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Abstract: We consider the situation when one observes a scalar response and
a functional variable as predictor. For instance, in our petroleum industry prob-
lem, the response is the octane number of a gasoline sample and the functional
predictor is a curve representing its near-infrared spectrum. The statistician
community developed numerous models for handling such datasets and we fo-
cus here on four regression models: two standards as the functional linear model
and the functional nonparametric regression, and two recently developed: the
functional projection pursuit regression and a parsimonious model involving a
nonparametric variable selection method. Each of these models are implemented
with two datasets containing near-infrared spectrometric curves. A comparative
study of these models is provided in order to emphasize their possible advantages
and drawbacks. At last, a simple but useful methodological approach is then
proposed in order to boost the two most recent regression models by combining
the most relevant informations obtained by each of the studied models. We
show on the spectrometric data how such an approach may lead to important
improvements.

Keywords: boosting, functional data, functional linear regression, functional
nonparametric regression, functional projection pursuit regression, nonparamet-
ric variable selection, near-infrared spectrometry

1 Introduction
Popularized by [36] and [35], functional data analysis (FDA) is a very active
research area in the international statistical community. The development of
this topic is essentially due to the joint progress of monitoring devices and
computational tools allowing to collect and process highly dimensioned data.
This kind of datasets come from the observation of some underlying continuous
processus sampled at a grid of measurements. Near-infrared spectrometry pro-
vide benchmark examples coming from chemometrics. This is a non-destructive
technology able to measure numerous chemical compounds in a wide variety of
products (food industry, petroleum industry, wood industry, etc); see among
others [31], [26]. For instance, let us consider a sample of 60 gasoline samples.
Each sample is illuminated by a light beam at 401 equally spaced wavelengths
(λ1, . . . , λ401) in the near-infrared range 900-1700 nm. For each wavelength λ
and each gasoline sample i, the absorption Xi(λ) of radiation is measured. The
ith discretized spectrometric curve is given by Xi(λ1), . . . , Xi(λ401); Figure 1
displays the 60 spectrometric curves (the last 21 wavelengths were dropped to

1



make graphics readable). It is clear that all these curves involve some continuum
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Figure 1: 60 near-infrared spectra sampled at 401 equally spaced wavelengths

in their structure even if they are observed at discrete points. The terminology
functional data refer to this continuous feature. Figure 2 gives a benchmark ex-
ample of such data introduced in [3] and dealing with 215 finely chopped pieces
of pork meat. For the ith piece of meat one observes a spectrum of absorption
Xi(·) sampled at 100 equally spaced wavelengths λ1, . . . , λ100 from 850 to 1050
nm. The ith discretized spectrometric curve is given by Xi(λ1), . . . , Xi(λ100).
Throughout both these examples which will be our connecting thread, one can
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Figure 2: 215 spectrometric curves sampled at 100 equally spaced wavelengths

remark that the grid of measurements (i.e. wavelengths) for the spectrometric
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curves is quite dense. It is worth noting here that there exist more pathologi-
cal situations where one has at hand sparse measurements (i.e. each profile is
observed at few points possibly randomly distributed) which requires particular
methods. Although this is an important issue as demonstrated by the numerous
publications around this topic (see for instance [30, 44, 43, 32, 42, 41]), it is out
of our purpose.

The main aim of this paper is to present various ways of modelling nonlinear
relationship in datasets containing functional data and to discuss methodologi-
cal aspects. We focus on the special case when one regresses a scalar response
on an explanatory functional variable. As in the standard multivariate set-
ting, different families of regression models have been developed. We especially
concentrate our attention on four regression models of various dimensionalities.
Some of them are quite standard as the functional linear model (see [35] or
[36] and references therein) or the functional nonparametric regression (see the
monography [22] and [20] for general overview and related methods). Some
other have been recently developed; this is the case of the functional projection
pursuit (see [10], [16] and [19]) or the parsimonious nonparametric regression
models involving nonparametric variable selection (see [18] and [17]). Contrarly
to the functional linear model, the three other models are able to catch nonlin-
ear relationship. Given these models and our two spectrometric examples, we
propose a comparative study in order to emphasize their possible advantages
or drawbacks. It is out of question to present in detail each of these statistical
models as well as their theoretical properties. The reader will find useful refer-
ences throughout this work which is voluntarily oriented toward practical and
methodological aspects. We first describe the prediction problems in Section 2.
The nonparametric functional regression, which is a model of high dimension-
ality, is presented in Section 3. In the opposite, Section 4 focuses on a model
of low dimensionality: the functional linear regression. Section 5 is devoted to
two recent regression models of intermediate dimensionality. The first is based
on projection pursuit regression ideas whereas the second is a parsimonious
model involving a nonparametric variable selection method. Section 6 proposes
to boost the previous methods by taking into account the most relevant infor-
mations derived from each of them. We show on the spectrometric data how
the combination of these models may lead to important improvements. Before
concluding, Section 7 enumerates useful resources dealing with FDA, oriented
towards practitioners and available online.

2 Functional data and prediction problems
Petroleum prediction problem. For each of 60 gasoline samples one collects a
spectrometric curves (see Figure 1). Additionally, one knows the octane num-
ber for each gasoline sample. The goal is to predict the octane number from
the observation of a new spectrometric curve. To this end, one observes n pairs
(Xi, Yi)i=1,...,n where Xi (resp. Yi) is the ith spectrometric curve (resp. re-
sponse). The prediction problem is very simple and can be formulated via the
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model Yi = r(Xi) + εi for i = 1, . . . , n. Figure 3 schematizes the problematic.
The two first spectrometric curves are very similar and the responses also (the
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Figure 3: Petroleum prediction problem

standard deviation is around 1.53).

Food prediction problem. For each of 215 pieces of meat one collects a spec-
trometric curves (see Figure 2). Separately, and for each piece of meat, one
measures as response the fat content by means of analytic chemical process.
The goal is to predict the fat content from the observation of a new spectromet-
ric curve. Once again, one has at hand n pairs (Xi, Yi)i=1,...,n where Xi (resp.
Yi) is the ith spectrometric curve (resp. response). The prediction problem
is the same as previously (i.e. Yi = r2(Xi) + εi for i = 1, . . . , n) and Figure 4
schematizes the analogous problematic. The shape of both spectrometric curves
are quite similar excepted the occurence of a small secondary bumb in the second
spectrum; the responses are quite different (the standard deviation is around
12.74).

Finally, in these situations the statistical model admits the general writting
Y = r(X) + ε where r(·) is an unknown operator modelling the relationship
between X and Y ; the statistical challenge consists in proposing a relevant es-
timator. Here, we focus our attention on regression models such that

r(X) = E(Y |X) (i.e. E(ε|X) = 0) with the constraint that r be-
longs to some set of C; no additional assumption on the distribution
of (X,Y ) is required.

(M)

This general modelling covers numerous situations and the set C concentrates all
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Figure 4: Chemometrics prediction problem

the model hypotheses. The nature and size of C, which determines what people
call "the dimensionality of the model", play a major statistical role. However, a
general statistical principle says that the accuracy of the estimating procedure
depends on the size of C; larger is the size of C, harder is the estimation of the
unknown operator r. So, we propose in the remaining of this paper to discuss
these aspects, mainly from a methodological and practical point of views.

3 Models of high dimensionality: pure nonpara-
metric regression

Numerous references, theoretical developments and practical studies can be
found in [22] which popularized nonparametric methodologies in the functional
data field. From a mathematical point of view, functional data are defined
as observations of some random variable X taking its values in some infinite-
dimensioned space F endowed with the inner product 〈·, ·〉. The datasets intro-
duced previously are typical examples where the considered infinite-dimensioned
spaces are just functions spaces. In this section, we especially focus on nonpara-
metric regression when one considers a functional explanatory variable X and a
scalar response Y ; one observes n pairs (Xi, Yi) identically distributed as (X,Y ).

3.1 Nonparametric regression model
Considering a nonparametrically regression model amounts to refer to (M) with
the set of constraints CFNPR containing only regularity constraints acting on r.
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For instance, CFNPR may be defined as the set of operators mapping F into R
such that r is lipschitz:

∃ν > 0, ∃C > 0, ∀(x1, x2) ∈ F × F , |r(x1)− r(x2)| ≤ C d(x1, x2)ν ,

where d(·, ·) is a proximity measure (i.e. a metric or more generally a semi-
metric1) between two elements of F . Of course, one can relax this set of con-
straints by considering only continuous operator. In the opposite, there are
numerous ways of enriching CFNPR; for instance one can assume that for any
(x, u) ∈ F × F , it exists rx such that:

r(x+ δu) = r(x) + δ〈rx, u〉+ o(δ), (1)

as δ tends to zero; rx is what we call the directional derivative of r at x along the
direction u. Whatever the set CFNPR, it contains only regularity assumptions.
Consequently, CFNPR contains nonlinear operators and thus the nonparametric
model is very flexible. This nonparametric feature is a key advantage, espe-
cially when there is no standard tool for displaying graphically the relationship
between a scalar response and an explanatory functional variable. So, the diffi-
culty of anticipating on the shape of the regression operator combined with no
a priori information makes the nonparametric modelling a relevant method for
exploring such a relationship.

3.2 Functional nonparametric regression in action
Before going on, let us remind how building an estimator of r. To this end,
we focus on the kernel estimator which is a very popular way of estimating
nonparametrically the regression operator. Let K be a positive asymmetric
kernel function; then, the nonparametric kernel estimator rFNPR of r is defined
as:

rFNPR(u) =

∑n
i=1 YiK

{
h−1d(Xi, u)

}∑n
i=1 YiK {h−1d(Xi, u)}

,

where h is the so-called bandwidth which plays the role of the smoothing pa-
rameter. The simplicity of its writting as well as its ease of implemention makes
the kernel estimator very useful.

In order to assess the predictive performance of the functional nonparametric
regression, the original dataset {(Xi, Yi); i = 1, . . . , n} are split into two subsam-
ples: L = {(Xi, Yi); i ∈ L} and T = {(Xi, Yi); i ∈ T} with L ∪ T = {1, . . . , n}
and L∩T = ∅. The learning sample L allows to build the estimator rFNPR and
to select automatically the bandwidth h via a cross-validation procedure. The
testing sample provides the relative mean squared error of prediction:

RMSEP (rFNPR) =

∑
i∈T (Yi − Ŷi)2∑
i∈T (Yi − Y )2

,

1a semi-metric d(·, ·) is a metric such that d(x1, x2) = 0 does not imply that x1 = x2.
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where, for all i in T , Ŷi = rFNPR(Xi) and Y is the average of Y based on the
testing sample. The original dataset is randomly split 100 times which allows
to compute 100 values for RMSEP (rFNPR) and to display their distribution
by means of a boxplot. At last, for all datasets, the size of the testing sample
T represents 50% of the whole sample.

We focus here on the functional regression model Yi = r(Xi) + εi where
the Xi’s are near-infrared spectrometric curve of the Yi’s are corresponding
scalar responses (octane number or fat content). Based on the knowledge in
the chemometrician community, near-infrared spectra suffers from a calibration
problem due to the electronic devices. Considering successive derivatives of
the spectrometric curves instead of the original curves themselves allows to
overcome this problem. Unfortunately, we never know which derivative is the
most informative. [21] studied the food dataset and pointed out that the twice
differentiated curves are the most predicitve. This is why the kernel estimator
rFNPR is used with the d(Xi, x) =

∫
{X ′′i (t)− x′′(t)}2dt where the notation f ′′

stands for the second derivative of any real-valued univariate function f . The top
panel of Figure 5(a) displays the distribution of the relative mean squared error
of prediction; the values are concentrated around 0.02 (the median). The bottom
panel gives an idea on the accuracy of the predictions corresponding to one
run (i.e. one pair of subsamples (L; T )) where RMSEP (rFNPR) ' 0.02. The
predictions and the observations are very close and the functional nonparametric
regression seems to be a relevant tool for predicting fat content. Concerning the
octane dataset, Figure 5(b) proposes similar plots than those given in Figure
5(a) but now the kernel estimator involves the proximity measure d(Xi, x) =∫
{X ′i(t)− x′(t)}2dt where the notation f ′ stands for the first derivative of any

real-valued univariate function f . The median of RMSEP (rFNPR) is around
0.2. One can observe that the global predictive power is weaker than previously
but the functional nonparametric regression still works well for predicting octane
number.

3.3 Methodological aspects
It is worth noting that the functional nonparametric regression method in-
volves some proximity measure d(·, ·) (i.e. the set of constraints depends on
d: CFNPR,d). For instance, chemometricians know that spectrometer induces
some calibration problem (see [29] for a general overview about this statistical
problem). According to the nature (fat content, octane, or any other products
like moisture, sucrose level, etc) of what we intend to predict from spectrometric
curves, the most informative proximity measure d(·, ·) may change but we never
know in advance which is the most relevant one. This is why from a methodolog-
ical point of view, one can implement the functional nonparametric regression
by pluging a family of proximity measures and select the most predictive one.
This amounts to consider for the regression operator r a more general set of
constraints CFNPR = ∪d∈DCd where D stands for a family of proximity mea-
sures. This procedure is particularly interesting because in some cases it allows
to improve significantly the predictive ability of the nonparametric regression
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(a) Food industry dataset (b) Petroleum prediction problem
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Figure 5: FNPR with original spectra: Out-of-sample predictive performance.

model. For instance, when one focuses on our spectrometric datasets, one can
set D = {dk; k = 0, 1, . . . ,K} with dk(u1, u2) :=

∫
{u(k)1 (t) − u

(k)
2 (t)}2dt and

where f (k) stands for the kth derivative of any function f (with the convention
f (0) := f). Here the family D is just indexed by the K first integers. Figure
6 gives an idea on how much one can expect to improve the predicitive power.
Clearly, the twice (resp. once) differentiated spectrometric curves for predicting

(a) Food industry dataset (b) Petroleum prediction problem
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Figure 6: Spectrometry datasets: out-of-sample performance obtained with
proximity measure based on successive derivatives

the fat content (resp. octane number) lead to the best out-of-sample perfor-
mance and in any case the standard L2-norm (i.e. d0) degrades dramatically
the results.
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So, the proximity measure plays a major role from a practical point of view
but not only. Indeed, it is important to emphasize that the proximity measure
plays also a crucial role in the asymptotic behaviour of the kernel estimator (see
for instance the discussion in Chapter 13 of [22]). To conclude this section, one
can remark that flexibility of the functional nonparametric regression model
comes from the huge size of the set of constraints CFNPR; larger is CFNPR,
more flexible is the regression model. Equivalently to this notion of flexibil-
ity, statisticians introduced the terminology dimensionality which is a similar
way to express the amount of flexibility of any model. When one says that a
model is of high dimensionality, it expresses its high flexibility feature which is
especially the case of the functional nonparametric regression model. However,
considering models of high dimensionality may lead to several main drawbacks.
Firstly, functional nonparametric regression model is not designed to produce
graphical outputs allowing to interpret results. Secondly, considering model of
high dimensionality produces lower rate of convergence than in the parametric
framework (but it is normal because one considers model of higher dimensional-
ity). Thirdly we have to face with the so-called curse of dimensionality meaning
that higher is the dimension of the explanatory variable, larger should be the
sample size to expect accurate predictions. Although the two first drawbacks are
unescapable, the third one may be overcome. Indeed, amplified in the functional
setting where explanatory variables live in some infinite-dimensioned space, the
curse of dimensinality well known in the nonparametrician community is valid as
soon as one considers a standard norm as proximity measure. But, if you do not
reduce the proximity measures to standard norms (for instance semi-metric) and
plug them as an additional "parameter" of the method, it is possible to weaken
the curse of dimensionality impact. Figure 6 supports clearly this idea; with the
same sample size, the use of semi-metrics significantly improves the predictive
performance.

Before ending this section, let us remark that the functional nonparametric
regression model is an interesting exploratory tool in that sense it points out the
major predictive role played by the second (resp. first) derivative in the food
(resp. petroleum) industry example.

4 Models of low dimensionality: the functional
linear regression

4.1 Functinal linear regression model
Another way of modelling the relationship between a functional explanatory
variable and a scalar response is to consider a set of constraint C much more rigid
in the sense that one imposes the linearity of the regression operator r. This
linearity assumption reduces considerably the dimensionalty of the regression
model and the set of constraints becomes:

CFLR = {r : F → R, ∀x ∈ F , r(x) = 〈x, ρ〉} ,
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where 〈·, ·〉 is the inner product in F and ρ is some unknown smooth functional
parameter. This linear modelling is very popular in the functional data analysis
community and numerous papers are available in the literature (see for instance
the technical works [8], [6], [9] as well as [36] and [20] for general overviews and
related methods).

4.2 Functinal linear regression model in action
Starting from the linear model Yi = µ+〈Xi, ρ〉+εi for i = 1, . . . , n, a standard es-
timating procedure consists in minimising some penalized sum of squares of the
form Qλ(ρ) :=

∑n
i=1(Yi−Y −〈Xi, ρ〉)2+Pλ(ρ) where Pλ(ρ) is a penalty term de-

pending of some (possibly multivariate) parameter λ and set ρ̂ := infρ∈S Qλ(ρ).
Here, Y is the average of the Yi’s and stands for the estimation of the real param-
eter µ. The last minimization operates over a set S of smooth functions with
good approximation properties and depending on the context (such as spline
basis, wavelet basis, tensor product of splines, etc). In our situation, we only
use spline estimator for deriving the unknonwn functional parameter ρ. Then,
for all x ∈ F , the estimator rFLR of r is defined as

rFLR(x) = Y + 〈x, ρ̂〉.

To assess the predictive performance, we use the same criteria (i.e. RMSEP (rL))
and follow the same procedure depicted previously (100 randomly splits for
building 100 pairs of learning and testing subsamples). In addition, the choice
of the penalty (smoothing) parameter λ is derived from a cross-validation pro-
cedure systematically based on the learning sample. Figure 7 displays the re-
sults for both datasets; top and middle panels are similar to that described
in the previous section whereas those at the bottom plot the estimated func-
tional parameter ρ̂. The estimated functional parameter is an interesting inter-
pretable tool. It allows to identify ranges of wavelengths playing a minor (resp.
major) role named the set of wavelengths λ such that |ρ̂(λ)| is smaller (resp.
greater) than some threshold value. However, the price to pay for getting inter-
pretable tools implies a significant loss in terms of prediction. The median of
the RMSEP (rFLR) is around 0.07 (resp. 0.30) for the food (resp. petroleum)
industry dataset.

5 Models of intermediate dimensionality
According to the previous developments, on one hand model with high dimen-
sionality like the functional nonparametric regression model may lead to power-
ful predictive performance but no interpretable graphical tool is available. On
the other hand, rigid model with low dimensionality like the linear one offers
interpretable graphical output but with a possible loss in terms of predictive
quality. In order to take advantages of each previous models, an interesting way
consists in proposing regression models of intermediate dimensionality balancing
predictive performance and interpretability need.
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(a) Food industry dataset (b) Petroleum prediction problem
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Figure 7: FLR with original spectra: out-of-sample performance and functional
parameter.

5.1 Directional additive modelling
The terminology directional additive modelling encompasses models assuming
that the functional covariate impacts on the scalar response only through a few
relevant directions via nonlinear additive link functions. One of the simplest,
the functional index model (see for instance [2] or [1]), assumes that there exists
a real parameter µ, one functional direction ρ and one additive component g
(i.e. real-valued function) such that r(X) = µ + g (〈X, ρ〉); the real parameter
µ, the informative direction ρ and the link function g are unknown and have to
be estimated. Recent works ([10] and [16]) extended this idea to D directions
ρ1, . . . , ρD by developing the more sophisticated modelling

r(X) = µ+ g1 (〈X, ρ1〉) + · · ·+ gD (〈X, ρD〉)

where the D informative directions ρ1, . . . , ρD and the D additive components
g1, . . . , gD (also called link functions) are unknown smooth functions that have
to be estimated; the unknown real parameter µ is also unknown. This model,
called functional projection pursuit regression (FPPR) is an extension to the
functional setting of the popular projection pursuit regression (see for instance
[23] and [24]). Of course, the number of functional directions D has to be
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reasonable in order to avoid overparametrization situation and consequently
identifiability issue (see the recent works [27] and [45]). For this model, the set
of constraints can be expressed as:

CFPPR = {r : F → R, ∀x ∈ F , r(x) = µ+ g1 (〈x, ρ1〉) + · · ·+ gD (〈x, ρD〉)} .

Clearly, the FPPR dimensionality is much higher than the functional linear
regression one (i.e. CFLR ⊂ CFPPR); the FPPR is more flexible than FLR. In-
troducing several embedded functional parameters makes much more complex
the estimating mechanism. Although various implementions of FPPR are avail-
able in the litterature (see again [10] and [16] for more details and references
therein), in order to simplify this intensive computational algorithm, [19] pro-
posed a new approach based on average derivative ideas. This last method is
used here for deriving the D estimated functional directions ρ̂1, . . . , ρ̂D and the
D estimated additive components ĝ1, . . . , ĝD. This new method, based on the
nonparametric estimation of the functional directional derivative rx defined in
(1), allows to estimate simultaneously the D functional directions ρ1, . . . , ρD.
Let rFPPR be the FPPR estimator of r:

rFPPR(x) = Y + ĝ1 (〈x, ρ̂1〉) + · · ·+ ĝD (〈x, ρ̂D〉)

Out-of-sample performance. We compute RMESP (rFPPR) according to the
same scheme as for the previous models. Concerning the food industry dataset
(Figure 8 (a)), the predictive ability of rFPPR is higher than rFLR but lower than

(a) Food industry dataset (b) Petroleum prediction problem
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Figure 8: FPPR: out-of-sample performance.

rFNPR; using more flexible model leads to better predictive accuracy. About
the petroleum example, Figure 8 (b) shows the nice out-of-sample performance
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of FPPR which is much better than FLR but also better than FNPR.

Interpretable outputs. In addition of its well predictive behavior, the interest
of FPPR is to produce graphical tools through the estimated functional direc-
tions and additive components. To this end, FPPR is launched with the whole
sample of both datasets. Figure 9 focuses on the food industry example for
which a 2-dimensional FPPR has been implemented for studying the relation-
ship between the fat content and the near-infrared spectra; one has at hand
D = 2 estimated functional directions (i.e. ρ̂1 and ρ̂2) and also D = 2 esti-
mated additive components (i.e. ĝ1 and ĝ2). To make easier the interpretation
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Figure 9: FPPR outputs for food industry dataset: estimated functional direc-
tions and additive components.

of the estimated functional directions (continuous black thick line), they have
been superimposed on the 215 original spectra (in gray) in the left panels. One
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remarks two heavy peaks (vertical dashed lines) on the first estimated functional
direction ρ̂1 (top-left panel). The first one (minimum) around 930 nm identifies
clearly a secondary bumb which appears sometimes in the spectra; the second
peak (maximum) corresponds to the hollow between the secondary bumb and
the main one (when it occurs). The second estimated functional direction ρ̂2
(bottom-left panel) reduces the role played by the middle of the spectra empha-
sized with ρ̂1. Regarding associated additive components (right panels), they
point out the need of considering some nonlinear shape. FPPR outputs for the
petroleum dataset are displayed in Figure 10. Here, a simple one-dimensional
FPPR is sufficient to describe the relationship between the octane number and
the spectra. Then, only one functional direction ρ̂1 and additive component
ĝ1 are estimated; remember that the one-dimensional FPPR (i.e. D = 1) is
also called functional index model. Similarly to left panels of Figure 9, ρ̂1 (con-
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Figure 10: FPPR outputs for petroleum industry dataset: estimated functional
direction and additive component.

tinuous black thick line) is superimposed on the 60 original spectra (in gray).
This graphics indicates that the wavelengths playing a major role in terms of
prediction are located just after 1200 nm and just before 1400 nm; they do not
correspond to the peaks of the spectra. The right panel emphasizes again the
nonlinear feature of the link function ĝ1.

5.2 Parsimonious nonlinear regression model
In our examples, if we forget the implicit order of the wavelengths, the ith dis-
cretized spectrometric curves Xi(λ1), . . . , Xi(λp) can be viewed as a standard p-
dimensional covariate X = {Xi,1, . . . , Xi,p} with, for j = 1, . . . , p, Xj = Xi(λj).
So, our challenge is to regress nonlinearly a scalar response on a quite high-
dimensional covariate. A different but useful way of handling such a situation
consists to propose, for i = 1, . . . , n, the following parsimonious nonparametric
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regression:
Yi = rJ (X

J
i ) + εi,

where J is an unknown small subset of {1, . . . , p} and XJi stands for the sub-
vector {Xi,j ; j ∈ J } and rJ is an unknown multivariate smooth function. This
model is parsimonious in that sense it assumes E(Yi|Xi) = E(Yi|XJi ). This
means that only few covariates are nonparametrically active; the subset J is
usually called active set of covariates. This model is a direct extension of the
sparse linear regression methods intensively studied in the literature (see for
instance least absolute shrinkage and selection operator [40], smoothly clipped
absolute deviation [14], least angle regression [12], Dantzig selector [7] and [5]
for a recent overview on this topic).

So, the main aim is to estimate the active subset J and the corresponding
multivariate regression function rJ . [18] developed a first approach by using
a stepwise forward algorithm based on minimizing a cross-validation criterion.
Recently, [17] improved significantly this last work by proposing a new algo-
rithm enlarging the class of possible combinations of covariates retained at each
step. Here, we implemented this new algorithm in order to estimate the active
subset; a standard linear local regressor (see for instance [13]) is used to derive
the estimator rNOV AS of the corresponding multivariate regression function rJ
where the abbreviation NOVAS stands for NOnparametric VAriable Selection.
In this sparse model, the set of constraints CNOV AS is just the set of real-valued
multivariate functions satisfying regularity assumptions like continuity, differ-
entiability, etc.

We again follow the same scheme for assessing the out-of-sample perfor-
mance of NOVAS which are displayed in Figure 11. It is worth noting that

(a) Food industry dataset (b) Petroleum prediction problem
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Figure 11: NOVAS with original spectra: out-of-sample performance.

the predictive power of NOVAS is similar to that obtained with the functional
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projection pursuit regression (FPPR). What about the interpretability of the
NOVAS method? Figure 12 gives an interesting answer to this question which
is obtained when NOVAS is rerun on the whole sample for both datasets. In our

(a) Food industry dataset (b) Petroleum prediction problem
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Figure 12: NOVAS with original spectra: selected wavelengths.

situation, selecting covariates amounts to retain wavelengths. So, the vertical
black lines, superimposed on the original curves (in gray), identify the location
of the selected wavelengths. About the food industry example (Figure 12 (a)),
four wavelengths are retained: 912 nm, 914 nm, 930 nm and 942 nm. This
result confirms what was observed with the FPPR: the secondary peak (around
930 nm) and the valley just after (around 942 nm) plays a major role. In addi-
tion, NOVAS emphasizes two wavelengths just before the secondary peaks (912
nm and 914 nm). Figure 12 (b) displays the six selected wavelengths for the
petroleum industry dataset. It corroborates also the conclusions of FPPR: three
wavelengths just after the first main peak (1210 nm, 1218 nm and 1224 nm)
and one just before the second main peak (1372 nm). Two additional wave-
lengths are retained (1408 nm and 1420 nm) which highlight the importance of
the range just after this second main peak.

6 Boosting approach
Boosting methodology is a generic statistical approach aiming to combine several
methods. Generally, one has at hand several statistical technics for analyzing a
given dataset. Most of the time, people implements them step by step and try
to extracts all relevant informations. Another strategy consists in combining
the obtained informations and to rerun the methods by integrating these new
knowledges. This is what we propose to do here in a basic but efficience way.

1. Starting point: FNPR. The key point is the crucial information obtained
thanks to FNPR (functional nonparametric regression): the twice (resp.
once) differentiated curves are much more informative than the original
ones for the food (resp. petroleum) industry dataset. So, the simple idea is
to apply NOVAS (nonparametric variable selection) on the differentiated
spectrometric curves.
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2. Nonparametric variable selection (NOVAS). We propose to boost NOVAS
by considering the once or twice differentiated spectra according to the
targeted dataset instead of the original ones. Figure 13 details the re-
sults; the median of RMSEP (rNOV AS) is around 0.009 (resp. 0.05) for
the food (resp. petroleum) example. The predictive power is significantly
improved when replacing original curves with their once or twice differen-
tiated counterpart. Next plots (see Figure 14) locates (vertical black lines)

(a) Food industry dataset (b) Petroleum industry dataset
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Figure 13: Out-of-sample performance of NOVAS: (a) (resp. (b)) uses twice
(resp. once) differentiated curves.

the selected wavelengths for each dataset which are superimposed on their
corresponding differentiated curves. About the food industry example (see

(a) Food industry dataset (b) Petroleum industry dataset
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Figure 14: NOVAS: selected wavelengths.

Figure 14 (a)), the seven selected wavelengths (884 nm, 902 nm, 924 nm,
932 nm, 946 nm, 1018 nm and 1042 nm) are dispatched along the whole
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range 850 nm - 1050 nm, identifying some particular shapes (valleys and
peaks) of the twice differentiated curves. Figure 14 (b) focuses on the
petroleum industry problem. For this dataset, only two wavelengths have
been selected emphasizing the major role played by the wavelengths in the
range 1200 nm - 1300 nm.

So, integrating in NOVAS the information derived from FNPR allows
to observe a predictive gain in comparison with what we obtained when
NOVAS was applied on the original curves.

3. Back to the functional projection pursuit (FPPR). Considering informa-
tions coming from FNPR and NOVAS, we propose to boost FPPR by
taking benefit of our current knowledge. FNPR indicates that the twice
(resp. once) differentiated spectra are more informative for the food (resp.
petroleum) industry dataset. In addition, NOVAS tell us that the whole
range of wavelengths (i.e. 850 nm - 1050 nm) is relevant for the food exam-
ple whereas only wavelengths in the range 1200 nm - 1300 nm seems to be
important for the petroleum predictive problem. Consequently: food in-
dustry dataset → FPPR is applied to the twice differentiated spectra and
the whole range of wavelengths is considered, petroleum industry dataset
→ FPPR is applied to the once differentiated spectra and we take into
account only wavelengths in the range 1200 nm - 1300 nm.

(a) Out-of-sample performance. Figure 15 gives an idea on the predictive

(a) Food industry dataset (b) Petroleum industry dataset
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Figure 15: Out-of-sample performance of FPPR: (a) (resp. (b)) uses twice (resp.
once) differentiated spectra.

quality of FPPR with conditions of use detailed just before. When
comparing the results of FPPR with the original curves, it is clear
that FPPR works much better in this setting.
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(b) Interpretable outputs. For the food (resp. petroleum) industry ex-
ample, a 2-dimensional (resp. 1-dimensional) FPPR is estimated.
Figure 16 displays the outputs for the food industry example. The
second derivatives of spectra are plotted in the background (in gray)
with a suitable scale. The first estimated functional direction fits the
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Figure 16: FPPR outputs for food industry dataset: estimated functional di-
rections and additive components from twice differentiated spectra.

main shape of the twice differentiated spectra whereas the second
estimated functional direction identifies clearly the first main min-
imum reached by the second derivative of the spectra (around 930
nm). These results corroborates what was obtained previously with
NOVAS. About the petroleum industry dataset, FPPR outputs are
displyed in Figure 17; the first derivative of the rescaled spectra are
plotted in the background (in gray). The functional direction indi-
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Figure 17: FPPR outputs for food industry dataset: estimated functional di-
rections and additive components from twice differentiatrd spectra.

cates a slight valley (around 1240 nm) which seems to be important
for predicting octane numbers.
As conclusion, one can say that combining informations derived from
FNPR and NOVAS allows to use FPPR in a more efficience way.

7 Resources available online for functional data
analysis

We focused only on four regression models to analyze our datasets. Of course,
many other methods can be applied. So, before ending this work, one mentions
for practitioners various resources available online dealing with functional data.
The R [34] programming environment is a useful software integrating several
packages developed for handling functional data:

• the fda package [37] for linear models dealing with functional data analysis,

• the fdaMixed package [28] for mixed model taking into account functional
data,

• the fda.usc package [15] includes complementary exploratory and descrip-
tive tools dealing with functional data analysis,

• the fds package [38] contains functional data sets; the petroleum industry
dataset can be found in this package,

• the fpca package [33] deals with the restricted maximum likelihood esti-
mation for functional principal components analysis,
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• the ftsa package [25] for functional time series analysis,

• the MFDF package [11] is specially designed to model functional data in
finance by using generalized linear model,

• the rainbow package [39] for visualizing functional data,

It is worth noting that all analyses and figures presented i this work have been
provided by R. In addition of the previous R packages, other useful resources
are available online:

• the companion website of [36] gives numerous complementary materials
at www.functionaldata.org,

• the companion website of [22] proposes nonparametric approaches for han-
dling functional data; datasets, R routines, examples of use and much
more are available at http://www.math.univ-toulouse.fr/staph/npfda. It
is worth noting that all methods presented in this work have been imple-
mented with R; the R routines corresponding to FPPR and NOVAS will
be available on this website,

• the PACE website which proposes useful materials and package for Func-
tional Data Analysis and Empirical Dynamics written in Matlab; these
methods are able to handle sparsely as well as densely sampled functional
data.

8 Conclusion
The main contribution of this paper is to detail and compare the results of
four regression models when explaining a scalar responses with near-infrared
spectra. Although two of them are now very standard (the functional linear
model and the functional nonparametric regression), the two others (functional
projection pursuit and parsimonious model) are very recent. The intermediate
dimensionality of these two new functional regression approaches is a key point;
it provides useful interpretable outputs. Moreover, their flexibility is sufficiently
high to catch nonlinear relationship leading to good predictive behaviour. But,
if we boost them by integrating the most relevant informations coming from
standard use of all these methods, it is possible to improve significantly their
predictive performance as well as their interpretability.

Of course, our connecting thread in this work was two spectrometric datasets
but the same methodology can be extended to other kind of functional data. For
instance functional processes (time series may be viewed as a particular case of
functional process; see for more details the monography [4]) provides numerous
examples containing dependent functional data and the implementation of the
presented methods remains valid for such datasets. In the near future, one can
expect to develop useful interpretable tools for handling much more complex
data like collection of surfaces, hyperspectral images, etc. It is worth noting
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that the functional projection pursuit and the nonparametric variable selection
can be implemented easily with high-dimensioned covariates (i.e. not necessary
functional variable) with possible application to genomics and more generally
to all domains dealing with high-dimensional data.

To conclude, models of intermediate dimensionality in the high-dimensional
setting is certainly a highway for deriving new useful statistical methods.
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