
HAL Id: hal-01979686
https://hal.science/hal-01979686

Submitted on 13 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing and Implementing Resilient IoT Applications
in the Fog: A Smart Home Use Case

Umar Ozeer, Loïc Letondeur, François-Gaël Ottogalli, Gwen Salaün,
Jean-Marc Vincent

To cite this version:
Umar Ozeer, Loïc Letondeur, François-Gaël Ottogalli, Gwen Salaün, Jean-Marc Vincent. Designing
and Implementing Resilient IoT Applications in the Fog: A Smart Home Use Case. ICIN 2019 - 22nd
Conference on Innovation in Clouds, Internet and Networks, Feb 2019, Paris, France. pp.230-232,
�10.1109/ICIN.2019.8685909�. �hal-01979686�

https://hal.science/hal-01979686
https://hal.archives-ouvertes.fr


Designing and Implementing Resilient IoT
Applications in the Fog: A Smart Home Use Case

Umar Ozeer, Loı̈c Letondeur, François-Gaël Ottogalli
Orange Labs

Meylan, France
firstname.lastname@orange.com

Gwen Salaün, Jean-Marc Vincent
Univ. Grenoble Alpes, CNRS, Inria, LIG

Grenoble, France
firstname.lastname@inria.fr

Abstract—Fog computing extends the capacities of the cloud
to the edge of the network, near the physical world, so that
Internet of Things (IoT) applications can benefit from properties
such as short delays, real-time and privacy. Devices in the Fog-
IoT environment are usually unstable and prone to failures.
In this context, the consequences of failures may impact the
physical world and can, therefore, be critical. This paper reports
a framework for end-to-end resilience of Fog-IoT applications.
The framework was implemented and experimented on a smart
home testbed.

Index Terms—Smart Home; Resilience; Fog Computing; IoT

I. INTRODUCTION

Fog computing [1] meets the requirements of IoT appli-
cations such as low latencies, real-time, privacy, data analysis
and filter at the edge, near the physical world (PW), which the
cloud fails to provide. Since the Fog is highly heterogeneous,
dynamic and involves cyber-physical interactions, it brings
new challenges regarding the design of resilient applications.
Devices and network channels in the Fog are usually unstable
and prone to failures. This is a result of bulk production and
cheap design. In addition, devices usually suffer from external
PW environmental conditions which increase probability of
failures. Failures in this context may have consequences on
the PW which can be potentially critical. For instance, the
failure of a smoke detector in a building can be hazardous.
Furthermore, there is a need for state restoration when re-
covering from failures to keep consistency with the PW. For
example, the state of a drug injection device for patients
should be restored after a failure to prevent injection of already
administered drugs.

This paper describes our resilience framework that enables
IoT applications developers to provide resilient services in
a dynamic, heterogeneous and cyber-physical Fog-IoT envi-
ronment. The framework limits the propagation of failures,
avoids the restart of the whole application when a failure
occurs, and, recovers from both infrastructure and applicative
entities by reconfiguring and restoring a consistent state of
the application, including consistency with respect to the PW
(PW-consistency). The framework was implemented and ex-
perimented on a testbed, inspired from [2], reproducing a real
life smart home application. Section II showcases the smart
home testbed and Section III details the resilience framework
and how it is implemented on this use case application.

II. EXPERIMENTAL ENVIRONMENT

The target testbed is a smart home application for light
automation and physical intrusion detection.

A. Infrastructure and Applicative Entities of the Testbed

The infrastructure of the testbed is composed of a set of
Physical Nodes and Appliances. The Physical Nodes PC1,
rpi01, rpi2 and rpi3 are, respectively, a PC (x86 64, 4GB
RAM, Windows 7), a Raspberry Pi Model Zero (32-bit,
1GHz, single-core ARM11 processor, 512 MB RAM, 16GB
microSD storage, Raspbian GNU/Linux 8.0 jessie) and two
Raspberry Pi Model 3 Type B (32-bit, 1.2 GHz, quad-core
ARM Cortex-A53 processor, 1 GB RAM, 16GB microSD
storage, Raspbian GNU/Linux 8.0 jessie). These devices are
representative of the capacities of typical smart home devices
and are readily available at cheap prices. Each Physical Node
hosts an administrative entity, namely a Fog Node which gives
access to the underlying resources of the Physical Node and
provides the runtime for the execution of software entities.
Each Fog Node hosts a Fog Agent for handling the lifecycle
operations on software entities. A house with three rooms
is considered in this demo. Figure 1 shows the distribution
of the devices in the house as well as the placement of the
software entities hosted on the Fog Nodes. Appliances are: two
Philips Hue Lamps, a Hue Go Lamp (bedside lamp), a Hue

SoundPlayer
Orchestrator

NodeHueActuate
NodeHueSense

MQTT Broker

FibaroAdapter
WemotionSense
AwoxActuate

Bedroom

Kitchen

Living room

Hue Buttons

Hue Lamp
Hue Go Lamp

Fibaro Sensors

Speaker

Awox StriimLight

Wemo Motion
Fibaro Door Opener Sensor

rpi2(fgn2)

rpi3(fgn3)

PC1(fgn4)
rpi01(fgn1)

: Fog Agent

Fig. 1. Smart Home Infrastructure and Application

1



Tap (a set of four connected buttons), a Fibaro Multipurpose
Sensor (motion, light, temperature and vibration sensors), an
analog wired Speaker, an Awox Striimlight Lamp (lamp with
integrated speaker), a Wemo Motion Sensor and a Fibaro Door
Opener Sensor. The Philips Hue devices are connected to
a bridge through the wireless protocol Zigbee. The Fibaro
devices uses Z-wave protocol. Awox Striimlight and Wemo
Motion are connected through Wi-Fi.
The software entities are:
• MQTT Broker: a Message Oriented Middleware (MOM)

based on a publish-subscribe communication pattern. It is an
implementation of a MQTT broker based on ActiveMQ [3].

• Orchestrator: it subscribes to all the events published into
the MQTT Broker. It defines the corresponding scenarios
(set of actions) that should be triggered based on patterns
of events that are reported by sensors. It sends messages
to other software entities according to the scenarios it
implements. It is developed in Node.js.

• NodeHueSense: it reports events from the Hue buttons
and publishes them on the MQTT bus. The event is the
corresponding button pressed. It is developed in Node.js.

• FibaroAdapter: it reports the events sensed by Fibaro de-
vices. It can also configure the frequency of reported events
from the devices. The events sensed are published on the
MQTT bus.

• WemotionSense: it reports motion events sensed by the
Wemo Motion device and publishes them onto the MQTT
bus. It is developed in Go.

• NodeHueActuate: it accepts messages relative to the control
of the Hue lamps. The latter are controlled via the REST
API they expose. It is written in Node.js.

• AwoxActuate: it accepts messages for the control of the
Awox Striimlight lamp and its integrated speaker. The lamp
is controlled via its SOAP API. It is developed in Go.

• SoundPlayer: it accepts messages for the actuation of
the Speaker. It is based on the open-source audio player
mpg123 [4].

Node.js was preferred for development as it is lightweight,
allows asynchronous operations and its packet manager, npm,
handles effectively the management of runtime dependencies
which makes its integration simple in this environment.

B. User Stories

Two main user stories are implemented. In the Bedtime
Scenario, a button press in the bedroom indicates the bedtime
of the house tenant. All the lights of the house are turned off
and an alarm is set. If the door is opened or motion is detected
in the living room or the kitchen, the alarm is triggered on the
speaker and the lamps of the house are turned on in a red
colour. In the Welcome Home Scenario, the Wemo Motion
reports motion when the home tenant arrives at the front door.
The lamp at the entrance is turned on, allowing the person to
unlock the door. Upon entering the house, the living room
lamp is turned on and a greeting sound is played on the
speaker. More scenarios can be composed by the Orchestrator
based on the patterns of events sensed and actuated.

III. RESILIENCE APPROACH AND FRAMEWORK

The resilience approach consists of four functional steps:
(i) State Saving, (ii) Monitoring, (iii) Failure Notification and
Reconfiguration, and, (iv) Recovery. [5] describes in details
the resilience approach. In a first step, the states of applicative
entities and the PW are saved in an uncoordinated way. The
second step involves the monitoring of both infrastructure and
applicative entities for failure and recovery detection. When
a failure is detected, failure notifications are propagated to
reconfigure the application with respect to that failure. In the
last step, the data saved in step one are used to restore a
consistent and stable state of the application, including PW-
consistency.

A. Management Entities and Framework APIs

In order to ensure these steps and functionalities, a resilience
framework was developed, providing (i) a set of management
entities as well as (ii) APIs which allow developers to extend
the functions of the software entities and Fog Agents for
resilience purposes. Figure 2 shows the deployment of the
management entities on the use case infrastructure:

1) a Global Manager, GM, which takes global decisions
relative to failure detection and rules for recovery,

2) a stable storage based on MongoDB for persisting states
data,

3) the Applicative Lifecycle Manager [2], ALM, for the
lifecycle management of software entities, and,

4) Thing’in [6], a digital index of connected devices and
their relationships.

These management entities are deployed on a RuggedPOD [7],
as illustrated in Figure 2, which is considered to be reliable.
The RuggedPOD is a micro-datacenter and is water-proof,
passively cooled server with four 8 cores Xeon CPUs that
can be placed in the neighbourhood as part of a Telco’s
infrastructure. In the case of software entities, besides their
business APIs, two classes of APIs are provided by the
framework:
• SaveStateAPI for the definition of the state data and the

techniques of saving. The aim is to save data (e.g.: tuning
parameters, environment variables, dependencies, configu-
ration files, function calls and messages) using techniques
of uncoordinated checkpoint [8], [9], message logs [10],
[11] and function-call records to save the current state of
applicative entities. The state of the PW is given by the
events sensed and actuated. These data are saved on the
stable storage.

• ConfigAPI for processing failure notifications and for re-
configuring the software entities with respect to failures.
Reconfiguration aims at limiting the propagation of failures
by adapting the functional behaviour of the software entities.
For instance, reconfiguration may involve a temporary pause
in execution or the stop of processing events to and from
an entity suspected of failure.

In the case of Fog Agents, beside lifecycle operations in-
structed by the ALM, two additional classes of APIs for

2



Fig. 2. Deployment of Management Entities on the Smart Home Infrastructure

failure management are provided: (i) MonitorAPI implements
four types of monitoring: local system observation, heartbeat,
ping-ack, and applicative/control message observation. The
techniques are chosen to limit influence on the execution
of the application and on the network. For example, local
system observation is used to monitor software entities and
applicative/control message observation for appliances that
communicate regularly (Fibaro Multipurpose Sensor) to avoid
unnecessary messages exchanges on the network. In other
cases, monitoring by ping-ack is unavoidable (Hue Lamps,
Awox Striimlight and WeMo Motion). Each Fog Agent also
implements a heartbeat to its neighbouring Fog Agents for the
monitoring of the Physical Nodes. A Fog Agent reports to GM
any entity suspected of failure and their subsequent recovery.
(ii) StateMgtAPI for handling the messages received from GM
for state restoration during recovery. As illustrated in Figure 2,
the evolution of the infrastructure and application in terms of
failure, recovery, state change are reported to the management
entities which in turn performs administrative operations.

B. Failure Scenarios and Recovery

This Section aims at describing how recovery is performed
for different types of failures.
Appliance Failure and PW-Consistent Recovery. The failure
of the main lamp (Hue Lamp) in the bedroom corresponds to
the burn out of the lamp or to an electrical power cut.
• fga1 detects the failure of the lamp and sends a failure

notification message to GM.
• GM queries Thing’in for a functionally equivalent Appli-

ance, which in this case returns the bedside lamp.
• Failure notifications are propagated so that the bedside lamp

ensures the functions of the main lamp. This means that the
buttons used to turn on and off the main lamp will now do
so for the bedside lamp.

• The state of the failed lamp is retrieved by GM from the
stable storage and sent to fga1.

• fga1 restores the state of the failed lamp onto the bedside
lamp. The state pushed can turn on/off the lamp or set it to
a specific colour. A recovery message is then sent to GM.

Software Entity Failure and Recovery on the Same Fog
Node. The failure of SoundPlayer is targeted.
• fga2 detects the failure of SoundPlayer and sends a failure

message to GM.
• Failure notifications are propagated to software entities.
• GM sends a message to fga2 to restart SoundPlayer on the

same Fog Node, fga2, in a pause mode.
• GM retrieves the state of SoundPlayer from the stable

storage and sends it to fga2.
• fga2 restores the state of SoundPlayer, resumes its execu-

tion, and sends a recovery message to GM.
• Recovery notifications are propagated to software entities.
Physical Node Failure and Redeployment of Software
Entities. The failure of the Physical Node rpi01 is targeted.
• fga2, fga3 and fga4 detect the failure of rpi01 and send

failure messages to GM.
• Failure notifications are propagated to software entities.
• GM requests a new placement and deployment for Node-

HueActuate and NodeHueSense to the ALM, which returns
for instance fgn2.

• Both software entities are redeployed on fgn2, their state
restored (by fga2) and recovery notifications propagated as
in the previous case.

IV. CONCLUSION

This paper reports the design and implementation of a
resilience approach on a realistic testbed in a Fog-IoT smart
home environment. The resilience approach is designed taking
into account the specificities of the environment. The practical
experiments show the feasibility of the approach and that
recovery is achieved in an acceptable delay from a user point
of view [5]. Future work includes a performance evaluation
on different testbeds and formal verification of the resilience
protocol.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. of MCC’12. ACM, 2012, pp.
13–16.

[2] L. Letondeur, F.-G. Ottogalli, and T. Coupaye, “A demo of application
lifecycle management for iot collaborative neighborhood in the fog,” in
IEEE Fog World Congress. IEEE, 2017, pp. 1–6.

[3] ActiveMQ, https://activemq.apache.org, online; accessed 30/07/2018.
[4] mpg123 Audio Player, www.mpg123.de, online; accessed 30/07/2018.
[5] U. Ozeer, X. Etchevers, L. Letondeur, F.-G. Ottogalli, G. Salaün, and

J.-M. Vincent, “Resilience of stateful IoT applications in a dynamic fog
environment,” in Proc. of 15th EAI Mobile and Ubiquitous Systems:
Computing, Networking and Services. ACM, 2018, pp. 332–341.

[6] Thing’in, http://thinginthefuture.com, online; accessed 20/09/2018.
[7] RuggedPOD, http://ruggedpod.qyshare.com, online; accessed

30/07/2018.
[8] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A

survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, 2002.

[9] A. Khunteta and K. Praveen, “An analysis of checkpointing algorithms
for distributed mobile systems,” International Journal on Computer
Science and Engineering, vol. 2, 2010.

[10] L. Alvisi and K. Marzullo, “Message logging: pessimistic, optimistic,
causal, and optimal,” IEEE Trans. on Software Engineering, vol. 24,
no. 2, pp. 149–159, 1998.

[11] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,”
ACM Trans. Comput. Syst., vol. 3, no. 3, pp. 204–226, 1985.

3


