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CONCENTRATION AROUND THE MEAN FOR MAXIMA OF
EMPIRICAL PROCESSES

By T. KLEIN AND E. RIO
Université de Versailles Saint Quentin en Yvelines

In this paper we give optimal constants in Talagrand’s concentration
inequalities for maxima of empirical processes associated to independent
and eventually nonidentically distributed random variables. Our approach is
based on the entropy method introduced by Ledoux.

1. Introduction. Let X1, X»,... be a sequence of independent random
variables with values in some Polish spdkeand let$ be a countable class of
measurable functions frotX into [—1, 1]". Fors = (s1, ..., s") in &, we set

(1.1) Su(s) =sH(X1) + -+ + 5" (Xp).
In this paper we are interested in concentration inequalitiesZfer sup(S, (s) :
s € 4}.

Now let us recall the main results in this direction. Starting from concentration
inequalities for product measures, Talagrand (1996) obtained Bennett type upper
bounds on the Laplace transform Bfvia concentration inequalities for product
measures. More precisely he proved

1.2) logEexp(rZ) < tE(Z) + Vab~%(e” — br — 1)

for any positiver. Here

V= E(supz (Xk)>

sed k=1
In order to analyze the variance factdr set
(1.3) V. = supvar S, (s).

sed
Then, one can derive from the comparison inequalities in Ledoux and Talagrand
(1991) thatv,, <V <V, 4+ 16E(Z) [see Massart (2000), page 882]. Consequently
V is often close to the maximal variandg,. The conjecture concerning the
constants is them = b = 1. The constant plays a fundamental role; in particular,

for Donsker classeg,= 1 gives the exact rate function in the moderate deviations

Received August 2003; revised April 2004 and July 2004.

AMS 2000 subject classificatiorB)E15, 60F10.

Key words and phraseEmpirical processes, Rademacher processes, Talagrand’s inequality,
tensorization of entropy, moderate deviations, Bennett's inequality, concentration around the mean.

1060



CONCENTRATION FOR EMPIRICAL PROCESSES 1061

bandwidth. Nevertheless it seems difficult to reack 1 via Talagrand’s method
[see Panchenko (2001) for more about the constants in Talagrand’s concentration
inequalities for product measures]. In order to obtain concentration inequalities
more directly, Ledoux (1996) used a log-Sobolev type method together with a
powerful argument of tensorization of the entropy. When applied t¢r&3pthis
method yields a differential inequality (this is the so-called Herbst argument) on
the Laplace transform of and gives (1.2) again. Applying Ledoux’s method,
Massart (2000) obtained= 8 in (1.2) with Talagrand’s variance factor ame-= 4

in (1.2) with the variance factov, + 16E(Z). Later on, Rio (2002) proved (1.2)

for independent and identically distributed (i.i.d.) random variables (in the i.i.d.
cases! = ... =s") with a = 1, b = 3/2 and a variance factar = V, + 2E(Z).

Next, Bousquet (2003) found a nice trick to improve Rio’s inequality. He proved
(1.2) witha = b = 1 and the variance facterin the i.i.d. case. For negative values

of ¢, Klein (2002) obtained (1.2) in the i.i.d. case with= 1, b = 4 and the same
factorv.

Here we are interested in optimal constants in Talagrand's inequalities for
nonidentically distributed random variables. Our approach to obtain the best
constants is to apply the lemma of tensorization of the entropy proposed by Ledoux
(1996). However, the differential inequality on the Laplace transford isfmore
involved than in the i.i.d. case. Therefore the results are suboptimal in the large
deviations bandwidth. We start by right-hand side deviations.

THEOREM 1.1. Let 8§ be a countable class of measurable functions with
values in[—1, 1]". Suppose thaE(s*(X;)) = 0 for anys = (s%, ..., s") in § and
any integerk in [1, n]. Let L denote the logarithm of the Laplace transformzf
Then for any positive,

(a) L(t) <tE(Z)+ é(ZIE(Z) + Vo) (exp((e? —1)/2) — 1).
Consequentlysettingv = 2E(Z) + V,,, for any positivex,
(b) P(Z>E(Z)+x) < exp(—% log(1+ 2Iog(1+x/v)))
and
P(Z > E(Z) + x)
(©) ex <_ x2 ><ex RS )
=P v+ V024 3vx + (3x/2)/) 2v+3x /)

REMARK 1.1. Inthe spirit of Massart’s paper (2000), Theorem 1.1(b) can be
improved for large values of to get a Bennett type inequality with= 1.
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REMARK 1.2. Theorem 1.1 applies to set-indexed empirical processes as-
sociated to nonidentically distributed random variables. In that e458&) =
1x,es — P(X; € §) and consequently the centering constant depends $ame
different concentration inequalities for set-indexed empirical processes are given
in Rio [(2001), Theorem 4.2 and Remark 4.1]. However, due to the concavity of
the polynomial function:(1 — u), the variance factor in Rio (2001) is suboptimal
for nonidentically distributed random variables. Here, as a by-product of Theo-
rem 1.1(a), we get the upper bound below for the variancé. of

COROLLARY 1.1. Under the assumptions of Theoreinl(a), VarZ <
Vn + 2E(Z).

For left-hand side deviations, the concentration bounds are similar. However, the
proof is more intricate. We emphasize that the proof of Theorem 1.1 is not relevant
for left-hand side deviations. This is the reason why we need to compensate the
empirical process for left-hand side deviations.

THEOREM1.2. Under the assumptions of Theordmi,for any positiver,
(@) L(—1) < —1E(Z) + g(e3’ ~ 3 1)

Consequent|yfor any positiver,

(b) P(Z<E(Z)—x) < exp(—%h(g—x»,

v
whereh(x) = (1+ x)log(1+ x) — x, and

Xz x2
c) P(Z<E©2Z) - §ex<— )5ex<— )
@ FE=ED = = ) S

REMARK 1.3. Theorem 1.2(b) improves on Theorem 1.1, inequality (2) in
Klein (2002). However, Klein gives additional results for functions with values in
]—o00, 1] and subexponential tails on the left [cf. inequality (3), Theorem 1.1].

Let us now apply Theorems 1.1 and 1.2 to randomized processes, as defined in
Ledoux and Talagrand [(1991), Section 4.3]. b&t X», ..., X,, be a sequence of
independent and centered random variables with valugsinl]. Let T be some
countable set and let, ¢o, .. ., ¢, be numerical functions ofi. Let

Z =supX1¢1(t) + Xoto(t) + -+ X8, (t) it € T

The random variabl& corresponds to the class of functiofis= {s; :r € T}, where
the components; of s, are defined by, (x) = x¢; (t). Assuming that

n
Va=supd_¢Z(NHE(XP) <oo and M= sup sup|& (1) < oo,
tel p_1 ke[l,n]teT
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Corollary 1.1 gives Va¥ <V, + 2E(Z). Let us compare this variance bound with
the known results. Theorem 3 in Bobkov (1996) appliedtgields VarZ < 2V,
where

n

V= E(supZ(;k(t)Xk)z)
teT k=1

is Talagrand's variance factor. If the random variablgs, X»,..., X,, are

symmetric signs, the is the maximum of a Rademacher process &ng V,,.

In that case Corollary 1.1 improves the known bounds onZvas soon as

2E(Z) < V,. For Rademacher processes, the concentration inequality (4.10) in

Ledoux and Talagrand (1991) yields

(1.4) P(Z > mz + x) < exp(—x?/(8V})),

wherem; denotes a median af. Theorems 1.1 and 1.2 provide exponential
bounds with a factor 2 instead of 8. However, our variance factor is greateVthan
and our bounds are not sub-Gaussian. Finally, we refer the reader to Bousquet
(2003) or Panchenko (2003) for concentration inequalities (with suboptimal
variance factor) for randomized or empirical processes in the unbounded case.

2. Tensorization of entropy and related inequalities. In this section we
apply the method of tensorization of the entropy to get an upper bound
on the entropy of positive functionalg of independent random variables
X1, Xo, ..., X;.

NOTATION 2.1. Let ¥, be theo-field generated byX1,..., X,) and let
F¥ be theo -field generated byX1, ..., Xs—1, Xs+1, ..., X»). Let EX denote the
conditional expectation operator associatedfo

In this paper, the main tool for proving concentration inequalities is the
following consequence of the tensorization inequality in Ledoux (1996).

PROPOSITION2.1. Let f be some positivé,-measurable random variable
such thatE( f log ) < oo and letg, go, ..., g, be any sequence of positive and
integrable random variables such thtg; logg;) < co. Then

E(flog f) —E(f)logE(f)

< 3" E(glog(gr/EXgn) + Y E((f — go) log(f/EX ).

k=1 k=1

PROOF.  Setf; = EX f. By the tensorization inequality in Ledoux (1996),

(2.1) E(flog f) —E(f)I0gE(f) < > E(flog(f/fi))-

k=1
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Now

(22)  E(flog(f/f0) =E(gklog(f/fi)) +E((f — &) 1og(f/f)).
SinceEX(f/fi) = 1, we have

E(gx109(f/fi)) < SURE(grh) : h F,-measurableEX (") = 1).
Hence, from the duality formula for the relative entropy in Ledoux (1996),

E(g log(f/fi)) < E(gklog(g/Ef gr)).
Together with (2.2), it implies that

(2.3) E(flog(f/f)) < E(gklog(g/Eyer) +E((f — g0 log(f/fi)),
and Proposition 2.1 follows.d

3. Right-hand side deviations. To prove Theorems 1.1 and 1.2, we start by
proving the results for a finite class of functions. The results in the countable
case are derived from the finite case using the Beppo Levi lemma. Consequently,
throughout the sequel we may assume that {ss, ..., s, }.

As mentioned in the Introduction, the deviation fon the right is easier to
handle than the deviation on the left. In fact, for positivéhe functional exp Z)
is an increasing and convex function with respect to the varia{ﬁke?sk). This is
not the case for negative valuestofConsequently, upper bounds for the Laplace
transform ofZ via the Herbst—-Ledoux method are more difficult to handle for
negative values of. In Section 4, we will introduce compensated processes in
order to handle the deviation on the left.

DEerINITION 3.1. Lett be the first integer such that = S,,(s;). Set f =
exp(rZ) and fi = EX(f). Let P* denote the conditional probability measure
conditionally to .

Set

(3.1) g =Y PX(t=i)exp(tS,(s)).

Let F denote the Laplace transform 8f From Proposition 2.1,
tF'(t) — F(t)log F(t)

(3.2) n n
< > E(grlog(ge/EXgn) + D" E((f — g0 log(f/f0)-
k=1

k=1

Sincef — g > 0, the upper bound on the second term in (3.2) will be derived from
Lemma 3.1.

LEMMA 3.1. With the notation of Definitior8.1, exgts*(Xx)) > (f/fi) >
exp(—2t) a.s.
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PROOF  LetSX(s) = S,(s) — s¥(Xy). Let 7 be the first integer ifl, m] such
that

(3.3) SK(sz,) = supSk(s):s € 8} =: 7.
Clearly Z; is anF*-measurable random variable and
(3.4) exXpt Zi +1) > f > exp(t Zi) expltst (X))

Since the stopping time; is %, -measurablef} (s¥ (X)) = 0 by the centering
assumption on the elements&flt follows that

(3.5)  EXf=exptZo) EX(exp(rsk (X1))) = exp(r Zy) = exp(r Sk (s0)).

Hence f; > fexp(—tsi‘(Xk)), which implies the left-hand side inequality in
Lemma 3.1.

We now prove the second inequality in Lemma 3.1. From the left-hand
side inequality in (3.4), expZ; + 1) > EX(f). Next, from the right-hand side
inequality in (3.4), exprZ;) <exp(tZ +t). Hencef; < f exp(2t), which implies
the second part of Lemma 3.100

From Lemma 3.1 and the facts that- g > 0 andzs*(X;) <t we get that

(3.6) E((f — 80)109(f/fi)) < tE(f — gi).-
We now bound up the first term in (3.2). Set

(3.7) he=Y_ Pi(r=1)exp(tSk(s;)).
i=1

The random variableh; is positive and F*-measurable. Hence, from the
variational definition of the relative entropy [cf. Ledoux (1996), page 68],
Ey (g 109(ge/Eygn)) < Ey(gx109(ek/ he) — gk + hi)-
Putting this inequality in (3.2) and using (3.6), we get
tF'— FlogF

3.8 n n
59 <> E(gklog(ge/h) + A+ 1) (he — gr)) +1 Y _E(f — ).
k=1 k=1

In order to bound up the second term on the right-hand side, we will use
Lemma 3.2.

LEMMA 3.2. Let (hy)r<n be the finite sequence of random variables defined
in (3.7).Then

Y E(f —hi) < e” F(t)log F (1).
k=1
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PROOF.  Since the random variable§ (s) are #,f-measurable,

hy = E’;(i loei exp(tS,],f(si))) = EX(exp(rSk(s0))).

i=1
It follows that

(B.9) Y E(f—h) =Y E(f(1—exp(—tst(Xp)) — eZtsk(Xp))) +1e? F'(1).
k=1 k=1

Now, from Lemma 3.1zs’;(xk) > log(f/fx) = —2¢. Since 1— exp(—x) — e%x is
a nonincreasing function af on the interval —2z, +o¢[, it follows that

E(f (1— exp(—ts; (Xp)) — te” sy (X0))) <E(f — fi — e f109(f/ 1))
From the equalitye( fi) = E(f), we get that

E(f — fi — € flog(f/f0) = —e”E(f log(f/fi))-

Hence, summing ok and applying (2.1),
Zn: E(f (1 — exp(—ts*(Xp)) — te?s*(Xy))) < e? (FlogF —tF'),
k=1
which, together with (3.9), implies Lemma 3.2]
Next, we bound up the first term on the right-hand side in (3.8).
DEFINITION 3.2. Letr(t,x) =xlogx + (1+1)(1— x).

With the above definition
gr109(gk/ hi) + (L + 1) (h — gx) = hyr (¢, gx/ hi).
From the convexity of with respect tox,

her(t, g/ hi) < Pr (v =1) exp(t Sk (si)r (¢, expltst (X0))).

which ensures that
(3.10) Ej(her(t.gi/hi)) <Y Py(r =1)exp(tSy(s))E(r(r, expltsf (X))

Here we need the bound below.

LEMMA 3.3. Letr be the function defined in Definiti@2.For any functions
in § and any positive,

2
Er(z, exp(ts* (Xp))) < %E(sk (X0)%



CONCENTRATION FOR EMPIRICAL PROCESSES 1067

PROOR Letn(x) =r(t,e™) =txe™ + (t + 1)(1 — ). We will prove that,
foranyx <1,

(3.11) n(x) < xn'(0) + (tx)%/2.

Sets(x) = n(x) —xn’(0) — (tx)%/2. Thens (0) = 0 ands’(x) = t2(x — 1) (e* —1).
Consequently§’(x) has the same sign agx — 1), which leads to (3.11). Since
the random variables‘ (X;) are centered, taking = s*(x) and integrating with
respect to the marginal law &f;, we get Lemma 3.3.00

From Lemma 3.3 and (3.10) we have
2
(3.12) EX(mr(t, g/ i) < EE,’; (Z 1o exp(tS¥ () E(sk (X0))?).
i
Now exp(z Sk (s;)) < exp(2t + 1S, (s;)), and therefrom

2 2t
Z]E hr(t, gx/ hy)) < (Zﬂf i exp(t S, (si) )Z (sf(Xk))Z)

k=1 k=1

SinceY", E(sF(Xx))? < V,,, we infer that

(3.13) ZE her (t, g/ hi)) < 3t%e® V, F (1),
k=1

Together with Lemma 3.2 and (3.8), (3.13) leads to the differential inequality
(3.14) tL' — (te” + DL < 1% (V,/2).
Lety (1) =t 2 exp((1 — e%)/2). Multiplying (3.14) byy, we get
(3.15) (tyL) < (Va/2)e? exp((1— ¢%)/2).
Sincery () ~ (1/1) ast tends to 0, integrating (3.15) gives
ty (L) <E(Z) + (Va/2) (1 — exp((1— *)/2)),

which implies Theorem 1.1(a).

To prove Theorem 1.1(b), we apply both Markov’s inequality to the random
variable exrZ) and Theorem 1.1(a) with= 2 log(1 + 2log(1 + x/v)).

To prove Theorem 1.1(c), we bound up the log-Laplace transforf-effE(Z)
via Lemma 3.4 and next we apply Markov’s exponential inequality.

LEMMA 3.4. Under the assumptions of Theordmi,for anyr in 10, 2/3],
2
t

L(1) < (E(Z) + (2B(Z) + Vo) 5 —.-
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PrROOE From Theorem 1.1(a), it is enough to prove that
exp((e? —1)/2) <1+ 2t/(2—31).
This inequality holds if and only if
A1) :=log(2 — 1) —log(2 — 3t) — (¢ — 1)/2> 0.
Expandingh in power series yields(r) =3 ;-5 bjt-//j!, where
bj=(— DB/ —(1/2)) -2 =2 -1 -2 >0

Hencei(r) > 0, which implies Lemma 3.4.00

Theorem 1.1(c) follows from Lemma 3.4 by noting that the Legendre transform
of the functiont — t2/(2 — 3r) (heret < 2/3) is equal tog(l + (3x/2) —

14+ 3x).

4. Compensated empirical processes. In this section we prove Theorem 1.2.
We start by proving Theorem 1.2(a). Throughout the secti@any positive real.
Foriin{l,...,m}, let

L;(t) = logE(exp(—1S,(s:))).

Let us define the exponentially compensated empirical prd&ésst) by

(4.1) T(si 1) = Sp(si) + 1 L ().

We set

(4.2) Z,= sup T(s;,t) and f,=exp(—tZ,).
1<i<m

Let

(4.3) F(t) =E(f;) =E(exp(—1Z;)) and A(r) =logF(r).

Our purpose is to obtain a differential inequality fowia the log-Sobolev method.
Before that, we link the log-Laplace_; of —Z with A.

LEMMA 4.1. For any positiver,
L_z(t) —supL;(r) < A(t) <min(L_z(z),0).
i
PROOFE By definition of Z;,

exp(—tZ,) = exp(inf(—tS,,(s,-) - Li(t))) > exp<—tZ - sgpL,-).
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Consequently, for any positive
exp(A(r)) > exp(— sgpL,-(t))Eexp(—tZ),
which gives the first inequality. Next, by definition &f,

exp(A(t)) = E(inf exp(—1S,(si) — L,~(t))> < E(exp(—tSn (s1) — Ll(t))) =1,

which ensures thak () < 0. Moreover,L; () > 0 by the centering assumption on
the random variables, (s). Hence,

exp(A(t)) < E(inf exp(—t Sy (s,-))) =E(exp(—12)),
which completes the proof of Lemma 4.1]

DEFINITION 4.1. Lett, denote the first integet such thatzZ, = T (s;, 1),
whereZ, is defined in (4.2).

Since the random function® (s;, t) are analytic functions of, the random
function f, defined in (4.2) is continuous and piecewise analytic, with derivative
with respect ta, almost everywhere (a.e.):

(4.9 fl==Zifi — (L, () =t 'Ly, (0)) fi = —(Z, +1Z)) f;.

wheretZ; = L’r, ) — t‘lLT, (1) by convention. Consequently, the Fubini theorem
applies and

(4.5) Fit)=1— /OtE((Zu +uZl)f,)du.

Therefrom the functiorF’ is absolutely continuous with respect to the Lebesgue
measure, with a.e. derivative in the sense of Lebesgue

(4.6) F'(t)=—-E((Z +1tZ) f7).

Moreover, from the elementary lower bourfd> exp(—2nt), the functionA =
log F is absolutely continuous with respect to the Lebesgue measure, with a.e.
derivativeF’/ F if F'is the above defined function.

DEFINITION 4.2. Letf*=Ekf,.

We now apply Proposition 2.1 to the random functignClearly,
E(filog fi) — E(f1) logE(f;)

4.7)
=E(%Z f;,)+1F' (1) — F(t)logF(r)  a.e.
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Hence, applying Proposition 2.1 with= f;,

tF' — FlogF < —E(?Z,f)+ > E(gxlog(gk/ELgr))

(4.8) ) =1
+ Y E((gk — £)log(f*/1)).
k=1
Now choose
(4.9) gk=Y Pr(t,=i)exp(—tSu(si) — Li(1)).

By definition of Z;,
exp(—18,(si) — Li(1)) = exp(—t Zy),
which implies thatg; > f. Therefore the upper bound on the second term in (4.8)
will be derived from Lemma 4.2.
NOTATION 4.1. For sake of brevity, throughout we nate- t; and f;.
LEMMA 4.2. Lety(r) = (exp(2t) +1)/2.Setl; (t) = IogE(exp(—ts{‘(Xk))).
Then as.
(F*11) < expltss (Xi) + e (D) < Y (0).
PROOF  LetSk(s) = S,(s) — s¥(Xy). Set
ZF = sup[SX(s) + t L IogE (exp(—1 Sk (s))) s € 4.
Let 7; be the first integer ifil, m] such that
S (s5,) + 1 LlogE(exp(—18¥ (s, ))) = Z*.
Clearly
fi <exp(—1Z*) exp(—ts (X1)) — liz, (0).
Since the stopping time, is *-measurable, it follows that

(4.10) EXf, < exp(—1Z").
Now, by definition ofZ*,
(4.11) exp(—1Z5) < exp(—1Z + 15K (Xp) + Lo (1)),

which ensures thatf*/f) < exp(tsk(Xx) + - (1)). To conclude the proof of
Lemma 4.2, recall tha(exp(t X)) < cosh), for any centered random variabte
with values in[—1, 1], which implies the second part of Lemma 4.2

The next step to bound up the second term on the right-hand side is Lemma 4.3.
However, due to technical difficulties, we are able to bound up this term only on
some finite interval.
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LEMMA 4.3. Let (gr) be the finite sequence of random variables defined
in (4.9).Setp =y logyr. Let g be the positive solution of the equatipy) = 1.

Then for anyt in [0, 1o,

Y E((gk — fHlog(f/f) < PO ( > E(gklog(gr/E}gr)) — E(f log f )>-
k=1 1= \iZ

PROOF  Since the random variables (s) are #,¥-measurable,

(4.12) EX(gr) =Y PY(r=i)exp(—tSk(si) — Li(t) + i ().
i=1

It follows that EX (gx) = EX(f exp(ts®(Xi) + Li- (2))). Hence

(4.13) Y E(gc — f) = Y_ E(f(expltsk (Xi) + ke (1) — 1)).
k=1 k=1

Settingn, = ts¥(Xy) + I (1), we have

Y Egk— ) =D E(f(e™ —1—-ymm)) + W(t)E<f > nk)
k=1 k=1

k=1
=Y E(f(e™ —1—y)mk)) — ¥ (OE(f log £),
k=1

since) ;_;nk = —log f. Now, forx in ]—oo, logy (¢)], the functionx — e* —
1 — xy () is nonincreasing. Since lag(¢) > nx > log(f*/f) by Lemma 4.2, we

infer that

Y Elgk — 1) < Y EB(F((F/f) = 1=y ) log(f*/f))) — ¥ @OE(f log f)
k=1 k=1

=y ( Y E(flog(f/f*) — E(f log f))-
k=1

Hence, applying (2.3), we obtain

> E(g— f)<v®) < > E(gklog(gk/ELgi)
=1 k=1
(4.14)

+ (g — )10g(f*/f)) — E(f log f))-
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Now, from Lemma 4.2 we know that l6g*/f) < logv (). Since(gr — f) = 0,
it follows that

éﬂa((gk — ) Iog(f%))

<logy (1) Y E(gk — f)

k=1
)

<g() ( > E<gk IOQ(Eik
k=1

(4.15)

g - 1) |og<f7k)> —E(flog f)>.

Since 1— ¢(¢) > 0 for anyz in [0, 7o, inequality (4.15) then implies Lemma 4.3.
O
From Lemma 4.3 and the differential inequality (4.8) we then get that
1—¢)(tF' —FlogF)
< ¢E(°Z)f — flog f) —E(*Z] /) + anle(gk log(gx/E;s81):
wherep = ¢(t). Now from (4.7),E(°Z, f — flog f) = —tF’, whence
(4.16) (F'—(1—g)FlogF < —E(*Z,f) + an:lE(gk log(gx/ Eygr)-

Let us now bound up the first term on the right-hand side in (4.16).u%et
(gk/Efkgi)- Then

EX (g 10g(gi/EX g1)) = EX(g1) EF (wy loguwy,).

From (4.12), by convexity of the functionlog x,

EX(gwiloguwi <Y PR(r =i)(—tsf (Xi) — Lk (1)) exp(—t Su(si) — Li(1)).

1

Consequently

EX(gk100(gk/EX 1))
<Y Pi=i)exp(—1Sk(s;)) — Li(t) + i () (t1;; (1) — I (1))
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Since

> Pt =i)exp(—tSy(si) — Li + i) (tl; — ki)
i

= E* (Z Lo eXp(—1SK(s;) — Li + i) (11, — lk,-)),

it implies that
E(gxl0og(gk/EXgr)) < E(exp(—1Z; + ts*(Xp) + ko) (11}, — ko).

From the convexity of the functiong;, we know thatt/, . — I > 0. Hence,
applying Lemma 4.2, we get

E(gi log(g/ EX g1)) < v OE((tl}, — ko) f).
Sincer?Z! =tL. — L., it follows that

(4.17) —-E(2Z,f)+ Y E(gklog(gk/Efgr)) < (¥ (1) — DE(L, — L) f).

k=1
Both (4.16) and (4.17) yield, farin [0, 7o,
(4.18) tF'—(1—¢@)FlogF < (Y @t)— DE((tL, — L) f).

SincerL, — L, <sup(tL; — L;), dividing by F, we infer that
(4.19) tA = (1= @)A < (¥(1) = 1) suprL; — Ly).

Next we derive an upper bound oh; — L; from Lemma 4.4.

LEMMA 4.4. LetY be a random variable with values ir- oo, 1], such that
E(Y?) < +o0. Then for any positiver,

E(Ye'") —E(')logE(e'™) < E(Y?)(1+ (r — 1)e').
PROOF From the variational definition of the entropy in Ledoux (1996) we
know that, for any positive constani&and any positive random variablg
E(T logT) —E(T)logE(T) <E(T log(T/c) — T +c).
Takingc =1 andT = exp(tY), we then get that
E@Ye'") —E('Y)logE(e™) < E((tY — e’ +1).

Now, from I'Hépital’s rule for monotonicity the functiom — x 2(1+ (x — 1)e*)
is nondecreasing on the real line. Hence, for any positive

(Y —=De'’ +1<1Y?(14 (1 - De),
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which implies Lemma 4.4.

Let Y, = sf‘(Xk). From the centering assumptiofiexp(¢Y;) > 1. Hence we
have

1l (1) — L (1) <E(tYre'™*) — E(e'*) logE(e' %) < (1+ (r — 1)e) Vary,

by Lemma 4.4. SinceL; — I = Y, (tl;; — Ix;), it ensures that
(4.20) tL; —L; <V,(1+ (t — D)e).
Both the above bound and (4.19) lead to the differential inequality below.

PrROPOSITION4.1. Foranyt in [0, fo[,
(4.21) tA —(1—@)A <3V, — D1+t — De').

It remains to bound up.. SetA(t) =t 1A(t) and

(4.22) 1) = Ot W

Then(Ae!) =t72(tA’ — (1 — ¢)A)e! . Consequently, from Proposition 4.1,
~ v,
(4.23) (Aely < ﬁ(ez —D(1+ (¢ —De')e’.
Since Ae! is absolutely continuous with respect to the Lebesgue measure,

integrating (4.23) yields

A(t) < A(g)e! @10

(4.24) v,
+ ?/ T D1+ u— 1)e”)e1(“)_l(t) du
&€

for 0 < ¢ < ¢. The control of the integral on the right-hand side will be done via
the bounds forp below, whose proof is carried out in Section 5.

LEMMA 4.5. Foranyzin [0, o], t < ¢(t) < rexp2r) — (t2/2).
By Lemma 4.5, ling I (¢) = 0. FurthermoreA (¢) < e "1L_z(¢) by Lemma 4.1.

Therefore
(4.25) limsupA (e)e’ @~ < —E(Z)e™ ).

e—0

Now I (u) — I(¢) < (u —t) by Lemma 4.5. Consequently, lettiag— 0 in (4.24)
and applying (4.25), we get

t
(4.26) A1) < —E2Z)te™ D+ Iv,te™ f u=?@® — 1) (1+ (u — Dye*)e" du.
0

To bound upL _ 7, we then apply the Bennett boung(r) < V, (e’ —t — 1) together
with Lemma 4.1. This yields the Proposition 4.2.
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PROPOSITION4.2. Let the function/ be defined by
J(1) = %f(: u=2(e® — 1)(1+ (u — De*)e" du
and let/ be the function defined i@.22).For any: in [0, #g],
L_z(t) +1E(Z) <tB(Z)(1— e ' D) 4V, (te ™ T (1) + &' —1 —1).

To obtain Theorem 1.2(a) farin [0, 7o], we bound up the functions appearing
in Proposition 4.2 via Lemma 4.6, proved in Section 5.

LEMMA 4.6. For anyz in [0, #g],
(@) te ' J(t)+e —t—1<
(b) t(l—e'0) <

(exp(3r) — 3t — 1),
(exp(3t) — 3t — 1).

©OIN Ol

Next, proceeding as in Klein (2002), we prove (a)fdm [rg, +oo[. For sake of
brevity, setE =E(Z). By Lemma 4.1, for any positive

L_7(t)+tE <tE+supL;(t) <tE+V,(e —t—1)<vmaxt/2, ¢ —t —1).
i

Now, let 71 be the unique positive solution of the equatign— ¢ — 1 = /2.
t1 belongs t0[0.76, 0.77], whencer; > tg (note thatsg € [0.46,0.47]). If ¢t > 11,
thens/2 <e¢' —t — 1. In that case

L_z()+1E<v(e —t —1) < (v/9)(e¥ — 3t — 1),

which proves (a) for > ¢;.
If # belongs td1g, t1], from the convexity ofL _, we have
1 -4

t 0 1 3t
+ —vt < — —-3tr—-1),
11— 1o 2U ltl—to - gv(e )

11—

1
L_7(t)+tE < §v(e3’0 —35-1)

which completes the proof of Theorem 1.2(a).
To prove Theorem 1.2(c), we note that, for arip [0, 1[,

2

1
4.27 @ -3 —-1<
(4.27) ol ~¥ V=575

[cf. Rio (2000), page 152]. Theorem 1.2(c) follows from (4.27) via the usual
Cramér—Chernoff calculation.
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5. Technical tools. In this section, we prove Lemmas 4.5 and 4.6.

PROOF OFLEMMA 4.5. By definition ofyr ande,
@(1) =ty () + ¢ () log coshir) > 1,
sincey (r) > 1 for any nonnegative. Next
rexp(2r) — (t2/2) — (1) = ¥ (1) (r tanh(r) — log coshir) — (e? + 1)~ 1?),

so that Lemma 4.5 holds j(r) := r tanh(t) — log cosht) — t2/(e% + 1) > 0 for ¢
in [0, 7r0]. Now p(0) =0 and

2cosB()p' () =2t —t(e? +1)—°=t(L—t —e 2.
Since ex—2t) <1 —1t for ¢ in [0, 1/2], the above identity ensures thaiz) > 0
on [0, rp] (recall thatzg < 1/2), which implies Lemma 4.5.00
PROOF OFLEMMA 4.6. We start by proving (a). Clearly (a) holds if
(5.1) a)=3e' (¥ =3 —D+e'dl+1—e)—J()=0

for anyt in [0, 4] [with the conventiorx (0) =.0]. The functiony is analytic on the
real line. To prove (5.1), we then note thdt’ (0) = 0 for i = 1, 2. Consequently
(a) holds if, forz in [0, 4],

(5.2)  a®@)=e¥(—1+(19/3)) — 4e? + €' (=3t —5) + (8/3) > 0.
Now (5.2) holds ifa® () > 0, sincex® (0) > 0. Next

B(t) :=e'aP () =3e¥(—2r + 11) — 8¢' — 3
satisfies8(0) > 0 and, forz in [0, 4],

B (1) =122 (5—1) —8¢' > €' (12:' — 8) > 0,

which ensures thai(¢) > 0 for ¢ in [0, 4]. Hence Lemma 4.6(a) holds.
To prove (b), we apply Lemma 4.5 to bound up the functidr. This gives

e2t -1 t2
2 4
Now, recallrg < 1/2. Fort in [0, 1/2], expanding ex(®¢) in entire series yields

1(1) < /0’(62” —u/2)du =

1 1
2 3 k-3 2 3
(exp2t) —1)/2=1t+1t"+ 4t ggﬁ(z) <1412+ 4 kz3ﬂ

Hence, forr <1/2,

(5.3) IO <t+37+ (e —102 <t + 32+ I3 =1y ().
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From (5.3), Lemma 4.6(b) holds if
dt)=3¥ -3t —1) —t +rexp(—y (1)) > 0.
Now d(0) = d’(0) =0 and
d"(t) = Ze—y(t)(e4t+(3/4)t2+(7/8)t3 —1-I 152 153 63,4 4415
Since
R N UL L U Ry P 812,

we haved”(t) > 0 for any positiver. Consequentlyd(r) > 0, which implies
Lemma 4.6(b). O
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