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Abstract: We perform a theoretical and numerical investigation of the time-average of energy ex-
change among modes of reduced order models (ROMs) of fluid flows. We are interested in the sta-
tistical equilibrium problem, and especially in the possible forward and backward average transfer of
energy among ROM basis functions (modes). We consider two types of ROM modes: eigenfunctions
of the Stokes operator and proper orthogonal decomposition (POD) modes. We proved analytical re-
sults for both types of ROM modes and we highlight the differences between them. We also investigate
numerically whether the time-average energy exchange between POD modes is positive. To this end,
we utilize the one-dimensional Burgers equation as a simplified mathematical model, which is com-
monly used in ROM tests. The main conclusion of our numerical study is that, for long enough time
intervals, the time-average energy exchange from low index POD modes to high index POD modes is
positive, as predicted by our theoretical results.

Keywords: ROM, long-time behavior, Reynolds equations, statistical equilibrium.

1. Introduction

In this note we combine some results on the long-time averaging of fluid equations with the recently
developed techniques for reduced order model (ROM) development. In this preliminary work we start
proving some analytical results that characterize the time-averaged effect of the exchange of energy
between various modes, both in the case of the computable decomposition made with proper orthogonal
decomposition (POD) type basis functions and with the abstract basis made with eigenfunctions. We
will show that the results obtainable with a generic (but computable) basis are less precise than those
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obtainable with the abstract spectral basis, the difference coming from the lack of orthogonality of the
gradients of the POD basis functions.

We then provide a few numerical examples. Concerning the analytical results we will prove partial
results concerning the energy exchange between large and small scales, showing the difference between
the use of a spectral type basis, versus a POD one. In particular, we are interested in results connected
to the statistical equilibrium problem, which can be deduced in a computable way by a long-time
averaging of the solutions. We want to investigate the possible forward and backward average transfer
of energy. The properties of a turbulent flow are computable (and relevant) only in an average sense.
In this respect, we want to follow the most classical approach dating back to Stokes, Reynolds, and
Prandtl of considering long-time averages of the solution as the quantity to be computed or observed.
Therefore, we do not need to consider statistical averages and link them with time averaging by means
of unproved ergodic hypotheses.

To introduce the problem we will consider, we recall that a Newtonian incompressible flow (with
constant density) can be described by the Navier-Stokes equations

∂tu − ν∆u + (u · ∇) u + ∇p = f in Ω × (0,T ),
∇ · u = 0 in Ω × (0,T ),

u = 0 on ∂Ω × (0,T ),
u(·, 0) = u0 in Ω,

(1.1)

when the motion takes place in a smooth and bounded domain Ω ⊂ R3 with solid walls. The unknown
are the velocity field u and the scalar pressure p, and the positive constant ν > 0 is the kinematic
viscosity. The key parameter to detect the nature of the problem is the non-dimensional Reynolds
number, which is defined as

Re =
UL
ν
,

where U and L are a characteristic velocity and length of the problem. In realistic problems, the
Reynolds number can be extremely large (in many cases of the order of 108, but up the order of 1020

in certain geophysical problems). For simplicity in the notation, we use as a control parameter the
viscosity and hence we assume that it is very small, hence the effect of the regularization (similar to
the diffusion in heat transfer) due to the Laplacian is negligible and the behavior of solutions is really
turbulent and close the motion of ideal fluids. Due to the well-known difficulties in performing direct
numerical simulations (DNS), it is nowadays a well-established technique that of trying to reduce the
computational efforts by simulating only the largest scales, which are nevertheless the only ones really
observable and the only ones which are needed in order to optimize macroscopic properties as drag or
lift in the craft design In this framework, the large eddy simulation (LES) methods, which emerged in
the last 30 years, are among the most popular, and they found a very relevant role with both theorists
and practitioners. For recent LES reviews see for instance the following monographs [31, 2, 20, 5].

The LES methods are in many cases very well set and both theoretically and computationally ap-
pealing, especially for problems without boundaries, but many difficulties and open problems arise
when facing solid boundaries. In most cases the design of efficient LES methods is guided by deep
properties of the solutions, as emerging from fine theorems of mathematical analysis. Beside this, the
ultimate goal of having a golden standard is far from being obtained and large families of methods
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(wave-number asymptotics, differential filters, α-models) attracted the interest of different communi-
ties, spanning from the pure mathematicians, to the applied geophysicist and mechanical engineers, as
well as computational practitioners. For this reasons we believe that it is important to have some well-
defined and clearly stated guidelines that can be adapted to different problems, so that the methods can
be improved with insight not only from experts in modeling, but also from mathematicians, physicists,
and computational scientists.

In this respect, we point out that very recently the use of other (more flexible and computationally
simpler) ways of finding approximate systems has become very popular. The LES methods itself can
be specialized or even glued with other ways of determining approximate and much smaller systems,
which are computable in a very efficient way. For instance, reduced order modeling is increasingly
becoming an accepted paradigm, in which applications to fluids are still being developed [14, 18, 27,
28, 30].

The basic ansatz at the basis of the use of these models is the approximation of the velocity by a
truncation of the series

u =

∞∑
k=1

ukwk,

where {wk}k is a basis constructed by using the POD, not made with eigenfunctions of the Stokes
operator, and the L2-projections are evaluated as follows

uk =

∫
Ω

u · wk dx∫
Ω
|wk|

2 dx
.

The appealing property of this approach is that the choice of the basis is adapted to and determined by
the problem itself. Generally the basis is chosen after a preliminary numerical computation, hence it
contains at least the basic features of the solution and geometry of the problem to be studied. The other
basic fact is that the kinetic energy of the problem is the key quantity under consideration; in fact the
L2-projection is used to determine the approximate velocity and also the energy content in the basis
construction. To determine the number r ∈ N such that the solution is projected over the span generated
by the (orthogonal) functions Vr := {w1, . . . ,wr}, generally it is assumed that the projection of the
solution over Vr contains a large percentage (say 80%) of the total kinetic energy of the underlying
system.

It turns out that a basis associated with the problem at hand can greatly improve the effectiveness
of the ROM. Its proper choice can be of great interest in applications to fluid flows [32, 33, 35]. The
main goal and novelty of the present paper is to try to combine results on the long-time behavior of
fluid flows, especially in the case of statistical equilibrium, with reduced order modeling, in order to
capture both the long-time averages and the energy exchange of the ROM solutions. In this respect, we
are extending to the POD setting the results based on statistical solutions by Foias et al. [10, 11] and
those more recently obtained for time-averages by Lewandowski et al.[21, 3]. In this respect, the main
theoretical results of this paper, stated in Theorem 4.2 and 4.3 below, can be viewed as a spectral version
of the results of [21, 3]. It tells that low frequency modes yield a Reynolds stress which is dissipative in
mean, the total spatial mean work of it being larger than the long time average of the dissipation of the
fluctuations, which is consistent with observations and results in [3, 10]. However, the analysis shows
that the triade interaction between high and low frequency modes yield an additional non positive term
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in the budget between the Reynolds stress of high modes and the corresponding mean dissipation, that
may be non dissipative that permits an inverse energy cascade, which is not in contradiction with the
fact that the total Reynolds stress is dissipative in mean.

The rest of the paper is organized as follows: In Section 2, we outline the general framework for
ROMs of fluid flows, and we display the exchange of energy between large scales and small scales for
two ROM bases: the POD and the Stokes eigenfunctions. In Section 3, we present some preliminaries
on long-time averages. In Section 4, we prove the main theoretical results for the average transfer of
energy for ROMs constructed with the POD and the Stokes eigenfunctions. In Section 5, we investigate
the theoretical results in the numerical simulation of the one-dimensional Burgers equation. Finally, in
Section 6, we draw conclusions and outline future research directions.

2. Reduced Order Modeling

As outlined in the introduction, one key quantity in the pure and applied analysis of the Navier-
Stokes equations is the kinetic energy, since it is both a meaningful physical quantity, but also the
analysis of its budget is at the basis of the abstract existence results (cf. Constantin and Foias [6]) and
also of the conventional turbulence theories of Kolmogorov [17]. It is well-known that after testing the
NSE (1.1) by u and integrating over the space-time, one (formally) obtains the global energy balance

1
2
‖u(t)‖2 + ν

∫ t

0
‖∇u(s)‖2 ds =

1
2
‖u0‖

2 +

∫ t

0

∫
Ω

f · u dxds.

At present we are only able to prove that the above balance holds true with the sign of “less or equal”
for the class of weak (or turbulent) solutions that we are able to construct globally in time, for any given
initial datum, viscosity, and square summable external force, without restrictions on the size. It is of
fundamental importance in many problems in pure mathematics to understand under which hypotheses
the equality holds true. We are now focusing on the “global energy” which is an averaged quantity,
since it is the integral of the square modulus of the velocity over the entire domain. We also point
out that at the other extreme one can deduce, without the integration over the domain, the point-wise
relation

∂t
|u|2

2
+ |∇u|2 + div

(
∇|u|2

2
+

u|u|2

2
+ p u

)
= f · u.

In between there is the so called “local energy” which can be obtained by multiplying the NSE by u φ,
where φ is a bump function. The goal is to show that∫ T

0

∫
Ω

|∇u|2φ dxdt =

∫ T

0

∫
Ω

[
|u|2

2
(∂tφ + ∆φ) +

(
|u|2

2
+ p

)
u · ∇φ + f · u φ

]
dxdt

holds (at least with the inequality sign) for all smooth scalar functions φ ∈ C∞0 ((0,T ) × Ω) such that
φ ≥ 0. The validity of such an inequality is one of the requests to use the partial regularity results, but it
is also one of the requests to be satisfied by weak solutions constructed by numerical or LES methods.
In this respect, see Guermond, Oden and Prudhomme [13] and also [4].

In this paper we study the global energy in the perspective that it can be reconstructed or well
approximated by the POD basis functions {wk}.
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The fact that the functions wk can be constructed to be orthonormal with respect to the scalar product
in (L2(Ω), ‖ . ‖) allows us to evaluate the kinetic energy easily by the following numerical series

E(u) =
1
2

∞∑
k=1

‖uk‖
2.

Since we are going to use only a reduced number of ROM modes, it is relevant to consider the energy
contained in functions described by a restricted set of indices. Hence, following the notation in [11], if
we define

um′,m′′ :=
m′′∑

k=m′
ukwk,

then the kinetic energy content of um′,m′′ is simply evaluated as

E(um′,m′′) =
1
2

m′′∑
k=m′
‖uk‖

2.

We denote by Pm the projector over the subspace Vm spanned by the functions {wk}1,...,m and we want to
investigate the energy transfer between the various modes, together with averaged long-time behavior
associated with this splitting.

We are going to adapt well-known studies made by the decomposition in small and large eddies.
This would be the case if the functions wk are chosen to be the eigenfunctions of the Stokes operator,
hence associated with large and small frequencies. In our setting the basis is determined by the solution
of a simplified problem, which can be treated computationally, hence they are orthonormal in L2(Ω),
but we cannot expect that their gradients are also orthogonal.

For the NSE, the standard ROM is constructed as follows:

(i) choose modes {w1, . . . ,wd}, which represent the recurrent spatial structures of the given flow;

(ii) choose the dominant modes {w1, . . . ,wm}, with m ≤ d, as basis functions for the ROM;

(iii) use a Galerkin truncation um =
∑m

j=1 a j w j;

(iv) replace u with um in the NSE;

(v) use a Galerkin projection of NSE (um) onto the ROM space Xm := span{w1, . . . ,wm} to obtain a
low-dimensional dynamical system, which represents the ROM:

ȧ = A a + a> B a , (2.1)

where a is the vector of unknown ROM coefficients and A, B are ROM operators;

(vi) in an offline stage, compute the ROM operators;

(vii) in an online stage, repeatedly use the ROM (for various parameter settings and/or longer time
intervals).
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Hence, there is a very natural splitting of the velocity field u into two components, the part coherent
with the basis expansion associated with the less energetic modes and the remainder. This can be
formalized as follows

u = y + z,
where, for m ∈ N which can be selected computationally (based, e.g., on the relative kinetic energy
content in the first m POD modes, but other choices relative to the enstrophy are possible) in order to
have a significant amount of the energy content of the flow

y =

m∑
k=1

ukwk = Pmu and z =

+∞∑
k=m+1

ukwk = (I − Pm) u.

We observe that we are considering the functions wk as divergence-free. Generally they are not “ex-
actly divergence-free,” but numerically we can consider that they have vanishing divergence, hence in
the computations which will follow the pressure terms can be dropped by a standard Leray projection.
It will be nevertheless interesting to consider also bases which are not divergence-free. Relevant re-
sults, due to the computational simplifications, could be also derived by the combination of ROM with
artificial compressibility methods, as those introduced in [8, 12].

In addition, we consider the external force as stationary, that is f = f(x) ∈ L2(Ω) and we look
for conditions holding at statistical equilibrium. Our purpose is to determine –if possible– the long-
time behavior of y and to analyze the energy budget between low and high modes in the orthogonal
decomposition determined by the functions wk.

As usual in many problems fluid mechanics, we use the Hilbert space functional setting with

V = {ϕ ∈ D(Ω)3, ∇ · ϕ = 0},

H =
{
u ∈ L2(Ω)3, ∇ · u = 0, u · n = 0 on Γ

}
,

V =
{
u ∈ H1

0(Ω)3, ∇ · u = 0
}
,

where Γ = ∂Ω is the boundary of Ω, and n denotes the outward normal unit vector. Moreover, V ′ is the
topological dual space of V . We will also denote by < , > the duality pairing between V and V ′. We
recall thatV is dense in H and V for their respective topologies [9, 22].

Once having projected L2(Ω)3 over the subspace H of divergence-free and tangential vector fields
by means of the Leray projection operator P, we have the following abstract (functional) equation in H

du
dt

+ νAu + B(u,u) = P f,

where A := −P ∆, while B(u,u) := P ((u · ∇) u). As usual in this analysis (see for instance [11]) we
can start by assuming that the input force can be decomposed within a finite sum of basis functions (or
that is belongs to Xm, which will be clarified in the next section section, in particular by Theorem 2.1),
hence

Pm f = f.
We wish to split the Navier-Stokes equations into a coupled system for y ∈ PmH and z ∈ (PmH)⊥ as
follows

dy
dt
− νPm(∆u) + PmB(y + z, y + z) = Pm f,

dz
dt
− ν(I − Pm)(∆u) + (I − Pm)B(y + z, y + z) = 0,

(2.2)
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where we used that Pm and the time derivative commute.
Once we evaluate the kinetic energy, since Pmy = y and (I − Pm) z = z we get, by integrating by

parts and by using the fact that functions vanish at the boundary, that

−ν

∫
Ω

Pm(∆u) · y dx = −ν

∫
Ω

(∆u) · y dx = −ν

∫
Ω

(∆y + ∆z) · y dx = ν ‖∇y‖2 + ν

∫
Ω

∇y : ∇z dx,

−ν

∫
Ω

(I − Pm)(∆u) · z dx = −ν

∫
Ω

(∆u) · z dx = −ν

∫
Ω

(∆y + ∆z) · z dx = ν ‖∇z‖2 + ν

∫
Ω

∇y : ∇z dx.

In order to have a system of partial differential equations tractable from the theoretical point of view,
at this point we need some modeling assumptions. Luigi, do we really need the following assumption?
In particular, since the viscosity ν is small, and since the interaction between the more energetic and
less energetic basis functions is weak, we can suppose that the integral

ν

∫
Ω

∇y : ∇z dx,

even if non vanishing is negligible, at least in a first approximation, in the long-time. We will show
later, at least on the numerical tests that this assumption is reasonable and that the results obtained by
using this approximation are numerically sound.

In this way we can obtain the following system

1
2

d
dt
‖y‖2 + ν‖∇y‖2 + ν(∇y,∇z) + (B(y + z, y + z), y) = (f, y),

1
2

d
dt
‖z‖2 + ν‖∇z‖2 + ν(∇y,∇z) + (B(y + z, y + z), z) ≤ 0,

(2.3)

We point out for the reader that it is at this point that we have a first fundamental difference with
respect to the classical splitting based on the use of a spectral basis. In the case of a basis made of
eigenfunctions, we show now the exact derivation of the same system of equations, which is possible
if the eigenfunctions are used. Luigi, do we show now or in Section 2.1? We recall that apart from
extremely simple geometries and provided one is willing to use in a systematic way special functions
as the Bessel ones or the spherical harmonics (which are nevertheless time consuming in their evalu-
ation), the explicit calculations in numerical tests will not be so easy to be obtained in a precise and
efficient way. These are the two basic relationships that we will use to infer the behavior and transfer
of the kinetic energy between y and z. Notice that the balance relation for y, involving just a finite
combination of rather smooth functions is an equality, while the second one is an inequality. In fact,
the second one can be derived by a limiting argument and in the limit the lower semi-continuity of the
norm will produce the inequality.

Since the tri-linear term (B(u,u),w) is skew-symmetric with respect to the last two variables, we
obtain

1
2

d
dt

E(y) + ν‖∇y‖2 + ν(∇y,∇z) = (B(y, y), z) − (B(z, z), y) + (f, y),

1
2

d
dt

E(z) + ν‖∇z‖2 + ν(∇y,∇z) ≤ −(B(y, y), z) + (B(z, z), y).
(2.4)

This is a formal setting, which is obviouslsy true for strong solutions of the NSE, where the inequality
in (2.4) is an equality. When considering weak solutions, the integral (B(z, z), z) might be not defined
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for regularity issues. However, one can derive (2.4) by a double frequency truncation or a regularization
of the operator B by considering (B(z ? ρε, z), z) for a given molifier ρε and passing to the limit when
ε→ 0. Details are standard and out of the scope of the present paper.

We observe that −(B(y, y), z) is the energy flux induced in the more energetic terms by the inertial
forces associated to less energetic modes, while −(B(z, z), y) is the energy flux induced in the less
energetic terms by the inertial forces associated to more energetic modes. In a schematic way we can
decompose the rate of transfer of kinetic energy em(u) into two terms as follows

em(u) := e↑(u) − e↓(u) with e↑(u) := −(B(y, y), z), e↓(u) := (B(z, z), y). (2.5)

We also use the following notation:
Em(u) = −ν(∇y,∇z). (2.6)

Hence, we can rewrite (2.4) as

1
2

d
dt

E(y) + ν‖∇y‖2 = Em(u) − em(u) + (f, y),

1
2

d
dt

E(z) + ν‖∇z‖2 ≤ Em(u) + em(u).
(2.7)

2.1. On the spectral decomposition

In this section we compare the results which can be proved if the spectral decomposition, i.e. that
made with eigenfunctions of the Stokes operator {Wk} is used, instead that of a generic POD basis.
We recall that, by classical results about compact operators in Hilbert spaces there exists a sequence of
smooth functions (depending on the smoothness of the bounded domain Ω) and an increasing sequence
of positive numbers such that

AWk = λkWk and
∫

Ω

Wk · W j dx = δk j.

Since each one the functionsWk solves the following Stokes system AWk = λkWk, then it follows by
an integration by parts that ∫

Ω

∇Wk : ∇W j dx = 0 for k , j,

hence also the V-orthogonality of the family {Wk}k∈N.
We consider now the usual decomposition by eigenfunctions associated with low and high frequen-

cies

u = y + z :=
m∑

k=1

ckWk +

∞∑
k=m+1

ckWk = Pm u + (I − Pm) u,

where Pm is the projection over the subspace generated by {Wk}k=1,...,m. Our main result is based on a
standard result about the projector Pm, that can be found in [23, Appendix A.4, Theorem 4.11]:

Theorem 2.1. The projector Pm can be defined as a continuous endomorphism over V, H and V ′, and
one has

||Pm||L(V,V) ≤ 1, ||Pm||L(H,H) ≤ 1, ||Pm||L(V′,V′) ≤ 1.
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Thanks to this result, it is posiible to decompose the equations for the velocity, which yields,

− ν

∫
Ω

Pm(∆u) · y dx = −ν

∫
Ω

∆y · y dx = ν ‖∇y‖2,

− ν

∫
Ω

(I − Pm) (∆u) · z dx = −ν

∫
Ω

∆z · z dx = ν ‖∇z‖2,

since Pm∆u = ∆Pm u = ∆y and also (I − Pm)(∆u) = ∆(I − Pm) u = ∆z. Thus, we directly obtain the
system

1
2

d
dt
‖y‖2 + ν‖∇y‖2 + (B(y + z, y + z), y) = (f, y),

1
2

d
dt
‖z‖2 + ν‖∇z‖2 + (B(y + z, y + z), z) ≤ 0,

(2.8)

which is more tractable than (2.3) from many points of view.

3. Preliminaries on long-time averages

Since we consider long-time averages for the NSE, we must consider solutions which are global-
in-time (defined for all positive times). Due to the well-known open problems related to the NSE, this
forces us to restrict ourselves to Leray-Hopf weak solutions [6, 22]. By using a then natural setting we
take the initial datum u0 in H. The classical Leray-Hopf result of existence (but not uniqueness) of a
global weak solution u to the NSE holds when f ∈ V ′, and the velocity u satisfies

u ∈ L2(R+; V) ∩ L∞(R+; H).

Notice that consider in this paper the case where f is time independant for the simplicity. However,
the following results can be extended to the case where f = f(t) is time dependant, for f belonging to a
suitable class (see in [3]).

In order to properly set what we mean by long-time-averaging, let ψ : R+ ×Ω→ RN be any tensor
field related to a given turbulent flow (N being its order). The time-average over a time interval [0, t] is
defined by

Mt(ψ)(x) :=
1
t

∫ t

0
ψ(s, x) ds for t > 0. (3.1)

According to the standard turbulence modeling process, we then apply the averaging operator Mt to
NSE (1.1) and also to (2.2), to study the limits when t → +∞. We recall that the long-times averages
represent one of the few observable and computable quantities associated to a highly variable turbulent
flow. We will adopt the following standard notation for the long-time average of any field ψ

ψ(x) := lim
t→+∞

Mt(ψ)(x), (3.2)

whenever the limit exists. (Without too much restrictions we can suppose that the limits we write exist,
at least after extracting sub-sequences leaving the mathematical difficulties, which can be treated with
generalized Banach limits, for a more general framework). Within this theory we can decompose the
velocity as follows

u = u + u′,
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where u′ represent the so called turbulent fluctuations. We recall that time-averaging has been intro-
duced by O. Reynolds [29], at least for large values of t, and the ideas have been widely developed by
L. Prandtl [24] in the case of turbulent channel flows. The same ideas have been also later considered in
the case of fully developed homogeneous and isotropic turbulence, such as grid-generated turbulence.
In this case the velocity field is postulated as oscillating around a mean smoother steady state, see for
instance G.-K. Batchelor [1]. For further details on the role of time averaging in turbulence, after the
work of Stokes and Reynolds, we can recall a few recent papers and books [2, 3, 5, 10, 16, 19, 21],
where aspects of computation and modeling are studied.

We now observe that, by taking the time-averages of the NSE we have the following estimates, see
Lewandowski [21, Prop. 2.1]

‖u(t)‖2 ≤ ‖u0‖
2 e−νCPt +

‖f‖2

ν2µ

(
1 − e−νCPt), ∀ t > 0

1
t

∫ t

0
‖∇u(s)‖2 ds ≤

‖f‖2

ν2 +
‖u0‖

2

νt
, ∀ t > 0,

(3.3)

where CP is the best constant in the Poincaré inequality

Cp‖u‖2 ≤ ‖∇u‖2 ∀u ∈ H1
0(Ω).

The above inequalities show that both ‖u(t)‖2 and 1
t

∫ t

0
‖∇u(s)‖2 ds are uniformly bounded, hence we

have the following result

Theorem 3.1 (cf. [21, 3]). Let u0 ∈ H, f ∈ V ′, and let u be a global-in-time weak solution to the
NSE (1.1). Then, there exist

1. a sequence {tn}n∈N such that lim
n→∞

tn = +∞;

2. a vector field u ∈ V;

3. a vector field B ∈ L3/2(Ω)3;

4. a second order tensor field σ(r) ∈ L3(Ω)9;

such that it holds:

i) When n→ ∞,
Mtn(u) ⇀ u weakly in V,

Mtn
(
(u · ∇) u

)
⇀ B weakly in L3/2(Ω)3,

Mtn(u
′ ⊗ u′) ⇀ σ(r) weakly in L3(Ω)9;

ii) The Reynolds averaged equations:
(u · ∇) u − ν∆u + ∇p + ∇ · σ(r) = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ.

(3.4)

hold true in the weak sense;
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iii) The equality F = B − (u · ∇) u = ∇ · σ(r) is valid inD′(Ω);

iv) The following energy balance (equality) holds true

ν ‖∇u‖2 + (∇ · σ(r),u) =< f,u >;

v) The tensor σ(r) is dissipative in average or, more precisely, the following inequality

ε := ν‖∇u′‖2 ≤
∫

Ω

(∇ · σ(r)) · u dx (3.5)

holds true.

It is important to observe that the long-time limit is characterized by the solution of the system (3.4),
which is similar to the Navier-Stokes equations, but which contains an extra term, coming from the
effect of fluctuations, which has the mean effect of increasing the dissipation.

We observe that this is related to the long-time behavior of solutions close to statistical equilibrium.
The study of the long-time behavior dates back to pioneering works of Foias and Prodi on deterministic
statistical solutions, see for instance [11]. Their interest is mainly devoted to finding measure in the
space of initial data to be connected with the long-time limits. Here we follow a slightly different path,
as in [3, 21], in order to characterize in a less technical way the long-time behavior, without resorting
to any ergodic-type result and also with the perspective that long time averages are computable or at
least can be approximated in a clear way.

4. Average transfer of energy at equilibrium

Our goal is now to characterize in some sense the energy transfer between the two functions y, z of
the expansion and to determine –if possible– the sign of em(u), at least in an average sense.

The point concerning the exchange of energy between low and high modes is in the same spirit as
the results recalled in Foias, Manley, Rosa, and Temam [11, Chap. 5] and which follows from results
obtained in a more heuristic way by Kolmogorov [17].

We first observe that the L2-orthogonality of the POD decomposition we use implies that

‖u‖2 = ‖y + z‖2 = ‖y‖2 + ‖z‖2.

Hence, from the uniform L2-bound on u it follows that both y and z are uniformly bounded in time.
From this observation we can deduce the following result, reminding that em and and Em are defined
by equations (2.5) and (2.6), and Mt is defined by equation (3.1).

Theorem 4.1. There exists a sequence {tn} such that tn → +∞ and a field z ∈ H such that

Ztn = Mtn(z) ⇀ z weakly in H, (4.1)

and
lim inf

t→+∞
Mt(em(u) + Em(u)) ≥ 0. (4.2)
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Proof. Let us observe first that by the energy inequality (3.3), we easely deduce that (Mt(z))t>0 is
bounded in H, hence the first assertion of the statement and (4.1). We next prove (4.2). To do so, we
average with respect to time with the operator Mt the balance equation (2.7) for E(z), which yields

1
2t
‖z(t)‖2 −

1
2t
‖z(0)‖2 + νMt(‖∇z||2) ≤ Mt(em(u) + Em(u)). (4.3)

By using the energy inequality (3.3) once again, we see that the first two terms vanish as t → +∞ and
Mt(‖∇z||2) is bounded. Therefore, (4.3) yields

0 ≤ ν lim inf
t→+∞

Mt(‖∇z||2) ≤ lim inf
t→+∞

Mt(em(u) + Em(u)),

hence (4.2). We observe that in this case we do not have any direct estimation on the behavior of the
H1-norm. �

In the case we can assume that the limit exists, we also have the following result.

Corollary 4.1. Let us assume the limit of Mtn(em(u)) for n→ +∞ exists, and that

lim inf
T→+∞

ν

T

∫ T

0
(∇z(s),∇y(s)) ds = lim inf

t→∞
Em(u) ≥ 0.

Then

em(u) = lim
n→+∞

1
tn

∫ tn

0
em(u(s)) ds ≥ 0.

This result can be interpreted as that, beyond the range of injection of energy, the average net transfer
of energy occurs only into the small scales. This occurs if the term of interaction between gradients
of large and small scales is negligible, in the limit ofS long times. This assumption is not proved
rigorously, but we will see it is satisfied in the numerical tests, with a good degree of approximation
(see Section 5). However, when one uses the eigenvectors of the Stokes operator as POD basis, this
is automatically satisfied since this basis is also orthogonal for the H1 dot product, so that in this case
Em(u) = 0.

4.1. The spectral case

The results of the previous section can be made much more precise in the case of decomposition
made by a spectral basis of eigenfunctions of the Stokes operator. We present the results, which are in
some sense new and not fully completely included in [11]. This procedure is applied to u, which is a
weak solution of the Navier-Stokes equations, satisfying the uniform estimates (3.3). In this way, the
orthogonality (in both H and V) of the basis implies that

‖u‖2 = ‖y‖2 + ‖z‖2 and ‖∇u‖2 = ‖∇y‖2 + ‖∇z‖2.

The results in this case are more precise than those from Theorem 4.1, since we have at disposal
more precise a priori estimates and also the set of equations (2.8) has a better structure than (2.3).

We now prove the following results in the case of a decomposition of the velocity into small and
large frequencies. The first one aims at taking the time average and then let t go to inifinity in the equa-
tions (2.3) satisfied by y and z. The second one aims at comparing the amount of turbulent dissipation
of small and large frequencies with respect to the total work of the corresponding Reynolds stresses
σ(r)

y and σ(r)
z .
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Theorem 4.2. Let u0 ∈ H, f ∈ Pm H, and let u be a global-in-time weak solution to the NSE (1.1).
Then, there exist

1. a sequence {tn}n∈N such that lim
n→∞

tn = +∞;

2. vector fields y, z ∈ V;

3. vector fields B1,B2 ∈ V ′;

such that it holds:

i) When n→ ∞,

Mtn(y) ⇀ y weakly in V,

Mtn
(
(y · ∇) y

)
⇀ B1 weakly in V ′,

Mtn(z) ⇀ z weakly in V,

Mtn
(
(z · ∇) z

)
⇀ B2 weakly in V ′,

ii) The Reynolds averaged equations:
−ν∆y + ∇py + B1 = Pmf in Ω,

∇ · y = 0 in Ω,

y = 0 on Γ.

(4.4)

and 
−ν∆z + ∇pz + B2 = 0 in Ω,

∇ · z = 0 in Ω,

z = 0 on Γ.

(4.5)

holds true in V ′.

Arguing as in [3, 21], using the relations (z · ∇)z = ∇ · (z ⊗ z) and (y · ∇)y = ∇ · (y ⊗ y), we get the
existence of small frequencies and large frequencies Reynolds stresses σ(r)

y and σ(r)
z in V ′, such that

B1 = ∇ · σ(r)
y + (y · ∇)y, B2 = ∇ · σ(r)

z + (z · ∇)z, (4.6)

or equivalently, if we write the Reynolds decomposition as

y = y + y′, z = z + z′, (4.7)

then
σ(r)

y = y ⊗ y + y′ ⊗ y′, σ(r)
z = z ⊗ z + z′ ⊗ z′, (4.8)

where the bar operator denotes the limit of the Mtn’s in L3/2(Ω) as n → ∞ (eventually after hav-
ing extracted another subsequence). According to the budget (3.5), we aim to compare the turbulent
dissipations of small and large scales, ε↓ and ε↑, to the total work of the Reynolds stresses, namely
(∇ · σ(r)

y , y) and (∇ · σ(r)
z , z), where

ε↓ := ν‖∇y′‖2, ε↑ := ν‖∇z′‖2 (4.9)
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Compared with (3.5), the triade effects between small and large frequencies will be felt, that means the
nonlinear interactions due to the convection, provided by the term

Φz(y) := (Qm[(y + z) · ∇(y + z)], z) = −Φy(z) = −(Pm[(y + z) · ∇(y + z)], y), (4.10)

Notice that due to the regularity of y, it is easily checked that the following energy balance holds true
(this will be more detailed in the proof of Theorem 4.2 below)

ν ‖∇y‖2 + (∇ · σ(r)
y , y) =< f, y > . (4.11)

Finally, we will use the following orthogonality relation (see in [3, Lemma 4.4]), formally written as

||∇ψ||2 = ||∇ψ||2 + ||∇ψ′||2. (4.12)

For the simplicity, from we write Mt instead of Mtn , where (tn)n∈N is as in Theorem 4.2

Theorem 4.3. The families (Mt(Φz(y)))t>0 and (Mt(Φy(z)))t>0 are convergent as t → ∞. Let Φ∞z (y) and
Φ∞y (z) denote the corresponding limits. One has

Φ∞z (y) = −Φ∞y (z) ≤ 0, (4.13)

and the following dissipation balances hold

ε↓ + Φ∞y (z) = (∇ · σ(r)
y , y), (4.14)

ε↑ + Φ∞z (y) ≤ (∇ · σ(r)
z , z). (4.15)

Remark 4.1. Notice that by equations (4.13) and (4.14) we see that σ(r)
y is dissipative in mean, and

follows the same law (3.5) as the complete Reynolds stress, namely

ε↓ ≤ (∇ · σ(r)
y , y). (4.16)

However, nothing similar can be concluded from (4.14) about σ(r)
z , that might be at this stage non

dissipative in mean, which permits an inverse energy cascade to occur.

The results of Theorems 4.2 and 4.3 are original, even if similar results have been already obtained
in [10] and reported also in [11]. In that case, the results are based on the notion of deterministic
statistical solutions and on a sort of ergodic hypothesis. Even if statements could look very similar to
ours, the main difference is that we do not average over the set H of initial data, and we do not introduce
probabilistic measures on H, as suggested by the work by Prodi [25, 26]. Our approach is based on a
more elementary functional setting and also amenable to include treatment of sets of external forces,
as those in several numerical or practical experiments.

Proof of Theorem 4.2. We know, from the results in [3, 21] that Ut = Mt(u) is such that

Ut ⇀ u weakly in V,

Mt((u · ∇) u) ⇀ B in L3/2(Ω) ⊂ V ′,

hence if we define F := B − (u · ∇) u, we get

(∇u,∇φφφ) +
(
(u · ∇) u, φφφ

)
+ < F, φφφ >=< f, φφφ >,
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and using u ∈ V as test function we obtain

ν‖∇u‖2+ < F,u >=< f,u > .

We assume now that Pmf = f, and we consider the equations satisfied by y = Pmu and z = Qmu. In
particular, the equation for y reads, as an abstract equation in Vm = PmV , as follows:

dy
dt

+ νAy + Pm[(y + z) · ∇(y + z)] = Pmf.

The uniform estimates on u from Theorem 3.1 combined with Theorem 2.1 about the properties of the
projector Pm as a continuous operator over V ′, yields

Yt ⇀ y weakly in V,

PmMt((u · ∇) u) = PmMt[(y + z) · ∇(y + z)] ⇀ PmB = B1 weakly in V ′,

in such a way that y satisfies

ν(∇y,∇Wk)+ < (y · ∇) y,Wk > + < Fy,Wk >=< f,Wk > for 1 ≤ k ≤ m,

where Fy := B1 − (y · ∇) y, which leads to (4.4) by De Rham Theorem. Arguing as in [3] (which was
already mentioned above), it is easely checked that there exists σ(r)

y such that Fy = ∇ · σ(r)
y , hence

ν ‖∇y‖2+ < Fy, y >= ν ‖∇y‖2 + (∇ · σ(r)
y , y) =< f, y > . (4.17)

The other term z of the decomposition satisfies

d
dt

z + νAz + Qm[(y + z) · ∇(y + z)] = 0.

The uniform estimates on u and the boundedness of Pm imply the following convergence (up to a
sub-sequence), as already shown in Theorem 4.1,

Zt ⇀ z weakly in V,

(I − Pm)Mt((u · ∇) u) = QmMt[(y + z) · ∇(y + z)] ⇀ QmB = B2 weakly in V ′.

By using that B = PmB + (I − Pm) B, we get

ν(∇z,∇W j)+ < (z · ∇) z,W j > + < Fz,W j >= 0 for all j ≥ m + 1,

for Fz = B2 − (z · ∇) z = ∇ · σ(r)
z . Hence, (4.5) always by De Rham Theorem. Notice that we have the

following energy equality:
‖∇z‖2 + (∇ · σ(r)

z , z) = 0. (4.18)

which conludes this proof. �
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Proof of Theorem 4.3. We now write the energy inequality for z, obtaining

1
2

d
dt
‖z‖2 + ν ‖∇z‖2 + (Qm[(y + z) · ∇(y + z)], z) ≤ 0,

and hence, by using the orthogonality of the basis, we have that Qmz = z and

1
2

d
dt
‖z‖2 + ν ‖∇z‖2 +

(
[(y + z) · ∇(y + z)], z

)
=

1
2

d
dt
‖z‖2 + ‖∇z‖2 + Φz(y) ≤ 0,

recalling the definition of Φz(y) in (4.10).
Averaging over a fixed time interval (0, t), we get

1
2t
‖z(t)‖2 −

1
2t
‖z(0)‖2 + νMt(‖∇z‖2) + Mt(Φz(y)) ≤ 0.

The L2-uniform bounds on z imply that 1
2t‖z(t)‖2 → 0, hence, eventually after having extracted another

subsequence to ensure the convergence of the term Mt(‖∇z‖2) (that is known to be bounded by the
energy inequality (3.3))

lim sup
t→∞

Mt(Φz(y)) ≤ −ν‖∇z‖2 ≤ 0. (4.19)

We now combine the orthogonality relation (4.12) with the energy balance (4.18), so that (4.20) yields

ε↑ + lim sup
t→∞

Mt(Φz(y)) ≤ (∇ · σ(r)
z , z), (4.20)

which is almost inequality (4.15), up to the convergence of (Mt(Φz(y)))t>0 that remains to be proved.
To prove this, we deal with the budget for y, reminding that

Φz(y) = (Qm[(y + z) · ∇(y + z)], z) = −(Pm[(y + z) · ∇(y + z)], y) = −Φy(z). (4.21)

Then, averaging the energy equality (in this case we have equality since it is a finite dimensional system
of ordinary differential equations) which is satisfied for y, we get

1
2t
‖y(t)‖2 −

1
2t
‖y(0)‖2 + νMt(‖∇y‖2) + Mt(Φy(z)) =< f,Mt(y) > . (4.22)

By the same argument, eventually after having extracted a further subsequence, (Mt(‖∇y‖2))t>0 is con-
vergent as t → ∞, as well as (< f,Mt(y) >)t>0. Therefore, Mt(Φy(z))t>0 is also convergent by (4.22).
Let Φy(z)∞ denotes its limit. In particular, by (4.21), (Mt(Φz(y)))t>0 is also convergent, with limit
Φz(y)∞ = −Φy(z)∞. We are done with (4.15). It remains to check (4.14). Taking the limit as t → ∞ in
(4.22) gives the equality

ν‖∇y‖2 + Φz(y)∞ =< f, y >, (4.23)

which, combined with the energy balance (4.17) and the orthogonality relation (4.12), yields (4.14),
ending the proof. �
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5. Numerical results

In Theorem 4.1, we showed that

lim inf
T→+∞

1
T

∫ T

0
em(u(s)) + Em(u(s)) ds ≥ 0. (5.1)

In this section, we investigate numerically whether the inequality (5.1) holds. To this end, we consider
the one-dimensional Burgers equation with homogeneous boundary conditions as a simplified, yet
relevant test case: ut − νuxx + uux = f , x ∈ Ω , t ∈ [0, 1]

u = 0 , x ∈ ∂Ω , t ∈ [0, 1].
(5.2)

To calculate the long-time average of em(u) in (5.1), we use the composite trapezoidal rule:

1
T

∫ T

0
em(u(s)) ds ≈

1
2n

n∑
i=1

(
em(u(ti)) + em(u(ti+1))

)
, (5.3)

where ti = (i − 1) ∗ T
n , i = 1, ..., n + 1. We also use the composite trapezoidal rule to calculate the

long-time average of Em(u).

5.1. Numerical Results with step function initial condition

Our numerical results are obtained by using the one-dimensional Burgers equation (5.2) with a step
function initial condition [15, 34]:

u0(x) =

 1, x ∈ (0, 1/2],
0, x ∈ (1/2, 1].

(5.4)

We use the following parameters in the finite element discretization of the Burgers equation (5.2):
Ω = [0, 1], ν = 10−2, f = 0, mesh size h = 1/128, piecewise linear finite element spatial discretization,
and backward Euler time discretization.

5.1.1. Case1:

For this test case, we consider the time interval [0,T ] = [0, 1] and the time step ∆t = 10−2. We utilize
all the snapshots to build the POD basis, whose dimension is d = 37. In the composite trapezoidal rule,
we use n = 100. In Figure 1, we plot the DNS results (which are used to generate the snapshots). In
Table 1, we list the time-averages of em(u) and Em(u) for different m values. We note that the time-
average of em(u) is positive for all m values. The time-average of Em(u) is positive for the low m
values and negative for the largest m values. Furthermore, the magnitude of the time-average of Em(u)
is lower than the magnitude of the time-average of em(u). Thus, we conclude that the time average
1
T

∫ T

0
em(u(s)) + Em(u(s)) ds in (5.1) is positive for all m values.

Mathematics in Engineering Volume 3, Issue x, xxx–xxx

Preliminary version – January 11, 2019 – 17:09



18

Figure 1. DNS solution obtained by us-
ing a piecewise linear finite element spa-
tial discretization and the backward Euler
time discretization.

m d
∫ 1

0
em(u(s)) ds

∫ 1

0
Em(u(s)) ds

3 37 2.6170e-02 1.0451e-03
6 37 7.3208e-03 2.2524e-03
9 37 1.4934e-03 1.5977e-03

15 37 3.6181e-05 3.6287e-05
20 37 1.2776e-06 7.0356e-07
25 37 4.6207e-08 9.5638e-09
30 37 2.0257e-09 -1.1127e-10
35 37 8.2806e-11 -2.2595e-11

Table 1. Case 1: Time-averages of
em(u) and Em(u) for different m val-
ues.

In Case 1, we showed that the time average 1
T

∫ T

0
em(u(s)) + Em(u(s)) ds in (5.1) is positive. In the

remainder of this section, we investigate whether this time average remains positive if we make the
following changes in our computational setting: (i) we increase/decrease the time-interval; (ii) we use
more quadrature points (i.e., subintervals) in the composite trapezoidal rule (5.3).

5.1.2. Case2:

In this case, we use a longer time interval, i.e., [0,T ] = [0, 10] (instead of [0,T ] = [0, 1], as we used
in Case 1). We also use different time step (∆t) values to generate the snapshots and different number
of quadrature points to evaluate the time average 1

T

∫ T

0
em(u(s)).

In Tables 2–5, we list the time-averages of em(u) and Em(u) for different time steps (∆t) values,
different number of equally spaced quadrature points (n), and different m values. We note that the time-
averages of em(u) and Em(u) are positive for all ∆t, n, and m values. Furthermore, the magnitude of the
time-average of Em(u) is lower than the magnitude of the time-average of em(u). Thus, we conclude that
the time average 1

T

∫ T

0
em(u(s))+Em(u(s)) ds in (5.1) is positive for all ∆t, n, and m values. Furthermore,

we note that decreasing the time step while keeping the same number of snapshots (i.e., n = 10000)
does not change the time average 1

T

∫ T

0
em(u(s)) + Em(u(s)) ds significantly (see Tables 3–5).
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m d
1

10

∫ 10

0
em(u(s)) ds

1
10

∫ 10

0
Em(u(s)) ds

3 38 3.3652e-03 8.6523e-05
6 38 1.0001e-03 2.1570e-04
9 38 2.1132e-04 1.8614e-04
15 38 5.4224e-06 5.5724e-06
20 38 4.3119e-07 2.5667e-07
25 38 5.6884e-08 1.0451e-08
30 38 1.1327e-09 3.2736e-10
35 38 2.0469e-11 2.6396e-12

Table 2. Case 2: Time-averages of
em(u) and Em(u) for ∆t = 10−2, 1000
equally spaced quadrature points, and
different m values.

m d
1

10

∫ 10

0
em(u(s))ds

1
10

∫ 10

0
Em(u(s)) ds

3 41 3.5296e-03 3.0515e-06
6 41 1.1402e-03 8.8746e-06
9 41 2.6359e-04 1.5090e-05

15 41 1.1126e-05 1.1156e-05
20 41 9.5913e-07 1.5183e-06
25 41 1.8140e-07 1.8704e-07
30 41 4.8765e-08 1.3491e-08
35 41 1.0291e-09 9.7629e-10
40 41 2.4680e-11 2.0416e-11

Table 3. Case 2: Time-averages
of em(u) and Em(u) for ∆t = 10−3,
10000 equally spaced quadrature
points, and different m values.

m d
1

10

∫ 10

0
em(u(s))ds

1
10

∫ 10

0
Em(u(s)) ds

3 43 3.5637e-03 2.7841e-06
6 43 1.1664e-03 8.1109e-06
9 43 2.7346e-04 1.3956e-05
15 43 1.2084e-05 1.1937e-05
20 43 1.1785e-06 1.6370e-06
25 43 2.2727e-07 1.2913e-07
30 43 6.2606e-08 9.5191e-09
35 43 2.1106e-09 6.1538e-10
40 43 1.0330e-10 2.0241e-11

Table 4. Case 2: Time-averages
of em(u) and Em(u) for ∆t = 10−4,
10000 equally spaced quadrature
points, and different m values.

m d
1

10

∫ 10

0
em(u(s))ds

1
10

∫ 10

0
Em(u(s)) ds

3 43 3.5668e-03 2.7594e-06
6 43 1.1688e-03 8.0390e-06
9 43 2.7436e-04 1.3843e-05

15 43 1.2172e-05 1.2002e-05
20 43 1.2030e-06 1.6405e-06
25 43 2.3339e-07 1.2463e-07
30 43 6.4120e-08 8.8971e-09
35 43 2.2654e-09 5.6187e-10
40 43 1.1211e-10 1.8216e-11

Table 5. Case 2: Time-averages
of em(u) and Em(u) for ∆t = 2 ∗
10−5, 10000 equally spaced quadra-
ture points, and different m values.

5.1.3. Case3:

In this case, we use an even longer time interval, i.e., [0,T ] = [0, 100], and compare the time-
averages for this time interval to those for the time intervals [0,T ] = [0, 1] (Case 1) and [0,T ] =

[0, 10] (Case 2). For each time interval, we use the same time step values (∆t = 10−2) to generate the
snapshots and all the subintervals in the composite trapezoidal rule utilized in the evaluation of the
time average 1

T

∫ T

0
em(u(s)). In Table 6, we list the time-averages of em(u) and Em(u) for all three time

intervals and different m values. We note that the time-averages of em(u) and Em(u) are positive for
all time intervals and m values. Furthermore, the magnitude of the time-average of Em(u) is generally
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lower than the magnitude of the time-average of em(u). Thus, we conclude that the time-average
1
T

∫ T

0
em(u(s))+Em(u(s)) ds in (5.1) is positive for all time intervals and m values. Furthermore, we note

that the time-averages of em(u) and Em(u) for the time intervals [0,T ] = [0, 100] and [0,T ] = [0, 10]
are close, whereas those for the time interval [0,T ] = [0, 1] are slightly different. Thus, we conclude
that the time interval [0,T ] = [0, 10] is adequate for the approximation of the long time-average
1
T

∫ T

0
em(u(s)) + Em(u(s)) ds.

m d
1

100

∫ 100

0
em(u(s)) ds

1
10

∫ 10

0
em(u(s)) ds

∫ 1

0
em(u(s)) ds

3 36 3.3687e-04 3.3683e-04 1.7634e-04
6 36 1.0001e-04 1.0001e-04 7.3142e-05
9 36 2.1146e-05 2.1147e-05 1.6701e-05

15 36 5.5621e-07 5.5742e-07 4.7129e-07
20 36 7.9605e-08 7.9605e-08 6.3799e-08
25 36 8.3483e-09 8.3489e-09 5.7426e-09
30 36 1.0839e-10 1.0840e-10 9.2430e-11
35 36 2.7710e-12 2.7718e-12 2.9575e-12

Table 6. Case 3: Time-averages of em(u) for ∆t = 10−2, different m values, and all subinter-
vals used in the composite trapezoidal rule.

m d
1

100

∫ 100

0
Em(u(s)) ds

1
10

∫ 10

0
Em(u(s)) ds

∫ 1

0
Em(u(s)) ds

3 36 8.6270e-06 7.0320e-06 8.1057e-05
6 36 2.1568e-05 2.1520e-05 3.2405e-05
9 36 1.8614e-05 1.8599e-05 2.0255e-05

15 36 5.5718e-07 5.4232e-07 5.8207e-07
20 36 5.6044e-08 5.5874e-08 6.1423e-08
25 36 1.0936e-09 9.9763e-10 5.9386e-10
30 36 3.3046e-11 3.2478e-11 4.0949e-11
35 36 6.4170e-13 6.3739e-13 1.2125e-12

Table 7. Case 3: Time-averages of Em(u) for ∆t = 10−2, different m values, and all subinter-
vals used in the composite trapezoidal rule.

5.1.4. Case4:

In this case, we use a much shorter time interval, i.e., [0,T ] = [0, 0.1], and compare the time-
averages for this time interval to those for the time intervals [0,T ] = [0, 1], [0,T ] = [0, 10], and
[0,T ] = [0, 100] (Case 3). We use two different time step values to generate the snapshots, but the
same (i.e., n = 5000) equally spaced subintervals in the composite trapezoidal rule utilized in the
evaluation of the time average 1

T

∫ T

0
em(u(s)). In Tables 8–9, we list the time-averages of em(u) and

Em(u) for two different time step values and different m values. We emphasize that, this time, the time-

Mathematics in Engineering Volume 3, Issue x, xxx–xxx

Preliminary version – January 11, 2019 – 17:09



21

average of em(u) is negative for some m values. Furthermore, the magnitude of the time-average of
Em(u) is this time larger than the magnitude of the time-average of em(u). This is in stark contrast with
the previous cases.

m d
1

0.1

∫ 0.1

0
em(u(s)) ds

1
0.1

∫ 0.1

0
Em(u(s)) ds

3 16 -6.8687e-04 2.7378e-05
5 16 -2.6333e-05 1.7795e-05
7 16 -9.1458e-07 4.2432e-06
9 16 -9.8188e-09 4.1220e-07
13 16 2.3800e-10 1.5749e-09
15 16 8.5423e-12 4.8043e-11

Table 8. Case 4: Time-averages of
em(u) and Em(u) for ∆t = 2 ∗ 10−5,
different m values, and 5000 equally
spaced subintervals used in the com-
posite trapezoidal rule.

m d
1

0.1

∫ 0.1

0
em(u(s)) ds

1
0.1

∫ 0.1

0
Em(u(s)) ds

3 16 -6.8807e-04 2.7338e-05
5 16 -2.6447e-05 1.7812e-05
7 16 -9.1691e-07 4.2755e-06
9 16 -9.5609e-09 4.1694e-07

13 16 2.5287e-10 1.5941e-09
15 16 1.0725e-11 4.7030e-11

Table 9. Case 4: Time-averages of
em(u) and Em(u) for ∆t = 10−5, dif-
ferent m values, and 5000 equally
spaced subintervals used in the com-
posite trapezoidal rule.

6. Conclusions

In this preliminary study, we investigated theoretically and numerically the time-average of the
exchange of energy among modes of reduced order models (ROMs) of fluid flows. In particular,
we were interested in the statistical equilibrium problem, and especially in the long-time averaging
of the ROM solutions. The main goal of the paper was to deduce the possible forward and backward
average transfer of the energy among ROM basis functions (modes). We considered two types of ROM
modes: eigenfunctions of the Stokes operator and proper orthogonal decomposition (POD) modes. In
Theorem 4.1 and Theorem 4.2, we proved analytical results for both types of ROM modes and we
highlighted the differences between them, especially those stemming from the lack of orthogonality of
the gradients of the POD basis functions.

In Section 5, we investigated numerically whether the time-average energy exchange between POD
modes (i.e., 1

T

∫ T

0
em(u(s)) + Em(u(s)) ds) in Theorem 4.1 is positive. To this end, we used the one-

dimensional Burgers equation as a mathematical model. We utilized a piecewise linear FE spatial
discretization and a backward Euler temporal discretization. To compute the time-averages, we used
the composite trapezoidal rule. We tested different time steps, different number of subintervals in the
composite trapezoidal rule, and, most importantly, different time intervals, to ensure that the computed
quantities are indeed approximations of the time-averages and not numerical artifacts. The main con-
clusion of our numerical study is that, for long enough time intervals (i.e., time intervals longer than
[0,T ] = [0, 10]), the time-average 1

T

∫ T

0
em(u(s)) + Em(u(s)) ds in (5.1) is positive. Furthermore, the

magnitude of the time-average of Em(u) is much lower than the magnitude of the time-average of em(u).
There are several research directions that we plan to pursue. Probably the most important one

is the numerical investigation of the theoretical results in three-dimensional, high Reynolds number
flows, which could shed new light on the energy transfer among ROM modes. A related, but different
numerical investigation was performed in [7].
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