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Abstract: Dependability evaluation is playing an increasing role in system and software
engineering together with performance evaluation. Performance benchmarks are widely
used  to  evaluate  system  performance  while  dependability  benchmarks  are  hardly
emerging.  A dependability benchmark for operating systems is intended to objectively
characterize  the  operating  system's  behavior  in  the  presence  of  faults,  through
dependability  and  performance-related  measures,  obtained  by  means  of  controlled
experiments.  This  paper  presents  a  dependability  benchmark  for  general-purpose
operating systems and its application to three versions of Windows operating system and
four versions of Linux operating system. The benchmark measures are: operating system
robustness (as regards possible erroneous inputs provided by the application software to
the  operating  system  via  the  application  programming  interface),  operating  system
reaction and restart times in the presence of faults. The workload is JVM (Java Virtual
Machine), a software layer, on top of the operating system allowing applications in Java
language to be platform independent.
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1. Introduction

Software  dependability  is  usually  evaluated  based  on  data  related  to  failures  and
corrections,  observed on the software under development or during its operational life.
However,  when  considering  Off-The-Shelf  software  systems  (which  is  the  case  of
operating systems, OSs), most of the time no dependability data is available from their
development. Only data collected during operation (if available) can be used to evaluate
their dependability, which may be too late for selecting the right OS for building a new
computer system based on an OS. In which case controlled experiments are of great help.
The latter can either be carried out case-by-case (i,e., ad hoc way) or in a well-structured
and standardized  way,  in  order  to  characterize  objectively the system behavior  in  the
presence  of  faults.  This  is  the  aim  of  dependability  benchmarks.  Benchmarking  the
dependability  of  a  system consists  in  evaluating  dependability  or  performance-related
measures, experimentally or based on experimentation and modeling, in a standard way.
To be meaningful, a benchmark must satisfy a set of properties (e.g., representativeness,
reproducibility,  repeatability,  portability,  cost  effectiveness).  These  properties  must  be
taken into consideration from the earliest phases of the benchmark specification. 

Our dependability benchmark is a robustness benchmark. Robustness is defined as
the degree to which a system operates correctly in the presence of exceptional inputs or
stressful environmental conditions. Robustness of OS can be viewed as its capacity to 



resist/react to faults induced by the applications running on top of it, or originating from
the hardware layer or from device drivers. 

We address here the OS robustness as regards possible erroneous inputs provided by
the application  software  to  the  OS via  the  Application  Programming Interface  (API).
More explicitly, we consider corrupted parameters in system calls, shortly referred to as
faults.

The benchmark presented in this paper is based on JVM (Java Virtual Machine), a
software layer on top of the OS, allowing applications in Java language to be platform
independent. It is applied to three Windows and four Linux OSs. The main concepts of the
benchmark  have  been  developed  within  the  European  project  on  Dependability
Benchmarking, DBench [1].

The set of JVM dependability benchmarks is to the third set of OS benchmarks we
have built up for Windows and Linux, based on the same high-level specification of the
benchmark,  using  different  workloads.  The  two  previous  ones  used  TPC-C  Client
performance  benchmark  for  transactional  systems [2] and  PostMark,  a  file  system
performance benchmark  [3]. Sensitivity analyses  of the results  with respect  to the OS
family  benchmarked,  the  workload  used  and  the  faultload  applied  helped  us  to  gain
progressively confidence in the benchmark specification and in the results obtained. 

The work reported in [4] is the most similar to ours, it addressed the "non-robustness"
of the POSIX and Win32 APIs. Pioneer work on robustness benchmarking is published in
[5]. Since then, a few studies have addressed OS dependability benchmarks, considering
real time microkernels  [6-8] or general purpose OSs [9, 10]. Robustness with respect to
faults in device drivers is addressed in [11-13].

The remainder of the paper is organized as follows. Section 2 gives the specification
of  our  OS  benchmark.  Section  3  is  devoted  to  the  benchmark  implementation  for
Windows and Linux families. Section 4 presents benchmark results. Section 5 addresses
benchmark properties and Section 6 concludes the paper.

2. Specification of the Benchmark 

A dependability benchmark is specified through the definition of i) the benchmark target,
ii) measures to be evaluated, iii) benchmark execution profile to be used to activate the
operating system, iv) guidelines for conducting benchmark experiments and implementing
the benchmark. The benchmark results are meaningful, useful and interpretable only if all
the above items are supplied together with the results. 

2.1. Benchmarking Target 

An OS is a generic software layer providing basic services to the applications through the
API,  and  communication with peripherals  devices  via  device  drivers.  The  benchmark
target corresponds to the OS with the minimum set of device drivers necessary to run the
OS under the benchmark execution profile.  However,  the benchmark target  runs on a
hardware platform whose characteristics impact the results. Thus, all benchmarks must be
performed on the same hardware platform.

Although, in practice, the benchmark measures characterize the target system and the
hardware platform, we state simply that the benchmark results characterize the OS. 



Our benchmark addresses the user perspective, i.e., it is intended to be performed by
(and to be useful for) someone who has no thorough knowledge about the OS and whose
aim is  to  improve her/his  knowledge about  its  behavior  in  the  presence  of  faults.  In
practice, the user may well be the developer or the integrator of a system including the
OS. 

As  a  consequence,  the  OS  is  considered  as  a  “black  box”.  The  only  required
information is its description in terms of system calls and in terms of services provided.

2.2. Benchmark Measures

The OS receives a corrupted system call. After execution of such a call, the OS is in one
of the following states:

SEr (Error code): the OS generates an error code that is delivered to the application. 
SXp (Exception): in the user mode, the OS processes the exception and notifies the
application. However, for some critical situations, the OS aborts the application. In
the kernel mode an exception is automatically followed by a  panic state (e.g., blue
screen for Windows and oops messages for Linux). Hence, the latter exceptions are
included in the panic state and the term exception refers only to the first  case of user
mode exception.
SPc (panic): the OS is still “alive” but it is not servicing the application. In some
cases, a soft reboot is sufficient to restart the system. 
SHg (Hang): a hard reboot of the OS is required. 
SNS (No Signaling): the OS does not detect the erroneous parameter and executes
the erroneous system call. SNS is presumed when none of the previous situations
(SEr, SXp, SPc, SHg) is observed.
Panic and hang situations (SPc, SHg) are actual states in which the OS can stay for a
while.  SEr and  SXp characterize  events.  They  are  easily  identified  when the  OS
provides an error code or notifies an exception.
The benchmark measures include a robustness measure and two temporal measures. 
OS Robustness (POS) is defined as the percentages of experiments leading to any of
the states listed above. POS is thus a vector composed of 5 elements.
Reaction  Time (Treac)  corresponds  to  the  average  time necessary  for  the  OS to
respond to a system call in presence of faults, either by notifying an exception or by
returning an error code or by executing the required instructions. 
Restart Time (Tres)  corresponds to the average time necessary for the OS to restart
after the execution of the workload in the presence of faults. Although under nominal
operation  the  OS restart  time is  almost  deterministic,  it  may be  impacted  by the
corrupted  system call.  The OS might need additional  time to make the necessary
checks and recovery actions, depending on the impact of the fault applied.
The OS reaction  time  and restart  time are  also  evaluated  by  experimentation  in
absence of faults for comparison purposes. They are respectively denoted τreac and
τres. 

2.3. Benchmark Execution Profile

For performance benchmarks, the benchmark execution profile is a workload that is as
realistic  and  representative  as  possible  for  the  system  under  benchmarking.  For  a
dependability benchmark, the execution profile includes, in addition to the workload, a set
of faults, referred to as the faultload. 



In the current benchmark, the workload is JVM, solicited through a program allowing
to  display  «Hello  World»  on  the  screen.  This  program  activates  76  system  calls  for
Windows family and 31 to 37 system calls for Linux Family.

The faultload consists of corrupted parameters of system calls. For Windows, system
calls are provided to the OS through the Win32 environment subsystem. In Linux OSs,
these system calls are provided to the OS via the POSIX API. During runtime, the system
calls activated by the workload are intercepted, corrupted and re-inserted. 

The  parameter  corruption  technique  relies  on  thorough  analyses  of  system  call
parameters to define selective substitutions to be applied to these parameters (similarly to
the one used in [14]). A parameter is either a data or an address. The value of a data can
be substituted either by an  out-of-range value or by an  incorrect (but not out-of-range)
value, while an address is substituted by an  incorrect  (but existing) address (that could
contain an incorrect or out-of-range data). We use a mix of these three techniques. More
details can be found in [3].

2.4. Benchmark Conduct

Since  disturbing  the  operating  system  may  lead  the  OS  to  hang,  a  remote  machine,
referred to as the benchmark controller, is required to control the benchmark experiments,
mainly in case of OS Hang or Panic states or workload hang or abort states (that cannot be
reported  by the machine hosting the benchmark  target).  Hence,  we need  at  least  two
computers as shown in Figure 1. The Target Machine hosts the benchmarked OS and the
workload, and ii) the Benchmark Controller is in charge of diagnosing and collecting part
of benchmark data. 

System under benchmarking

Hardware

Activity (Workload)

Interception & Substitution
of system calls

& Observation OS reaction

API

Target Machine (TM)

Benchmark
Controller (BC)

OS

Fig.  1: Benchmark Environment 
The  two  machines  perform  the  following:  i) restart  of  the  system  before  each

experiment and launch of the workload, ii) interception of system calls with parameters,
ii)  corruption  of  system  call  parameters,  iii)  re-insertion  of  corrupted  system  calls,
vi) observation and collection of OS states.  The experiment  steps in case of workload
completion are illustrated in Figure 2 and will be detailed in the next section. In case of
workload non-completion state (i.e., the workload is in abort or hang state), the end of the
experiment is governed by a watchdog timeout, fixed to 3 times the workload execution
time without faults.



3. Benchmark Implementation 

3.1. Prototype

In  order  to  obtain comparable  results,  all  the  experiments  are  run  on the same target
machine, composed of an Intel Pentium III Processor, 800 MHz, and a memory of 512
Mega  Bytes.  The  hard  disk  is  18  Giga  Bytes,  ULTRA  160  SCSI.  The  benchmark
controller in both prototypes for Windows and Linux is a Sun Microsystems workstation.

To intercept Win32 functions, we use the Detours tool [15], a library for intercepting
arbitrary  Win32  binary  functions  on  X86  machines.  We  added  three  modules  for
i) substituting parameters of system calls by corrupted values ii) observing the reactions of
the  OS  after  execution  of  a  corrupted  system  call,  and  iii)  collecting  the  required
measurements. 

To intercept POSIX system calls, we used another interception tool, Strace  [16] to
which we added modules similar to those added to Detours.

3.2. Benchmark Preparation

Before each benchmark run (i. e., execution of the series of experiments related to a given
OS), the target kernel is installed, and the interceptor is compiled for the current kernel
(interceptors are kernel-dependent both for Windows and Linux). Once the benchmarking
tool is compiled, it is used to identify the set of system calls activated by the workload.
Parameters of these system calls are then analyzed and a database of corrupted values is
built accordingly.

3.3. Benchmark Execution

At the beginning of each experiment,  the target  machine (TM) records the experiment
start  instant  tExpStart and  sends  it  to  the  benchmark  controller  (BC)  along  with  a
notification  of  experiment  start-up.  The  workload  starts  its  execution.  The  Observer
module records, in the experiment execution trace, the start-up instant of the workload,
tWStart, the activated system calls and their responses. This trace also collects the relevant
data concerning states SEr, SXp and SNS. The recorded trace is sent to the BC at the
beginning of the next experiment.

The parameter  substitution module  identifies  the  system call  to  be  corrupted.  The
execution  is  then  interrupted,  a  parameter  value  is  substituted  and  the  execution  is
resumed with the corrupted parameter value (tResume is saved in the experiment execution
trace).  The  state  of  the  OS  is  monitored  so  as  to  diagnose  SEr,  SXp,  SNS.  The

Fig.  2: Benchmark Execution Sequence in Case of Workload Completion
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corresponding OS response time (tResponse) is recorded in the experiment execution trace.
For each run, the OS reaction time after the experiment is calculated as the difference
between  tResponse and  tResume.  At  the  end  of  the  execution  of  the  workload,  the  OS
notifies the end of the experiment to the BC by sending an end signal along with the
experiment  end  instant, tExpEnd.  If  the  workload  does  not  complete,  then  tExpEnd is
governed by the value of a watchdog timer. If, at the end of the watchdog timer, the BC
has not received the end signal from the OS, it then attempts to connect to the OS. If this
connection is successful,  and if the soft reboot is successful, then a workload abort or
hang state  is  diagnosed.  If  the soft  reboot  is  unsuccessful,  then a panic state,  SPc, is
deduced and a hard reboot is required. Otherwise SHg is assumed.

At the end of a benchmark execution, all files containing raw results corresponding to
all experiments are on the BC. A processing module extracts automatically the relevant
information from these files (two specific modules are required for Windows and Linux
families). The relevant information is then used to evaluate automatically the benchmark
measures (the same module is used for Windows and Linux).

3.4. Benchmark Characteristics

For each system call activated by the workload, several parameters are corrupted leading
to several experiments for the same system call. The number of system calls (activated by
JVM  under  the  program  allowing  to  display  «Hello  World»  on  the  screen)  and  the
associated number of experiments for the OSs considered are indicated in Table 1.

Table 1: Number of System Calls and Experiments for each OS

Windows family Linux family
W- NT4 W- 2000 W- XP L- 2.2.26 L- 2.4.5 L- 2.4.26 L- 2.6.6

# System Calls 76 76 76 37 32 32 31
# Experiments 1285 1294 1282 457 408 408 409

4. Benchmark Results 

4.1. Measures

OSs  robustness is  given  in  Figure  3.  It  shows  that  all  OSs  of  the  same  family  are
equivalent. It also shows that none of the catastrophic states (Panic  or Hang OS states)
occurred for all Windows and Linux OSs. Linux OSs notified more error codes (58-66%)
than Windows (25%), while more exceptions were raised with Windows (22-23%) than
with Linux (7-10%). More no-signaling cases have been observed for Windows (52-54%)
than for Linux (27-36%). 
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These results are in conformance with our previous results, related to Windows using
TPC-C Client [2] and to Windows and Linux using PostMark [3]. In [4] it was observed
that on the one hand Windows 95, 98, 98SE and CE had a few catastrophic failures and on
the other hand Windows NT, Windows 2000 and Linux are more robust and did not have
any catastrophic failures as in our case. 

The reaction times in the presence of faults (and without fault) are given in Figure 4.
Note that for the Windows family, XP has the lowest reaction time, and for the Linux
family, 2.6.6 has the lowest one. However, the reaction times of Windows NT and 2000
are very high. A detailed analysis showed that the large response time for Windows NT
and  2000  are  mainly  due  to  system  calls  LoadLibraryA,  LoadLibraryExA  and
LoadLibraryEXW.  Not including these system calls when evaluating the average of the
reaction time in the presence of faults leads respectively to 388µs, 182µs and 205µs for
NT4, 2000 and XP (the associated average restart times without fault become respectively
191µs, 278µs and 298µs). For Linux the high values of the reaction times in presence of
faults are also due to three system calls (execve,  getdents64,  nanosleep). Not including
the reaction  times  associated  to  these  system calls  leads  respectively  to  88µs,  241µs,
227µs and 88µs for Linux 2.2.26, 2.4.5, 2.4.26 and 2.6.6.

The restart times  are shown in Figure 5. The average restart time without faults,
τres,  is  always  lower  than  the  benchmark  restart  time  (with  faults),  Tres,  but  the
difference is not significant. The standard deviation is very large for all OSs. Linux 2.2.26
and Windows XP have the lowest restart time (71 seconds, in the absence of fault) while
Windows NT and 2000 restart times are around 90 seconds and those of Linux versions
2.4.5, 2.4.26 and 2.6.6 are around 80 seconds. 
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4.2. Restart Time Refinement

It is worth to mention that the average restart times mask interesting phenomena. Detailed
analyses show that all OSs of the same family have similar behavior and that the two
families exhibit very different behaviors. 

For Windows, there is a correlation between the restart time and the workload state at
the end of the experiment. When the workload is completed, the restart time is almost the
same as the average restart time without substitution. On the other hand, the restart time is
statistically larger for all experiments with workload abort/hang. Moreover, statistically,
the same system calls lead to workload abort/hang. 

This is illustrated in Figure 6 in which the benchmark experiments are executed in the
same order for the three Windows versions. Similar behaviors have been observed when
using TPC-C [2] and PostMark workloads [3].

Linux restart time is not affected by the workload state. Detailed restart time analyses
show  high  values  appearing  periodically.  These  values  correspond  to  a  check-disk
performed by the Linux kernel every 26 restarts (which explains the important standard
deviation on this measure). This is illustrated in Figure 7 for Linux 2.2.26, as an example.
The same behavior has been observed when using the PostMark workload [3].
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5. Benchmark Properties 

To be accepted and adopted by the scientific and industrial communities, a benchmark
must  satisfy  a  set  of  key  properties,  such  as  representativeness,  repeatability,
reproducibility, portability and cost-effectiveness. Representativeness concerns essentially
the workload (that is without any doubt the most critical component of any dependability
benchmark).  All  properties  should  be  accounted  for  from  the  early  phase  of  the
benchmark  specification  as  they  directly  impact  the  specification  of  all  benchmark
components.  Some properties can be ensured by construction, some others have to be
checked experimentally too. 

In our previous work using TPC-C and PostMark as workloads, we have shown how
the various properties have been taken into consideration what has been done to check
some of them experimentally. In this section, we summarize the various properties and the
kinds of verification carried out using JVM.

5.1 Faultload representativeness 

It is very hard to guarantee that the faults used in our benchmark (corrupted values in
system call parameters) are representative of all application software faults. Indeed, the
OS is  not  expected  to  detect  all  application  faults,  but  it  is  expected  to  avoid  some



application faults that may lead to OS misbehavior. At least it is expected to detect system
calls with obvious errors (such as out-of-range data or incorrect addresses). We have thus
performed sensitivity analyses with respect to the parameter corruption technique. 

The selective substitution technique used is composed of a mix of three corruption
techniques as mentioned in Section 2.3: out-of-range data (OORD), incorrect data (ID)
and incorrect addresses (IA). Let us denote the faultload used in our benchmarks by FL0.
To analyze the impact of the faultload, we consider two subsets, including respectively 
i)  IA  and  ODRD  only  (denoted  FL1),  and  ii)  ODRD  only  (denoted  FL2).  Taking
Windows NT4 and Linux 2.2.26 as examples, moving from FL0 to FL2 the number of
experiments decreases respectively from 1285 to 264 and from 457 to 119. 

We ran the benchmarks of all OSs considered using successively FL0, FL1 and FL2.
The results obtained confirm the equivalence between Linux family OSs as well as the
equivalence between Windows family OSs, using the same faultload (FL0, FL1 or FL2).
Indeed, for each OS, its robustness with respect to FL0, FL1 or FL2 is different but the
robustness of all OSs of the same family with respect to each of the three faultloads is
equivalent. The same results have been obtained using TPC-C Client and PostMark as
workloads. This shows that using a mix of the three corruption techniques is meaningful. 

5.2. Repeatability and Reproducibility
Repeatability is  the  property  that  guarantees  statistically  equivalent  results when  the
benchmark is run more than once in the  same environment  (i.e., using the same system
under benchmark and the same prototype). Our OS dependability benchmark is composed
of a series of experiments. Each experiment is run after a system restart. The experiments
are independent from each other and the order in which the experiments are run is not
important  at  all.  Hence,  once  the  system  calls  to  be  corrupted  are  selected  and  the
substitution values defined, the benchmark is fully repeatable. We have repeated all the
benchmarks presented three times to check for repeatability.

Reproducibility is the property that guarantees that another party obtains statistically
equivalent results when the benchmark is implemented from the same specification and is
used  to  benchmark  the  same  system under  benchmarking.  Reproducibility  is  strongly
related to the amount of details given in the specification. The specification should be at
the same time i)  general enough to be applied to the class of systems addressed by the
benchmark  and  ii)  specific  enough to  be  implemented  without  distorting  the  original
specification. We managed to satisfy such a tradeoff. Unfortunately, we have not checked
explicitly the reproducibility of the benchmark results by developing several prototypes
by different  people.  On the  other  hand,  the  results  seem to be  independent  from the
faultload. This makes us confident about reproducibility. 

5.3. Portability

Portability  concerns  essentially  the  faultload  (i.e.,  its  applicability  to  different  OS
families). 

At the specification level, in order to ensure portability of the faultload, the system
calls to be corrupted are not identified individually. We decided to corrupt all system calls
of the workload. This is because OSs from different families do not necessarily comprise
the very same system calls as they may have different APIs. However, most OSs feature
comparable functional components. 



At the implementation level, portability can only be ensured for OSs from the same
family because different OS families have different API sets. 

5.4. Cost 

If a benchmark is very expensive, industry may not be ready to adopt it. Cost is expressed
in terms of effort required to develop the benchmark, run it and obtain results. These steps
require some effort that is, from our point of view, relatively affordable. In our case, most
of the effort was spent in defining the concepts, characterizing the faultload and studying
its representativeness. 

The JVM benchmark benefited a lot from TPC-C and PostMark benchmarks as all
benchmark components did exist and we had only to adapt them. The first step consisted
in executing JVM for each OS to be benchmarked, to identify system calls activated. The
second step was devoted to define, for each system call, the parameters to be corrupted
and the exact substitution values, to prepare the database to be used in the Interception
/substitution/  observation  modules.  This  step  took  a  couple  of  days  for  Linux family
(activating 31-37 system calls depending on the version considered) and the double for
Windows as it activates 76 system calls. Adaptation of the benchmark controller and of
the Interception/substitution/observation modules required about one day for each family. 

The benchmark duration ranges from one day for each Linux OS to less than three
days for each Windows OS. More precisely, the duration of an experiment with workload
completion is less than 3 minutes (including the time to workload completion and the
restart time), while it is less than 6 minutes without workload completion (including the
watchdog timeout and the restart time). Thus, an experiment lasts less than 5 minutes for
all OSs. The series of experiments of a benchmark is fully automated.

6. Conclusions

The dependability  benchmark presented  in this  paper  is  the third benchmark  we have
developed for  Windows and Linux,  based on the same high-level  specification of  the
benchmark but using different workloads. The results obtained are in conformance with
those  obtained  with  the  two  other  workloads  and  increase  our  confidence  in  the
benchmark specification and in the results obtained. 

This benchmark  and more generally  the three benchmarks  developed  and applied
show that all OSs of the same family are equivalent. They also show that none of the
catastrophic states of the OS (Panic or Hang) occurred for any of the Windows and Linux
OSs considered. 

Linux OSs notified more  error  codes  than Windows while  more  exceptions  were
raised with Windows than with Linux. More no-signaling cases have been observed for
Windows than for Linux. 

Concerning the OS reaction time measure, results show a great variation around the
average  due  to  a  minority  of  system calls  with  large  execution  times  that  dodge the
average. When these system calls are not considered, the reaction times of all the OSs of
the same family become equivalent. 

With respect to the restart time measure, Linux seems to be globally faster compared
to Windows even though Windows XP and Linux 2.2.26 have the same restart  times.
Detailed analysis of the restart time showed i) a correlation between Windows restart time
and the workload final state (in case of workload hang or abort, the restart time is higher



than in case of workload completion) and ii) that Linux performs a “check disk” after each
26 restarts after which the restart time is four times higher than the average.

We paid a particular attention to representativeness of faultload, and to the properties
of repeatability, reproducibility, portability and cost effectiveness of the benchmark.
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