periodic cells). Shear stress σ 12 and solid fraction Φ S are measured in steady state flow. Stress components σ αβ are evaluated with the usual formula (see e.g. [START_REF] Christoffersen | A micromechanical description of granular material behavior[END_REF]), as a sum, divided by sample volume Ω, over interacting grain pairs i-j, involving the force, F ij , transmitted from grain i to grain j in their contact or through a small liquid bridge, and the center-to-center vector, r ij , pointing from i to j:

σ αβ = 1 Ω i<j F α ij r β ij (8) 
[Away from the quasistatic limit a kinetic term should be added in [START_REF] Scholtès | On the capillary stress tensor in wet granular materials[END_REF]]. One may separate the capillary forces from the contact ones in the sum of Eq. 8, and accordingly define capillary and contact contributions2 to stresses:

σ αβ = σ cont αβ + σ cap αβ . (9) 
As noted in previous publications [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF], the average pressure, P = trσ/3 is related to the average normal force in all interacting pairs, F N , and to the average, F N h d , over capillary forces attracting non-contacting pairs through a liquid bridge, of the product of force by distance h ≤ D 0 :

P = ΦZ πa 2 F N + ΦZ D πa 3 F N h d , (10) 
where Z D denotes the coordination number of distant interactions. In formula [START_REF] Shen | Shear strength of unsaturated granular soils: three-dimensional discrete element analyses[END_REF] the second term contributes at most 2% of the pressure. Such a relation holds separately for contact and capillary forces, and yields in the latter case (keeping notation ... d for averages over pairs interacting through a meniscus without contact)

P cap = - ΦZ C πa 2 F 0 + ΦZ D πa 2 F cap (h) d + ΦZ D πa 3 F cap (h)h d (11) 
In [START_REF] Roy | A general(ized) local rheology for wet granular materials[END_REF] we have introduced notations Z C for the contact coordination number (the total coordination number is Z = Z D + Z C ). The capillary forces depending on gap h appearing in the second and third terms, from (6), are negative with intensity lower than F 0 . We define

F d (0 ≤ F d ≤ F 0 ) by: -F d = F cap (h) d (12) 
The last term of ( 11) is negligible.

Dimensionless control parameters

In addition to the material parameter µ and to liquid content Φ L /Φ S , the state of the material, in simple shear flow with strain rate γ, depends on two important dimensionless parameters. The first one is the inertial number, as used in many rheological studies of dry and wet granular materials [24, 31-34, 27, 35-37, 29, 9, 22, 11] (m denotes the mass of one grain):

I = a γ m σ 22 . (13) 
We are mostly interested in the quasistatic limit of I → 0, which is approached with good accuracy, with frictional grains, for I ∼ 10 -3 .

In the presence of adhesive forces, the second, important dimensionless control parameter is the reduced pressure, P * [START_REF] Kadau | Pore stabilization in cohesive granular systems[END_REF][START_REF] Gilabert | Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads[END_REF][START_REF] Roux | Dimensional Analysis and Control Parameters[END_REF][START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF] comparing the characteristic force F 0 (adhesive strength) to the controlled normal stress σ 22 : (some authors [START_REF] Rognon | Rheophysics of cohesive granular materials[END_REF][START_REF] Berger | Scaling behaviour of cohesive granular flows[END_REF] use a "cohesion number" defined as η = 1/P * , also referred to as a "Bond number" [START_REF] Roy | A general(ized) local rheology for wet granular materials[END_REF])

P * = a 2 σ 22 F 0 . (14) 
Adhesive forces dominate for small P * and tend to stabilize loose structures, either in static packs [START_REF] Kadau | Contact dynamics simulations of compacting cohesive granular systems[END_REF][START_REF] Kadau | Pore stabilization in cohesive granular systems[END_REF][START_REF] Gilabert | Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads[END_REF][START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF], or in shear flow [START_REF] Rognon | Rheophysics of cohesive granular materials[END_REF][START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF][START_REF] Berger | Scaling behaviour of cohesive granular flows[END_REF]. For large P * , adhesive forces become negligible and the properties of dry, cohesionless grains are retrieved. In the experiments reported here, P * = 1 corresponds to σ 22 = 0.129 kPa.

As in previous experimental [START_REF] Fall | Dry granular flows: Rheological measurements of the mu(I) rheology[END_REF] and numerical [9] studies, we shall simply denote as µ * the apparent (secant) internal friction coefficient, defined as the ratio of the shear stress to the normal stress:

µ * = |σ 12 | σ 22 . (15) 
µ * depends on inertial number I and on P * in general [START_REF] Andreotti | Granular Media: Between Fluid and Solid[END_REF][START_REF] Fall | Dry granular flows: Rheological measurements of the mu(I) rheology[END_REF][START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF]. In the present study, we only consider the quasistatic limit of I → 0. We denote as µ * 0 the quasistatic value of µ * in the dry material (Φ L = 0). µ * takes value µ * 0 in the double limit of I → 0 and large P * .

Calibration of DEM simulations with the experimental data: dry grains

In this section we confront experimental measurements and numerical simulations for the internal friction coefficient of the material in shear flow, in the case of dry grains, which are known to exhibit a well-defined internal friction coefficient, but no macroscopic cohesion: relation ( 1) is well satisfied with a finite µ * MC = µ * 0 and c = 0 [µ * MC is the σ 22 -independent value of µ * in ( 15 ously reported [START_REF] Lemaître | What do dry granular flows tell us about dense non-Brownian suspension rheology?[END_REF], Φ S is a decreasing function of µ, while µ * increases, both starting at the well-defined values for µ = 0 [START_REF] Peyneau | Frictionless bead packs have macroscopic friction, but no dilatancy[END_REF], i.e., the "random close packing" solid fraction near 0.64, and the internal friction coefficient of assemblies of frictionless beads, µ * 0.1.

Remarkably, both quantities nearly simultaneously reproduce the experimental results for µ = 0.09: numerical values are then µ * 0 = 0.257 ± 0.002 and Φ S = 0.6150 ± 3 × 10 -4 . This value µ = 0.09 of the intergranular friction coefficient is thus adopted in the following in order to simulate the material tested in the laboratory.

Furthermore, the quantitative agreement between numerical and experimental results is observed to extend to flows with inertial effets: the I dependence of both quantities µ * and Φ S , as observed in the laboratory, is well reproduced by the numerical simulations, as apparent in Fig. 5. We are thus in a good position to confront numerical results to experimental ones in the case of wet grains, and to discuss the definition of cohesion c and the influence of P * and Φ L /Φ S on the material behaviour. 

Mohr-Coulomb cohesion: experimental and numerical results

Once the intergranular friction coefficient is identified from the rheology of dry bead assemblies, assuming the value of µ does not change in the presence of the wetting liquid, we turn to the identification of µ * and c, the parameters of a Mohr-Coulomb relation applying to the chosen material.

Classically, these parameters are measured on fitting a straight line through the values of σ 12 plotted versus σ 22 . Alternatively, it might prove convenient to search for a normalized, dimensionless cohesion, defined as

c * = a 2 c F 0 , (16) 
and to study the variations, at small enough I, of stress ratio µ * (see Eq. 15) versus P * , thereby reformulating the Mohr-Coulomb relation as

|σ 12 | σ 22 = µ * MC + c * P * . ( 17 
)
One may thus seek a linear variation of stress ratio µ * with 1/P * .

For large P * , adhesive capillary forces become negligible, and the material behaviour should be the same as in the absence of the wetting fluid. If a Mohr-Coulomb criterion applies, then parameter µ * MC necessarily coincides with the internal friction coefficient of the dry material, µ * 0 (equal to 0.25 ± 0.02 in the present case).

Parameter range

In 

∆ = 12 H 3 γ2 H/2 -H/2 [v 1 (x 2 ) -γx 2 ] 2 dx 2 . ( 18 
)
Shear flow and boundary conditions are enforced such that ∆ vanishes if the shear rate is uniform, and ∆ is equal to 1 if the case of an infinitely thin shear band between two solid blocks sliding on each other. We checked that its time average did not exceed 0.05 for all P * ≥ 0.5, in agreement with [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF] (with fluctuation peak values of order 0.1 for P * = 0.5, the case with the larger departures from the average linear velocity profile). Liquid content Φ L /Φ S , as noted in Sec. 2.2, is not rigourously constant if V 0 is kept fixed while normal stress varies, but, as shown in Fig. 6, its variations are not really significant. The correspondence between liquid content and meniscus volume is given by Table 1. The menis- 8.10 -3 a 3 [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF], from which we set the maximum value in Table 1. Laboratory measurements cover roughly the same range of liquid contents.

Measurement of a macroscopic cohesion

Fig. 7 shows how linear relation ( 17) may be used to identify values of cohesion c (or c * , see Eq. 16), for both experimental and numerical results. Eq. 17 is a successful fit to the data for P * ≥ 2.3. The straight lines intercept the vertical axis at nearly the same values for experimental and numerical data, both confirming µ * MC = µ * 0 (the data appear to indicate a very slightly smaller friction coefficient in the experiment). The figure also illustrates the good agreement between simulations and experiments for reduced cohesions c * : both straight lines are parallel. For smaller P * , the shear resistance is overestimated by the Mohr-Coulomb criterion fitted to larger P * values. For P * ≥ 1 the discrepancy is apparently larger with experimental results, but we already pointed out (Sec. 4.1) that laboratory measurements are more problematic in that range. On identifying (dimensionless) cohesion c * for varying liquid contents by the same fitting procedure, one obtains the cohesion values shown in Fig. 8. This figure shows that the macroscopic cohesion is a growing function of the liquid content. The agreement between numerical and experimental results is quite satisfactory. The "Rumpf formula" (Eq. 2) correctly predicts macroscopic cohesion c for the largest values of liquid content in the investigated range, but overestimates it at lower liquid contents, for which it fails to capture the decreasing trend. Note that some constant value of the coordination number has to be chosen in (2) -the choice made for the data points shown in Fig. 8 is explained and discussed in Sec. 5. In Sec. 5, we also obtain the more sophisticated estimate of c * , shown in Fig. 8 as star-shaped data points, which comes closer to the experimental and numerical values for small Φ L .

More complete experimental results are presented in another paper [START_REF] Badetti | Rheology and microstructure of unsaturated granular materials: Experiments and simulations[END_REF], in which inertial flows, departing from the quasistatic limit, are also considered.

Solid fraction

We report here on the variations of solid fraction Φ S , from both experiments and simulations, with reduced pressure P * and liquid content Φ L /Φ S . Fig. 9 shows that the system density in steady quasistatic shear flow tends to decrease for growing 1/P * , although it is much less sensitive to P * than the shear resistance, displayed in Fig. 7. Capillary forces entail a decrease, from the dry value 0.615 in the limit of large P * down to Φ S 0.594 at P * = 1. Numerical results quantitatively agree with experimental ones when both are available and the solid fraction is not influenced by the liquid content. From those values of solid fraction, liquid saturation S, as deduced from relation [START_REF] Gröger | Modelling and measuring of cohesion in wet granular materials[END_REF], varies between 0.022 and 0.12 in experiments, and between 4.10 -3 and 0.1 in simulations.

Cohesion and effective stress: a numerical study

Having shown that numerical simulations nicely agree with laboratory results in the range of parameters accessible to the experiments, we now use the numerical tool to further investigate the shear resistance-enhancing effects of capillary forces and the microscopic origins of macroscopic cohesion c. Specifically we extend the results to different values of intergranular friction coefficient µ, ranging from 0.05 to 0.25, and explore effective stress ideas, which might provide microscopic predictions of the shear resistance and of macroscopic cohesion c (if the Mohr-Coulomb criterion applies). Note also that, thanks to the use of dimensionless variables, our results apply whatever the value of the liquid interfacial tension.

In the following presentation of numerical results, data points are shown in figures with the same symbol code, consistently identifying the five values of µ and the five values of liquid content Φ L /Φ S . This code is given in Table 2. Thus numerical data pertaining e. g., to µ = 0.09 and Φ L /Φ S = 0.007 are plotted as blue triangles with their bottom half filled. The choice of symbols in Fig. 6, 7 and 9 for numerical data points abide by these codes. 

The effective stress approach

The effective stress approach to internal friction, as previously introduced in papers dealing with wet grains [START_REF] Scholtès | Micromechanics of granular materials with capillary effects[END_REF][START_REF] Scholtès | On the capillary stress tensor in wet granular materials[END_REF][START_REF] Shen | Shear strength of unsaturated granular soils: three-dimensional discrete element analyses[END_REF], amounts to assuming that the friction law in quasistatic flow is the same as in the dry system subjected to the same effective stresses σ eff , simply defined as σ eff = σ cont : the capillary forces acting on the grains are supposed to affect the contact network just like externally applied stresses. The Coulomb relation of the dry material thus applies to effective stress components:

|σ 12 -σ cap 12 | = µ * 0 (σ 22 -σ cap 22 ), ( 19 
)
This prediction is directly tested on measuring contact stresses σ cont = σ -σ cap and plotting, in Fig. 10 relation for effective stresses, as written in Eq. 19, involving the µ-dependent internal friction coefficient µ * 0 of the dry material (as shown in Fig. 4), provides a very good approximation of the material shear resistance in all studied cases. Larger discrepancies (between 5 and 10%) tend to be observed for the smallest P * values, for small µ (as µ * 0 decreases and the relative importance of capillary effects increases), and for the largest meniscus volumes.

A possible clue to the remarkable success of the effective stress approach is that the changes in the contact network of the sheared material remain moderate between P * = 0.5 and the cohesionless limit of P * = ∞. Thus, Fig. 11a shows that contact coordination numbers hardly vary with P * and with liquid content, and are significantly influenced by friction coefficient µ (data points cluster by symbol shape, see Table 2). This contrasts with the behavior of Z D (Fig. 11b), which varies between 1 and 3.2 for the investigated parameter range and is essentially determined by Φ L /Φ S (encoded as colour and filling, see Table 2). Z D also increases moderately with P * . 2).

to the solid fraction, Φ S , Fig. 12 shows its variation with P * in quasistatic shear flow for the different values of friction coefficient µ, and liquid Φ /Φ S . A decreasing function of µ, Φ S varies moderately with reduced normal stress P * , with a difference of 0.03 or 0.04 between the cohesionless limit of large P * and the lowest studied value P * = 0.5. It is very nearly independent of liquid content (as signaled by the clustering of points by symbol shape in Fig. 12).

To probe situations when the effective stress approach is more likely to fail by large amounts, one would need to study smaller P * values, for which cohesion-dominated systems strongly depart from cohesionless ones in their microstructure [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF][START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF]. As already mentioned, it then proves difficult to observe steady uniform shear flows, due to strain localization in shear bands.

Shear strength.

The Coulomb condition for effective stresses, Eq. 19, is equivalent to this expression of apparent friction coefficient µ * = |σ 12 |/σ 22 :

µ * = µ * 0 (1 - σ cap 22 σ 22 ) - σ cap 12 σ 22 , (20) 
which is satisfied in very good approximation. As a consequence of the sign of capillary forces, ratio σ cap 22 /σ 22 is negative and is the cause of the considerable increase of shear resistance of the wet material compared to the dry one. The wet material is similar to the dry one, to which a larger normal stress σ cont 22 = σ 22 -σ cap 22 > σ 22 is applied [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF]. On the other hand, as σ cap 12 is positive while the total shear stress σ 12 is negative, the capillary force contributions to shear stress tends to decrease the material shear resistance.

We now discuss possible estimation schemes to predict the different capillary stress terms appearing in Eq. 20, so that the shear resistance of the wet material could be deduced from the internal friction coefficient µ * 0 as identified in the dry case, supplemented with the values of a few internal variables such as coordination numbers or fabric parameters.

Capillary stress component σ cap 22 , first, in view of the relatively small differences between normal stresses [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF], is close to the capillary contribution to the average stress, P cap : we explicitly checked that the relative difference never exceeds 3% throughout our data set, remaining between 1 and 2% in most cases.

Exploiting relation [START_REF] Roy | A general(ized) local rheology for wet granular materials[END_REF], P cap may be written as

P cap = - Z * Φ S F 0 πa 2 , (21) 
Z * denoting some effective coordination number, larger than the contact coordination number Z C , and smaller than the total coordination number Z = Z C + Z D , such that the average capillary force for distant pairs, -F d , satisfies

Z D F d + Z C F 0 = Z * F 0 . ( 22 
)
Replacing σ cap 22 by P cap evaluated by [START_REF] Chareyre | Comment on "Flow of wet granular materials: a numerical study[END_REF] in relation 20, one obtains:

µ * = µ * 0 (1 + Φ S Z * πP * ) - σ cap 12 σ 22 . (23) 
Finally, a third level of approximation is obtained on discarding σ cap 12 in ( 23):

µ * = µ * 0 (1 + Φ S Z * πP * ). ( 24 
)
We checked that relation [START_REF] Wood | Soil Behaviour and Critical State Soil Mechanics[END_REF], involving the estimation of σ cap 22 with approximate relation ( 21) still provides a very good prediction of stress ratio µ * . This is shown in Fig. 13 Upon neglecting the capillary force contribution to the shear stress as in [START_REF] Andreotti | Granular Media: Between Fluid and Solid[END_REF], one obtains, as noted in [START_REF] Chareyre | Comment on "Flow of wet granular materials: a numerical study[END_REF], somewhat poorer predictions of the shear strength, overestimated by 20-30% in some cases. This is illustrated in Fig. 14. It might be noted, too, that the error tends to grow as the liquid content decreases (from top-half filled, purple symbols, to red, filled ones, see Table 2). The importance and the origins of shear capillary stresses are further discussed in Sec. 6 below. We note, however, that expression 24 might still provide an acceptable estimate of shear resistance in a smaller P * interval.

The values of µ * appearing in Figs. [START_REF] Scheel | Morphological clues to wet granular pile stability[END_REF] show a large effect of capillary forces on apparent friction coefficient: µ * , in systems with intergranular friction coefficient µ = 0.09, grows from 0.25 in the dry case to about 0.8 for P * = 0.5. As pointed out in Ref. [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF], with reference to [START_REF] Rognon | Rheophysics of cohesive granular materials[END_REF], such shear strength enhancements, in two dimensional (2D) models are only obtained for much smaller P * values, of order 10 -2 -as confirmed in [START_REF] Berger | Scaling behaviour of cohesive granular flows[END_REF].

In Sec. 5.3 below, we discuss predictions of the Mohr-Coulomb cohesion, as defined and measured in Sec. 4.2 (see Fig. 8), corresponding to both estimates [START_REF] Wood | Soil Behaviour and Critical State Soil Mechanics[END_REF] and [START_REF] Andreotti | Granular Media: Between Fluid and Solid[END_REF] of the shear resistance.

Macroscopic cohesion

On identifying the macroscopic cohesion by fitting a linear dependence to the variations of µ * = |σ 12 |/σ 22 with 1/P * (see Eq. 17 and Fig. 7), the resulting values, for different intergranular friction coefficients, are shown in Fig. 15. Reduced cohesion c * increases with µ and with the liquid content, typically by 30 to 50% over the explored interval Reduced cohesion c * , as measured using Eq. 17, for different values of ΦL/ΦS (encoded as in Table 2 with colour and filling), versus intergranular friction coefficient µ.

of each variable. A moderate increase of macroscopic cohesion with liquid content or saturation through the interval corresponding to the pendular regime is also reported in a number of DEM studies and experimental measurements on wet bead assemblies although, most often [START_REF] Soulié | Capillary cohesion and mechanical strength of polydisperse granular materials[END_REF][START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF][START_REF] Scheel | Morphological clues to wet granular pile stability[END_REF][START_REF] Scholtès | Micromechanics of granular materials with capillary effects[END_REF] in the form of a fast increase at very low saturation (S ≤ 0.01) followed by a plateau. Our results show a more gradual increase in range 0.01 ≤ S ≤ 0.1. It should be noted, though, that while those references dealt with the peak strength for given initial states, we investigate steady state quasistatic shear flow. Relation 24 is equivalent to the Mohr-Coulomb criterion [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] and thus provides an expression of c * :

c * = Φ S Z * µ * 0 π . (25) 
One recognizes of course the classical Rumpf formula, as written in (2) (with a slightly modified definition of the appropriate coordination number, see Eq. 22). A constant, P * -independent value of c * might be obtained, as a good approximation in view of the limited variations of coordination numbers and solid fraction (see Figs. 11 and12), on averaging expression 25 over some range of P * . Fig. 8 compares this "Rumpf formula" estimate of the cohesion, averaged for P * ≥ 2.3, to its value obtained by fitting the Mohr-Coulomb relation [START_REF] Willett | Capillary bridges between two spherical bodies[END_REF] to the data in the same range.

We find that F d , as defined in [START_REF] Kohonen | On capillary bridges in wet granular materials[END_REF], depends on liquid content, more than on µ. It hardly varies with P * , and remains between 0.48 × F 0 and 0.6 × F 0 for P * ≥ 2, with maxima near 0.7 × F 0 for the lowest P * values. The approximation Z * = Z C + 0.5 × Z D [see Eq. 22] may be used in Eq. 25. Fig. 16 compares the resulting estimated c * values (equal to the "Rumpf formula" data of Fig. 8) to the measured ones, shown in ("Rumpf formula") to its directly identified value, through a fit of data to Eq. 17 (Mohr-Coulomb), versus 1/P * , for different friction coefficients and liquid contents. Symbol codes as in Table 2. Note significant departures from value 1 for small ΦL/ΦS and small µ.

identifies a reduced cohesion similar to [START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF], but involving some proportionality parameter that has to be adjusted to the numerical data. Since the cohesive effects, as mentioned in Sec. 5.2, are much weaker in 2D, the observed value of c * is about 0.02, ten times as small as the values observed here (Fig. 15). Despite the satisfactory agreement already recorded in Fig. 8 for µ = 0.09 and Φ L /Φ S ≥ 0.03, Fig. 16 shows that the accuracy of the prediction of Eq. 17 may significantly deteriorate for lower liquid contents, especially for small friction coefficients (i.e., from Table 2, for data points shown as squares and triangles).

In Ref. [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF], it was pointed out that estimate [START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF] applied satisfactorily to the experimental results of Pierrat et al. [START_REF] Pierrat | Effect of moisture on the yield locus of granular materials: theory of shift[END_REF] and Richefeu et al. [START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF] 3 . One advantage of prediction ( 25) is its simplicity [START_REF] Khamseh | Reply to "comment on 'flow of wet granular materials: A numerical study[END_REF]. In practice contact coordination numbers Z C are very difficult to measure directly, because of the large number of pairs of close neighbours (see [START_REF] Aste | The geometrical structure of disordered sphere packings[END_REF] and the discussion in [START_REF] Agnolin | Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks[END_REF]), even with accurate X-ray tomography observations, but might perhaps be inferred from elastic moduli measurements [START_REF] Agnolin | Internal states of model isotropic granular packings. III. Elastic properties[END_REF][START_REF] Ragione | Contact anisotropy and coordination number for a granular assembly: A comparison of distinct-element-method simulations and theory[END_REF][START_REF] Khalili | Numerical study of one-dimensional compression of granular materials. II. Elastic moduli, stresses, and microstructure[END_REF]. However, liquid bridges are easier to detect in microtomography observations [START_REF] Kohonen | On capillary bridges in wet granular materials[END_REF][START_REF] Scheel | Morphological clues to wet granular pile stability[END_REF], and one may thus access to the values of the total (or wet) coordination number Z. Beyond the simple estimation of [START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF], the success of the effective stress approach justifies the definition of a cohesion in a generalized sense, as the contribution of capillary forces to shear resistance, in addition to the effects of the dry material internal friction coefficient µ * 0 , which still relates elastic-frictional components of the contact stress tensor, σ cont . This leads to a possibly P * -dependent reduced macroscopic cohesion c * given by:

c * g (P * ) = µ * 0 Φ S Z * π - a 2 σ cap 12 F 0 , (26) 
in which the Rumpf estimate (25) gets corrected by the second term. 2. Note improvement over results of Fig. 16.

this generalized cohesion to the value obtained by a Mohr-Coulomb fit to the data. Prediction [START_REF] Agnolin | Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks[END_REF] achieves satisfactory accuracy in the range of parameters for which [START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF] fails. For larger liquid contents, as the simpler prediction of ( 25) is fairly accurate, we observe no significant improvement on using Eq. ( 26) instead. Expression ( 26) is compared to experimental data at low liquid content (and to numerical ones with the experimentally relevant value µ = 0.09 of the intergranular friction coefficient) in Fig. 8. (It should be kept in mind that predictions of cohesion values, as compared to predictions of shear strength as tested, e.g., in Fig. 13, introduces additional uncertainties due to the Mohr-Coulomb fit of the data). Interestingly, Shen et al., in a DEM study of triaxial compression of wet bead assemblies [START_REF] Shen | Shear strength of unsaturated granular soils: three-dimensional discrete element analyses[END_REF], also showed that the deviator part of the capillary stress tensor contributes negatively to the macroscopic cohesion.

In order to relate c * g , as defined by Eq. 26, or the shear strength, as written in Eq. 20, to characteristic state variables, Sec. 6 below investigates the micromechanical origins of capillary shear stress σ cap 12 .

6 Capillary shear stresses.

As the direct contribution of capillary forces to shear stress, σ cap 12 , should not be neglected in general, we now investigate its dependence on control parameters (Sec. 6.1), and its microscopic origins (Sec. 6.2), highlighting the different roles of capillary forces in contacting and distant pairs. The specific contribution of the latter, which, to a large extent, explains the dependence of shear strength and cohesion on liquid content Φ L /Φ S , is related in Sec. 6.3 to geometric and mechanical anisotropy parameters of the liquid bridge network. Finally, the complete relation of σ cap 12 to internal variables such as coordination numbers and anisotropy parameters is briefly discussed in Sec. 6.4. , in units of F0/a 2 , versus 1/P * for different liquid contents and intergranular friction coefficients (symbols as in Table 2).

-the correction, according to Eq. 26, to the reduced cohesion c * estimated with Eq. 25 -depends on Φ L /Φ S and on P * , and hardly varies with µ (data points, with the code of Table 2, order by colour and filling, but not by symbol shape). It strongly decreases for growing Φ L and very notably increases with P * . a 2 σ cap 12 /F 0 values range from nearly 0 (for large Φ L /Φ S and small P * ) to about 0.1 (for small Φ L /Φ S and large P * ), while reduced cohesion c * , as shown in Figs. 8 and15, grows with Φ L /Φ S and with µ, varying in range 0.2 ≤ c * ≤ 0.4. The correction introduced by the capillary shear stress in the evaluation of the shear strength, or on estimating a macroscopic cohesion, is thus particularly important for small liquid content and for small intergranular friction coefficient, as could be observed in Figs. 14 and 16.

Role of contacts and distant interactions

Capillary stresses can be split into the contribution of liquid bridges joining grains in contact, and another one due to bridges joining noncontacting pairs. We respectively denote those terms with superscripts "cap,c", and "cap,d":

σ cap 12 = σ cap,C 12 + σ cap,D 12 . (27) 
Those two terms, in the sum of Eq. 27, are of opposite signs, with σ cap,C 12 > 0 and σ cap,D 12 < 0. Thus, on writing

σ 12 = σ cont 12 + σ cap,C 12 + σ cap,D 12 
, the three terms of the righthand side alternate in sign. , is larger in magnitude and imposes its sign to the sum. It dominates for small Φ L /Φ S , but the influence of the contribution of distant interactions grows with saturation, and both contributions more nearly compensate as the upper limit of the pendular regime is approached. , versus 1/P * for different liquid contents and intergranular friction coefficients. Symbol codes as in Table 2.

From the second moments of the distribution of normal unit vectors n (the direction of the capillary force, carried by the line of centres), we define the second-order fabric tensors, F C and F D , respectively associated with contacting pairs and with distant pairs joined by a meniscus. Fabric anisotropy is well known to be related to stress anisotropy [START_REF] Scholtès | On the capillary stress tensor in wet granular materials[END_REF][START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF][START_REF] Azéma | Internal struture of inertial granular flows[END_REF][START_REF] Rothenburg | Analytical study of induced anisotropy in idealized granular materials[END_REF][START_REF] Peyneau | Solidlike behavior and anisotropy in rigid frictionless bead assemblies[END_REF][START_REF] Radjaï | Fabric evolution and accessible geometrical states in granular materials[END_REF][START_REF] Imole | Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading[END_REF][START_REF] Khalili | Numerical study of one-dimensional compression of granular materials. I. Stress-strain behavior, microstructure, and irreversibility[END_REF]. The components of F c and F d relevant to the evaluation of shear stresses σ 12 are (subscripts C or D respectively indicating averages over contacts and over distant interacting pairs)

F C 12 = n 1 n 2 C
for contacts

F D 12 = n 1 n 2 D for distant interactions. ( 28 
)
Both fabric parameters are plotted in Fig. 20, versus 1/P * , for the different values of µ and liquid content Φ L /Φ S . F C 12 is primarily influenced by friction coefficient µ, and is hardly affected by liquid content. It remains roughly constant (between -0.03 and -0.05, depending on µ) through ). Capillary stress components σ cap 22 (see Eq. 21) and σ cap 12 (see Eq. 32) are both related to coordination numbers and to characteristics of the force network (involving anisotropy parameters for shear stress), so that it is possible to express shear strength and cohesion with simple predictive formula involving the macroscopic friction coefficient of the dry material. The "Rumpf formula", Eq. 25, for macroscopic cohesion c, is based on the effective stress approach in which σ cap 12 is neglected. It is approximately correct for large enough liquid content within the pendular range (Φ L /Φ S ≥ 0.03), but despite the dependence of the wet coordination number on Φ L , proves unable (as shown in Figs. 8 and16) to capture the liquid content dependence of the cohesion for smaller saturations. The contribution of σ cap 12 to shear strength is the largest, in relative terms, for small liquid contents, especially for small values of friction coefficient µ, as the Rumpf term is proportional to macroscopic friction coefficient µ * 0 (a growing function of µ, see Fig. 4). The cohesion increase with Φ L originates in the decrease of capillary stress component σ cap 12 , which contributes negatively to cohesion. This effect is due to the opposite fabric orientations between contacts and liquid bridges joining noncontacting particles.

The success of the effective stress approach is likely related to the relative insensitivity of the contact network structure to capillary effects: solid fraction Φ S (Fig. 12), contact coordination number Z C (Fig. 11a), and contact fabric parameter F C 12 (Fig. 20) are essentially determined by µ, hardly depend on Φ L /Φ S , and exhibit little (or moderate) variations with P * . On the other hand, Z D , the coordination number of distant interactions, and σ cap,D 12 , their contribution to shear stress (which explains the dependence of σ cap 12 on liquid content), are nearly independent of µ, and vary considerably with Φ L /Φ S and with P * .

The investigations of the influence of the liquid content are one original aspect of the paper. Although the results shown in Fig. 8 are quite encouraging, one may wish to explore to what extent they are sensitive to the spatial distribution of the liquid phase, which is admittedly rather crudely modeled in the present numerical study. An obvious, but technically challenging, extension of the present work would be to investigate the capillary effects at saturations beyond the pendular regime. This requires some continuum mechanics modeling of the liquid phase configuration, which requires technically challenging numerical models well beyond the reach of simple DEM. Some interesting attempts involve a Lattice-Boltzmann treatment of the interstitial fluid phases [START_REF] Delenne | Liquid clustering and capillary pressure in granular media[END_REF][START_REF] Richefeu | Lattice Boltzmann modelling of liquid distribution in unsaturated granular media[END_REF]. On the experimental side, rheological measurements could be usefully supplemented by investigations of liquid morphologies through microtomography [START_REF] Kohonen | On capillary bridges in wet granular materials[END_REF][START_REF] Herminghaus | Dynamics of wet granular matter[END_REF][START_REF] Mani | Fluid depletion in shear bands[END_REF][START_REF] Bruchon | Full 3D Investigation and Characterisation of Capillary Collapse of a Loose Unsaturated Sand using X-Ray CT[END_REF]. Although accurate determinations of contacts in a grain pack are very difficult (see [START_REF] Aste | Investigating the geometrical structure of disordered sphere packings[END_REF][START_REF] Aste | Geometrical structure of disordered sphere packings[END_REF] for measurements and [START_REF] Agnolin | Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks[END_REF] for a discussion with comparisons to simulations), liquid bridges, due to the larger scales involved, are easier to observe, and, knowing the distance-dependent capillary force, some of the characteristic state variables of the capillary force network (coordination and fabric parameters as involved, e.g., in Eq. 32) used in Sec. 6 might be experimentally accessible.

The properties of the loose structures stabilized by cohesion observed under small P * [START_REF] Kadau | Contact dynamics simulations of compacting cohesive granular systems[END_REF][START_REF] Kadau | Pore stabilization in cohesive granular systems[END_REF][START_REF] Gilabert | Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads[END_REF][START_REF] Than | Basic Mechanical Properties of Wet Granular Materials: A DEM Study[END_REF] are also worth studying, as regards their gradual deformation and collapse under varying loads. Such aspects (as does, already, the small P * dependence of density and contact network observed in this paper) escape the effective stress approach, and their study would enable a more global assessment of its range of applicability. Such an exploration could not be pursued here in the range P * ∼ 0.1, as localization phenomena preclude observations of homogeneous critical states in steady quasistatic shear flow. The conditions of occurrence of such strain localization (which may entail fluid distribution inhomogeneities [START_REF] Mani | Fluid depletion in shear bands[END_REF]), is an issue of great practical consequences, and would also deserve systematic investigations.
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 1 Fig. 1. Sketch of a shear test, in which the material flows along coordinate axis x1, with controlled normal stress σ22 along the velocity gradient direction, coordinate axis x2.

Fig. 2 .

 2 Fig. 2. Rheometric cell used in experiments, seen as cut by azimuthal plane containing axis of rotation.

Fig. 4 .

 4 Fig. 4. Internal friction coefficient µ * and solid fraction ΦS measured in numerically simulated steady quasistatic shear flow of dry grains, versus intergranular friction coefficient µ. Values obtained for µ = 0.09 are shown with red lines.

Fig. 5 .

 5 Fig. 5. I-dependent internal friction coefficient µ * (a) and solid fraction ΦS (b), for both laboratory (round dots) and numerical results (data points joined by continuous line), computed with µ = 0.09.

Fig. 8 .

 8 Fig.8. Macroscopic (reduced, dimensionless) cohesion c * (in units of F0/a 2 ) versus liquid content ΦL/ΦS, as measured in experiments and in numerical simulations, and as predicted by the Rumpf expression[START_REF] Pierrat | Tensile strength of wet granular materials[END_REF] or by a more elaborate approach (presented in Sec. 5).

Fig. 9 .

 9 Fig. 9. Solid fraction ΦS versus 1/P * . Experimental (+ symbols) and numerical results (triangles) are shown for different liquid contents ΦL/ΦS.

Fig. 11 .

 11 Fig. 11. Variations with P * of (a) contact coordination number ZC and (b) coordination number ZD of distant interactions through liquid bridges, for different values of µ and ΦL/ΦS, encoded as in Table2.

Fig. 12 .

 12 Fig. 12. Variations of solid fraction ΦS with P * , for different values of µ and ΦL/ΦS (symbols as in Table2).

  Fig.[START_REF] Radjaï | Discrete-element modeling of granular materials[END_REF]. Reduced cohesion c * , as measured using Eq. 17, for different values of ΦL/ΦS (encoded as in Table2with colour and filling), versus intergranular friction coefficient µ.

Fig. 16 .

 16 Fig.[START_REF] Lian | A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies[END_REF]. Ratio of reduced cohesion c * as predicted by Eq. 25 ("Rumpf formula") to its directly identified value, through a fit of data to Eq. 17 (Mohr-Coulomb), versus 1/P * , for different friction coefficients and liquid contents. Symbol codes as in Table2. Note significant departures from value 1 for small ΦL/ΦS and small µ.

Fig. 17 ,Fig. 17 .

 1717 Fig.[START_REF] Willett | Capillary bridges between two spherical bodies[END_REF]. Analog of Fig.16for improved predicted cohesion c * g (Eq. 26, involving σ cap 12 correction) for the three smallest values of liquid content. Symbol codes as in Table2. Note improvement over results of Fig.16.

6. 1 Fig. 18 .

 118 Fig.[START_REF] Pitois | Liquid bridge between two moving spheres: An experimental study of viscosity effects[END_REF]. σ cap 12 , in units of F0/a 2 , versus 1/P * for different liquid contents and intergranular friction coefficients (symbols as in Table2).

Fig. 19

 19 plots (negative) ratio σ cap,D 12 /σ cap,C 12 versus P * throughout the explored parameter range. The contact contribution, σ cap,C 12

Fig. 19 .

 19 Fig. 19. Ratio of contributions of distant pairs and of contacting ones to capillary shear stress, σ cap,D 12 /σ cap,C 12

Fig. 20 .

 20 Fig. 20. Fabric parameters F C 12 for contacts (a), and F D

  experiments, practical limitations apply to the values of P * . First, stresses within the sample should remain reasonably homogeneous. Vertical stress σ 22 varies through the thickness of the sample, due to the weight of the grains, and the results are given as functions of the average value, at mid-height. In practice we do not often record rheological characteristics for P * below 2.3 (σ 22 = 0.3 kPa), which correspond to relative stress variations (∆σ 22 )/σ 22 above 5% within the sample. Furthermore, it proves difficult in practice to control low levels of stress. Thus states with P

* = 1.55 and P * = 0.773 are only satisfactorily obtained for the largest liquid content, Φ L /Φ S = 0.075 (with, however, (∆σ 22 )/σ 22 reaching 0.2). Simulation results extend down to P * = 0.5, but smaller confining stresses make it difficult to observe uniform flows, due to strong strain localization tendencies, as reported in Ref.

[START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF]

. This earlier work introduced localization indicator ∆, computed from velocity profiles v 1 (x 2 ) across the cell in the gradient direction (for -H/2 ≤ x 2 ≤ H/2) as

Table 1 .

 1 Approximate correspondence (see Fig.6-we use the value of the liquid content corresponding to P * = 3) between prescribed meniscus volume and liquid content. Fig.6. Liquid content ΦL/ΦS versus P * for the 5 different values of V0/a 3 used in the simulations (see Table1).

	V0/a 3	5.10 -4	10 -3	2.10 -3 4.10 -3 8.10 -3
	ΦL/ΦS	0.003	0.007	0.014	0.030	0.063

cus volume associated with the upper limit of the pendular range, reached as the menisci joining three beads, each one in contact with the other two, start to merge, is about

Table 2 .

 2 Choice of symbols used to identify intergranular friction coefficient µ and liquid content ΦL/ΦS in subsequent figures showing numerical simulation results. Colour codes for liquid contents are doubled by filling pattern.

	µ	0.05	0.09	0.15	0.20	0.25
	Shape	squares	triangles	circles	stars	downward triangles
	ΦL/ΦS	0.003	0.007	0.014	0.030	0.063
	Colour	red	blue	green	black	purple
	Filling	filled	half (bottom) hollow crossed	half (top)

  = 0.5, all observed values of apparent friction coefficient are satisfactorily predicted from the effective stress assumption. Predicted values of stress ratio µ * using Eq. 24 (effective stress assumption ignoring capillary contribution to shear stress), versus measured ones, for all values of µ and ΦL/ΦS. Symbol codes as in Tab. 2. Note the poorer agreement compared to Fig.13.
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sured ones, for all values of µ and ΦL/ΦS. Symbol codes as in Tab. 2. large P * up to the value of µ * , approaching one, corresponding to the system with µ = 0.25, Φ L /Φ S 0.063 under P *

Note that these contributions are distinguished here according to the nature of forces -contact (elastic and frictional) or capillary ones -and not according to the pairs of grains (contacting or only interacting through a liquid bridge).

In Ref.[START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF] a theoretical estimate of cohesion c is used, differing from Eq. 25 by a factor of 3/2, but it may be argued[START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF] that the uncertainty in measured values of c in[START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF] is such that our prediction is acceptable as well. The estimate of[START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF] is reproduced in[START_REF] Scholtès | Micromechanics of granular materials with capillary effects[END_REF][START_REF] Andreotti | Granular Media: Between Fluid and Solid[END_REF].
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for distant interactions (b) versus 1/P * . Symbol codes as in Table 2.

the investigated interval of P * . The variations of F D 12 with P * exhibit a slight, but notable decrease as P * ≥ 1. F D 12 grows with liquid content and (to a lesser extent) with µ. F D 12 is larger than |F C 12 |, reaching values in the 0.07-0.14.

Fabric parameter F D 12 , as noted in Ref. [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF], is positive, while F C 12 is negative -in agreement with the signs of σ cap,C 12 and σ cap,D 12 . This may be understood on noting that, in the macroscopic shear flow (Fig. 1), contacts tend to be more numerous for orientations n in the compression quadrants (for which n 1 n 2 < 0) than in the extension quadrants (for which n 1 n 2 > 0). Conversely, as direction n rotates within the shear flow and enters the extension quadrants, gaps tend to open between contacting pairs of grains, which still interact for distances below D 0 and contribute positively to F D 12 . Liquid bridges between non-contacting grains were observed in [START_REF] Khamseh | Flow of wet granular materials: a numerical study[END_REF] to survive over strain intervals of order 1. It may be noted that Ref. [START_REF] Scholtès | On the capillary stress tensor in wet granular materials[END_REF], which contains a DEM study of triaxial compression on wet beads, with a similarly hysteretic model for meniscus formation, reports that the fabric anisotropy of the liquid bridge network is considerably smaller than the fabric anisotropy of the contact network, implying that the liq-uid bridges joining non-contacting grains contribute with opposite sign. Capillary forces in contacting pairs are all equal to -F 0 in our model, and their centers, neglecting elastic deflections, are separated by distance a. Consequently, from expression (8) of shear stress, one has:

Shear stress due to distant interactions

For distant interactions, one may also define the n dependent average force (the average capillary force between distant pairs sharing the same intercentre line orientation n), as F(n), as well as the n-dependent average intercentre distance L(n). The average intercentre distance for noncontacting bead pairs interacting through a liquid bridge is denoted as l 0 (with a ≤ l 0 ≤ a + D 0 ). l 0 varies very little with P * and µ, it is essentially dependent on liquid content (or V 0 ), and grows from 1.025 to nearly 1.06 over the explored range of Φ L .

Standard relations [START_REF] Rothenburg | Analytical study of induced anisotropy in idealized granular materials[END_REF][START_REF] Peyneau | Solidlike behavior and anisotropy in rigid frictionless bead assemblies[END_REF][START_REF] Azéma | Internal struture of inertial granular flows[END_REF], based on the first nontrivial term in the expansion of even anisotropic functions of n in spherical harmonics, directly relate shear stress contributions to fabric, force and distance anisotropy parameters. Defining, through integrations on the unit sphere S with the differential solid angle dΩ, force and distance anisotropy parameters as

one may write

as an approximation. As shown in Fig. 21 /F0, using (31), versus measured ones, for the complete numerical data set. Open red diamonds: prediction with the first term of (31) (fabric anisotropy). Full blue ones: prediction with the first two terms of (31) (fabric and force anisotropies).

Estimating capillary shear stress

We thus obtain a very good estimate of σ cap 12 on summing Eqs. 29 and 31 (neglecting the last term):

This is checked in Fig. to the shear stress, σ cap 12 , is thus related to a small number of internal variables. One may substitute expression [START_REF] Hatano | Power-law friction in closely packed granular materials[END_REF] for capillary shear stress σ cap 12 into relations 23 for µ * or 26 for cohesion c * g , with no notable effect on the results (as expressed by the graphs of Figs. 13, 8 and 17). One then obtains expressions of apparent internal friction angle and macroscopic cohesion in terms of a small number of state parameters, characterizing the networks formed by the intergranular contacts and network and the additional liquid bonds connecting non-contacting grains.

Another relation of macroscopic cohesion to fabric and force anisotropy parameters was proposed by Radjai and Richefeu [START_REF] Radjaï | Bond anisotropy and cohesion of wet granular materials[END_REF], based on a somewhat different approach: these authors did not exploit the effective stress idea, but related the macroscopic friction coefficients of both the wet material and the dry one to their structural and force anisotropy parameters, such that the cohesion is expressed in terms of the differences of those variables induced by the capillary forces.

In [START_REF] Hatano | Power-law friction in closely packed granular materials[END_REF], the three terms of the right-hand-side are of alternating signs and decreasing magnitudes. In general, none of them is negligible: distant interactions, by reducing the contribution of capillary forces in contacts, notably influence the capillary shear stress; and the effect of the rather large fabric anisotropy onto σ cap,D 12 gets reduced by the one of force anisotropy. The dependence of the macroscopic cohesion and shear strength on the liquid content is largely due to the effect of σ cap,D

12

, the distant interaction contribution to σ cap 12 . Cohesion c increases with Φ L because |σ cap,D 12 | increases, thereby decreasing σ cap 12 , which is the term reducing the macroscopic cohesion (Eq. 26).

Summary and discussion

We now recall the salient results of the paper.

First, experimental measurements for shear strength and solid fraction in steady uniform quasistatic shear flow of a model material, made of polystyrene beads wet by silicone oil, are reported. A Mohr-Coulomb criterion applies well for not too small values of reduced normal stress P * (P * > 2), but tends to overestimate the shear strength for lower P * . It involves the static macroscopic friction coefficient µ * 0 of the dry material, and a macroscopic cohesion c, which grows with liquid content Φ L /Φ S in the pendular regime. In non-dimensional form, c * = a 2 c/F 0 varies between 0.2 and 0.4.

Then, results of DEM simulations are shown to agree quantitatively with experimental ones, provided the appropriate value µ 0.09 is given to the intergranular friction coefficient, as identified from the macroscopic properties (internal friction coefficient µ * 0 and solid fraction Φ S ) of the dry material.

Further use of numerical simulations, for different values of µ, enabled investigations of the microscopic origins of macroscopic shear resistance and cohesion, and assessments of the performance of existing approaches and prediction schemes. The effective stress approach, assuming that the capillary part of the stress tensor acts onto the contact network like an externally applied stress, as expressed by relation [START_REF] Rumpf | Zur Theorie der Zugfestigkeit von Agglomeraten bei der Kraftübertragung an Kontaktpunkten[END_REF] and checked in Fig. 10, proves remarkably efficient (although not exact). In general, the contribution of capillary forces to shear stress should not be ignored, as it significantly improves the prediction of the shear resistance (as apparent on comparing Figs. [START_REF] Herminghaus | Dynamics of wet granular matter[END_REF]