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Abstract

We study the weighted bootstrap of the empirical process indexed by
a class of functions, when the weights are allowed to be data dependent.
In addition to the classical one, we also consider three weighted bootstrap
new methods based on the raking-ratio process using an auxiliary infor-
mation on N partitions. Assuming entropy conditions like VC dimension,
we use nonasymptotic strong approximation arguments to characterize the
joint limiting Gaussian processes of bn bootstrap experiments and to eval-
uate the rate of weak uniform convergence as bn Ñ +8 with the initial
sample size n Ñ +8. Berry-Esseen bounds for bootstrapped statistics
follows. This justifies the weighted bootstrap methodology to estimate
the distribution of raked statistics, in particular their lower variance and
smaller confident bands.

Keywords: Weighted bootstrap, Uniform central limit theorems, Non-
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1 Introduction

1.1 The classical bootstrap

Presentation. The bootstrap is a very popular method of statistical infer-
ence introduced by Efron [15, 16] that could be viewed as a generalization
of the older jackknife method or leave k-out methods. Given n ě 1 inde-
pendent random variables X1, ..., Xn with common law P on a measurable
space (X ,A) let Pn = 1

n

řn
i=1 δXi denote the associated empirical measure

where δXi
are the Dirac measures. Any statistic of interest Sn(X1, ..., Xn) be-

ing symmetric in its arguments can be written φ(Pn). Whenever Sn is not
known to satisfy good estimation or test properties, it is unfortunately observed
only once. The classical bootstrap aims to learn about unobserved proper-
ties of Sn by re-sampling at will X˚

1 , ..., X
˚
n among X1, ..., Xn uniformly with

replacement then estimating by Monte-Carlo methods the bias, variance or dis-
tribution of S˚

n = Sn(X
˚
1 , ..., X

˚
n ) = φ(P˚

n) centered at Sn(X1, ..., Xn), with
P˚
n = 1

n

řn
i=1 δX˚

i
. The paradigm of Efron is that without any information on P

the best way to mimic the unknown product measure (P )n = P ˆ ¨ ¨ ¨ ˆP of the
original sample is to use the product empirical measure (Pn)

n = Pn ˆ ¨ ¨ ¨ ˆ Pn

and to center P˚
n at Pn instead of P .

Motivation. From the mathematical statistics viewpoint a crucial question
that has not been investigated in general is to quantify the information one
really gets about the distributions of Sn when bootstrapping bn times, with
bn Ñ +8 as n Ñ +8. Towards this aim we address two unusual problems.
The first problem is to find a sufficient condition on how to choose bn to control
the joint weak convergence of bootstrapped experiments. The second problem
is how to add auxiliary information on P while bootstrapping.
Monte-Carlo bootstrap. The mathematical justification of the bootstrap
methodology is not obvious, even for a single explicit targeted statistic Sn since
it strongly depends on φ itself. Strictly speaking, one should evaluate how
close the random experiments φ(P˚

n) and φ(Pn) are as n Ñ +8 and derive
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the consequences on the subsequent estimation procedure from bn conditionally
independent bootstraps. The known answers are mostly asymptotic and don’t
involve n and bn together. Usually bn = 1 when n Ñ +8 and, for fixed n, it is
implicit that bn Ñ +8 allows to numerically learn φ(P˚

n). However, the learned
probability distribution is conditional to the initial sample, and the difference
with φ(Pn) could be misleading. Thus letting bn Ñ +8 is not so useful due to
the overfitting phenomenon. In other words, a rigorous compromise with the
bias involving jointly the initial sample and the bootstrap samples is missing in
the theory. We look for bn small enough to provide non-asymptotic joint results.

Asymptotic justification. The statistics Sn we consider are sensitive to
deviations between empirical and true expectations over a class of functions
F Ă L2(P ). They are determined by αn(f) =

?
n(Pn(f) ´ P (f)) where

Pn(f) = n´1
řn

i=1 f(Xi) and P (f) = E(f(X)), f P F . The collection αn(F) =
tαn(f) : f P Fu is called the empirical process αn indexed by F . Its boot-
strapped version is α˚

n(F) = tα˚
n(f) : f P Fu, α˚

n(f) =
?
n(P˚

n(f)´Pn(f)) where
P˚
n is the bootstrapped empirical measure introduced below. What is usually

established is that conditionally to X1, ..., Xn the bootstrap process α˚
n(F) has

the same behavior as the empirical process αn(F) for n large. Basically, with
probability one α˚

n weakly converges to the weak limit of αn as n Ñ +8, most
often the P -Brownian bridge G(F) indexed by F if F is a Donsker class. The
bootstrap method is therefore justified at the first order if Sn = φ(Pn) P Rd,
S˚
n = φ(P˚

n) and φ is Fréchet-differentiable at P since then the distribution of
Yn =

?
n(Sn´φ(P )) can be estimated by the distribution of Y ˚

n =
?
n(S˚

n ´Sn)
which is in smooth cases asymptotically the same random vector φ1(P ) ¨G as for
Yn provided that the differential distortion φ1(Pn) ´ φ1(P ) vanishes. Whenever
Y ˚
n is simulated bn times, the distortion generates a bias and bn should be cali-

brated to avoid overfitting and learning the bias through φ1(Pn). In particular
cases the weak distance between the distributions of Yn, Y ˚

n and φ1(P ) ¨ G or
between the distributions of S˚

n and Sn are known to vanish. No general esti-
mate is available at fixed n, hence the balanced choice of bn to guaranty well
controlled Monte-Carlo estimates can not be discussed. This is the main moti-
vation of this paper, however we work with the weighted bootstrap version of α˚

n

and S˚
n together with three new variants exploiting some auxiliary information.

Weak convergence. Giné and Zinn [17] proved that for any class of functions
F with envelope in L2(P ) the weak convergence of αn(F) to a - Gaussian or not
- process G indexed by F is necessary and sufficient for the Efron’s bootstrap
empirical process α˚

n(F) to almost surely converge weakly to G(F) also. This
very nice statement is one of the most general results of the huge literature
on the bootstrap methodology. For a single real valued and regular statistic
Sn a common approach is through Edgeworth expansions, which exploits the
cumulant expansion of the distribution function, see e.g. Hall [19] or Shao and
Tu [29]. Other approaches rely on Berry-Esseen bounds, like in Singh [31] or
Mallows distances, as in Bickel and Freedman [9]. Under the name of Bayesian
bootstrap, Rubin [28] defined an analogue of Efron’s bootstrap by resampling
according to exchangeable weights that are independent of X1, ..., Xn rather
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than uniformly according to Pn. In the case X = R, Mason and Newton [26]
further generalized the bootstrap by independently assigning self-normalized
random weights to the original data. If the weights are drawn independently
from a multinomial distribution this reduces to the Efron’s bootstrap whereas
if the weights come independently from a Dirichlet distribution this reduces to
the Bayesian bootstrap. They established the weak convergence of this weighted
real empirical process to a Brownian bridge provided the positive exchangeable
weights satisfy a weak convergence condition. Unlike Giné and Zinn [17], their
result does not handle the case indexed by F . Præstgaard and Wellner [27] fills
this gap, by still assuming that the exchangeable weights are independent from
the data, with again a common weak limit G(F) for αn(F) and α˚

n(F).
About rates. The above weak convergence of Efron’s and weighted bootstrap
processes are usually formulated in the sense of Hoffmann-Jørgensen to handle
carefully measurability problems – see [4, 20]. The main results are assembled in
chapter 3.6 of Van der Vaart and Wellner [35] – see also Kosorok [23]. The weak
convergence is usually quantified in terms of the bounded Lipschitz norm be-
tween the processes α˚

n(F) and G(F), with no explicit rate. Obviously the rates
could be arbitrarily slow for large F or inadequate couples (P,F). A nice feature
of our approach is that it provides general and explicit rates at the empirical
process level for typical P -Donsker or universal Donsker classes F , with quanti-
fied statistical consequences. A few authors considered the distance between the
probability measures themselves, like P˚

n, Pn or P . For instance Shao [30] proved
that the bounded Lipschitz distance between the uniform empirical measure Pn

on the d-dimensional unit cube and the Efron’s bootstrap empirical measure P˚
n

is bounded by O(n´1/d) if d ą 2 and O(n´1/2(logn)(d´1)/2) if d = 1, 2. This
improved Beran, Le Cam and Millar’s result [7] which only implies the con-
vergence to zero, however in the more general indexed by sets setting. Other
metrics have been studied in the indexed by F setting. For instance, Barbe and
Bertail [6] showed that various supremum type distances between the weighted
bootstrap measure P˚

n and P on F are O(n´1/2(logn)1/2) in probability where
the extra logn term can be removed by following [27]. Likewise, we derive al-
most sure first order rates n´1/2 together with second order rates, so that the
weak distance between the distribution of S˚

n and Sn may be evaluated.

1.2 The weighted bootstrap

Our primary goal is to sharpen the above results for the self-normalized weighted
bootstrap empirical measure in terms of distance in distribution. As a conse-
quence, general answers to the two problems of the initial motivation follow.
Extensions to Efron’s bootstrap will be studied elsewhere.
A strong approximation approach. By strong approximation we mean a
coupling of the process α˚

n(F) and its Gaussian limiting process. This avoids
cumbersome weak convergence measurability considerations while providing a
sufficient control over the weak convergence metrics and being easy to use. Such
a Brownian coupling has been established in the very specific setting where
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KMT [22] can be applied, that is when P is the uniform law on (0, 1). Alvarez-
Andrade and Bouzebda [3] derived the usual almost sure rate O(n´1/2 logn)
of strong approximation by a sequence of Brownian bridges for the weighted
bootstrap process α˚

n(u) =
?
n(F˚

n(u) ´ Fn(u)), where

Fn(u) =
1

n

n
ÿ

i=1

1tXiďuu, F˚
n(u) =

1

n

n
ÿ

i=1

Wi,n1tXiďuu, u P (0, 1),

and, for independent and identically distributed (i.i.d.) weights Z1, ..., Zn also
independent from X1, ..., Xn,

Wi,n =
Zi

Tn
, Tn =

n
ÿ

i=1

Zi, (1.1)

provided E(Z) = V(Z) = 1 and Z1 has a Laplace transform in a neighborhood of
0. Following the forthcoming arguments this induces a distance O(n´1/2 logn)
between Pn and P˚

n in various weak convergence metrics.

Main result in the classical setting. In this paper we revisit the above
mentioned results for the self-normalized weighted bootstrap empirical process

α˚
n(f) =

?
n(P˚

n(f) ´ Pn(f)), P˚
n(f) =

1

n

n
ÿ

i=1

Wi,nf(Xi), f P F , (1.2)

with the weights Wi,n from (1.1). Clearly for F = t1t¨ďtu : t P Ru and the
uniform distribution on (0, 1) we recover the bootstrapped empirical process
α˚
n(u) of [3] defined above, howewer we allow any distribution P on R for this

class F , not only absolutely continuous ones. Furthermore we relax the usual
assumption that the resampling weights Zi/Tn are independent from the original
sample by allowing (Xi, Zi) to be i.i.d. with some distribution P (X,Z) while
still controlling the marginal laws P of X and PZ of Z. Our main result
is a nonasymptotic joint strong approximation of bn bootstrap iterations of
α˚
n(F) by independent versions of the same Gaussian process G(F) as the weak

limit of αn(F), jointly to the approximation of αn(F) itself. This allows to
turn these conditionally independent, and orthogonal, empirical processes into
independent Gaussian processes. It ensues an uniform central limit theorem for
the bootstrap procedure (1.2) with rates in various weak convergence metrics,
including uniform Berry-Esseen type results and distances between distributions
of S˚

n and Sn. The rigorous control of the bootstrap Monte-Carlo procedure
itself is our most innovative contribution.

Bootstrapping under auxiliary information. Our secondary goal is to
extend the bootstrap procedure to a less classical setting where an auxiliary in-
formation is known or learned about P . The motivation comes from the hasty
development of distributed data. In this context it is realistic to consider a
global statistical model where several sources learn deeply about one partial
aspect of P and only communicate their conclusions rather than their too large
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or confidential samples. In the next section we define the raking-ratio empirical
process that combines these informations through N iterations of the procedure
in order to improve the inference from X1, ..., Xn as studied in details in [1]. The
underlying intuition connecting the bootstrap and the raking-ratio is twofold.
On the one hand a better knowledge of P may help the bootstrap by either
improving the initial Pn and/or the redrawn P˚

n. On the other hand bootstrap-
ping the raked empirical measure denoted below P(N)

n may give access to the
distribution of a raked statistic observed only once, in particular to evaluate its
lower variance, small bias and reduced risk.
Organization. The paper is organized as follows. The four bootstrap proce-
dures to be studied are presented in section 1.3 together with our paradigm of
auxiliary information from partitions. We present the main results in parts 2
and 3. More precisely, section 2.2 provides the strong approximation of the
weighted bootstrap empirical process iterated bn times, then statistical conse-
quences are derived in sections 2.3 and 2.4. Results of section 3.1 show that we
can apply the Raking-Ratio method after bootstrapping a sample in order to
simulate the asymptotic law of the empirical Raking-Ratio process. The results
stated in sections 3.2 and ?? show how the performances of the basic bootstrap
are improved by using a true information on P . Finally, the proof of all results
are postponed until section 4, focusing mainly on the case without information
then avoiding straightforward details.

1.3 Weighted bootstraps

The weighted bootstrap empirical process. Let (X1, Z1), . . . , (Xn, Zn) be
independent random variables with unknown law P (X,Z) on (X ,A)ˆ (R,B(R)).
The conditional distributions P (Z|X=x) are assumed to exist and satisfy

E(Z|X = x) = Var(Z|X = x) = 1, x P X . (1.3)

For sake of simplicity we shall assume

P(0 ď Z ď MZ) = 1, MZ ă +8. (1.4)

This is not restrictive when n is fixed since for MZ = F´1
Z (1´1/nθ+1bn) the ran-

dom variable 1t|Z|ďMZuZ + 1t|Z|ąMZuMZ behaves like Z over all bootstrapped
samples with probability of order 1 ´ 1/nθ. However, as n Ñ +8, truncation
arguments would be cumbersome.
The first weighted bootstrap process α˚

n to be considered is defined at (1.1)
and (1.2). We study the joint convergence of (αn(F), α˚

n(F)) with rates. Eval-
uating the weak distance between α˚

n and its limit is crucial since each new
bootstrap sample X˚

1 , ..., X
˚
n is affected by it. Likewise, in order to control the

global distortion in play by not using Pn when bootstrapping a collection of
estimators Sn with law φ(Pn) we shall approximate jointly the bn bootstrapped
empirical processes. The coupling error being quantified in the very strong sup-
norm over F , bn has to be sufficiently small to guaranty that the confident bands
for infinitely many estimated parameters are uniformly not over-biased.
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Beyond the classical one, let us introduce three other weighted bootstraps -
only the first two are studied, the third one satisfies similar results however
with heavier notation.

The raking-ratio empirical process. What we call the raking-ratio algo-
rithm was introduced by Deming and Stephan [14] and rectified by Stephan [34]
then justified by Lewis [25], Brown [12], Sinkhorn [32, 33] and finally Ireland
and Kullback [21]. This procedure consists in changing iteratively the weights
of each Xi to match known probabilities of discrete marginals. Special cases
or closely related methods are stratification, calibration, fitting after sampling,
iterative proportions or matrix scaling. A rather general study at the empirical
measure level was conducted in [1] from the viewpoint of auxiliary information
of partitions. Let us briefly introduce the suitable notation and a few results in
our setting where entries of the algorithm are random.

For all N P N˚ assume that mN ě 1 and A
(N)
1 , . . . , A

(N)
mN Ă A is a partition of

X such that the discrete marginal P (A(N)) = (P (A
(1)
1 ), . . . , P (A

(N)
mN )) is known

and pN = min1ďjďmN
P (A

(N)
j ) ą 0. Let P(N)

n and α
(N)
n denote respectively

the empirical measure and process associated with the raking-ratio method,
defined to be P(0)

n = Pn, α(0)
n = αn and, for N ě 1 and on the event B1,N

n =

tmin1ďjďmN
P(N´1)
n (A

(N)
j ) ą 0u,

P(N)
n (f) =

mN
ÿ

j=1

P (A
(N)
j )

P(N´1)
n (A

(N)
j )

P(N´1)
n (f1

A
(N)
j

), (1.5)

α(N)
n (f) =

?
n(P(N)

n (f) ´ P (f)), f P F . (1.6)

In particular, P(N)
n (A

(N)
j ) = P (A

(N)
j ) and α(N)

n (A
(N)
j ) = 0 for all N P N and j =

1, . . . ,mN . Notice that P(N)
n is the Kullback projection of P(N´1)

n satisfying the
N -th step constraint P (A(N)) according to Proposition 1 of [1]. We proved that
under classical entropy conditions on F , α(N)

n (F) converges weakly as n Ñ +8

to a centered Gaussian process G(N) defined similarly to α(N)
n – see Proposition

4 of [1]. More precisely, write E[f |A] = P (f1A)/P (A) and set G(0) = G to be
the P -Brownian bridge indexed by F then define the P -raked Brownian bridge
to be, for N P N˚,

G(N)(f) = G(N´1)(f) ´

mN
ÿ

j=1

E[f |A
(N)
j ]G(N´1)(A

(N)
j ), f P F . (1.7)

We established that the covariance of the limiting process G(N) is

Cov(G(N)(f),G(N)(g)) = Cov(G(0)(f),G(0)(g)) ´RN (P, f, g) (1.8)

where RN (P, f, g) has the following closed form expression given at Proposition
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7 in [1]:

RN (P, f, g) =
N
ÿ

k=1

Φ
(N)
k (P, f) ¨ Var(G[A(k)]) ¨ Φ

(N)
k (P, g), (1.9)

Φ
(N)
k (P, f) =

N
ÿ

l=1

P(P, l) ¨ P [f |A(l)],

where P [f |A(l)] = (P (f |A
(l)
1 ), . . . , P (f |A

(l)
ml)),P(P, l) P Rml The asymptotic

uniform variance reduction is induced by the fact that RN (P, f, f) ě 0 for
all N ě 1, f P F . Likewise all finite dimensional covariance matrices of
G(N)(F) are decreasing compared to the initial one. The strong approximation
of α(N)

n by G(N) established by Theorem 2.1 of [1] further shows that the bias
E(P(N)

n (f)) ´ P (f) is uniformly small and provides rates of uniform quadratic
risk reduction over F . If recursive loops are performed among p partitions with
known probabilities, for n sufficiently large the finite covariance matrices of α(kp)

n

decrease at each loop k. We also compute – see Theorem 2.2 of [1] – a simple
expression for G(N) as N Ñ +8 when raking with two partitions alternatively
– the basic case of a two-way contingency table.
Raking the bootstrapped empirical process. According to the bootstrap
paradigm, in order to estimate the distribution of α(N)

n one has to re-sample
according to the weighted Pn then apply the N -th order raking-ratio procedure
to P˚

n. This gives access by Monte-Carlo approaches to the unknown distribution
of G(N) – useful since P is unknown. Define the raked bootstrapped empirical
measure to be P˚(0)

n = P˚
n then, recursively and conditionally to X1, ..., Xn on

the event B2,N
n = tmin1ďjďmN

P˚(N´1)
n (A

(N)
j ) ą 0u,

P˚(N)
n (f) =

mN
ÿ

j=1

Pn(A
(N)
j )

P˚(N´1)
n (A

(N)
j )

P˚(N´1)
n (f1

A
(N)
j

), (1.10)

α˚(N)
n (f) =

?
n(P˚(N)

n (f) ´ Pn(f)), f P F . (1.11)

The centering with respect to Pn in (1.11) should be discussed. In (1.2) the
centering Pn stands for the conditional expectation of P˚

n and plays the role of
the expectation P of Pn in αn. On the opposite, there is a bias inherent to the
raking-ratio procedure so that P is no more the expectation of P(N)

n in (1.6).
This bias was established by Proposition 5 of [1] to be uniformly small, hence
P is confirmed as the targeted probability measure and the limiting process is
centered. In order to simulate the influence of this bias we center the boot-
strap (1.11) on Pn. Therefore P˚(N)

n and α
˚(N)
n use the auxiliary information

Pn(A(N)) = (Pn(A
(N)
1 ), . . . ,Pn(A

(N)
mn )) instead of the original P (A(N)) and sat-

isfy
P˚(N)
n (A

(N)
j ) = Pn(A

(N)
j ), α˚(N)

n (A
(N)
j ) = 0, j = 1, . . . ,mN .

Bootstrapping the raked empirical process. A way to exploit directly the
information of partitions is to bootstrap by using a probability that is possibly
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closer to P than Pn is, namely P(N)
n . Let T (N)

n /n denote the mean of Z1, ..., Zn

under the discrete measure P(N)
n , that is T (N)

n =
řn

i=1 nP
(N)
n (tXiu)Zi. In par-

ticular, T (0)
n = Tn. Given N P N, define the bootstrapped N -th order raked

empirical measure and process to be, on the event B1,N
n ,

P(N)˚
n (f) =

n
ÿ

i=1

nP(N)
n (tXiu)Zi

T
(N)
n

f(Xi), (1.12)

α(N)˚
n (f) =

?
n(P(N)˚

n (f) ´ P(N)
n (f)), f P F .

This reproducible imitation of αn is a variant of (1.2).

2 Main results

2.1 The class F

In all this paper, one assume that X is measurable with σ-field A. For ap-
proximations results X is not required to be metric separable nor A be Borel
sets, however this may helps differentiability questions for the statistics to be
bootstrapped. Let M be the set of measurable real valued functions on (X ,A)

and rF Ă F Ă M be such that supfPF |f | ď MF ă +8, rF is countable and
each f P F is the point-wise limit of a sequence belonging to rF . This condition
ensures that the empirical process αn and the variants defined in the previous
section are point-wise separable and hence ball measurable, which allows to
restrict their weak convergence to ball measurable test maps and avoid outer
probabilities – see example 2.3.4 of [35].

For a probability measure Q on (X ,A) we endow M with the semi-metric dQ
defined by dQ2(f, g) =

ş

X (f ´ h)2dQ. Let N(F , ε, d) be the minimum number
of balls of radius ε for the semi-distance d needed to cover F . Let N[ ](F , ε, d)
be the minimum number of ε-brackets for d necessary to cover F . One assume
throughout the paper that F satisfies either (VC) or (BR) below, which encom-
pass many useful examples. Typically (VC) concerns small classes well behaved
with respect to all P , like VC-classes. On the opposite (BR) concerns classes
that are very large or well behaved only with respect to a few P .

Hypothesis (VC). There exists c0 ą 0, ν0 ą 0 such that supQN(F , ε, dQ) ď

c0ε
´ν0 where the supremum is taken over all probability measure Q on (X ,A).

Define α0 = 1/(2 + 5ν0) P (0, 1/2) and β0 = (4 + 5ν0)/(4 + 10ν0).

Hypothesis (BR). There exists b0 ą 0, 0 ă r0 ă 1 such that N[ ](F , ε, dP ) ď

exp(b20ε´2r0). Define γ0 = (1 ´ r0)/2r0.

Under (VC) or (BR) the process αn(F) converges weakly to the P -Brownian
bridge G(F) in ℓ8(F) endowed with the sup-norm ||H||F = supfPF |H(f)|.
According to Propositions 1 and 2 of Berthet and Mason [8] the rate of weak
convergence is of order at most n´α0(logn)β0 under (VC) and (logn)´γ0 under

9



(BR). A slightly improvement and interpolation of these rates and conditions
are possible, however we focus on our main topic. Thus we keep the original
α0, β0, γ0 and uniform boundedness – instead of square integrable envelope
function – and it would suffice to substitute improved rates of approximation
with no change in our statements. Recall that G(F) is a centered Gaussian
linear process with covariance

Cov(G(f),G(g)) = P (fg) ´ P (f)P (g), f, g P F .

Write σ2
f = Var(f(X)) = P (f2) ´ P (f)2 and σ2

F = supfPF σ
2
f ă +8.

2.2 Strong approximations

For n P N, we write LL(n) = L(L(n)) with L(x) = max(1, log(x)).

Proposition 1. Assume (1.3), (1.4) and either (VC) or (BR). There exists a
finite K = K(F , P (X,Z)) ą 0 such that

lim sup
nÑ+8

c

n

LL(n)
||P˚

n ´ P ||F ď K a.s.

Next define un = n, vn = n´α0(logn)β0 if F satisfies (VC) and un = logn, vn =
(logn)´γ0 if (F , P ) satisfy (BR). Berthet and Mason (see Propositions 1 and 2
of [8]) proved that we can construct a probability space on which the sequence
of empirical process αn(F) can be defined together with a coupling sequence of
P -Brownian bridges Gn(F) such that, almost surely, ||αn ´ Gn||F ď Cvn for
some C ą 0 and all n large enough. By applying this strong approximation
to P (X,Z) we obtain the following version for the weighted bootstrap empirical
process α˚

n, which we formulate in the same way as in [8].

Theorem 2.1. Assume (1.3), (1.4) and either (VC) or (BR). For all θ ą 0
there exists Cθ ą 0, nθ ą 0 and a probability space supporting a sequence
t(Xn, Zn)u of i.i.d. random variables with distribution P (X,Z) and a sequence
t(Gn(F),G˚

n(F))u of pairs of independent P -Brownian bridges such that for all
n ą nθ,

P (t∥αn ´ Gn∥F ą Cθvnu Y t∥α˚
n ´ G˚

n∥F ą Cθvnu) ď
1

nθ
. (2.1)

On the same probability space as above there also exists independent sequences
tG1

n(F)u and tG˚1

n (F)u of independent versions of G(F) such that

P

(
1

?
n

max
1ďkďn

∥
?
kαk ´

k
ÿ

i=1

G
1

i∥F ą Cθvn

)
ď

1

uθn
, (2.2)

P

(
1

?
n

max
kn,θďkďn

∥
?
kα˚

k ´

k
ÿ

i=1

G˚1

i ∥F ą Cθvn

)
ď

1

uθn
, (2.3)

for all n ě max(nθ, kn,θ), where kn,θ = r2M2
Z(ln(8) + (1 + θ) lnn)s.
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The independence of Gn and G˚
n comes from Lemma 2. The bridges G˚

n (resp.
Gn) are not pair-wise independent, whereas by construction the G1˚

n (resp. G1

n)
are mutually independent. Notice that Theorem 2.1 applied with θ ą 1 not only
implies that α˚

n almost surely weakly converge to G but also provides rates of
weak convergence. In particular this establishes the asymptotic independence
of the processes αn and α˚

n. Moreover, by substituting Gn and G˚
n their residual

orthogonality is quantified through

lim sup
nÑ+8

1

vn
sup
f,gPF

|Cov(αn(f), α
˚
n(g))| ă +8 a.s.

Consider now the Monte-Carlo experiment of bn iterated bootstraps. Let P˚
n,(j)

denote the jth independent bootstrapped empirical measure built from weights
(Z1,(j), . . . , Zn,(j)) drawn from P (Z|X=Xi) ˆ ¨ ¨ ¨ ˆ P (Z|X=Xn) conditionally to
X1, . . . , Xn. Write α˚

n,(j)(f) =
?
n(P˚

n,(j)(f) ´ Pn(f)) the associated empirical
process. For bn = 1 the following result reduces to Theorem 2.1, otherwise the
rates of approximation are slowed down. If F satisfies (VC) then define

wn =

(
b5n
n
(logn)2

)α0
(

log
(
n

b5n

))5v/(4+10v)

ď

(
b5n
n

)α0

(logn)β0 .

If (F , P ) satisfy (BR) then define

wn =

(
1

log(n/b5n)

)γ0

ě

(
1

logn

)γ0

.

Theorem 2.2. Assume (1.3), (1.4) and either (VC) or (BR). Let bn P N˚

be such that bn/n1/5 Ñ 0. For all θ ą 0 there exists Cθ ą 0, nθ ą 0 and
a probability space supporting a triangular array t(Xn, Zn,(1), ..., Zn,(bn))u of
i.i.d. random vectors distributed as P (X1,Z1,(1),...,Z1,(bn)) and a triangular array
t(G˚

n,(0)(F),G˚
n,(1)(F), ...,G˚

n,(bn)
(F))u of (bn + 1)-uplets of mutually indepen-

dent P -Brownian bridges such that, for n ě nθ,

P

(
t∥αn ´ G˚

n,(0)∥F ą Cθwnu Y

bn
ď

j=1

t∥α˚
n,(j) ´ G˚

n,(j)∥F ą Cθwnu

)
ď

1

nθ
.

(2.4)

The coupling we perform implies that G˚
m,(j) and G˚

n,(k) are dependent if m ‰ n

and independent if m = n and j ‰ k. The following uniform central limit
theorem immediately follows, if bn = b is fixed. For b bootstraps define the
Rb+1-valued empirical process indexed by Fb+1 to be

Λn,b(Fb+1) = t(αn(f0), α
˚
n,(1)(f1), . . . , α

˚
n,(b)(fb)) : f = (f0, f1, . . . , fb) P Fb+1u.

Consider any norm ||.|| on Rb+1 then endow ℓ8(Fb+1 Ñ Rb+1) with the distance
associated to the sup-norm ||Λ||b+1 = supfPFb+1 ||Λ(f)||.
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Proposition 2. Under the assumptions of Theorem 2.2, for any fixed b P N˚

the sequence Λn,b(Fb+1) converges weakly in ℓ8(Fb+1 Ñ Rb+1) to

Gb(Fb+1) = t(G˚
(0)(f0),G

˚
(1)(f1), . . . ,G

˚
(b)(fb)) : f = (f0, f1, . . . , fb) P Fb+1u

where G˚
(0),G

˚
(1), . . . ,G

˚
(b) are mutually independent P -Brownian bridges.

Theorem 2.2 also implies that the distance in distribution between Λn,bn(Fbn+1)
and Gn,bn(Fbn+1) = t(G˚

(0)(f0),G
˚
(1)(f1), . . . ,G

˚
(b)(fb)) : f P Fb+1u is at most

O(wn), which is severely impacted by bn and requires that bn/n1/5 Ñ 0. Let
dPL,n(µ, ν) denote the Prokhorov-Lévy distance between two probability mea-
sures (µ, ν) on ℓ8(Fbn+1 Ñ Rbn+1).

Proposition 3. Under the assumptions of Theorem 2.2 we have

dPL,n(Λn,bn(Fbn+1),Gn,bn(Fbn+1)) = O(wn).

Comments. Proposition 2 shows that for one bootstrap experiment the biased
empirical process

?
n(P˚

n,(1)(f) ´ P (f)) is asymptotically distributed as G˚
(0) +

G˚
(1) and hence

?
2G so that its asymptotic variance is 2Var(f). Moreover,

thanks to Theorem 2.2 the study of weak convergence of functionals estimated
by bn bootstrap experiments which are conditionally independent versions of α˚

n

is made easier by substituting the G˚
n,(j) to the α˚

n,(j). Furthermore, when n is
large the distributions of the statistics of interest are typically very concentrated
and nearly Gaussian, thus bootstrapping only bn times with bn/n

1/5 Ñ 0 is
not so penalizing once the uniform performance is guarantied by Theorem 2.2.
The assumption (1.4) could be relaxed in Theorems 2.1 and 2.2 by taking into
account the tail behavior of Z through the function ψZ(z) = ´ logP(Z ą z),
z ą 0, however at the cost of additional technicalities.

The above coupling results can be applied to control in general estimators boot-
strapped bn times and expressed as smooth transforms of P˚

n(F). In 2.3 we study
in particular the variance and the distribution function uniformly over a class
of such estimators. In 2.4 we derive uniform over F Berry-Esseen type bounds.

2.3 Estimation of variance and distribution function

Motivation. In a bootstrap Monte-Carlo procedure the P˚
n(f) have to be

reevaluated bn times by redrawing the n weights Zi according to the conditional
distribution P (Z|X=Xi). Classically bn = 1 and the bootstrapped moments of a
smooth transform of several mean estimators P˚

n(f) is evaluated by Edgeworth
expansions. When bn = b ą 1 estimators of the moments of P˚

n(f) have also been
studied, but typically not jointly. For instance, Booth and Sarkar [11] showed
that the distribution of the bootstrap estimator of the variance of a statistic is
approximately a chi-squared distribution with b ´ 1 degrees of freedom. They
deduce b ą 1 necessary to obtain a relative error less than a fixed bound with
some probability, assuming n large – for an error less than 10% with probability

12



0.95 about b = 800 are required. Chandra and Ghosh [13] studied the distribu-
tions of smooth functions of the empirical mean by using Edgeworth expansions
and proved that these statistics converge to a centered Chi-squared distribution.
In the same spirit, Babu [5] showed that the bootstrapped version of smooth
transforms of a single empirical mean has a similar weak asymptotic behavior
by assuming that the functional is three times continuously differentiable.
Let us extend these results to the case of functionals of the empirical measure
itself instead of one or several empirical means, under a generic assumption of
first order differentiability on the space of measures.
Hypothesis. We study the bootstrap estimation of moments and distribution
of a statistic Sn = φ(Pn) with φ differentiable in the following weak sense. Let
φ : ℓ8(F) Ñ R be a real-valued function such that, for all Q P ℓ8(F),

φ(P +Q) = φ(P ) + φ1(P ) ¨Q+R(Q), (2.5)
where φ1(P ) P L(ℓ8(F),R) is a linear application satisfying |φ1(P ) ¨Q| ď ||Q||F ,
R : ℓ8(F) Ñ R is an application such that in a ball B centered on the zero
function |R(Q)| ď ||Q||

q
F for some q ą 1. The local expansion (2.5) includes

Frechet differentiability and examples pages 11-16 in Barbe and Bertail [6].
The key factor showing up in this setting is σ2 = Var(φ1(P ) ¨ G), with G
the P -Brownian bridge. One could refer to σ2 as a conditional coefficient of
variation. The following table makes (2.5) explicit for some classical estimators,
in particular the associated finite classes and the differential φ1(P ) ¨ G.

Sn = φ(Pn) F φ1(P ) ¨ G σ2

Mean
Pn(f0)

tf0u G(f0) Var(f0(X))

Variance
Pn(f

2
0 ) ´ Pn(f0)

2 tf20 , f0u G(f20 ) Var(f20 (X))

Inverse mean
1

Pn(f0)
tf0u ´1

P 2(f0)
G(f0)

Var(f0(X))
P 4(f0)

Conditional mean
Pn(f01A)
Pn(A)

tf01A,1Au
G(f01A)´P (f0|A)G(A)

P (A)
Var((f0(X)´E[f0(X)|A])1XPA)

P (A)2

Variance and distribution estimations by bootstrap. Write S˚
n,(j) =

φ(P˚
n,(j)), for 1 ď j ď bn. Whenever Sn is asymptotically normal, or regular in

terms of Edgeworth expansion, Var(Sn) is crucial to provide confident bands.
The variance and distribution function of Sn could be estimated by the following
bootstrap estimators

yVar(S˚
n) =

1

bn

bn
ÿ

j=1

(S˚
n,(j) ´ Sn)

2 =
1

bn

bn
ÿ

j=1

(
φ(P˚

n,(j)) ´ φ(Pn)
)2
,

pFS˚
n
(x) =

1

bn

n
ÿ

j=1

1tS˚
n,(j)

ďxu.
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Results. The next statement provides a confidence interval of Var(Sn) from
the value yVar(S˚

n). In particular the statistic (nbn/σ2)yVar(S˚
n) is asymptotically

close to a χ2(bn).

Corollary 1. Assume (1.3), (1.4) and (VC). Let bn P N˚ be such that bn/n1/5 Ñ

0. There exists C0, n0 ą 0 such that for all n ą n0,

P
( n
σ2

|yVar(S˚
n) ´ Var(Sn)| ě δ + C0wnn

α0/2
)

ď α+
1

n2
, (2.6)

with α, δ such that P
(ˇ

ˇ

ˇ

χ2(bn)
bn

´ 1
ˇ

ˇ

ˇ
ě δ
)

ď α. In particular, almost surely there
exists C 1

0 ą 0, n1
0 = n1

0(ω) ą 0 such that for all n ą n1
0,

|yVar(S˚
n) ´ Var(Sn)| ď

C 1
0?
bn
. (2.7)

Remark. If bn = b is fixed and the class F is finite we get the same approxima-
tion for b as Booth and Sarkar [11] to have a relative error for yVar(S˚

n) less than
δ with a probability greater than 1 ´ α, namely b » 2|Φ´1(α/2)|2/δ2. Moreover
Corollary 1 provides a second order control of both the width and probability of
the confident interval for the variance, uniformly in n and for infinite classes.

The following result is a DKW-type inequality for bootstrap statistics. It evalu-
ates the uniform deviation between the unknown distribution function of Sn and
the estimated empirical distribution function pFS˚

n
by also taking into account

the shift due to the unavoidable bias Bn = Sn ´ φ(P ).

Corollary 2. Assume (1.3), (1.4) and either (BR) or (VC). Let bn P N˚ be
such that bn/n1/5 Ñ 0. Almost surely there exists C0 ą 0, n0 = n0(ω) ą 0 such
that for all n ą n0,

sup
xPAC

n

| pFS˚
n
(x+Bn) ´ FSn

(x)| ď C0

c

logn
bn

, (2.8)

with An = [φ(P ) ´ an;φ(P ) + an], an = σ
a

log(logn/bnw2
n).

Remark. Let Λ denote the class of strictly increasing continuous mappings of
R onto itself. The J1-topology is defined by the Skorokhod metric (see Billings-
ley [10])

d(F,G) = inf
λPΛ

max
(

sup
xPR

|λ(x) ´ x|, sup
xPR

|G ˝ λ(x) ´ F (x)|

)
.

Let dA(F,G) denote the above distance when the second supremum is only
evaluated on x P A. Since

?
nBn Ñweak ϕ

1(P ) ¨ G then Bn = Op.s.(
a

log(n)/n)
and it follows from (2.8) that

P

(
dAC

n
(FSn

, pFS˚
n
) ą C

c

logn
bn

)
ď

1

n2
.
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2.4 Rates of weak convergence

Local Berry-Esseen bounds. Let Φ be the distribution function of the stan-
dard normal law. Singh[31] – see also section 3.1.3. of [29] - established several
Berry-Esseen type inequalities for the distribution of the sum of bootstrapped
variables of a given sample with respect to the distribution function of the sum
of the variables of this sample and then with respect to Φ. In particular, under
certain conditions he established that the uniform deviation between these dis-
tributions is almost-surely at most O(n´1/2). With Edgeworth expansion tech-
niques, Hall [18, 19] studied the leading term of the expansion of the uniform
deviation conditionally to the sample and found the same rate as the statistic
n´3/2|

řn
j=1X

3
j | + n´2

řn
j=1X

4
j converges to 0 – that is also O(n´1/2) if the

fourth moment exists. In this section, we derive a Berry-Esseen inequality for
the bootstrapped empirical process indexed by functions, i.e. uniform results
among large classes of statistics, however with slower rates than the O(n´1/2)
for a single smooth statistic.
Uniform Berry-Esseen bounds. Let L be a set of Lipschitz functions defined
on ℓ8(F) such that all ϕ P L has a Lipschitz constant bounded by C0 ă +8

and the density ϕ(G(f)) is bounded by C1 ă +8 for all f P F .
Corollary 3. Assume (1.3), (1.4) and either (VC) or (BR). There exists C ą

0, n0 ą 0 such that for all n ą n0,

sup
ϕPL

sup
fPF

sup
xPR

|P (ϕ (α˚
n(f)) ď x) ´ P (ϕ(G(f)) ď x)| ď CC0C1vn, (2.9)

sup
ϕPL

sup
fPF

sup
xPR

|P (ϕ (α˚
n(f)) ď x) ´ P (ϕ(αn(f)) ď x)| ď CC0C1vn. (2.10)

In particular, if rσ2
F = inffPF Var(f(X)) ą 0 then

sup
xPR

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

P

(
α˚
n(f)

a

Var(f(X))
ď x

)
´ Φ(x)

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

?
2πrσF

vn,

sup
xPR

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

P

(
α˚
n(f)

a

Var(f(X))
ď x

)
´ P

(
αn(f)

a

Var(f(X))
ď x

)ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

?
2πrσF

vn.

3 Raking-Ratio results

3.1 Strong approximation of α˚(N)
n

Fix N0 P N˚ and denote PN0 =
śN0

N=1 pN ,MN0 =
śN0

N=1mN . The boot-
strapped empirical measure associated with the Raking-Ratio method assumes
the following law of iterated logarithm:
Proposition 4. If F satisfies (VC) or (BR) then there exists K = K(F , Z) ą 0
such that,

lim sup
nÑ+8

max
1ďNďN0

c

n

LL(n)
||P˚(N)

n ´ P ||F ď KbN0
a.s.,
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where b0 = 1 and bN0 =
śN0

N=1(1 +MF/pN ).

The bootstrapped empirical process α˚(N)
n also satisfies the following Talagrand

type concentration inequalities:

Proposition 5. Let KF = max(1,MF ) and assume (1.3), (1.4) and that α(N)
n

and α˚(N)
n are both defined for every 0 ď N ď N0. For all n ą 0, λ ą 0 we have

P
(

max
0ďNďN0

||α˚(N)
n ||F ą λ

)
ď 4N0+1N2

0MN0
P
(

||αn||F ą
λP 2

N0

3MN0(4KF )N0(1 + λ/
?
n)2N0

)
+ 2N0+2N0 exp

(
´

λ2P 4
N0

18M2
N0
M4

ZM
2
F (4KF )2N0(1 + λ/

?
n)4N0

)
.

(3.1)

Under (BR) it holds, for n ą n0 and λ0 ă λ ă D0

?
n,

P
(

max
0ďNďN0

||α˚(N)
n ||F ą λ

)
ď D1 exp(´D2λ

2), (3.2)

for some positive values λ0, D0, D1, D2. Under (VC) it holds, for n ą n0 and
λ0 ă λ ă 2MF

?
n,

P
(

max
0ďNďN0

||α˚(N)
n ||F ą λ

)
ď D3λ

ν0
0 exp(´D2λ

2), (3.3)

for some positive values λ0, D3, D4.

The following theorem establishes the strong approximation of α˚(N)
n to G(N)

defined by (1.7).

Theorem 3.1. Assume (1.3), (1.4) and either (VC) or (BR). Let θ ą 0. There
exists Cθ, nθ ą 0 and a probability space supporting a sequence t(Xn, Zn)u of
i.i.d. random variables with distribution P (X,Z) and sequences t(G(N)

n (F)),G˚(N)
n (F))u

of pairs of independent versions of G(N)(F) for all 0 ď N ď N0 such that for
all n ą nθ,

P
(

max
1ďNďN0

||α˚(N)
n ´ G˚(N)

n ||F ą Cθvn

)
ă

1

nθ
, (3.4)

P
(

max
1ďNďN0

||α(N)
n ´ G(N)

n ||F ą Cθvn

)
ă

1

nθ
. (3.5)

A stronger result of this result keeping the same spirit as Theorem ?? is the
following:

Theorem 3.2. Assume (1.3), (1.4) and either (VC) or (BR). Let θ ą 0
and bn P N˚ be such that bn/n1/5 Ñ 0. There exists Cθ ą 0, nθ ą 0 and
a probability space supporting a triangular array t(Xn, Zn,(1), ..., Zn,(bn))u of
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i.i.d. random vectors distributed as P (X1,Z1,(1),...,Z1,(bn)) and a triangular array
t(G˚

n,(0)(F),G˚
n,(1)(F), ...,G˚

n,(bn)
(F))u of (bn + 1)-uplets of mutually indepen-

dent P -Brownian bridges such that, for n ě nθ,

P
(

max
j=1,...,bn

max
1ďNďN0

||α
˚(N)
n,(j) ´ G˚(N)

n,(j) ||F ą Cθwn

)
ă

1

nθ
,

P
(

max
j=1,...,bn

max
1ďNďN0

||α
(N)
n,(j) ´ G(N)

n,(j)||F ą Cθwn

)
ă

1

nθ
.

In particular, Theorem 3.1 implies that the bootstrapped empirical process as-
sociated with this method α

˚(N)
n converges weakly in ℓ8(F) to the Gaussian

process G(N) as the same way as α(N)
n . A simply way to simulate the law of the

Raking-Ratio process is to bootstrap the initial available sample and apply the
Raking-Ratio method. We can therefore estimate the covariance or variance
of the raking-ratio empirical process by Monte-Carlo method without apply-
ing (1.8). The next result is a corollary of Theorem 3.2 and gives details about
the precision of these estimators:

Corollary 4. Assume (1.3), (1.4) and (VC). Let bn P N˚ be such that bn/n1/5 Ñ

0. Almost surely there exists C0 ą 0, n0 = n0(ω) ą 0 such that for all n ą n0 it
holds

max
0ďNďN0

sup
f,gPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

bn

bn
ÿ

j=1

(P˚(N)
n,(j) (f) ´ Pn(f))(P˚(N)

n,(j) (g) ´ Pn(g)) ´
1

n
Cov(G(N)(f),G(N)(g))

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C0 logn

n
, (3.6)

max
0ďNďN0

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

bn

bn
ÿ

j=1

(P˚(N)
n,(j) (f) ´ Pn(f))

2 ´
1

n
Var(G(N)(f))

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C0 logn

n
. (3.7)

Remark. Proposition 4 is an interesting result since we could estimate the
variance and covariance of the raking-ratio process, and so the efficiency of an
auxiliary information, without knowing probabilities P (A(N)) for N P N˚. If the
auxiliary information has a cost – for example if this information is provided
by experts, statistical learning or by data purchasing – the statistician could test
the efficiency of the information before paying it.

3.2 Strong approximation of α(N)˚
n

We defined our raked bootstrapped empirical process α˚(N)
n by bootstrapping αn

in a first time and raking among known partitions after and we have shown that
this process has the same asymptotic behavior as the Raking-Ratio Gaussian
process G(N). So a natural question is whether the behavior is the same for
α
(N)˚
n , if we apply the Raking-Ratio at first and bootstrapped in a second time

by adding random weights. The answer to this question is negative, main reason
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being that our process α˚(N)
n no longer satisfies the constraints given by the

auxiliary information Pn(A(N)) and has no reason to have the same asymptotic
limit as that the non-bootstrapped process α(N)

n . However, we can prove that
α
(N)˚
n has the same asymptotic behavior as α˚

n.

Proposition 6. Assume (1.3), (1.4) and either (VC) or (BR). For all θ ą

0 there exists positive constants Cθ, nθ and a probability space supporting a
sequence t(Xn, Zn)u of i.i.d. random variables with distribution P (X,Z) and a
sequence t(Gn(F),G(0)˚

n (F), . . . ,G(N0)˚
n (F))u of P -Brownian bridges such that

for all n ě nθ,

P

(
t||αn ´ Gn||F ą Cθvnu Y

N0
ď

N=0

t||α(N)˚
n ´ G(N)˚

n ||F ą Cθvnu

)
ď

1

nθ
. (3.8)

4 Proofs

By definition of vn there exists ε P (0, 1/2) such that vnn1/2´ε is of the form nα

or nα(logn)β with some α ą 0, β P R. We fix this value of ε for this section.

4.1 Decomposition of α˚
n

We introduce at Step 1 a simpler definition of the boostrapped empirical pro-
cess. This new process can be expressed through the classical empirical process
indexed by a special function class. In fact, this class is an extension of F and
is defined at Step 2. At Step 3 we give the decomposition of this new process
via the empirical process indexed by this class of function.

Step 1. In order to study α˚
n(F) from (1.2) it is more convenient to first work

with the conditionally centered version rα˚
n(F) that we define to be

rα˚
n(f) =

?
n(rP˚

n(f) ´ ZnPn(f)) =
1

?
n

n
ÿ

i=1

(Zi ´ Zn)f(Xi), f P F , (4.1)

where, by recalling also (1.1) and (1.2),

rP˚
n(f) =

1

n

n
ÿ

i=1

Zif(Xi), Zn =
Tn
n

=
1

n

n
ÿ

i=1

Zi, α˚
n(f) =

n

Tn
rα˚
n(f). (4.2)

Step 2. Define ϕM (z) = max(´M,min(M, z)) for z P R and M ą 0 and
let 1 denote the application equal to 1 on R or X . Given f P F write hf =

h
(1)
f ´ P (f)h(2) ´ h

(3)
f where

h
(1)
f (x, z) = ϕMZ

(z)f(x), h(2)(x, z) = ϕMZ
(z), h

(3)
f (x, z) = f(x), (4.3)
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for (x, z) P X ˆ R. The functions of (4.3) belong to the following extension of
F

F1 = th(x, z) = f(x)g(z) : f P F Y t1u, g P tϕMZ
,1uu . (4.4)

The folowwing lemma proves that the enlarged class F1 has the same entropy
as F .

Lemma 1. The class F1 defined by (4.4) is uniformly bounded, point-wise
measurable and satisfies (VC) or (BR) with respect to P (X,Z) with the same
powers as F with respect to P , that is c0, ν0, b0, r0.

Proof. Let h = fg P F1 with f P F Yt1u and g P t1, ϕMu. Clearly h is bounded
by M1 = max(1,MZ) ¨ max(1,MF ) ă +8. For (x, z) P X ˆ R, f(x) is the limit
of a sequence tfn(x)u with fn P rF , so h(x, z) is the limit of fn(x)g(z) where
gfn P rF ˆ t1, ϕMu which is countable and independent of h. If F is covered
by N(F , ε, dP ) balls then F1 can be covered by 2N(F , ε/MZ , dP (X,Z)) because
d2Q(h, f0g) ď M2

Zd
2
Q(f, f0). If F is covered by N[ ](F , ε, dP ) ε-brackets then F1

can be covered by 2N[ ](F , ε, dP (X,Z)) ε-brackets since f´(x) ă f(x) ă f+(x)
implies f´(x)g(z) ă h(x, z) ă f+(x)g(z) for g positive. Hence if F satisfies (VC)
or (BR) it is the same for F1 with larger constants c0 or b0.

Step 3. By (1.3) we have E(Zf(X)) = P (f) = E(ZP (f)). By (4.1), rα˚
n can be

split into

?
nrα˚

n(f) =
n

ÿ

i=1

f(Xi)Zi ´
Tn
n

(
n

ÿ

i=1

f(Xi)

)

=
n

ÿ

i=1

Zi(f(Xi) ´ P (f)) ´
Tn
?
n
αn(f)

=
n

ÿ

i=1

(Zif(Xi) ´ E(Zf(X))) ´

n
ÿ

i=1

(ZiP (f) ´ E(ZP (f)))

´
?
nαn(f)

(
1 +

(
Tn
n

´ 1

))
.

The last expression is a linear functional of the empirical process α(X,Z)
n built

from the sample (X1, Z1), ..., (Xn, Zn) and indexed by F1 from (4.4) since

rα˚
n(f) = α(X,Z)

n (h
(1)
f ) ´ P (f) ¨ α(X,Z)

n (h(2)) ´ α(X,Z)
n (h

(3)
f )

(
1 +

(
Tn
n

´ 1

))
= α(X,Z)

n (hf ) ´ α(X,Z)
n (f)

(
Tn
n

´ 1

)
, (4.5)

where h(1)f , h(2), h
(3)
f P F1 are defined by (4.3).
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4.2 Proof of Propositions 1, 4 and 5

Let tn =
a

n/LL(n) and fix ε ą 0. At Step 1 we prove a law of iterated log-
arithm for the simpler empirical bootstrapped measure P˚

n. Proposition 1 is
proved at Step 2 as a direct consequence of Step 1. At Step 3 we use Proposi-
tion 1 to prove Proposition 4. Finally, we prove Proposition 5 at Step 4.

Step 1. By Lemma 1, F and F1 satisfy both (VC) or (BR). The law of the
iterated logarithm holds – see Alexander [2] – then with probability one there
exists n0 = n0(ω) ą 0 such that for n ą n0,

tn||Pn ´ P ||F ď
?
2σF (1 + ε), tn||Pn ´ P ||F1

ď
?
2σF1

(1 + ε). (4.6)

According to the law of large numbers with probability one there exists n1 =
n1(ω) ą 0 such that for n ą n1,

ˇ

ˇ

ˇ

ˇ

Tn
n

´ 1

ˇ

ˇ

ˇ

ˇ

= |(Pn ´ P )(Z)| ď ε. (4.7)

Notice that

tn||rP˚
n ´ P ||F ď tn||rP˚

n ´ ZnPn||F + tn||ZnPn ´ P ||F . (4.8)

Decomposition of rα˚
n given by (4.5) and (4.6) imply that for all n ě n0

tn||rP˚
n ´ ZnPn||F ď tn||Pn ´ P ||F1

(2 +MF + ε)

ď
?
2σF1(1 + ε)(2 +MF + ε). (4.9)

Using that F Ă F1, (4.6) and (4.7) we can write for all n ě max(n0, n1) by:

tn||ZnPn ´ P ||F = tn

∥∥∥∥řn
i=1 Zi

n

(
1

n

řn
i=1 f(Xi)

)
´ E[f(X)]

∥∥∥∥
F

ď tn ∥Pn(Z)(Pn(f) ´ P (f))∥F1
+MF tn|Pn(Z) ´ P (Z)|

ď (MZ +MF )(1 + ε). (4.10)

We have shown by (4.8), (4.9) and (4.10) that for all n ą max(n0, n1), tn||rPn ´

P ||F ă K0(1+ ε) with K0 = K0(F , P (X,Z))
?
2(σF1(2+MF ) +MZ +MF ) ą 0.

Step 2. By (4.2) we have for all n ą 0,

tn||P˚
n ´ P ||F =

1

1 + (Tn/n´ 1)
tn||rP˚

n ´ P ||F .

According to the conclusion of Step 1 and (4.7) for all n ą max(n0, n1) and
ε P (0, 1/2) it holds,

tn||P˚
n ´ P ||F ď

K0

1 ´ ε
(1 + ε) ď 2K0(1 + ε).
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Proposition 1 is proved with K = K(F , P (X,Z)) = 2K0(F , P (X,Z)) ą 0.

Step 3. Let b =
?
2σF . A sufficient condition to prove Proposition 4 is to show

that with probability one there exists K = K(F , P (X,Z)) ą 0, n2 = n2(ω) ą 0
such that for all n ą n2,

tn||P˚(N)
n ´ P ||F ď (KbN ´ b)(1 + ε). (4.11)

The case N = 0 is proved by Proposition 1. Now let assume that this condition
is satisfied for some fixed 0 ď N ă N0. Then by (4.11) for all n ě n2,

tn||P˚(N+1)
n ´ P ||F ď tn||P˚(N+1)

n ´ P˚(N)
n ||F + tn||P˚(N)

n ´ P ||F

ď tn||P˚(N+1)
n ´ P˚(N)

n ||F + (KbN ´ b)(1 + ε) (4.12)

Notice that mN+1 ď p(N0) and ||P˚(N)
n (f1A)||F ď MFP˚(N)

n (A). By (4.6) and
(4.11) we have for all n ą max(n0, n2),

tn||P˚(N+1)
n ´ P˚(N)

n ||F = tn

∥∥∥∥∥∥
ÿ

jďmN+1

P˚(N)
n (f1

A
(N+1)
j

)

P˚(N)
n (A

(N+1)
j )

(P˚(N)
n (A

(N+1)
j ) ´ Pn(A

(N+1)
j ))

∥∥∥∥∥∥
F

ď
MF

pN+1
(tn||P˚(N)

n ´ P ||F + tn||Pn ´ P ||F )

ď
MF

pN+1
KbN (1 + ε). (4.13)

Remind that bN+1 = bN (1 + MF/pN+1). By (4.12) and (4.13) we have for
all n ą max(n0, n2), tn||P˚(N+1)

n ´ P ||F ď (KbN+1 ´ b)(1 + ε) which proves
Proposition 4 by induction.

Step 4. Denote β
(N)
n (F) the process defined by β

(N)
n (f) =

?
n(P˚(N)

n (f) ´

P(N)
n (f)). Notice that α˚(N)

n = β
(N)
n + α

(N)
n ´ αn. For all λ ą 0,

P
(

||α˚(N)
n ||F ą 3λ

)
ď P (||αn||F ą λ) + P

(
||α(N)

n ||F ą λ
)
+ P

(
||β(N)

n ||F ą λ
)
.

(4.14)
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Remind that KF = max(1,MF ). For K ď pN and K 1 ď pN ´K we have

P
(

||β(N)
n ||F ą λ

)
ď P

(
?
n

mN
ÿ

j=1

ˇ

ˇ

ˇ

ˇ

ˇ

Pn(A
(N)
j )

P˚(N´1)
n (A

(N)
j )

P˚(N´1)
n (f1

A
(N)
j

) ´
P (A

(N)
j )

P(N´1)
n (A

(N)
j )

P(N´1)
n (f1

A
(N)
j

)

ˇ

ˇ

ˇ

ˇ

ˇ

ą λ

)

ď P

(
mN
ÿ

j=1

||αn||F + ||β
(N´1)
n ||F

P˚(N´1)
n (A

(N)
j )P(N´1)

n (A
(N)
j )

ą
λ

2KF

)

ď P
(

||αn||F ą
λK2

4mNKF

)
+ P

(
||β(N´1)

n ||F ą
λK2

4mNKF

)
+ P

(
min

j=1,...,mN

P˚(N´1)
n (A

(N)
j ) ă K

)
+ P

(
min

j=1,...,mN

P(N´1)
n (A

(N)
j ) ă K

)
ď P

(
||αn||F ą

λK2

4mNKF

)
+ P

(
||β(N´1)

n ||F ą
λK2

4mNKF

)
+ P

(
||α(N´1)

n ||F + ||β(N´1)
n ||F ą K 1

?
n
)
+ P

(
||α(N´1)

n ||F ą K 1
?
n
)

ď P
(

||αn||F ą
λK2

4mNKF

)
+ 2P

(
||β(N´1)

n ||F ą
λK2

4mNKF

)
+ 2P

(
||α(N´1)

n ||F ą
λK2

4mNKF

)
,

where the last inequality holds provided that K 1
?
n ě λK2/2mNKF . Define

β =
1

1 + λ/
?
n

P (0, 1), K = βpN , K 1 = pN (1 ´ β).

Since pN ď 1/2 for any N ě 1 it holds K 1 ą 0 and K 1
?
n ě λK2/mN (1+KF ).

By iteration we obtain that

P
(

||β(N)
n ||F ą λ

)
ď 2N´1P

(
||αn||F ą

λP 2
N

MN (4KF )N (1 + λ/
?
n)2N

)
+ 2NP

(
||β(0)

n ||F ą
λP 2

N

MN (4KF )N (1 + λ/
?
n)2N

)
+ 2NP

(
max

K=1,...,N
||α(K)

n ||F ą
λP 2

N

MN (4KF )N (1 + λ/
?
n)2N

)
.

(4.15)

Notice that P 2
N/MN (4KF )

N (1 + λ/
?
n)2N ď 1. By using (4.14), (4.15) and

Proposition 3 of [1] we have, under the event that α(N)
n are defined for every

0 ď N ď N0, that

P
(

||α˚(N)
n ||F ą λ

)
ď 4N+1NMNP

(
||αn||F ą

λP 2
N

3MN (4KF )N (1 + λ/
?
n)2N

)
+ 2N+1P

(
||β(0)

n ||F ą
λP 2

N

3MN (4KF )N (1 + λ/
?
n)2N

)
.

(4.16)
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Since β(0)
n = α˚

n and according to Hoeffding inequality we have

P(||β(0)
n ||F ą λ) ď P

(ˇ

ˇ

ˇ

ˇ

n

Tn
´ 1

ˇ

ˇ

ˇ

ˇ

ą
λ

MZMF
?
n

)
= P

(
|Tn ´ n| ą

λ
?
n

MZMF

)
ď 2 exp

(
´

λ2

2M4
ZM

2
F

)
. (4.17)

With (4.16) and (4.17) we have

P
(

||α˚(N)
n ||F ą λ

)
ď 4N+1NMNP

(
||αn||F ą

λP 2
N

3MN (4KF )N (1 + λ/
?
n)2N

)
+ 2N+2 exp

(
´

λ2P 4
N

18M2
NM

4
ZM

2
F (4KF )2N (1 + λ/

?
n)4N

)
.

The latter bound is increasing with N and P(max0ďNďN0
||α

˚(N)
n ||F ą λ) ď

řN0

N=0 P(||α
˚(N)
n ||F ą λ) which leads to (3.1). Inequality (3.2) is a consequence

of Theorem 2.14.2 and 2.14.25 of van der Vaart and Wellner [35] whereas (3.3)
is a consequence of Theorem 2.14.9 of [35].

4.3 Construction of limit Gaussian processes

Bootstrapped Gaussian processes.The Gaussian processes leading the asymp-
totic behavior of the weighted bootstrap empirical processes are as follows. Let
G0(F1) be the P (X,Z)-Brownian bridge indexed by F1. The bootstrapped Gaus-
sian process G˚(F) and the standard P -Brownian bridge G(F) – which is ac-
tually in this section the margin process of G0(F1) – are defined to be

G(f) = G0(h
(3)
f ) = G0(f ˆ 1), (4.18)

G˚(f) = G0(h
(1)
f ) ´ P (f)G0(h(2)) ´ G0(h

(3)
f ), f P F . (4.19)

Note that by linearity one can define G0(hf ) = G˚(f). The following lemma
establishes the distribution of G˚(F) and G(F) and the independence between
them.

Lemma 2. If (1.3) and (1.4) hold then G˚(F) and G(F) are independent
P -Brownian bridges.

Proof. By definition of G0(F1), the two processes G˚(F) and G(F) are centered
linear Gaussian, indexed by F such that, for all f, g P F ,

Cov(G(f),G(g)) = P (X,Z)(h
(3)
f h(3)g ) ´ P (X,Z)(h

(3)
f )P (X,Z)(h(3)g )

= P (fg) ´ P (f)P (g).

By (1.4) we have hf (X,Z) = (Z´1)(f(X)´P (f))´P (f) a.s. thus (1.3) implies

P (X,Z)(hf ) = E(Z(f(X) ´ P (f)) ´ f(X))

= E(E(Z|X)(f(X) ´ P (f))) ´ P (f) = ´P (f).
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Since G0 is also linear and (1.3) implies E((Z ´ 1)2|X) = 1 we get

Cov(G˚(f),G˚(g)) = P (X,Z)((hf + P (f))(hg + P (g)))

= E((Z ´ 1)2(f(X) ´ P (f))(g(X) ´ P (g)))

= P (fg) ´ P (f)P (g).

Moreover, for all f, g P F we get, since (1.3) implies E(Z ´ 1|X) = 0,

Cov(G˚(f),G(g)) = Cov(G0(hf ),G0(h(3)g ))

= P (X,Z)((hf + P (f))(h(3)g ´ P (g)))

= E((Z ´ 1)(f(X) ´ P (f))(g(X) ´ P (g))) = 0,

which proves the independence.

Raked bootstrapped Gaussian process. Let G(N)˚(F) be the raked boot-
strapped P -Brownian bridge defined recursively by:

G˚(0)(f) = G˚(f), G˚(N+1)(f) = G˚(N)(f) ´

mN+1
ÿ

j=1

E[f |A
(N+1)
j ]G˚(N)(A

(N+1)
j ),

(4.20)

where G˚(F) is defined by (4.19) through G0(F1). The following lemma estab-
lishes the distribution of G˚(N) and the independence between this process and
G(N)(F).

Lemma 3. If (1.3) and (1.4) hold then G˚(N)(F) and G(N)(F) are independent
Gaussian processes with same distribution.

Proof. Let f, g P F . By Lemma 2 we have

Cov(G˚(0)(f),G(0)(g)) = 0,

Cov(G˚(0)(f),G˚(0)(g)) = Cov(G(0)(f),G(0)(g)).

If we assume that

Cov(G˚(N)(f),G(N)(g)) = 0,

Cov(G˚(N)(f),G˚(N)(g)) = Cov(G(N)(f),G(N)(g)),

for some N ą 0 then by construction of G(N)(F),G˚(N)(F) respectively defined
by (1.7) and (4.20) we have necessary

Cov(G˚(N+1)(f),G(N+1)(g)) = 0,

Cov(G˚(N+1)(f),G˚(N+1)(g)) = Cov(G(N+1)(f),G(N+1)(g)),

which prove the lemma by induction the same distribution.
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Bootstrapped raked Gaussian process. Let G0,(N)(F1) be the P (X,Z)-
raked Brownian bridge defined recursively as in (1.7) from G0,(0) = G0 and the
following auxiliary information, for all N ą 0 and j = 1, . . . ,mN ,

A0,(N) = tA
0,(N)
1 , . . . , A0,(N)

mN
u, A

0,(N)
j = A

(N)
j ˆ [0,MZ ]. (4.21)

Notice that P (X,Z)(A0,(N)) = P (A(N)). The bootstrapped raking-ratio Gaus-
sian process G(N)˚(F) is defined through

G(N)˚(f) = G0,(N)(h
(1)
f ) ´ P (f)G0,(N)(h(2)) ´ G0,(N)(h

(3)
f ), f P F . (4.22)

By linearity, one can define G0,(N)(hf ) = G(N)˚(f). The following lemma gives
the distribution of G(N)˚(F).
Lemma 4. If (1.3) and (1.4) hold then for all G(N)˚(F) and G(F) are inde-
pendent P -Brownian bridges.
Proof. By (1.8), Lemma 2 and definition of G(N)˚(F) given by (4.22) and we
have for all f, g P F ,

Cov(G(N)˚(f),G(N)˚(g)) = Cov(G0,(N)(hf ),G0,(N)(hg))

= Cov(G0(hf ),G0(hg)) ´RN (P (X,Z), hf , hg)

= Cov(G(f),G(g)) ´RN (P (X,Z), hf , hg).

Let h1, h2 P F1 defined by hi(x, z) = fi(x)gi(z) for i = 1, 2. By the definition of
RN given by (1.9) we have Φ

(N)
k (P (X,Z), h) = Φ

(N)
k (P, f1) and Var(G[A(N)]) =

Var(G0[A0,(N)]) since for every 1 ď j1, j2 ď mN ,

Cov(G0(A
0,(N)
j1

),G0(A
0,(N)
j2

)) = P (X,Z)(A
0,(N)
j1

XA
0,(N)
j2

) ´ P (X,Z)(A
0,(N)
j1

)P (X,Z)(A
0,(N)
j2

)

= P (A
(N)
j1

XA
(N)
j2

) ´ P (A
(N)
j1

)P (A
(N)
j2

)

= Cov(G(A
(N)
j1

),G(A
(N)
j2

)).

These remarks lead to RN (P (X,Z), h1, h2) = RN (P, f1, f2). Then

RN (P (X,Z), hf , hg) = RN (P (X,Z), h
(1)
f ´ P (f)h(2) ´ h

(3)
f , h(1)g ´ P (g)h(2) ´ h(3)g )

= ´P (f)P (g)RN (P,1,1).

By using (1.8) and the fact that G(1) = 0,G(N)(1) = 0 we have

RN (1,1) = Cov(G(1),G(1)) ´ Cov(G(N)(1),G(N)(1)) = 0.

We have shown that Cov(G(N)˚(f),G(N)˚(g)) = Cov(G(f),G(g)). By Lemma 2
G0,(0) = G˚ is independent of G and if for all f, g P F ,

Cov(G(N)˚(f),G(g)) = Cov(G0,(N)(hf ),G(g)) = 0,

then
Cov(G(N+1)˚(f),G(g)) = Cov(G0,(N+1)(hf ),G(g)) = 0,

since G0,(N+1)(hf ) is a linear combination of elements of G0,(N)(F1). By induc-
tion we have proved the independence between G(N)˚(F) and G(F).
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4.4 Proof of Theorem 2.1 and 2.2

At Step 1 we prove Proposition 7 below. At Step 2 we deduce Theorem 2.1 from
Proposition 7 and derive at Step 3 Theorem 2.2 from Theorem 2.1. Fix θ ą 0.

Proposition 7. Assume (1.3), (1.4) and either (VC) or (BR). There exists
constants Cθ, nθ ą 0 and sequences t(Xn, Zn)u of i.i.d. random variables with
distribution P (X,Z) and a sequence t(Gn(F),G˚

n(F))u of pairs of independent
P -Brownian bridges, all of these sequences being defined on the same probability
space, such that for all n ą nθ,

P (t∥αn ´ Gn∥F ą Cθvnu Y t∥rα˚
n ´ G˚

n∥F ą Cθvnu) ď
1

nθ
. (4.23)

On the above probability space there also exists independent sequences tG1
n(F)u

and tG˚1

n (F)u of independent versions of G(F) such that, for all n ą nθ,

P

(
1

?
n

max
1ďkďn

∥
?
kαk ´

k
ÿ

i=1

G
1

i∥F ą Cθvn

)
ď

1

uθn
, (4.24)

P

(
1

?
n

max
1ďkďn

∥
?
krα˚

k ´

k
ÿ

i=1

G˚1

i ∥F ą Cθvn

)
ď

1

uθn
. (4.25)

Step 1. By Lemma 1 one can apply Propositions 1,2 and Theorems 1,2 of
Berthet and Mason [8] to α

(X,Z)
n (F1). There exists C0 = C0(θ) ą 0, n0 =

n0(θ) ą 0 and a probability space where one can construct a sequences of inde-
pendent random variables t(Xn, Zn)u distributed as P (X,Z) and two sequences
tG0

n(F1)u, tG01

n (F)u of independent P (X,Z)-Brownian bridge satisfying for all
n ą n0,

P
(
∥α(X,Z)

n ´ G0
n∥F1

ą C0vn

)
ď

1

nθ
(4.26)

P

(
1

?
n

max
1ďkďn

∥
?
kα

(X,Z)
k ´

k
ÿ

i=1

G01

i ∥F1
ą C0vn

)
ď

1

6uθn
. (4.27)

We only prove (4.24) and (4.25) by using (4.27). We can adapt the follow-
ing proof to show (4.23) by using (4.26). Let denote tGn(F)u and tG˚

n(F)u the
processes defined respectively by (4.18) and (4.19) both built through tG0

n(F1)u.
According to Lemma 2 , tGn(F)u, tG˚

n(F)u are independent P -Brownian bridges.
Since α(X,Z)

k (h
(3)
f ) = αk(f), inequality (4.24) is satisfied in particular. Write
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C 1
0 = C0 max(2,MF ). By (4.27) one can write that for all n ą n0,

P

(
1

?
n

max
1ďkďn

∥
?
krα˚

k ´

k
ÿ

i=1

G˚
i ∥F ą C 1

0vn

)

ď P

(
1

?
n

sup
fPF

max
1ďkďn

ˇ

ˇ

ˇ

ˇ

ˇ

?
kα

(X,Z)
k (h

(1)
f ) ´

k
ÿ

i=1

G01

i (h
(1)
f )

ˇ

ˇ

ˇ

ˇ

ˇ

ą C 1
0vn

)

+ P

(
1

?
n

sup
fPF

max
1ďkďn

ˇ

ˇ

ˇ

ˇ

ˇ

E[f ]

(
?
kα

(X,Z)
k (h(2)) ´

k
ÿ

i=1

G01

i (h
(2))

)ˇ

ˇ

ˇ

ˇ

ˇ

ą C 1
0vn

)

+ P

(
1

?
n

sup
fPF

max
1ďkďn

ˇ

ˇ

ˇ

ˇ

ˇ

?
kα

(X,Z)
k (h

(3)
f ) ´

k
ÿ

i=1

G01

i (h
(3)
f )

ˇ

ˇ

ˇ

ˇ

ˇ

ą C 1
0vn

)

+ P

(
1

?
n

sup
fPF

max
1ďkďn

ˇ

ˇ

ˇ

ˇ

ˇ

?
kα

(X,Z)
k (h

(3)
f ) ¨

1

k

k
ÿ

i=1

(Zi ´ 1)

ˇ

ˇ

ˇ

ˇ

ˇ

ą C 1
0vn

)

ď
1

2uθn
+ P

(
1

?
n

max
1ďkďn

[
∥
?
kα

(X,Z)
k ∥F1 ¨

ˇ

ˇ

ˇ

ˇ

ˇ

1

k

k
ÿ

i=1

(Zi ´ 1)

ˇ

ˇ

ˇ

ˇ

ˇ

]
ą C 1

0vn

)
. (4.28)

The last right-hand side member of (4.28) can be bounded by

P

(
1

?
n

max
1ďkďn

[
∥

?
kα

(X,Z)
k ∥F1

¨

ˇ

ˇ

ˇ

ˇ

ˇ

1

k

k
ÿ

i=1

(Zi ´ 1)

ˇ

ˇ

ˇ

ˇ

ˇ

]
ą C 1

0vn

)
(4.29)

ď P
(

max
1ďkďn

∥α(X,Z)
k ∥F1

ą 2C0vnn
1/2´ε

)
+ P

(
max

1ďkďn

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
k

k
ÿ

i=1

(Zi ´ 1)

ˇ

ˇ

ˇ

ˇ

ˇ

ą nε

)
.

By Hoeffding inequality and definition of ε there exists n1 = n1(θ) ą 0 such
that for all n ą n1,

P

(
max

1ďkďn

ˇ

ˇ

ˇ

ˇ

ˇ

1

k

k
ÿ

i=1

(Zi ´ 1)

ˇ

ˇ

ˇ

ˇ

ˇ

ą nε

)
ď 2n exp

(
´
2n2ε

M2
Z

)
ď

1

6uθn
. (4.30)

Moreover by (4.27) we for all n ą n0,

P
(

max
1ďkďn

∥α(X,Z)
k ∥F1 ą 2C0vnn

1/2´ε

)
ď P

(
max

1ďkďn
∥α(X,Z)

k ´
1

?
k

k
ÿ

i=1

G01

i ∥F1
ą C0vnn

1/2´ε

)

+ P

(
max

1ďkďn
∥ 1

?
k

k
ÿ

i=1

G01

i ∥F1 ą C0vnn
1/2´ε

)

ď
1

6uθn
+ P

(
max

1ďkďn
∥ 1

?
k

k
ÿ

i=1

G01

i ∥F1 ą C0vnn
1/2´ε

)
, (4.31)
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By Borell-Sudakov inequality – see annex A.2.1 of [35] – there exists n2 =
n2(θ) ą 0 such that for all n ą n2,

P

(
max

1ďkďn
∥ 1

?
k

k
ÿ

i=1

G01

i ∥F1
ą C0vnn

1/2´ε

)
ď

n
ÿ

k=1

P

(
∥ 1

?
k

k
ÿ

i=1

G01

i ∥F1
ą C0vnn

1/2´ε

)

ď 2n exp
(

´
(C0vnn

1/2´ε)2

8E[||G01
1 ||F1

]2

)
ď

1

6uθn
. (4.32)

So (4.29), (4.30), (4.31) and (4.32) imply that for all n ą max(n0, n1),

P

(
1

?
n

max
1ďkďn

[
∥

?
kα

(X,Z)
k ∥F1 ¨

ˇ

ˇ

ˇ

ˇ

ˇ

1

k

k
ÿ

i=1

(Zi ´ 1)

ˇ

ˇ

ˇ

ˇ

ˇ

]
ą C 1

θvn

)
ď

1

2uθn
. (4.33)

Inequality (4.25) is proved by (4.28) and (4.33) with nθ = max(n0, n1, n2) and
Cθ = C 1

0.
Step 2. Now we prove (2.2) and (2.3) of Theorem 2.1. By adapting the fol-
lowing proof we can also show (2.1). According to Proposition 7, there exists a
constant C0 = C0(θ), n0 = n0(θ) ą 0, a sequence t(Xn, Zn)u of i.i.d. random
variables with distribution P (X,Z), a sequence tG1

n(F)u, tG˚1

n (F)u of indepen-
dent P -brownian bridge satisfying, for all n ą n0, (2.2) and

P

(
1

?
n

max
1ďkďn

∥
?
krα˚

k ´

k
ÿ

i=1

G˚1

i ∥F ą C0vn

)
ď

1

4nθ
. (4.34)

By definition of rα˚
n given by (4.2),

P

(
1

?
n

max
kn,θďkďn

∥
?
kα˚

k ´

k
ÿ

i=1

G˚1

i ∥F ą 3C0vn

)

= P

(
1

?
n

max
kn,θďkďn

∥ k
Tk

?
krα˚

k ´

k
ÿ

i=1

G˚1

i ∥F ą 3C0vn

)

ď P

(
1

?
n

max
kn,θďkďn

∥ k
Tk

(
?
krα˚

k ´

k
ÿ

i=1

G˚1

i )∥F ą 2C0vn

)

+ P

(
1

?
n

max
kn,θďkďn

∥
(
k

Tk
´ 1

) k
ÿ

i=1

G˚1

i ∥F ą C0vn

)
. (4.35)

According to Hoeffding inequality there exists n1 = n1(θ) ą 0 such that for all
n ą n1,

P
(

max
kn,θďkďn

k

Tk
ě 2

)
ď

n
ÿ

k=kn,θ

P
(
Tk
k

ď
1

2

)
ď

n
ÿ

k=kn,θ

P (|Tk ´ k| ě k/2)

ď 2
n

ÿ

k=kn,θ

exp
(

´
2(k2/4)

kM2
Z

)
ď

1

4nθ
. (4.36)
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Using (4.34) and (4.36), we found that for all n ą max(n0, n1),

P

(
1

?
n

max
kn,θďkďn

∥ k
Tk

(
?
krα˚

k ´

k
ÿ

i=1

G˚1

i )∥F ą 2C0vn

)
ď

1

2nθ
. (4.37)

By definition of ε one can write that

P

(
1

?
n

max
kn,θďkďn

∥
(
k

Tk
´ 1

) k
ÿ

i=1

G˚1

i ∥F ą C0vn

)

ď P

(
n´1/2+ε max

kn,θďkďn
∥ 1

?
k

k
ÿ

i=1

G˚1

i ∥F ą C0vn

)

+ P
(

max
kn,θďkďn

ˇ

ˇ

ˇ

ˇ

?
k

(
k

Tk
´ 1

)ˇ

ˇ

ˇ

ˇ

ą nε
)
. (4.38)

With the same calculations as (4.32) – but on the class F – we show that there
exists n2 = n2(θ) ą 0 such that for all n ą n2 :

P

(
n´1/2+ε max

kn,θďkďn
∥ 1

?
k

k
ÿ

i=1

G˚1

i ∥F ą C0vn

)
ď

1

4nθ
, (4.39)

By (4.36) and Hoeffding inequality, there exists n3 = n3(θ) ą 0 such that for
all n ą n3,

P
(

max
kn,θďkďn

ˇ

ˇ

ˇ

ˇ

?
k

(
k

Tk
´ 1

)ˇ

ˇ

ˇ

ˇ

ą nε
)

= P
(

max
kn,θďkďn

ˇ

ˇ

ˇ

ˇ

k

Tk
¨
Tk ´ k

?
k

ˇ

ˇ

ˇ

ˇ

ą nε
)

ď P
(

max
1ďkďn

ˇ

ˇ

ˇ

ˇ

Tk ´ k
?
k

ˇ

ˇ

ˇ

ˇ

ą
nε

2

)
+ P

(
max

kn,θďkďn

k

Tk
ą 2

)
ď

1

4nθ
. (4.40)

By (4.35), (4.37), (4.38), (4.39) and (4.40), we have proved (2.3) with nθ =
max(n0, n1, n2, n3) and Cθ = 3C0.

Step 3. Let Fbn be an extension of F1 defined by

Fbn = th(x, z1, . . . , zbn) = f(x)g(zi) : 1 ď i ď bn, f P F Y t1u, g P tϕMZ
,1uu

The fact that Fbn satisfies the same metric entropy conditions than F is easy
to check. Let G0,bn(Fbn) be the P (X,Z(1),...,Z(bn))-Brownian bridge. For i ď bn,
we define the bootstrapped i-marginal process G˚,i(F) by

G˚(i)(f) = G0,bn(h
(1,i)
f,bn

) ´ P (f)G0,bn(h
(2,i)
bn

) ´ G0,bn(h
(3)
f,bn

), f P Fbn ,

where

h
(1,i)
f,bn

(x, z1, . . . , zbn) = f(x)ϕMZ
(zi), h

(2,i)
bn

(x, z1, . . . , zbn) = ϕMZ
(zi),

h
(3)
f,bn

(x, z1, . . . , zbn) = f(x).
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In fact G˚,1, . . . ,G˚,bn are independent P -Brownian bridges. Theorem 2.1 im-
plies that there exists positive constants C = C(bn), n0, a sequence t(Xi, Z

(1)
i , . . . , Z

(bn)
i )u

of i.i.d. random variables with law P (X,Z(1),...,Z(bn)) and a sequence t(Gn(F),G˚,1
n (F), . . . ,G˚,bn

n (F))u
of independent P -Brownian bridge such that for n ě n0,

P(Bn) = P

(
t||αn ´ Gn||F ą Cvnu Y

bn
ď

j=1

t||α˚(j)
n ´ G˚,j

n ||F ą Cvnu

)
ď

1

n2
,

(4.41)

where α˚(i)
n (F) is defined by α˚(i)

n (f) = α˚
n(h

(1,i)
f,bn

) is the bootstrapped empirical
process with weights constructed from (Z

(i)
1 , . . . , Z

(i)
n ).

4.5 Proof of Theorem 3.1 and 3.2

Process α˚(N)
n (F) could be seen as the process α˚(N´1)

n (F) corrected with par-
tition A(N) since

α˚(N)
n (f) =

?
n(P˚(N)

n (f) ´ Pn(f))

=
?
n

(
mN
ÿ

j=1

Pn(A
(N)
j )

P˚(N´1)
n (A

(N)
j )

P˚(N´1)
n (f1

A
(N)
j

) ´ Pn(f1A(N)
j

)

)

=
mN
ÿ

j=1

Pn(A
(N)
j )

P˚(N´1)
n (A

(N)
j )

(α˚(N´1)
n (f1

A
(N)
j

) ´ En[f |A
(N)
j ]α˚(N´1)

n (A
(N)
j )),

where En[f |A] = P(f1A)
Pn(A) . We denote the following quantities:

p
(N)
n,j =

Pn(A
(N)
j )

P˚(N´1)
n (A

(N)
j )

´ 1, q
(N)
n,j (f) = En[f |A

(N)
j ] ´ E[f |A

(N)
j ].

Then,

α˚(N)
n (f) = α˚(N´1)

n ˝ ϕ(N)(f) + Γ(N)
n (f),

Γ(N)
n (f) =

mN
ÿ

j=1

p
(N)
n,j α

˚(N´1)
n ˝ ϕ(N),j(f) ´ (1 + p

(N)
n,j )q

(N)
n,j (f)α

˚(N´1)
n (A

(N)
j ).

By successive iterations we get

α˚(N)
n (f) = α˚(0)

n ˝ ϕ(1) ˝ ¨ ¨ ¨ ˝ ϕ(N)(f) +𝟋(N)
n (f), (4.42)

𝟋(N)
n (f) =

N
ÿ

k=1

Γ(k)
n (ϕ(k+1) ˝ ¨ ¨ ¨ ˝ ϕ(N)(f)).
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Let introduce the same notations than [1]. For all f P F , N ď N0 for some fixed
N0 and j = 1, . . . ,mN we denote

ϕ(N,j)(f) = (f ´ E[f |A
(N)
j ])1

A
(N)
j
, ϕ(N)(f) =

řmN

j=1 ϕ(N,j)(f),

and function classes

F(N) = ϕ(1) ˝ ¨ ¨ ¨ ˝ ϕ(N)(F),

H(N) =
ď

1ďkďN

ď

1ďjďmk

ϕ(j,k) ˝ ϕ(k+1) ˝ ¨ ¨ ¨ ˝ ϕ(N)(F),

F0 =
ď

0ďNďN0

F(N), H0 =
ď

0ďNďN0

H(N).

The following lemma establishes that the bootstrapped process α˚
n(F(N)) is the

main process contributing for α˚(N)
n (F) and 𝟋(N)

n is an error process. It is the
equivalent of Lemma 2 of [1].

Lemma 5. Assume (1.3), (1.4) and either (VC) or (BR). For any ξ, θ ą 0
there exists nξ,θ ą 0 such that, for all n ą nξ,θ,

P
(

max
0ďNďN0

||𝟋(N)
n ||F ą ξvn

)
ď

1

nθ
.

Fix θ, ξ ą 0. Now we prove Lemma 5 at Step 1 and apply it at Step 2 to prove
Theorem 3.1. In Step 3, we describe how to prove Theorem 3.2.

Step 1. Let bound the terms of error:

|p
(N)
n,j | =

ˇ

ˇ

ˇ

ˇ

ˇ

Pn(A
(N)
j ) ´ P˚(N´1)

n (A
(N)
j )

P˚(N´1)
n (A

(N)
j )

ˇ

ˇ

ˇ

ˇ

ˇ

ď
||αn||F + ||α

˚(N´1)
n ||F

?
npN ´ ||α

˚(N´1)
n ||F

,

||q
(N)
n,j ||F =

∥∥∥∥∥∥
Pn(f1A(N)

j
) ´ E[f |A

(N)
j ]Pn(A

(N)
j )

Pn(A
(N)
j )

∥∥∥∥∥∥
F

ď
2MF ||αn||F

?
npN ´ ||αn||F

,

||𝟋(N)
n ||F ď

N
ÿ

k=1

max
1ďjďmk

|p
(k)
n,j |

mk
ÿ

j=1

|α˚(k´1)
n ˝ ϕk,j ˝ ϕ(k+1) ˝ ¨ ¨ ¨ ˝ ϕ(N)f |

+ max
1ďjďmk

(
|1 + p

(k)
n,j | |q

(k)
n,j | |α˚(k´1)

n (Aj)|
)

ď SN max
0ďkďN´1

||α˚(k)
n ||H0

(
P (N)
n + (1 + P (N)

n )Q(N)
n

)
,

max
1ďNďN0

||𝟋(N)
n ||F ď SN0

max
0ďNďN0´1

||α˚(N)
n ||H0

(
P (N0)
n +Q(N0)

n + P (N0)
n Q(N0)

n

)
,

where P (N)
n = max0ďkďN max1ďjďmk

|p
(k)
n,j |, Q(N)

n = max0ďkďN max1ďjďmk
|q

(k)
n,j |.

For ε P (0, 1/2) there exists nξ ą 0 such that for all n ą nξ, ξvn ą 4SN0(1 +
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2MF )n
ε/(

?
npN0). Then, for every n ą nξ we have

P
(

max
0ďNďN0

||𝟋(N)
n ||F ą ξvn

)
ď P

(
max

0ďNďN0

||α˚(N)
n ||H0

ą nε/2
)

+ 2P
(
P (N0)
n ą

4nε/4
?
npN0

)
+ 2P

(
Q(N0)

n ą
4MFn

ε/4

?
npN0

)
. (4.43)

According to Lemma 1 of [1] and Proposition 5 there exists n0 = n0(θ) ą 0 such
that for all n ą n0 we have

P
(

max
0ďNďN0

||α˚(N)
n ||H0

ą nε/2
)

ď
1

3nθ
. (4.44)

Moreover there exists n1 = n1(θ) ą 0 such that for all n ą n1,

P
(
P (N0)
n ą

4nε/4
?
npN0

)
ď P

(
||αn||F ą nε/4

)
+ P

(
max

0ďNďN0

||α˚(N)
n ||F ą nε/4

)
+ P

(
max

0ďNďN0

||α˚(N)
n ||F ą

?
npN0

2

)
ď

1

6nθ
, (4.45)

P
(
Q(N0)

n ą
4MFn

ε/4

?
npN0

)
ď P

(
||αn||F ą nε/4

)
+ P

(
||αn||F ą

?
npN0

2

)
ď

1

6nθ
(4.46)

By (4.43), (4.44), (4.45) and (4.46), Lemma 5 is proved with nξ,θ = max(nξ, n0, n1).
Step 2. By Lemma 1 of [1] we can apply Lemma 5, Theorem 2.1 and Theo-
rem 2.1 of [1] to F0. Since these two last theorems are based on the Berthet
and Mason strong approximation of αn(F) to G(F), the following Gaussian
approximation is satisfied. For some constant C0 = C0(θ) ą 0 and nθ ą 0 one
can build on a probability space (Ω, T ,P) a version of the sequence t(Xn, Zn)u
of i.i.d. random variables with distribution P (X,Z) and a sequence tG˚

n(F)u of
independent P -Brownian bridges in such a way that, that for all n ą nθ, (3.5)
holds and

P
(

t||α˚
n ´ G˚

n||F0 ą C0vnu Y

"

max
0ďNďN0

||𝟋(N)
n ||F ą C0vn

*)
ď

1

2nθ
. (4.47)

Let denote tG˚(N)
n (F)u the N -th raked P -Brownian bridge defined by (4.20)

built through tG˚
nu. This construction implies G˚(0)

n = G˚
n. Successive iter-

ations given by (4.42) give max1ďNďN0 ||α
˚(N)
n ´ G˚(N)

n || ď ||α˚
n ´ G˚

n||F0
+

max0ďNďN0
||𝟋(N)

n ||F . By (4.47) we have for all n ą nθ,

P
(

max
1ďNďN0

||α˚(N)
n ´ G(N)

n ||F ą 2C0vn

)
ď P (||α˚

n ´ G˚
n||F0 ą C0vn) + P

(
max

0ďNďN0

||𝟋(N)
n ||F ą C0vn

)
ď

1

nθ
.
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We have proved (3.4) of Theorem 3.1 with Cθ = 2C0 ą 0.

Step 3. To prove Theorem 3.2 we only need to extend the notations of previous
steps and use Theorem 2.2 instead of Theorem 2.1 at Step 2.

4.6 Proof of Proposition 6

Let θ ą 0. Proposition 8 below is proved at Step 1 then Proposition 6 is proved
at Step 2. Like rα˚

n(F) given by (4.2)let us define the process rα
(N)˚
n (F) by

rα
(N)˚
n (f) = (T

(N)
n /n)α

(N)˚
n (f). The following proposition establishes the strong

approximation of rα
(N)˚
n (F) to G(N)˚(F).

Proposition 8. Assume (1.3), (1.4) and either (VC) or (BR). There exists
Cθ, nθ ą 0, a sequence t(Xn, Zn)u of i.i.d. random variables with distribu-
tion P (X,Z) and a sequence t(Gn(F),G(0)˚

n (F)), . . . ,G(N0)˚
n (F)u of P -Brownian

bridges, all of these sequences being defined on the same probability space, such
that for all n ą nθ,

P

(
t∥αn ´ Gn∥F ą Cθvnu Y

N0
ď

N=0

t∥rα(N)˚
n ´ G(N)˚

n ∥F ą Cθvnu

)
ď

1

nθ
. (4.48)

Step 1. By Lemma 1 one can apply Theorem 2.1 of [1] to (α
(X,Z)
n )(N)(F1)

the N -th raked empirical process of α(X,Z)
n defined by (1.6), the law P (X,Z)

and the auxiliary information A0,(N) defined by (4.21). There exists C0 =
C0(θ), n0 = n0(θ) ą 0 and a probability space which supports a sequence of
independent random variables t(Xn, Zn)u distributed as P (X,Z) and a sequence
tG0,(0)

n (F1), . . . ,G0,(N0)
n (F1)u of process of independent P (X,Z)-raked Brownian

bridge satisfying for all n ą n0,

P
(

max
0ďNďN0

||(α(X,Z)
n )(N) ´ G0,(N)

n ||F1
ą C0vn

)
ď

1

7nθ
. (4.49)

Since αn(f) = (α
(X,Z)
n )(0)(h

(3)
f ) then (4.49) implies immediately

P(∥αn ´ Gn∥F ą Cθvn) ď
1

7nθ
. (4.50)

Let decompose rα
(N)˚
n (f) as the same way as (4.5):

rα(N)˚
n (f) = (α(X,Z)

n )(N)(h
(1)
f ) ´ E[f ] (α(X,Z)

n )(N)(h(2))

´ (α(X,Z)
n )(N)(h

(3)
f )

(
1 +

(
T (N)
n /n´ 1

))
, (4.51)

where h(1)f , h(2), h
(3)
f are defined by (4.3). Let C 1

0 = C 1
0(θ) = C0 max(1,MF ).

By (4.49), (4.51) and definition of G(N)˚(F) given by (4.22) it holds for all
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n ą n0,

P
(

max
0ďNďN0

||rα(N)˚
n ´ G(N)˚

n ||F ą C 1
0vn

)
ď

3

7nθ
+ P

(
max

0ďNďN0

ˇ

ˇ

ˇ

ˇ

ˇ

T
(N)
n

n
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

∥(α(X,Z)
n )(N)∥F1 ą C0vn

)
. (4.52)

Last term of (4.52) can be bounded as the same way as (4.29). By (4.49) and
definition of ε we have for all n ą n0,

P

(
max

0ďNďN0

ˇ

ˇ

ˇ

ˇ

ˇ

T
(N)
n

n
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

∥∥∥(α(X,Z)
n )(N)

∥∥∥
F1

ą C0vn

)

ď P
(

||(α(X,Z)
n )(N)||F1

ą C0vnn
1/2´ε

)
+ P

(
max

0ďNďN0

?
n

ˇ

ˇ

ˇ

ˇ

ˇ

T
(N)
n

n
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą nε

)

ď
1

7nθ
+ P

(
∥G0,(N)

n ∥F1
ą C 1

0vnn
1/2´ε

)
+ P

(
max

0ďNďN0

?
n

ˇ

ˇ

ˇ

ˇ

ˇ

T
(N)
n

n
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą nε

)
..

(4.53)

We do the same calculations as (4.32). By Borell-Sudakov there exists n1 =
n1(θ) ą 0 such that for all n ą n1,

P(∥G0,(N)
n ∥F1 ą Cθvnn

1/2´ε) ď
1

7nθ
. (4.54)

Since
?
n(T

(N)
n /n ´ 1) = (α

(X,Z)
n )(N)(1 ˆ ϕMZ

), Proposition 3 of [1] implies
that there exists n2 = n2(θ) ą 0 such that for all n ą n2,

P

(
max

0ďNďN0

?
n

ˇ

ˇ

ˇ

ˇ

ˇ

T
(N)
n

n
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą nε

)
ď P

(
max

0ďNďN0

||(α(X,Z)
n )(N)||F1 ą nε

)
ď

1

7nθ
.

(4.55)

By (4.50), (4.52), (4.53), (4.54) and (4.55) we have shown that (4.48) is satisfied
with nθ = max(n0, n1, n2) and Cθ = C 1

0.

Step 2. According to Proposition 8 there exists C0 = C0(θ) ą 0, n0 = n0(θ) ą

0, a sequence t(Xn, Zn)u of i.i.d. random variables with distribution P (X,Z)

and a sequence t(Gn(F),G(0)˚
n (F)), . . . ,G(N0)˚

n (F)u of P -Brownian bridges, all
of these sequences being defined on the same probability space, such that for all
n ą n0,

P

(
t||αn ´ Gn||F ą C0vnu Y

N0
ď

N=0

t||rα(N)˚
n ´ G(N)˚

n ||F ą C0vnu

)
ď

1

5nθ
.

(4.56)
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In particular for all n ą n0,

P (||αn ´ Gn||F ą C0vn) ď
1

5nθ
. (4.57)

To prove (3.8) we use the same method as the proof of Theorem 2.1. We write

P
(

max
0ďNďN0

||α(N)˚
n ´ G(N)˚

n ||F ą 3C0vn

)
ď P

(
max

0ďNďN0

n

T
(N)
n

∥rα(N)˚
n ´ G(N)˚

n ∥F ą 2C0vn

)
+ P

(
max

0ďNďN0

∣∣∣∣ n

T
(N)
n

´ 1

∣∣∣∣ ∥G(N)˚
n ∥F ą C0vn

)
. (4.58)

From one hand, using (4.56) one can say that for all n ą n0,

P
(

max
0ďNďN0

n

T
(N)
n

∥rα(N)˚
n ´ G(N)˚

n ∥F ą 2C0vn

)
ď P

(
max

0ďNďN0

||rα(N)˚
n ´ G(N)˚

n ||F ą C0vn

)
+ P

(
max

0ďNďN0

ˇ

ˇ

ˇ

ˇ

ˇ

T
(N)
n

n
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą 1/2

)

ď
1

5nθ
+ P

(
max

0ďNďN0

||(α(X,Z)
n )(N)||F1

ą
?
n/2

)
. (4.59)

By Proposition 3 of [1] there exists n1 = n1(θ) ą 0 such that for all n ą n1,

P
(

max
0ďNďN0

||(α(X,Z)
n )(N)||F1

ą
?
n/2

)
ď

1

5nθ
. (4.60)

By (4.59) and (4.60) we have shown that for any n ą max(n0, n1),

P
(

max
0ďNďN0

n

T
(N)
n

∥rα(N)˚
n ´ G(N)˚

n ∥F ą 2C0vn

)
ď

2

5nθ
. (4.61)

From the other hand, we write

P
(

max
0ďNďN0

ˇ

ˇ

ˇ

ˇ

n

T
(N)
n

´ 1

ˇ

ˇ

ˇ

ˇ

∥G(N)˚
n ∥F ą C0vn

)
ď P

(
max

0ďNďN0

||G(N)˚
n ||F ą C0vnn

1/2´ε

)
+ P

(
max

0ďNďN0

?
n

ˇ

ˇ

ˇ

ˇ

n

T
(N)
n

´ 1

ˇ

ˇ

ˇ

ˇ

ą nε
)
.

(4.62)

By definition of ε and Borell-Sudakov inequality, there n2 = n2(θ) ą 0 such
that for all n ą n2,

P
(

||G˚
n||F ą Cvnn

1/2´ε
)

ď
1

5nθ
. (4.63)
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There also exists n3 = n3(θ) ą 0 such that for all n ą n3,

P
(

max
0ďNďN0

?
n

ˇ

ˇ

ˇ

ˇ

n

T
(N)
n

´ 1

ˇ

ˇ

ˇ

ˇ

ą nε
)

ď P
(

max
0ďNďN0

||(α(X,Z)
n )(N)||F1 ą 2nε

)
ď

1

5nθ
.

(4.64)

By (4.62), (4.63) and (4.64) it holds that for any n ą max(n2, n3),

P
(

max
0ďNďN0

ˇ

ˇ

ˇ

ˇ

n

T
(N)
n

´ 1

ˇ

ˇ

ˇ

ˇ

∥G(N)˚
n ∥F ą C0vn

)
ď

2

5nθ
. (4.65)

By (4.57) (4.58), (4.61) and (4.65) we have shown (3.8) with nθ = max(n0, n1, n2, n3)
and Cθ = 3C0 ą 0.

4.7 Proof of Corollaries 1 and 2

For the proofs of these corollaries we need to introduce the following quantities

Rn,0 =
?
nR

(
αn
?
n

)
, Rn,j =

?
nR

(
α˚
n,(j) + αn

?
n

)
, j = 1, . . . , bn. (4.66)

By definition of R these quantities are bounded by

||Rn,0||F ď
||αn||

q
F

n(q´1)/2
, ||Rn,j ||F ď

(2q´1||αn||
q
F + 2q´1||α˚

n,(j)||
q
F )

n(q´1)/2
.

Talagrand inequalities given by Proposition 5 and Proposition 3 of [1] applied
to αn and α˚

n,(j) prove that for any ξ, θ ą 0 there exists nξ,θ ą 0 such that for
all n ą nξ,θ,

P (||Rn,j ||F ą ξ) ď
1

nθ
, j = 0, 1, . . . , bn. (4.67)

According to (4.67), Borell-Sudakov inequality and Theorem 2.2, there exists
C1, n1 ą 0, an array t(Xn, Zn,(1), ..., Zn,(bn))u of i.i.d. random vectors dis-
tributed as P (X1,Z1,(1),...,Z1,(bn)) and an array t(G˚

n,(0)(F),G˚
n,(1)(F), ...,G˚

n,(bn)
(F))u

of mutually independent P -Brownian bridges such that for n ą n1,

P(en ą C1wn) ď
1

3n2
, (4.68)

with en = maxj=1,...,bn

(
∥αn ´ G˚

n,(0)∥F , ∥α
˚
n,(j) ´ G˚

n,(j)∥F , ||Rn,0||F , ||Rn,j ||F

)
.

Now we prove Corollary 1 at Step 1 and Corollary 2 at Step 2.
Step 1. Since F satisfies (VC), by Borell-Sudakov inequality there exists n2 ą 0
such that for all n ą n2,

P(e1
n ą nα0/2) ď

1

3n2
, (4.69)
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with e1
n = maxj=0,1,...,bn ||G˚

n,(j)||F . By (4.66) one can write

n(yVar(S˚
n) ´ Var(Sn))

=
n

bn

bn
ÿ

j=1

(φ(P˚
n,(j)) ´ φ(Pn))

2 ´ Var(φ(Pn))

=
n

bn

bn
ÿ

j=1

[
φ

(
P +

α˚
n,(j) + αn

?
n

)
´ φ

(
P +

αn
?
n

)]2
´ Var

(
φ

(
P +

αn
?
n

))

=
1

bn

bn
ÿ

j=1

(
φ1(P ) ¨ α˚

n,(j) +Rn,j +Rn,0

)2
´ Var

(
φ1(P ) ¨ αn +Rn,0

)
,

which implies

n|yVar(S˚
n) ´ Var(Sn)| ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

bn

bn
ÿ

j=1

φ12(P ) ¨ G˚
n,(j) ´ σ2

ˇ

ˇ

ˇ

ˇ

ˇ

+ 13e2n + 10ene
1
n. (4.70)

There exists n3 ą 0 such that for all n ą n3, 13(C1wn)
2 + 10C1wnn

α0/2 ď

11C1wnn
α0/2. Notice that all G˚

n,(j) are independent so
řbn

j=1 φ
12(P ) ¨ G˚

n,(j)

has the same distribution as σ2χ2(bn). By (4.68), (4.69) and (4.70) for all
n ą max(n1, n2, n3) it holds

P
( n
σ2

ˇ

ˇ

ˇ

yVar(S˚
n) ´ Var(Sn)

ˇ

ˇ

ˇ
ě δ + 11C1wnn

α0/2
)

ď P

(
1

σ2

ˇ

ˇ

ˇ

ˇ

ˇ

1

bn

bn
ÿ

j=1

φ
12(P ) ¨ G˚

n,(j) ´ σ2

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

)
+ P

(
e2n ą (C1wn)

2
)
+ P

(
ene

1
n ą C1wnn

α0/2
)

ď P
(ˇ

ˇ

ˇ

ˇ

χ2(bn)

bn
´ 1

ˇ

ˇ

ˇ

ˇ

ě δ

)
+

1

n2
ď α+

1

n2
.

We have shown that (2.6) is satisfied for C0 = 11C1 and n0 = max(n1, n2, n3).
According to Hoeffding inequality, P

(ˇ

ˇ

ˇ

χ2(bn)
bn

´ 1
ˇ

ˇ

ˇ
ą δ
)

ď 2/bnδ
2. There exists

n4 ą 0 such that for n ą n4, σ2
(

1?
bn

+ C0wnn
α0/2´1

)
ď C 1

0/
?
bn for some

C 1
0 ą σ2. For δ = n/

?
bn and n ą n4, (2.6) implies

P
(

|yVar(S˚
n) ´ Var(Sn)| ą C 1

0/
a

bn

)
ď P

(
|yVar(S˚

n) ´ Var(Sn)| ą σ2

(
1

?
bn

+ C0wnn
α0/2´1

))
ď

3

n2
.

The last inequality and Borel-Cantelli implies (2.7).

Step 2. We denote Gn(x) = pFS˚
n
(x + Bn). Since all φ1(P ) ¨ G˚

n,(j) have the
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same law we have |Gn ´ FSn | ď |F1| + |F2| + F3 with

F1(x) =
1

bn

bn
ÿ

j=1

1φ(P )+ 1?
n
φ1(P )¨G˚

n,(j)
PI[x,x´En,j ]

,

F2(x) =
1

bn

bn
ÿ

j=1

1φ(P )+ 1?
n
φ1(P )¨G˚

n,(j)
ďx ´ P

(
φ(P ) +

1
?
n
φ1(P ) ¨ G˚

n,(0) ď x

)
,

F3(x) = P
(
φ(P ) +

1
?
n
φ1(P ) ¨ G˚

n,(0) P I[x, x´ En,0]

)
,

En,j =
1

?
n
φ1(P ) ¨ (α˚

n,(j) ´ G˚
n,(j)) +Rn,j ´Rn,0,

En,0 =
1

?
n
φ1(P ) ¨ (αn ´ G˚

n,(0)) +Rn,0.

where Rn,0, Rn,j are defined by (4.66) and I[a, b] means the interval of the real
contained between a and b. Notice that ||En,j ||F ď 3en for j = 0, 1, . . . , bn. We
denote C 1

1 = C1/3 and In(x) = [x´C 1
1wn, x+C

1
1wn]. Remind that An = [φ(P )´

an;φ(P ) + an] with an = σ
a

log(logn/bnw2
n). Then for C =

?
2C 1

1/πσ ą 0 we
have for any n ą 1,

sup
xPAC

n

P
(
φ(P ) +

1
?
n
φ1(P ) ¨ G˚

n,(0) P In(x)

)
ď Cwn exp

(
´
a2n
2σ2

)
ď C

c

logn
bn

. (4.71)

Under the event Bn = ten ď C1wnu we have

|F1(x)|  ď
1

bn

bn
ÿ

i=1

1φ(P )+ 1?
n
φ1(P )¨G˚

n,(j)
PIn(x)

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

bn

bn
ÿ

i=1

1φ(P )+ 1?
n
φ1(P )¨G˚

n,(j)
PIn(x)

´ P
(
φ(P ) +

1
?
n
φ1(P ) ¨ G˚

n,(0) P In(x)

)
 

ˇ

ˇ

ˇ

ˇ

ˇ

+ P
(
φ(P ) +

1
?
n
φ1(P ) ¨ G˚

n,(0) P In(x)

)
. (4.72)

Since all G˚
n,(j) are i.i.d. we have according to (4.71), (4.72) and DKW inequality

that for all ε ą 0 and n ą 1,

P

(
sup
xPAC

n

|F1(x)| ą 2ε+ C

c

logn
bn

)
ď 4e´2bnε

2

. (4.73)

By DWK inequality we have also

P

(
sup
xPAC

n

|F2(x)| ą ε

)
ď P

(
sup
xPR

|F2(x)| ą ε

)
ď 2e´2bnε

2

. (4.74)
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Under the event Bn, |F3(x)| ď P(φ(P ) + 1?
n
φ1(P ) ¨ G˚

n,(0) P In(x)) then (4.71)
implies that for n ą 1,

sup
xPAC

n

|F3(x)| ď C

c

logn
bn

. (4.75)

We have shown by (4.68), (4.73), (4.74) and (4.75) that for all ε ą 0 and n ą n1,

P

(
sup
xPAC

n

|Gn(x) ´ FSn
(x)| ą 3ε+ 2C

c

logn
bn

)
ď

1

3n2
+ 6e´2bnε

2

,

which implies in particular for ε =
a

log(3n)/bn ď 2
a

logn/bn and n ą n1,

P

(
sup
xPAC

n

|Gn(x) ´ FSn
(x)| ą (6 + 2C)

c

logn
bn

)
ď

1

n2
.

We have proved by Borel-Cantelli (2.8) with C0 = 6 + 2C ą 0.

4.8 Proof of Corollaries (3) and (4)

At Step 1 we prove Corollary (3) and at Step 2 we prove Corollary (4).
Step 1. According to Theorem 2.1, there exists C ą 0, n1 ą 0, a sequence
t(Xn, Zn)u of i.i.d. random variables with distribution P (X,Z) and a sequence
of tG˚

n(F)u of P -Brownian bridge such that for all n ą n1, P(An) ď 1/n2 with

An = t||αn ´ Gn||F ě Cvn/4u
ď

t||α˚
n ´ G˚

n||F ě Cvn/4u .

Then we have for all n ą n0

P(ϕ(α˚
n(f)) ď x) ď P

(
ϕ(G˚

n(f)) ď x+
1

4
Cvn

)
+ P (An)

ď P(ϕ(G˚
n(f)) ď x) +

1

4
CC0C1vn +

1

n2
.

Similarly,

P(ϕ(G˚
n(f)) ď x) ´ CC0C1vn ď P

(
ϕ(G˚

n(f)) ď x´
1

4
Cvn

)
ď P(ϕ(α˚

n(f)) ď x) + P (An)

ď P(ϕ(α˚
n(f)) ď x) +

1

n2
.

By definition of vn there exists n2 ą 0 such that for all n ą n2, 1/n2 ď

CC0C1vn/4. So for n ą max(n1, n2),

sup
ϕPL

sup
fPF

sup
xPR

|P (ϕ (α˚
n(f)) ď x) ´ P (ϕ(G(f)) ď x)| ď

1

2
CC0C1vn. (4.76)
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We have shown that (2.9) holds for n0 = max(n1, n2). As the same way, we can
show that for n ą n0,

sup
ϕPL

sup
fPF

sup
xPR

|P (ϕ (αn(f)) ď x) ´ P (ϕ(G(f)) ď x)| ď
1

2
CC0C1vn. (4.77)

Inequality (2.10) is a consequence of (4.76) and (4.77).

Step 2. We prove (3.6) and (3.7) is a direct consequence of (3.6). We decompose
the sum of the left-hand side of (3.6) as

1

bn

bn
ÿ

j=1

α
˚(N)
n,(j) (f)α

˚(N)
n,(j) (g) ´ Cov(G˚(N)

n,(j) (f),G
˚(N)
n,(j) (g))

ď
1

bn

bn
ÿ

j=1

sup
f,gPF

ˇ

ˇ

ˇ
G˚(N)

n,(j) (f)G
˚(N)
n,(j) (g) ´ Cov(G˚(N)

n,(j) (f),G
˚(N)
n,(j) (g))

ˇ

ˇ

ˇ

+ max
j=1,...,bn

||α
˚(N)
n,(j) ´ G˚(N)

n,(j) ||F

(
||α

˚(N)
n,(j) ||F + ||G˚(N)

n,(j) ||F

)
(4.78)

According to Theorem 3.2 applied with θ = 2 there exists C1 ą 0, n1 ą 0 and
a probability space supporting a triangular array t(Xn, Zn,(1), ..., Zn,(bn))u of
i.i.d. random vectors distributed as P (X1,Z1,(1),...,Z1,(bn)) and a triangular array
t(G˚

n,(0)(F),G˚
n,(1)(F), ...,G˚

n,(bn)
(F))u of (bn + 1)-uplets of mutually indepen-

dent P -Brownian bridges such that, for n ě n1,

P
(

max
j=1,...,bn

max
1ďNďN0

||α
˚(N)
n,(j) ´ G˚(N)

n,(j) ||F ą C1wn

)
ă

1

4n2
. (4.79)

Borell-Sudakov inequality implies that there exists C2 ą 0, n2 ą 0 such that for
all n ą n2,

P
(

max
j=1,...,bn

max
0ďNďN0

||G˚(N)
n,(j) ||F ą C1 logn

)
ď bn max

j=1,...,bn
max

0ďNďN0

P
(

||G˚(N)
n,(j) ||F ą C2 logn

)
ď

1

4n2
. (4.80)

According to Proposition 5 there exists also C3 ą 0, n3 ą 0 such that for all
n ą n3 it holds,

P
(

max
j=1,...,bn

max
0ďNďN0

||α
˚(N)
n,(j) ||F ą C3 logn

)
ď

1

4n2
. (4.81)

For all f, g P F and j = 1, . . . , bn, G˚(N)
n,(j) (f)G

˚(N)
n,(j) (g)´Cov(G˚(N)

n,(j) (f),G
˚(N)
n,(j) (g))

is a square-Gaussian random variable – see Definition 3.1 of Kozachenko and
Moklyachuk [24]. Since F satisfies (VC), let apply Theorem 4.1 of [24] with the
following parameters: A+ = A´ = 1, r(x) = logx, δ0 = σF ď t0 =MF , M = 1,
R(s) = (1 ´ |s|)´1/2 exp (´|s|/2) – see Lemma 3.2. For x ą 2ν0σF , we find

D+
1 (x) = D´

1 (x) ď
22eν0

(2ν0σF )ν0
xν0 exp

(
´

x

2σF

)
.
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This Theorem implies that there exists C4 ą 0, n4 ą 0 such that for all n ą n4,
2ν0σF ă C4 logn and

P

(
1

bn

bn
ÿ

j=1

max
0ďNďN0

sup
f,gPF

ˇ

ˇ

ˇ
G˚(N)

n,(j) (f)G
˚(N)
n,(j) (g) ´ Cov(G˚(N)

n,(j) (f),G
˚(N)
n,(j) (g))

ˇ

ˇ

ˇ
ą C4 logn

)

ď bn max
j=1,...,bn

max
0ďNďN0

P

(
sup
f,gPF

ˇ

ˇ

ˇ
G˚(N)

n,(j) (f)G
˚(N)
n,(j) (g) ´ Cov(G˚(N)

n,(j) (f),G
˚(N)
n,(j) (g))

ˇ

ˇ

ˇ
ą C4 logn

)

ď
1

4n2
. (4.82)

Clearly, there exists C5 ą C4, n5 ą 0 such that C4 logn+C0(C1+C2)wn logn ă

C5 logn for all n ą n5. Finally, according to (4.78), (4.79), (4.80) and (4.82),
we have for all n ą max(n1, n2, n3, n4, n5),

P

(
max

0ďNďN0

sup
f,gPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

bn

bn
ÿ

j=1

α
˚(N)
n,(j) (f)α

˚(N)
n,(j) (g) ´ Cov(G˚(N)

n,(j) (f),G
˚(N)
n,(j) (g))

ˇ

ˇ

ˇ

ˇ

ˇ

ą C5 logn
)

ď
1

n2
,

which prove (3.6) with n0 = max(n1, n2, n3, n4, n5) and C0 = C5 by Borel-
Cantelli.

References

[1] Mickael Albertus and Philippe Berthet. “Auxiliary information : the raking-
ratio empirical process”. In: (). url: https://arxiv.org/abs/1803.
06907.

[2] Kenneth S. Alexander. “Probability inequalities for empirical processes
and a law of the iterated logarithm”. In: Ann. Probab. 12.4 (1984), pp. 1041–
1067. issn: 0091-1798. url: http://links.jstor.org/sici?sici=0091-
1798(198411)12:4%3C1041:PIFEPA%3E2.0.CO;2-7&origin=MSN.

[3] Sergio Alvarez-Andrade and Salim Bouzebda. “Strong approximations for
weighted bootstrap of empirical and quantile processes with applications”.
In: Stat. Methodol. 11 (2013), pp. 36–52. issn: 1572-3127. url: https:
//doi.org/10.1016/j.stamet.2012.09.001.

[4] Niels Trolle Andersen. “The central limit theorem for nonseparable valued
functions”. In: Z. Wahrsch. Verw. Gebiete 70.3 (1985), pp. 445–455. issn:
0044-3719. url: https://doi.org/10.1007/BF00534875.

[5] Gutti Jogesh Babu. “Bootstrapping statistics with linear combinations
of chi-squares as weak limit”. In: Sankhyā Ser. A 46.1 (1984), pp. 85–93.
issn: 0581-572X.

[6] Philippe Barbe and Patrice Bertail. The weighted bootstrap. Vol. 98. Lec-
ture Notes in Statistics. Springer-Verlag, New York, 1995, pp. viii+230.
isbn: 0-387-94478-8. url: https://doi.org/10.1007/978- 1- 4612-
2532-4.

41

https://arxiv.org/abs/1803.06907
https://arxiv.org/abs/1803.06907
http://links.jstor.org/sici?sici=0091-1798(198411)12:4%3C1041:PIFEPA%3E2.0.CO;2-7&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198411)12:4%3C1041:PIFEPA%3E2.0.CO;2-7&origin=MSN
https://doi.org/10.1016/j.stamet.2012.09.001
https://doi.org/10.1016/j.stamet.2012.09.001
https://doi.org/10.1007/BF00534875
https://doi.org/10.1007/978-1-4612-2532-4
https://doi.org/10.1007/978-1-4612-2532-4


[7] RJ Beran, L Le Cam, and PW Millar. “Convergence of stochastic empirical
measures”. In: Journal of multivariate analysis 23.1 (1987), pp. 159–168.

[8] Philippe Berthet and David M. Mason. “Revisiting two strong approxima-
tion results of Dudley and Philipp”. In: IMS Lecture Notes Monogr. Ser. 51
(2006), pp. 155–172. url: https://doi.org/10.1214/074921706000000824.

[9] Peter J. Bickel and David A. Freedman. “Some asymptotic theory for the
bootstrap”. In: Ann. Statist. 9.6 (1981), pp. 1196–1217. issn: 0090-5364.
url: http://links.jstor.org/sici?sici=0090- 5364(198111)9:
6%3C1196:SATFTB%3E2.0.CO;2-R&origin=MSN.

[10] Patrick Billingsley. Convergence of probability measures. Second. Wiley
Series in Probability and Statistics: Probability and Statistics. A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York, 1999, pp. x+277.
isbn: 0-471-19745-9. doi: 10.1002/9780470316962. url: https://doi.
org/10.1002/9780470316962.

[11] James G Booth and Somnath Sarkar. “Monte Carlo approximation of
bootstrap variances”. In: The American Statistician 52.4 (1998), pp. 354–
357.

[12] David T. Brown. “A note on approximations to discrete probability distri-
butions”. In: Information and Control 2 (1959), pp. 386–392. issn: 0890-
5401.

[13] Tapas K. Chandra and J. K. Ghosh. “Valid asymptotic expansions for
the likelihood ratio statistic and other perturbed chi-square variables”. In:
Sankhyā Ser. A 41.1-2 (1979), pp. 22–47. issn: 0581-572X.

[14] W. Edwards Deming and Frederick F. Stephan. “On a least squares ad-
justment of a sampled frequency table when the expected marginal totals
are known”. In: Ann. Math. Statistics 11 (1940), pp. 427–444. issn: 0003-
4851.

[15] B. Efron. “Bootstrap methods: another look at the jackknife”. In: Ann. Statist.
7.1 (1979), pp. 1–26. issn: 0090-5364. url: http://links.jstor.org/
sici?sici=0090- 5364(197901)7:1%3C1:BMALAT%3E2.0.CO;2- 6&
origin=MSN.

[16] Bradley Efron. The jackknife, the bootstrap and other resampling plans.
Vol. 38. CBMS-NSF Regional Conference Series in Applied Mathematics.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
Pa., 1982, pp. vi+92. isbn: 0-89871-179-7.

[17] Evarist Giné and Joel Zinn. “Bootstrapping general empirical measures”.
In: Ann. Probab. 18.2 (1990), pp. 851–869. issn: 0091-1798. url: http:
//links.jstor.org/sici?sici=0091- 1798(199004)18:2%3C851:
BGEM%3E2.0.CO;2-6&origin=MSN.

[18] Peter Hall. “Rate of convergence in bootstrap approximations”. In: Ann. Probab.
16.4 (1988), pp. 1665–1684. issn: 0091-1798. url: http://links.jstor.
org/sici?sici=0091-1798(198810)16:4%3C1665:ROCIBA%3E2.0.CO;
2-Z&origin=MSN.

42

https://doi.org/10.1214/074921706000000824
http://links.jstor.org/sici?sici=0090-5364(198111)9:6%3C1196:SATFTB%3E2.0.CO;2-R&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(198111)9:6%3C1196:SATFTB%3E2.0.CO;2-R&origin=MSN
http://dx.doi.org/10.1002/9780470316962
https://doi.org/10.1002/9780470316962
https://doi.org/10.1002/9780470316962
http://links.jstor.org/sici?sici=0090-5364(197901)7:1%3C1:BMALAT%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(197901)7:1%3C1:BMALAT%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(197901)7:1%3C1:BMALAT%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199004)18:2%3C851:BGEM%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199004)18:2%3C851:BGEM%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199004)18:2%3C851:BGEM%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198810)16:4%3C1665:ROCIBA%3E2.0.CO;2-Z&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198810)16:4%3C1665:ROCIBA%3E2.0.CO;2-Z&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198810)16:4%3C1665:ROCIBA%3E2.0.CO;2-Z&origin=MSN


[19] Peter Hall. The bootstrap and Edgeworth expansion. Springer Series in
Statistics. Springer-Verlag, New York, 1992, pp. xiv+352. isbn: 0-387-
97720-1. url: https://doi.org/10.1007/978-1-4612-4384-7.

[20] Jørgen Hoffmann-Jørgensen. Stochastic processes on Polish spaces. 39. Aarhus
Universitet. Matematisk Institut, 1991.

[21] C. T. Ireland and S. Kullback. “Contingency tables with given marginals”.
In: Biometrika 55 (1968), pp. 179–188. issn: 0006-3444. url: https://
doi.org/10.1093/biomet/55.1.179.

[22] J. Komlós, P. Major, and G. Tusnády. “An approximation of partial sums
of independent RV’s and the sample DF. I”. In: Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
32 (1975), pp. 111–131. url: https://doi.org/10.1007/BF00533093.

[23] Michael R. Kosorok. Introduction to empirical processes and semiparametric inference.
Springer Series in Statistics. Springer, New York, 2008, pp. xiv+483. isbn:
978-0-387-74977-8. url: https://doi.org/10.1007/978-0-387-74978-
5.

[24] Yuri Kozachenko and Oksana Moklyachuk. “Large deviation probabili-
ties for square-Gaussian stochastic processes”. In: Extremes 2.3 (1999),
269–293 (2000). issn: 1386-1999. doi: 10.1023/A:1009907019950. url:
https://doi.org/10.1023/A:1009907019950.

[25] P. M. Lewis II. “Approximating probability distributions to reduce storage
requirements”. In: Information and Control 2 (1959), pp. 214–225. issn:
0890-5401.

[26] David M. Mason and Michael A. Newton. “A rank statistics approach
to the consistency of a general bootstrap”. In: Ann. Statist. 20.3 (1992),
pp. 1611–1624. issn: 0090-5364. url: https://doi.org/10.1214/aos/
1176348787.

[27] Jens Præstgaard and Jon A. Wellner. “Exchangeably weighted bootstraps
of the general empirical process”. In: Ann. Probab. 21.4 (1993), pp. 2053–
2086. issn: 0091-1798. url: http://links.jstor.org/sici?sici=0091-
1798(199310)21:4%3C2053:EWBOTG%3E2.0.CO;2-W&origin=MSN.

[28] Donald B. Rubin. “The Bayesian bootstrap”. In: Ann. Statist. 9.1 (1981),
pp. 130–134. issn: 0090-5364. url: http://links.jstor.org/sici?
sici=0090-5364(198101)9:1%3C130:TBB%3E2.0.CO;2-O&origin=MSN.

[29] Jun Shao and Dong Sheng Tu. The jackknife and bootstrap. Springer Se-
ries in Statistics. Springer-Verlag, New York, 1995, pp. xviii+516. isbn:
0-387-94515-6. url: https://doi.org/10.1007/978-1-4612-0795-5.

[30] Yongzhao Shao. “Rate of convergence of bootstrapped empirical mea-
sures”. In: Statist. Probab. Lett. 53.3 (2001), pp. 293–298. issn: 0167-7152.
url: https://doi.org/10.1016/S0167-7152(01)00073-6.

[31] Kesar Singh. “On the asymptotic accuracy of Efron’s bootstrap”. In: Ann. Statist.
9.6 (1981), pp. 1187–1195. issn: 0090-5364. url: http://links.jstor.
org/sici?sici=0090-5364(198111)9:6%3C1187:OTAAOE%3E2.0.CO;2-
6&origin=MSN.

43

https://doi.org/10.1007/978-1-4612-4384-7
https://doi.org/10.1093/biomet/55.1.179
https://doi.org/10.1093/biomet/55.1.179
https://doi.org/10.1007/BF00533093
https://doi.org/10.1007/978-0-387-74978-5
https://doi.org/10.1007/978-0-387-74978-5
http://dx.doi.org/10.1023/A:1009907019950
https://doi.org/10.1023/A:1009907019950
https://doi.org/10.1214/aos/1176348787
https://doi.org/10.1214/aos/1176348787
http://links.jstor.org/sici?sici=0091-1798(199310)21:4%3C2053:EWBOTG%3E2.0.CO;2-W&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199310)21:4%3C2053:EWBOTG%3E2.0.CO;2-W&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(198101)9:1%3C130:TBB%3E2.0.CO;2-O&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(198101)9:1%3C130:TBB%3E2.0.CO;2-O&origin=MSN
https://doi.org/10.1007/978-1-4612-0795-5
https://doi.org/10.1016/S0167-7152(01)00073-6
http://links.jstor.org/sici?sici=0090-5364(198111)9:6%3C1187:OTAAOE%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(198111)9:6%3C1187:OTAAOE%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(198111)9:6%3C1187:OTAAOE%3E2.0.CO;2-6&origin=MSN


[32] Richard Sinkhorn. “A relationship between arbitrary positive matrices and
doubly stochastic matrices”. In: Ann. Math. Statist. 35 (1964), pp. 876–
879. issn: 0003-4851. url: https://doi.org/10.1214/aoms/1177703591.

[33] Richard Sinkhorn. “Diagonal equivalence to matrices with prescribed row
and column sums”. In: Amer. Math. Monthly 74 (1967), pp. 402–405. issn:
0002-9890. url: https://doi.org/10.2307/2314570.

[34] Frederick F Stephan. “An iterative method of adjusting sample frequency
tables when expected marginal totals are known”. In: The Annals of Mathematical Statistics
13.2 (1942), pp. 166–178.

[35] Aad W. van der Vaart and Jon A. Wellner. Weak convergence and empirical processes.
Springer Series in Statistics. With applications to statistics. Springer-
Verlag, New York, 1996, pp. xvi+508. isbn: 0-387-94640-3. url: https:
//doi.org/10.1007/978-1-4757-2545-2.

44

https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.2307/2314570
https://doi.org/10.1007/978-1-4757-2545-2
https://doi.org/10.1007/978-1-4757-2545-2

	Introduction
	The classical bootstrap
	The weighted bootstrap
	Weighted bootstraps

	Main results
	The class F
	Strong approximations
	Estimation of variance and distribution function
	Rates of weak convergence

	Raking-Ratio results
	Strong approximation of  n*(N) 
	Strong approximation of  n(N)* 

	Proofs
	Decomposition of  n* 
	Proof of Propositions 1, 4 and 5 
	Construction of limit Gaussian processes
	Proof of Theorem 2.1 and 2.2
	Proof of Theorem 3.1 and 3.2
	Proof of Proposition 6
	Proof of Corollaries 1 and 2
	Proof of Corollaries (3) and (4)


