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Equigeneric and equisingular families of curves on surfaces

T. Dedieu – E. Sernesi

Abstract

We investigate the following question: let C be an integral curve contained in a smooth
complex algebraic surface X; is it possible to deform C in X into a nodal curve while
preserving its geometric genus?

We affirmatively answer it in most cases when X is a Del Pezzo or Hirzebruch surface
(this is due to Arbarello and Cornalba, Zariski, and Harris), and in some cases when X is
a K3 surface. Partial results are given for all surfaces with numerically trivial canonical
class. We also give various examples for which the answer is negative.

Lascia lente le briglie del tuo ippogrifo, o Astolfo,
e sfrena il tuo volo dove più ferve l’opera dell’uomo.
Però non ingannarmi con false immagini
ma lascia che io veda la verità
e possa poi toccare il giusto.

—Banco del mutuo soccorso, freely inspired by
Orlando furioso

Introduction

Historically, the study of families of nodal irreducible plane curves (the so–called Severi varieties,
named after [34]) was motivated by the fact that every smooth projective curve is birational to
such a plane curve, and that plane curves should be easier to study since they are divisors. One
can of course consider similar families of curves in any smooth algebraic surface and, as it has
turned out, their study is rewarding whether one is interested in surfaces or in curves.

Let X be a smooth algebraic surface, and ξ an element of its Néron–Severi group. For
δ ∈ Z≥0, we denote by V ξ,δ the family of integral curves in X of class ξ, whose singular
locus consists of exactly δ nodes (i.e. δ ordinary double points; we call such curves nodal, or
δ–nodal). These families are quite convenient to work with, being fairly well–understood from a
deformation–theoretic point of view. For instance, when the canonical class KX is non–positive
this enables one to show that they are smooth of the expected dimension in the usual cases
(when KX is positive however, they tend to behave more wildly, see, e.g., [10, 11]). Moreover,
they have been given a functorial definition in [40] (see also [33, §4.7.2]).

Yet, there is no definitive reason why one should restrict one’s attention to curves having this
particular kind of singularities (even when X is the projective plane), and it seems much more
natural from a modular point of view to consider the families V ξ

g , g ∈ Z≥0, of integral curves in
X of class ξ that have geometric genus g (i.e. the normalizations of which have genus g). We
call these families equigeneric. These objects have however various drawbacks, for instance their
definition only makes sense set–theoretically, and accordingly there is no such thing as a local
equigeneric deformation functor (i.e. one that would describe equigeneric deformations over an
Artinian base).

It is a fact that every irreducible equigeneric family V of curves in X contains a Zariski
open subset, all members of which have the same kind of singularities (families enjoying the
latter property are called equisingular), and these singularities determine via their deformation
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theory the codimension V is expected to have in the universal family of all class ξ curves in
X . This expected codimension is the lowest possible when the general member of V is nodal
(in such a case, the expected codimension equals the number of nodes, which itself equals the
difference between the arithmetic and geometric genera of members of V ), so that it makes sense
to consider the following.

(A) Problem. Let C be an integral curve in X. Is it possible to deform C in X into a nodal
curve while preserving its geometric genus?

One may rephrase this as follows: let ξ be the class of C in NS(X), pa(ξ) the arithmetic
genus of curves having class ξ, g the geometric genus of C, and δ = pa(ξ)− g; is V ξ

g contained in

the Zariski closure of V ξ,δ? Observe that whenever the answer is affirmative, the Severi varieties
V ξ,δ provide a consistent way of understanding the equigeneric families V ξ

g .
In any event, it is a natural question to ask what kind of singularities does the general member

of a given family V ξ
g have (besides, this question is important for enumerative geometry, see

[6, 16, 24]). Closely related to this is the problem of determining whether a given equisingular
family has the expected dimension. The actual dimension is always greater or equal to the
expected dimension, and whenever they differ the family is said to be superabundant.

In this text, we provide an answer to various instances of Problem (A). Some of these
answers are not new, see below for details and proper attributions.

(B) Theorem.

(B.1) (Arbarello–Cornalba [1, 2], Zariski [43]) Let X = P2 and L = OP2(1) ∈ PicX = NS(X).
For integers n ≥ 1 and 0 ≤ g ≤ pa(nL), the general element of every irreducible component of
V nL
g is a nodal curve.

(B.2) (Harris [20]) Let X be a degree d Hirzebruch surface. For every effective class L ∈ PicX =

NS(X) and integer 0 ≤ g ≤ pa(L), the general member of every irreducible component of V L
g is

a nodal curve.

(B.3) (Harris [20]) Let X be a degree d Del Pezzo surface, and KX ∈ PicX = NS(X) its
canonical class. For integers n ≥ 1 and 0 ≤ g ≤ pa(−nKX), the general element of every
irreducible component of V −nKX

g is nodal unless dn ≤ 3 (it is at any rate immersed unless
d = n = 1 and g = 0).

(B.4) Let X be a very general algebraic K3 surface, L the positive generator of PicX = NS(X),
and write L2 = 2p − 2. For p/2 < g ≤ pa(L) = p, the general element of every irreducible
component of V L

g is nodal.
For integers k ≥ 1 and 0 < g ≤ pa(kL), the general element of every irreducible component

of V kL
g is immersed; if its normalization is non–trigonal 1, then it is actually nodal.

(B.5) Let X be an Enriques surface, and L ∈ PicX = NS(X) an effective class. For 3 ≤ g ≤
pa(L), if [C] ∈ V L

g has a non–hyperelliptic normalization C̄, then the general element of every

component of V L
g containing C is immersed. If moreover C̄ has Clifford index ≥ 5, then C is

nodal.

(B.6) Let X be an Abelian surface and ξ ∈ NS(X). For 2 < g ≤ pa(ξ), the general element of

every irreducible component of V ξ
g is immersed; if its normalization is non–trigonal, then it is

actually nodal.

1When k = 1, [14] provides a sufficient condition for a general element of V L
g to have a non–trigonal normal-

ization (see Corollary (4.9)).
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(Here a curve is said to be immersed if the differential of its normalization morphism is
everywhere injective.)

In all cases within the above Theorem (B), the corresponding Severi varieties V ξ,pa(ξ)−g

are smooth and of the expected dimension (if non empty; non–emptiness is also known, except
for Enriques and Abelian 2 surfaces). In addition, their irreducibility has been proven in the
following cases: when X is the projective plane [20, 21], when X is a Hirzebruch surface [39],
and when X is a Del Pezzo surface, g = 0, and (d, n) 6= (1, 1) [38]; when X is a K3 surface, only
a particular case is known [12]. These irreducibility properties transfer to the corresponding
equigeneric families when Problem (A) admits a positive answer.

For surfaces with trivial canonical class one can formulate the following conjecture, which
Theorem (B) only partly solves.

(C) Conjecture. Let X be a K3 (resp. Abelian) surface, and ξ ∈ NS(X). For g > 0 (resp.

g > 2) the general element of every irreducible component of V ξ
g is nodal.

Note however that Problem (A) does not always have a positive solution. This happens for
instance when X is a K3 (resp. Abelian) surface and g = 0 (resp. g = 2); the latter case is
however somewhat exceptional, since the corresponding equigeneric families are 0–dimensional
(see subsection 4.2 for further discussion). We give other instances, hopefully less exceptional,
of Problem (A) having a negative solution in Section 5. This comes with various examples, some
of them new, of equigeneric and equisingular families having superabundant behaviour.

Surfaces of general type are missing from our analysis, as their Severi varieties are notably
not well-behaved and, especially, not keen to be studied using the techniques of the present text.
For information about this case one may consult [10, 11].

Problem (A) was first studied (and solved) for the projective plane in the (19)80s by Arbarello
and Cornalba [1, 2] (see also [4, Chap. XXI §§8–10] for a unified treatment in english), and Zariski
[43], with different approaches. The latter considers curves in surfaces as divisors and studies
the deformations of their equations (we call this the Cartesian point of view), while the former
see them as images of maps from smooth curves (we call this the parametric point of view).
Harris generalized this result using the Cartesian theory in [20], thus obtaining as particular
cases parts (B.2) and (B.3) of the above theorem. There is however a subtle flaw in this text
([20, Prop. 2.1]) which has been subsequently worked around using the parametric theory in
[21]. Apparently it had not been spotted before; we analyze it in detail in subsection 3.3.

Note also that [8, Lemma 3.1] states Conjecture (C) for K3 surfaces as a result, but the
proof reproduces the incomplete argument of [20, Prop. 2.1]; unfortunately, in this case the
parametric approach does not provide a full proof either. We also point out that the result of
Conjecture (C) for K3 surfaces is used in [7, proof of Thm. 3.5]; the weaker Theorem (B.4)
should however be enough for this proof, see [16, 6].

Eventually let us mention that the recent [24] by Kleiman and Shende provides an answer
to Problem (A) for rational surfaces under various conditions. They use the cartesian approach,
while in the Appendix Tyomkin reproves the same results using the parametric approach.

We need arguments from both the parametric and Cartesian approaches here. The core of
the parametric theory in the present text is Theorem (2.8), which is essentially due to Arbarello–
Cornalba, Harris, and Harris–Morrison. Except for its part (B.4), Theorem (B) is a more or

2After the present text was completed, Knutsen, Lelli-Chiesa and Mongardi (arXiv:1503.04465) proved the
non-emptiness of V ξ,pa(ξ)−g for ξ the numerical class of a polarization of type (1, n) on an Abelian surface, and
2 ≤ g ≤ pa(ξ).
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less direct corollary of Theorem (2.8); parts (B.5) and (B.6), which to the best of our knowl-
edge appear here for the first time 3, still require additional arguments from a different nature,
admittedly not new either (see subsection 4.2).

The parametric approach is more modern in spirit, and arguably more agile, but although
it enables one to give a full solution to Problem (A) for minimal rational surfaces, it does not
provide a fully satisfactory way of controlling equisingular deformations of curves; somehow, it
requires too much positivity of −KX (see, e.g., Remark (2.10)), which explains why Theorem (B)
is not optimal in view of Conjecture (C). For K3 surfaces, Theorem (B.4), which is our main
original contribution to the subject, is beyond what is possible today with the mere parametric
approach; we obtain it along the Cartesian approach, with the new tackle of formulating it in
terms of general divisors on singular curves (see section §3.4), and with the help of additional
results from Brill–Noether theory. This is yet not a definitive answer either, and we believe finer
arguments are required in order to fully understand the subtleties of the question.

The organization of the paper is as follows. In Section 1, we define the abstract notions of
equigeneric and equisingular families of curves and specify our setup. In Section 2 we recall the
relevant facts from the parametric deformation theory, which culminate in the already mentioned
Theorem (2.8). Section 3 is devoted to Cartesian deformation theory, which involves the so-
called equisingular and adjoint ideals of an integral curve with planar singularities. In Section 4
we apply the results of the two former sections in order to prove Theorem (B), and in Section 5
we gather examples in which the situation is not the naively expected one.

Acknowledgements. We learned much from our reading of [15] and [21, pp. 105–117]. We
also had the pleasure of helpful and motivating discussions with C. Ciliberto, L. Ein, and
C. Galati, and are grateful to F. Flamini for his careful reading of this text. Our special thanks
go to A. L. Knutsen who in particular showed us the crucial Example (4.17) at the right time.
Finally, we thank X. Chen for having kindly answered our questions about his work [8].

This project profited of various visits of the authors one to another, which have been made
possible by the research group GRIFGA, in collaboration between CNRS and INdAM. T.D.
was partially supported by French ANR projects CLASS and MACK. E.S. is a member of
GNSAGA–INdAM and was partially supported by the project MIUR-PRIN Geometria delle
varietà algebriche.

1 – Equigeneric and equisingular families of curves

We work over the field C of complex numbers.

1.1 – General definitions

While the definition of equigenericity is rather straightforward, that of equisingularity is much
more subtle, and requires some care. The definition given here is taken from Teissier [36, 37],
who slightly modified the one originally introduced by Zariski (see [36, §5.12.2] for a comment
on this). The two versions are anyway equivalent in our setting (explicited in subsection 1.2)
by [37, II, Thm. 5.3.1]. We invite the interested reader to take a look at [15] as well.

Let p : C → Y be a flat family of reduced curves, where Y is any separated scheme.

3Theorem (B.6) has later on been used by Knutsen, Lelli-Chiesa and Mongardi (arXiv:1503.04465) to prove
Conjecture (C) for X an Abelian surfaces and ξ the numerical class of a polarization of type (1, n).
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(1.1) Definition. The family p : C → Y is equigeneric if (i) Y is reduced, (ii) the locus of
singular points of fibres is proper over Y , and (iii) the sum of the δ-invariants of the singular
points of the fibre Cy is a constant function on y ∈ Y .

When p is proper, condition (iii) above is equivalent to the geometric genus of the fibres
being constant on Y .

(1.2) Definition. The family p : C → Y is equisingular if there exist (a) disjoint sections
σ1, . . . , σn of p, the union of whose images contains the locus of singular points of the fibres, and
(b) a proper and birational morphism ε : C̄ → C, such that (i) the composition p̄ := p◦ε : C̄ → Y
is flat, (ii) for every y ∈ Y , the induced morphism εy : C̄y → Cy is a resolution of singularities
(here C̄y and Cy are the respective fibres of p̄ and p over y), and (iii) for i = 1, . . . , n, the
induced morphism p̄ : ε−1(σi(Y )) → Y is locally (on ε−1(σi(Y ))) trivial.

In Definition (1.1), the reducedness assumption on the base is an illustration of the fact
that equigenericity cannot be functorially defined, unlike equisingularity. The following result
of Zariski, Teisser, Diaz–Harris, provides a more intuitive interpretation of equisingularity. Two
germs of isolated planar curve singularities (C1, 0) ⊂ (C2, 0) and (C2, 0) ⊂ (C2, 0) are said to
be topologically equivalent if there exists a homeomorphism (C2, 0) → (C2, 0) mapping (C1, 0)
to (C2, 0) (cf. [19, I.3.4]). The corresponding equivalence classes are called topological types.

(1.3) Theorem. [37, II, Thm. 5.3.1], [15, Prop. 3.32] Let p : C → Y be a flat family of reduced
curves on a smooth surface X, i.e. C ⊂ X × Y , and p is induced by the second projection. We
assume that C and Y are reduced separated schemes of finite type. Let Σ ⊂ C be the locus of
singular points of fibres of p. If Σ is proper over Y the following two conditions are equivalent:

(i) the family p : C → Y is locally equisingular in the analytic topology;

(ii) for each topological type of isolated planar curve singularity, all fibres over closed points of
Y have the same number of singularities of that topological type.

One then has the following result, often used without any mention in the literature. It is an
application of the generic smoothness theorem.

(1.4) Proposition. [37, II, 4.2] Let p : C → Y be an equigeneric family of reduced curves.
There exists a dense Zariski-open subset U ⊂ Y such that the restriction C ×Y U → U is
equisingular.

The latter result implies the existence, for any flat family p : C → Y of reduced curves on a
smooth surface X , with Y reduced separated and of finite type, of an equisingular stratification
of Y in the Zariski topology. Indeed, the geometric genus of the fibres being a lower semi-
continuous function on Y (see e.g. [15, §2]), our family restricts to an equigeneric one above a
Zariski-open subset of Y , to which we can apply Proposition (1.4).

Eventually we need the following result of Teissier, which shows that equigenericity can be
interpreted in terms of the existence of a simultaneous resolution of singularities.

(1.5) Theorem. [37, I, Thm. 1.3.2] Let p : C → Y be a flat family of reduced curves, where
C and Y are reduced separated schemes of finite type. If Y is normal, then the following two
conditions are equivalent:

(i) the family p : C → Y is equigeneric;
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(ii) there exists a proper and birational morphism ε : C̄ → C, such that p̄ = p◦ ε is flat, and for
every y ∈ Y , the induced morphism C̄y → Cy is a resolution of singularities of the fibre
Cy = p−1(y).

In addition, whenever it exists, the simultaneous resolution ε is necessarily the normalization
of C.

1.2 – Superficial setting

We now introduce our set-up for the remaining of this paper.

(1.6) Unless explicit mention to the contrary,X shall design a nonsingular projective connected
algebraic surface. Given an element ξ ∈ NS(X) of the Néron-Severi group of X we let

Picξ(X) := {L ∈ Pic(X) | L has class ξ}.

The Hilbert scheme of effective divisors of X having class ξ, which we denote by CurvesξX , is

fibered over Picξ(X)

CurvesξX −→ Picξ(X)

with fibres linear systems. We write pa(ξ) for the common arithmetic genus of all members

of CurvesξX . In case q(X) := h1(X,OX) = 0, i.e. X is regular, CurvesξX is a disjoint union of

finitely many linear systems |L|, with L varying in Picξ(X).

(1.7) For any given integer δ such that 0 ≤ δ ≤ pa(ξ) there is a well defined, possibly empty,

locally closed subscheme V ξ,δ ⊂ CurvesξX , whose geometric points parametrize reduced and
irreducible curves having exactly δ nodes and no other singularities. These subschemes are
defined functorially in a well known way [40] and will be called Severi varieties.

More generally, given a reduced curve C representing ξ ∈ NS(X), there is a functorially

defined subscheme ES(C) ⊂ CurvesξX whose geometric points parametrize those reduced curves
that have the same number of singularities as C for every equivalence class of planar curve
singularity [41]. The restriction to ES(C) of the universal family of curves over CurvesξX is the
largest equisingular family of curves on X that contains C.

(1.8) We will also consider, for any given integer g such that 0 ≤ g ≤ pa(ξ), the locally closed

subset V ξ
g ⊂ CurvesξX whose geometric points parametrize reduced and irreducible curves C

having geometric genus g, i.e. such that their normalization has genus g. When δ = pa(ξ) − g
we have V ξ,δ ⊂ V ξ

g .

There is also, for each L ∈ Picξ(X), a subscheme V δ
L = V ξ,δ ∩ |L| of |L|, and a locally closed

subset VL,g = V ξ
g ∩ |L|. These are the natural objects to consider when X is regular.

2 – A parametric approach

2.1 – The scheme of morphisms

We briefly recall some facts from the deformation theory of maps with fixed target, which will
be needed later on. Our main reference for this matter is [33, §3.4]; [4, Chap. XXI §§8–10] may
also be useful. We consider a fixed nonsingular projective n-dimensional variety Y .
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(2.1) We use the definition of modular family, as given in [23, p. 171]. For every g ≥ 0,
there is a modular family πg : Dg → Sg of smooth projective connected curves of genus g by
[23, Thm. 26.4 and Thm. 27.2], and Sg has dimension 3g − 3 + ag, with ag the dimension of
the automorphism group of any genus g curve. Then, setting Mg(Y ) to be the relative Hom
scheme Hom(Dg/Sg, Y × Sg/Sg) and Dg(Y ) := Dg ×Sg

Mg(Y ), there is a modular family of
morphisms from nonsingular projective connected curves of genus g ≥ 0 to Y in the form of the
commutative diagram

Dg(Y )
Φg

//

��

Y ×Mg(Y )

ww♦♦
♦♦
♦♦
♦

Mg(Y )

(2.1.1)

which enjoys properties (a),(b),(c) of [23, Def. p.171] (note that here we declare two morphisms
to be isomorphic if they are equal). Note that the scheme Mg(Y ) and diagram (2.1.1) are
unique only up to an étale base change; nevertheless, with an abuse of language we call Mg(Y )
the scheme of morphisms from curves of genus g to Y .

Let
φ : D → Y

be a morphism from a nonsingular connected projective curve D of genus g and [φ] ∈Mg(Y ) a
point parametrizing it. There is an exact sequence ([33, Prop. 4.4.7])

0 → H0(D,φ∗TY ) → T[φ]Mg(Y ) → H1(D,TD) → H1(D,φ∗TY ), (2.1.2)

and it follows from [25, I.2.17.1] that

−KY · φ∗D + (n− 3)(1− g) + dim (Aut(D)) ≤ dim[φ]Mg(Y ). (2.1.3)

(2.2) We denote by Defφ/Y the deformation functor of φ with fixed target Y , as introduced in
[33, §3.4.2]. Recall that Nφ, the normal sheaf of φ, is the sheaf of OD-modules defined by the
exact sequence on D

0 → TD → φ∗TY → Nφ → 0. (2.2.1)

It controls the functor Defφ/Y : one has Defφ/Y (C[ε]) = H0(D,Nφ), and H1(D,Nφ) is an ob-
struction space for Defφ/Y ; in particular, if Rφ is the complete local algebra which prorepresents
Defφ/Y ([33, Thm. 3.4.8]), we have

χ(Nφ) ≤ dim(Rφ) ≤ h0(Nφ).

Using the exact sequence (2.2.1), one computes

χ(Nφ) = χ(ωD � φ∗ω−1
Y ) = −KY · φ∗D + (n− 3)(1− g), (2.2.2)

hence

−KY · φ∗D + (n− 3)(1− g) ≤ dim(Rφ) ≤ h0(Nφ) = χ(Nφ) + h1(Nφ). (2.2.3)

In particular, Rφ is smooth of dimension −KY · φ∗D+(n− 3)(1− g) if and only if H1(Nφ) = 0.
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(2.3) In analyzing the possibilities here, one has to keep in mind that Nφ can have torsion. In
fact there is an exact sequence of sheaves of OD-modules

0 → Hφ → Nφ → N̄φ → 0, (2.3.1)

where Hφ is the torsion subsheaf of Nφ, and N̄φ is locally free. The torsion sheafHφ is supported
on the ramification divisor Z of φ, and it is zero if and only if Z = 0. Moreover, there is an
exact sequence of locally free sheaves on D

0 → TD(Z) → φ∗TY → N̄φ → 0. (2.3.2)

(2.4) The schemeMg(Y ) and the functors Defφ/Y are related as follows. For each [φ] ∈Mg(Y )
we get by restriction a morphism from the prorepresentable functor hÔMg(Y ),[φ]

to Defφ/Y . Call

ρφ this morphism. Its differential is described by the diagram:

0 // H0(D,φ∗TY )

��

// T[φ]M

dρφ

��

// H1(D,TD) // H1(D,φ∗TY )

0 // H0(D,φ∗TY )/H
0(D,TD) // H0(D,Nφ) // H1(D,TD) // H1(D,φ∗TY )

where the top row is the sequence (2.1.2) and the second row is deduced from the sequence
(2.2.1). This diagram shows that dρφ is surjective with kernel H0(D,TD), whose dimension is
equal to dim (Aut(D)). In particular, if Mg(Y ) is smooth at [φ], then Defφ/Y is smooth as well
and dim(Rφ) = dim[φ](Mg(Y )) − dim (Aut(D)). This analysis is only relevant when g = 0, 1,
because otherwise ρφ is an isomorphism.

2.2 – Equigeneric families and schemes of morphisms

In view of the superficial situation set up in subsection 1.2, we will often consider the case when
φ is the morphism ϕ : C̄ → X , where C is an integral curve in a smooth projective surface X ,
and ϕ is the composition of the normalization ν : C̄ → C with the inclusion C ⊂ X ; we may
loosely refer to ϕ as the normalization of C. We then have

N̄ϕ
∼= ϕ∗ω−1

X � ωC̄(−Z)

by the exact sequence (2.3.2). The embedded curve C is said to be immersed if the ramification
divisor Z of ϕ is zero; in this case, we may also occasionally say that C has no (generalized)
cusps.

The following result is based on a crucial observation by Arbarello and Cornalba [2, p. 26].

(2.5) Lemma. Let B be a semi-normal 1 connected scheme, 0 ∈ B a closed point, π : D → B
a flat family of smooth projective irreducible curves of genus g, and

D
π
��

Φ // X ×B

pr2zz✈✈
✈✈
✈✈

B

a family of morphisms. We call D0 the fibre of D over 0 ∈ B, φ0 : D0 → X the restriction of
Φ, which we assume to be birational on its image, and ξ the class of φ0(D0) in NS(X).

1we refer to [25, §I.7.2] for background on this notion.
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(2.5.1) The scheme-theoretic image Φ(D) is flat over B.

This implies that there are two classifying morphisms p and q from B toMg(X) and CurvesξX
respectively, with differentials

dρφ0 ◦ dp0 : TB,0 → H0(D0, Nφ0) and dq0 : TB,0 → H0(φ0(D0), Nφ0(D0)/X).

(2.5.2) The inverse image by dρφ0 ◦ dp0 of the torsion H0(D0,Hφ0) ⊂ H0(D0, Nφ0) is contained
in the kernel of dq0.

Proof. The morphism ̟ = pr1 : Φ(D) → B is a well-defined family of codimension 1 algebraic
cycles of X in the sense of [25, I.3.11]. Since B is semi-normal, it follows from [25, I.3.23.2] that
̟ is flat.

Given a non-zero section σ ∈ H0(D0, Nφ0), the first order deformation of φ0 defined by σ
can be described in the following way: consider an affine open cover {Ui}i∈I of C0, and for each
i ∈ I consider a lifting θi ∈ Γ(Ui, φ

∗
0TX) of the restriction σ|Ui

. Each θi defines a morphism

ψi : Ui × Spec(C[ε]) −→ X

extending φ0|Ui
: Ui → X . The morphisms ψi are then made compatible after gluing the trivial

deformations Ui × Spec(C[ε]) into the first order deformation of D0 defined by the cobound-
ary ∂(σ) ∈ H1(C0, TC0) of the exact sequence (2.2.1). In case σ ∈ H0(D0,Hφ0), everyone of
the maps ψi is the trivial deformation of σ|Ui

over an open subset. This implies that the cor-
responding first order deformation of φ0 leaves the image fixed, hence the vanishing of dq0(σ). ✷

(2.6) Lemma. Let m0 ∈ Mg(X) be a general point of an irreducible component of Mg(X),
and φ0 : D0 → X the corresponding morphism. Assume that φ0 is birational onto its image
C0 := φ0(D0), and that [C0] ∈ V ξ

g . Then [C0] belongs to a unique irreducible component of V ξ
g

and
dim[C0] V

ξ
g = dimRϕ = dimm0 Mg(X)− dim(AutD0),

where Rφ0 is the complete local C-algebra that prorepresents Defφ0/X .

Proof. Consider the reduced scheme Mred := Mg(X)red, and let M̃ be its semi-normalization.
Let

DM̃

��

ΦM̃ // X × M̃

zz✉✉
✉✉
✉✉
✉

M̃

be the pullback of the modular family (2.1.1). Then we have a diagram

ΦM̃ (DM̃ )

π
��

�

�

// X × M̃

xxqq
qq
qq
qq
q

M̃

where ΦM̃ (DM̃ ) is the scheme-theoretic image. The morphism π is flat by Lemma (2.5), and

therefore we have an induced functorial morphism Ψ : M̃ → V ξ
g .

Suppose that Ψ(m1) = Ψ(m0) = [C0] for some m1 ∈ M̃ . Then m0 and m1 parametrize the
same morphism up to an automorphism of the source D0. By property (a) of modular families,
this implies that the fibres of Ψ have the same dimension as AutD0, and therefore that

dimm0 Mg(X)− dim(AutD0) ≤ dim[C] V
ξ
g .
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On the other hand, consider the normalization map V̄ ξ
g → V ξ

g , and the pull-back to V̄ ξ
g of

the universal family of curves over CurvesξX . It has a simultaneous resolution of singularities
Ū → V̄ ξ

g by Theorem (1.5), which comes with a family of morphisms N : Ū → X × V̄ ξ
g over V̄ ξ

g .
By property (c) of the modular family Mg(X), this implies that there exist an étale surjective
η :W −→ V̄ ξ

g and a morphism w : W →Mg(X) such that ŪW := Ū ×V̄ ξ
g
W fits in the Cartesian

diagram

ŪW
//

��
✷

Dg

��

W
w // Mg(X)

where the left vertical map is the pullback of N . The map W →Mg(X) is generically injective
because the universal family of curves over V ξ

g is nowhere isotrivial. Moreover, its image is
transverse at every point m (corresponding to a morphism φ) to the subvariety of Mg(X)
parametrizing morphisms gotten by composing φ with an automorphism of its source. This
implies that, for c0 ∈ η−1([C0])

dim[C0] V
ξ
g = dimc0 W ≤ dimm0 Mg(X)− dim(AutD0).

It is then clear that [C0] belongs to a unique irreducible component of V ξ
g . ✷

(2.7) Remark. It can happen thatMg(X) is non-reduced. For an example of such a situation,
consider the pencil |L| constructed in Example (5.1) below (we use the notations introduced
therein), and let C ⊂ X be a general element of VL,9, which is open and dense in |L|. The curve
C has one ordinary cusp s and no further singularity; we let s′ ∈ C̄ be the unique ramification
point of the normalization ϕ : C̄ → X .

One has χ(Nϕ) = −8 + 8 = 0 whereas dim[ϕ]M9(X) = 1. The torsion part of Nϕ is the

skyscraper sheaf Cs′ , and accordingly h0(Hϕ) = 1. One has h0(ωC̄ � ϕ∗ω−1
X ) = 1, and the

unique divisor in |ωC̄ � ϕ∗ω−1
X | contains s′ (with multiplicity 4), so that

h0(N̄ϕ) = h0
(
ωC̄ � ϕ∗ω−1

X (−s′)
)
= h0(ωC̄ � ϕ∗ω−1

X ) = 1.

We then deduce from the exact sequence (2.3.1) that h0(Nϕ) = 2 and h1(Nϕ) = 2.

2.3 – Conditions for the density of nodal (resp. immersed) curves

The following result is essentially contained in [20, 21]; the idea of condition (c) therein comes
from [1].

(2.8) Theorem. Let V ⊂ V ξ
g be an irreducible component and let [C] ∈ V be a general point,

with normalization ϕ : C̄ → X.

(2.8.1) Assume that the following two conditions are satisfied:

(a) ωC̄ � ϕ∗ω−1
X is globally generated;

(b) dim(V ) ≥ h0(C̄, ωC̄ � ϕ∗ω−1
X ).

Then C is immersed, i.e. all its singularities consist of (possibly non transverse) linear branches.
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(2.8.2) Assume in addition that the following condition is satisfied:

(c) the line bundle ωC̄ � ϕ∗ω−1
X separates any (possibly infinitely near) 3 points, i.e.

h0
(
C̄, ωC̄ � ϕ∗ω−1

X (−A)
)
= h0

(
C̄, ωC̄ � ϕ∗ω−1

X

)
− 3

for every effective divisor A of degree 3 on C̄.

Then C is nodal. Equivalently V ⊂ V ξ,δ, with δ = pa(ξ)− g.

Proof. For simplicity we give the proof in the case g ≥ 2. Assume by contradiction that the
curve C has (generalized) cusps. This is equivalent to the fact that Z 6= 0, where Z ⊂ C̄ is the
zero divisor of the differential of ϕ. By generality, [C] is a smooth point of V , so we may (and
will) assume without loss of generality that V is smooth. As in the proof of Lemma (2.6), it
follows from Theorem (1.5) that there is a simultaneous resolution of singularities

C̄
π̄ ��

❃❃
❃❃

❃

Φ // C
π
��

V

of the universal family of curves over V . This is a deformation of the morphism ϕ, so we have
a characteristic morphism p : V →Mg(X). The differential

dp[ϕ] : T[C]V → H0(C̄, Nϕ)

is injective because to every tangent vector θ ∈ T[C]V corresponds a non-trivial deformation of

C. On the other hand, it follows from Lemma (2.5) that the intersection Im dp[ϕ] ∩ H0(C̄,Hϕ)
is trivial. Eventually, we thus have

dimV = dim T[C]V ≤ h0(C̄, N̄ϕ) = h0(ωC̄ � ϕ∗ω−1
X (−Z)).

By assumption (a), this implies dimV < h0(ωC̄ � ϕ∗ω−1
X ), a contradiction. This proves (2.8.1).

Assume next that (c) is also satisfied and, by contradiction, that C is not nodal. We shall
show along the lines of [1, pp. 97–98] that it is then possible to deform C into curves with milder
singularities, which contradicts the generality of C in V and thus proves (2.8.2). First note that
since C is immersed by (2.8.1), one has Nϕ = N̄ϕ, so that condition (b) implies the smoothness
of the scheme of morphisms Mg(X) at a point [ϕ] parametrizing ϕ, the tangent space at this
point being

H0(Nϕ) = H0(ωC̄ � ϕ∗ω−1
X ).

The assumption that C is not nodal means that there is a point x ∈ C at which C has
either (i) (at least) 3 local branches meeting transversely, or (ii) (at least) 2 local branches
tangent to each other. In case (i), there are three pairwise distinct points p, q, r ∈ C̄ such that
ϕ(p) = ϕ(q) = ϕ(r) = x. It follows from condition (c) that there exists a section σ ∈ H0(Nϕ)
such that σ(p) = σ(q) = 0 and σ(r) 6= 0. Such a section corresponds to a first–order deformation
(hence, by smoothness, to an actual deformation) of ϕ leaving both ϕ(p) and ϕ(q) fixed while
moving ϕ(r): it therefore turns the triple point constituted at x by the 3 local branches of C
under consideration into 3 nodes. In particular it is not equisingular, a contradiction.

In case (ii), there are 2 distinct points p, q ∈ C̄, such that ϕ(p) = ϕ(q), and im(dϕp) =
im(dϕq), and it follows from condition (c) that there exists a section σ ∈ H0(Nϕ) such that
σ(p) = 0 and σ(q) 6∈ im(dϕp). The corresponding deformation of C leaves ϕ(p) fixed and
moves ϕ(q) in a direction transverse to the common tangent to the 2 local branches of C un-
der consideration (if the 2 branches of C are simply tangent, the tacnode they constitute at x
is turned into 2 nodes). It is therefore not equisingular either, a contradiction also in this case. ✷

11



(2.9) In many cases the conditions considered in Theorem (2.8) are not satisfied: this tends to

happen when ω−1
X is not positive enough.

(2.9.1) Clearly enough, (a) does not hold in general. Critical occurences of this phenomenon are
to be observed for rational curves on K3 surfaces (Remark (4.13)) and for anticanonical rational
curves on a degree 1 Del Pezzo surface (Remark (4.5)). In these two situations, the conclusion
of Theorem (2.8) is not true in general.
(2.9.2) There can also be actual obstructions to deform the normalization of the general member
of V and then (b) does not hold, see Remark (2.7) and Example (5.1). The conclusion of
Theorem (2.8) is not true for this example.

(2.10) Remark. Condition (c), albeit non-redundant (see (3.13)), is too strong, as the follow-
ing example shows. Let (X,L) be a very general primitively polarizedK3 surface, with L2 = 12.
It follows from Proposition (4.10) that the general element C of every irreducible component of
VL,4 is nodal. On the other hand, having genus 4 the curve C̄ is trigonal, i.e. there exists an
effective divisor of degree 3 on C̄ such that h0

(
OC̄(A)

)
= 2, whence

h0
(
ωC̄(−A)

)
= 2 > h0

(
ωC̄

)
− 3 = 1,

and condition (c) does not hold.
A finer analysis is required in order to get the right condition. The approach described in

section 3 might provide a possibility for doing so.

The following result provides a convenient way to apply Theorem (2.8).

(2.11) Corollary. Assume that V ⊂ V ξ
g is an irreducible component and let [C] ∈ V be general.

If ωC̄ � ϕ∗ω−1
X is non-special and base–point–free then C has no cusps. If moreover

deg(ωC̄ � ϕ∗ω−1
X ) ≥ 2g + 2 (2.11.1)

then C is nodal.

Proof. Condition (a) of the theorem is satisfied by hypothesis. The non-speciality of ωC̄ �ϕ∗ω−1
X

implies that
χ(Nϕ) ≥ h0(ωC̄ � ϕ∗ω−1

X )

and therefore also condition (b) is satisfied, thanks to (2.2.3). The last assertion is clear because
(2.11.1) implies that condition (c) is also satisfied. ✷

3 – A Cartesian approach

The situation and notations are as set-up in subsection 1.2.

3.1 – Ideals defining tangent spaces

(3.1) Let C be a reduced curve in the surface X . We consider the sequence of sheaves of ideals
of OC

J ⊆ I ⊆ A ⊆ OC ,

where:

12



(3.1.1) J is the jacobian ideal: it is locally generated by the partial derivatives of a local equation
of C;

(3.1.2) I is the equisingular ideal [41]: it does not have any non-deformation-theoretic interpre-
tation;

(3.1.3) A is the adjoint ideal: it is the conductor Cν := HomOC
(ν∗OC̄ ,OC) of the normalization

ν : C̄ → C of C.

(3.2) Being ν birational, Cν is the annihilator ideal AnnOC

(
ν∗OC̄/OC

)
. It follows that A ⊂ OC

is also a sheaf of ideals of ν∗OC̄ , which implies that there exists an effective divisor ∆̄ on C̄ such
that

A ∼= ν∗
(
OC̄(−∆̄)

)
. (3.2.1)

Moreover, we have
ωC̄ = ν∗(ωC) � OC̄(−∆̄). (3.2.2)

(3.3) Lemma. For i = 0, 1, one has

Hi
(
C,A� OC(C)

) ∼= Hi
(
C̄, ωC̄ � ϕ∗ω−1

X

)
,

where ϕ : C̄ → X is the composition of the normalization map ν with the inclusion C ⊂ X.

Proof. By (3.2.1) and the projection formula, we have

H0
(
C,OC(C) �A

)
= H0

(
C,OC(C) � ν∗

(
OC̄(−∆̄)

))

= H0
(
C̄, ν∗OC(C) � OC̄(−∆̄)

)
.

By (3.2.2) and the adjunction formula ωC = OC(C) � ωX , we have

ν∗OC(C) � OC̄(−∆̄) = ν∗ωC � ϕ∗ω−1
X � OC̄(−∆̄) = ωC̄ � ϕ∗ω−1

X ,

and the statement follows in the case i = 0. For the second identity, observe that R1ν∗(ωC̄ �

ϕ∗ω−1
X ) = 0, hence

H1
(
C,OC(C) �A

)
= H1

(
C, ν∗(ωC̄ � ϕ∗ω−1

X )
)
= H1

(
C̄, ωC̄ � ϕ∗ω−1

X

)

by Leray’s spectral sequence. ✷

(3.4) Let ξ ∈ NS(X) be the class of C. From the functorial identification of T [C]Curves
ξ
X with

H0
(
C,OC(C)

)
we may deduce the sequence of inclusions

H0
(
C, J � OC(C)

)
⊆ H0

(
C, I � OC(C)

)
⊆ H0

(
C,A� OC(C)

)
⊆ T [C] Curves

ξ
X , (3.4.1)

which has the following deformation-theoretic interpretation.

(3.5) Proposition. [15, Prop. 4.19]

(3.5.1) H0(C, J � OC(C)) is the tangent space at [C] to the subscheme of CurvesξX of formally
locally trivial deformations of C.
(3.5.2) H0(C, I � OC(C)) is the tangent space at [C] to ES(C). In particular,

dim[C]ES(C) ≤ h0(C, I � OC(C)).
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(3.5.3) H0(C,A� OC(C)) contains the reduced tangent cone to V ξ
g(C) at [C]. In particular,

dim[C] VL,g ≤ h0(C,A � OC(C)) = h0
(
C̄, ωC̄ � ϕ∗ω−1

X

)
.

As is the case for ES(C), the subscheme of CurvesξX of formally locally trivial deformations
of C is functorially defined [40]; in contrast, V ξ

g is only set-theoretically defined.
(3.5.1) is based on results of Artin and Schlessinger respectively; since we will not use this,

we refer to [15] for the precise references. (3.5.2) follows from [37, 41], as explained in [28,
Prop. 3.3.1]. (3.5.3) stems from [36] (the last equality comes from Lemma (3.3)). ✷

The next result is conceptually important: it explains why one would envisage an affirmative
answer to Problem (A) in the first place.

(3.6) Proposition. [43] Let (C, p) be a reduced planar curve germ, and consider the local
ideals Ip ⊆ Ap ⊆ OC,p. Then Ip = Ap if and only if p is a node.

This also occurs as [28, Thm. 3.3.2] and [15, Lemma 6.3], where enlightening proofs are
provided.

3.2 – Effective computations

Next, we collect some results enabling one to compute in practice the ideals A and I which will
be needed in the sequel.

(3.7) Lemma. [35, II.6–7] Let C ⊂ X be a reduced curve in a smooth surface. Consider a
finite chain of birational morphisms

Xs+1
εs−→ Xs → · · · → X2

ε1−→ X1 = X

such that each εr is the blow-up of a single closed point qr ∈ Xr, with exceptional divisor Er

(1 ≤ r ≤ s). Let furthermore

- εs,r = εr ◦ · · · ◦ εs : Xs+1 → Xr,

- Cr be the proper transform of C in Xr (C1 = C), and

- mr be the multiplicity of Cr at qr ∈ Xr .

If the proper transform of C in Xs+1 is smooth, then the adjoint ideal of C is

AC = (εs,1)∗OXs

(
−(m1 − 1)ε∗s,2E1 − · · · − (ms−1 − 1)ε∗s,sEs−1 − (ms − 1)Es

)
�OX

OC .

As far as the equisingular ideal is concerned, we shall only need two special instances of [19,
Prop. 2.17], and refer to loc. cit. § II.2.2 for further information.

(3.8) Recall that a polynomial f =
∑

(α,β)∈N2 aα,β x
αyβ is said to be quasihomogeneous if

there exist positive integers w1, w2, d such that

∀(α, β) ∈ N2, aα,β 6= 0 =⇒ w1α+ w2β = d.

In such a case, (w1, w2; d) is called the type of f . An isolated planar curve singularity (C, 0) is
said to be quasihomogeneous if it is analytically equivalent to the singularity at the origin of a
plane affine curve defined by a quasihomogeneous polynomial f , i.e. if the complete local ring
ÔC,0 is isomorphic to C[[x, y]]/〈f〉.
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(3.9) Lemma. [19, Prop. 2.17] Let f ∈ C[x, y] be a quasihomogeneous polynomial of type
(w1, w2; d), and consider the affine plane curve C defined by f . If C has an isolated singularity
at the origin 0, then the local equisingular ideal of C at 0 is

I = J + 〈xαyβ | w1α+ w2β ≥ d〉.

in the local ring OC,0 (where J denotes as usual the Jacobian ideal 〈∂xf, ∂yf〉).

(3.10) Recall that simple curve singularities are those defined by one of the following equations:

Aµ : y2 − xµ+1 = 0 (µ ≥ 1)

Dµ : x(y2 − xµ−2) = 0 (µ ≥ 4)

E6 : y3 − x4 = 0

E7 : y(y2 − x3) = 0

E8 : y3 − x5 = 0.

Simple singularities are quasihomogeneous, and one obtains as a corollary of Lemma (3.9)
that the equisingular ideal I of a simple singularity equals its jacobian ideal J . This means that
simple singularities do not admit non topologically trivial equisingular deformations.

(3.11) Example. (double points) Any double point of a curve is a simple singularity of type
Aµ, µ ≥ 1. At such a point p, the adjoint and equisingular ideals are respectively

A = 〈y, x⌊ µ+1
2 ⌋〉 and I = 〈y, xµ〉

in the local ring of the curve at p.

(3.12) Example. (ordinary m-uple points) Let m be a positive integer. An ordinary m-uple
point of a curve is analytically equivalent to the origin in an affine plane curve defined by an
equation

f(x, y) = fm(x, y) + f̃(x, y) = 0 (3.12.1)

where fm is a degree m homogeneous polynomial defining a smooth subscheme of P1, and f̃ is
a sum of monomials of degree > m; such a polynomial f is said to be semi-homogeneous. In
particular, [19, Prop. 2.17] applies to this situation, and the adjoint and equisingular ideals at
the origin of the curve defined by (3.12.1) are respectively

A = 〈xαyβ | α+ β ≥ m− 1〉 and I = 〈∂xf, ∂yf〉+ 〈xαyβ | α+ β ≥ m〉

in the local ring of the curve (A is computed with Lemma (3.7)).

3.3 – Pull–back to the normalization

In this subsection, we discuss the possibility of proving Theorem (2.8) by “lifting” the sequence
of tangent spaces (3.4.1) on the normalization of a general member of a maximal irreducible
equigeneric family. First of all, we would like to point out a fallacy: we explain below why a
certain line of argumentation does not enable one to remove assumption (c) in (2.8.2). This
incomplete argumentation is used in the proofs of [20, Prop. 2.1] (last paragraph of p.448) and
of [8, Lemma 3.1] (last paragraph of the proof). As indicated in [20], it is nevertheless possible
to prove [20, Prop. 2.1] using the parametric approach, see, e.g., [21, p.105–117]. As for [8,
Lemma 3.1] however, we do not know of any valid proof.
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(3.13) Warning. As in Theorem (2.8), consider an irreducible component V of V ξ
g , and [C] a

general member of V , and assume that conditions (a) and (b) of (2.8) hold. Suppose moreover
that C is not nodal; this implies by (3.6) that IC  AC .

Being C ∈ V general, one has T[C]V ⊂ T[C] ES(C) by Proposition (1.4). Therefore

dim V ≤ dimT[C]V ≤ dim
(
T [C] ES(C)

)
= h0

(
C, IC � OC(C)

)

≤ h0
(
C̄, ν∗

(
IC � OC(C)

))
= h0

(
C̄, I ′ � ωC̄ � ϕ∗ω−1

X

)
, (3.13.1)

where I ′ is the ideal of OC̄ determined by the relation ν∗IC = I ′ � ν∗AC (as usual, ν : C̄ → C
is the normalization of C and ϕ its composition with the inclusion C ⊂ X).

Now: although ωC̄ �ϕ∗ω−1
X is globally generated by our hypothesis (a) and IC  AC because

C is not nodal, in general it does not follow from the sequence of inequalities (3.13.1) that
dim V < h0(C̄, ωC̄ � ϕ∗ω−1

X ), i.e. there is a priori no contradiction with assumption (b).
The reason for this is that ν∗IC and ν∗AC may be equal even if IC and AC are not (see

Examples (3.14) and (3.15) below). In such a situation, I ′ is trivial, and (3.13.1) only gives
dim V ≤ h0(C̄, ωC̄ � ϕ∗ω−1

X ). Example (4.17) displays a situation when both (a) and (b) hold,
but the general member C ∈ V is not nodal (i.e. conditions (a) and (b) hold but the conclusion
of (2.8.2) doesn’t): in this example one has H0(IC � OC(C)) = H0(AC � OC(C)) although
ν∗(AC � OC(C)) is globally generated and IC  AC . Therefore, condition (c) of (2.8.2) is not
redundant.

With this respect, it is important to keep in mind that base–point–freeness of the linear sys-
tem ν∗

∣∣A�OC(C)
∣∣ on C̄ does not imply base–point–freeness of the linear system (of generalized

divisors, see (3.20) below)
∣∣A � OC(C)

∣∣ on C. And indeed, it is almost always the case that∣∣A� OC(C)
∣∣ has base points (see Remark (3.24)).

Also, note that the linear subsystem ν∗
∣∣IC � OC(C)

∣∣ of
∣∣ν∗

(
IC �OC(C)

)∣∣ is in general not

complete (see Example (3.14)), in contrast with the fact that ν∗
∣∣A�OC(C)

∣∣ =
∣∣ν∗

(
A�OC(C)

)∣∣
by independence of the adjoint conditions (Lemma (3.3)).

(3.14) Example. [31] Let C ⊂ P2 be a degree n curve with one ordinary tacnode (i.e. a
singularity of type A3) at a point p and smooth otherwise. At p, there are local holomorphic
coordinates (x, y) such that C has equation y2 = x4. Then

AC,p = 〈y, x2〉 and IC,p = 〈y, x3〉,

(see Example (3.11)) whence the linear system |AC �OC(C)| (resp. |IC �OC(C)|) on C is cut
out by the system of degree n curves tangent at p to the two local branches of C there (resp.
having third order contact at p with the reduced tangent cone to C there).

Now, a third order contact with the reduced tangent cone at p does not imply anything
beyond simple tangency with each of the two local branches of C there. In coordinates, this
translates into the fact that

ν∗AC,pi
= ν∗IC,pi

= 〈t2i 〉
at the two preimages pi, i = 1, 2, of p, ti being a local holomorphic coordinate of C̄ at pi.
Nevertheless the linear system ν∗|IC � OC(C)| has codimension 1 in |ν∗

(
IC � OC(C)

)
| =

|ν∗
(
AC � OC(C)

)
| and is free from base point.
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(3.15) Example. We consider an ordinary m-uple planar curve singularity (C, 0) as in Exam-
ple (3.12). Without loss of generality, we assume that the line x = 0 is not contained in the
tangent cone of C at 0. Then x is a local parameter for each local branch, and it follows from
the computations of AC,0 and IC,0 in Example (3.12) that

ν∗AC,0 = ν∗IC,0 = 〈xm−1〉,

where ν is the normalization of C.

(3.16) It might nevertheless be possible to use the argument given in (3.13) to give another
proof of (2.8.1), i.e. that (a) and (b) of Theorem (2.8) imply that the general member of V is
immersed. We have indeed not found any example of a non immersed planar curve singularity
such that the pull–backs by the normalization of I and A are equal. The next statement is a
first step in this direction.

(3.17) Remark. Let (C, 0) be a simple curve singularity, and ν its normalization. Then
ν∗AC,0 6= ν∗IC,0 if and only if (C, 0) is not immersed.

Proof. This is a basic computation. We treat the case of E8, and leave the remaining ones to
the reader.1 The normalization ν of the E8 singularity factors as the sequence of blow–ups

C[u1, v2]

〈u1 − v22〉
C[x, u1]

〈x2 − u31〉
ε2oo

C[x, y]

〈y3 − x5〉
ε1oo

(v2 u1, u1) (x, u1) ; (x, u1 x)
✤oo (x, y)✤oo

and it follows from Lemma (3.7) that its adjoint is

A = (ε1)∗〈x, u1〉 · 〈x, y〉2 = 〈x3, x2y, xy2, u1x2, u1xy, u1y2〉
= 〈x3, x2y, xy2, yx, y2, x4〉
= 〈x3, xy, y2〉.

On the other hand, its equisingular ideal is I = J = 〈x4, y2〉 by Lemma (3.9). Eventually, one
has

ν∗A = ε∗2ε
∗
1〈x3, xy, y2〉

= ε∗2〈x3, u1x2, u21x2〉 = ε∗2〈x3, u1x2〉
= 〈v32u31, v22u31〉 = 〈v22u31〉 = 〈v82〉

and

ν∗I = ε∗2ε
∗
1〈x4, y2〉

= ε∗2〈x4, u21x2〉
= 〈v42u41, v22u41〉 = 〈v22u41〉 = 〈v102 〉,

so that ν∗A 6= ν∗I, and indeed the E8 singularity is non–immersed. ✷

(3.18) Remark. In any event, the tendency is that one loses information during the pull–back,
even in the case of non–immersed singularities. For instance, in the case of an A2n singularity
one has dimC ν

∗A/ν∗I = 1 whereas dimC A/I = n.

1actually, they are hidden as comments in the .tex file
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3.4 – Generalized divisors

As explained in the previous subsection, one loses information as one pulls back the strict
inclusion I  A to the normalization. In other words, in order to exploit the full strength of this
inequality, it is required to work directly on the singular curve under consideration. Here, we
describe a possibility for doing so, namely by using the theory of generalized divisors on curves
with Gorenstein singularities (a condition obviously fulfilled by divisors on smooth surfaces),
as developed by Hartshorne [22]. A meaningful application will be given for K3 surfaces in
subsection 4.2.

(3.19) Recall from [22, §1] that generalized divisors on an integral curve C with Gorenstein
singularities are defined as being fractional ideals of C, i.e. as those nonzero subsheaves of KC

(the constant sheaf of the function field of C) that are coherentOC–modules; note that fractional
ideals of C are rank 1 torsion–free coherent OC–modules. As a particular case, nonzero coherent
sheaves of ideals of OC are generalized divisors; these correspond to 0–dimensional subschemes
of C, and are called effective generalized divisors.

The addition of a generalized divisor and a Cartier divisor is well-defined (and is a generalized
divisor), but there is no reasonable way to define the addition of two generalized divisors. There
is an inverse mapping D 7→ −D, which at the level of fractional ideals reads I 7→ I−1 := {f ∈
KC | f · I ⊂ OC}. Hartshorne moreover defines a degree function on the set of generalized
divisors, which in the case of a 0–dimensional subscheme Z coincides with the length of OZ . He
then shows that both the Riemann–Roch formula and Serre duality hold in this context.

(3.20) Let Z be a generalized divisor on C, and OC(Z) the inverse of the fractional ideal

corresponding to Z. The projective space of lines in H0(OC(Z)) is in bijection with the set |Z|
of effective generalized divisors linearly equivalent to Z. A point p ∈ C is a base point of |Z| if
p ∈ SuppZ ′ for every Z ′ ∈ |Z|. One has to be careful that OC(Z) may be generated by global
sections even though |Z| has base points, and that it is in general not possible to associate to
|Z| a base–point–free linear system by subtracting its base locus, the latter being a generalized
divisor, see [22, p.378–379 and Ex. (1.6.1)].

(3.21) Let C be an integral curve in a smooth surface X , and ξ its class in NS(X). The adjoint
and equisingular ideals A and I of C define two effective generalized divisors on C, which we
shall denote respectively by ∆ and E. As a reformulation of Proposition (3.6), we have:

C not nodal ⇐⇒ degE > deg∆.

Now, to argue along the lines of (3.13), one has to estimate

h0
(
C,NC/X � A

)
− h0

(
C,NC/X � I

)
= h0

(
C,OC(C −∆)

)
− h0

(
C,OC(C − E)

)
.

(3.22) Lemma. If in the above situation C is not nodal, then

h0
(
C,NC/X �A

)
− h0

(
C,NC/X � I

)
> h0

(
C, ωX � OC(∆)

)
− h0

(
C, ωX � OC(E)

)
.

Proof. By the Riemann–Roch formula together with Serre duality and the adjunction formula,
we have

[
h0

(
C,NC/X �A

)
− h0

(
C, ωX � OC(∆)

)]
−
[
h0

(
C,NC/X � I

)
− h0

(
C, ωX � OC(E)

)]

= − deg∆+ degE.
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✷

(3.23) As a sideremark (which will nevertheless be useful in our application to K3 surfaces),
note that deg∆ = pa(C) − g(C), the so–called δ–invariant of the curve C. Moreover, it follows
from Serre duality and Lemma (3.3) that

h1(C,OC(∆)) = h0(C, ωC(−∆)) = g(C).

The Riemann–Roch formula then tells us that h0(OC(∆)) = 1, i.e. ∆ is a rigid (generalized)
divisor.

(3.24) Remark. The linear system |NC/X � A| has almost always base points. To see why,
consider the typical case when C has an ordinary m-uple point p and no further singularity.
Then it follows from Example (3.12) that |NC/X � A| consists of those effective generalized
divisors linearly equivalent to NC/X − (m− 1)p. Now, every effective divisor linearly equivalent
to NC/X and containing p has to contain it with multiplicity ≥ m, so that |NC/X �A| has p as
a base point.

4 – Applications

(4.1) Historically, the first instance of Problem (A) to be studied was that of curves in the
projective plane, by Zariski on the one hand, and by Arbarello and Cornalba on the other. In
this situation, the parametric approach of Section 2 can be efficiently applied.

Usually, inequality (b) of Theorem (2.8) is obtained from the estimate

dim
(
G2
d

)
≥ 3d+ g − 9 (4.1.1)

proved in [1], where G2
d is the moduli space of pairs (C, V ) consisting of a genus g (smooth

projective) curve C and of a g2d on C (i.e., V is a degree d linear system of dimension 2 on C),
together with the fact that the group of projective transformations of the plane has dimension
8. As a sideremark, note that

3d+ g − 9 = dimMg + ρ(2, d, g),

where Mg is the moduli space of genus g curves, and ρ(r, d, g) = g − (r + 1)(g + r − d) is the
Brill-Noether number (see [3, p.159]).

In subsection 4.1 below, we deduce inequality (b) of (2.8) in a more abstract nonsensical way
from (2.2.3), which actually shows that we have equality in (b) of (2.8), hence also in (4.1.1),
even when ρ < 0.

4.1 – Applications to rational surfaces

We now collect various applications of Corollary (2.11) that settle Problem (A) for common
rational surfaces. The paper [24] contains results going the same direction.

(4.2) We make repeated use of the elementary fact that any line bundle of degree ≥ 2g on a
smooth genus g curve is non–special and globally generated.
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(4.3) Corollary. [1, 43] The general element of the Severi variety Vd,g of integral plane curves
of degree d and genus g is a nodal curve.

Proof. This is trivial for d = 1, and if d ≥ 2, one has for [C] ∈ Vd,g

deg(ωC̄ � ϕ∗ω−1
X ) = 2g − 2 + 3d ≥ 2g + 2,

whence Corollary (2.11) applies. ✷

(4.4) Corollary. Let X be a Del Pezzo surface of degree d, i.e. −KX is ample and K2
X = d.

Then for every n ≥ 1, the general element C of any irreducible component of V−nKX ,g is nodal,
unless dn ≤ 3. In any event, C is immersed unless d = n = 1 and g = 0.

Proof. For [C] ∈ V−nKX ,g we have

deg(ωC̄ � ϕ∗ω−1
X ) = 2g − 2 + nd,

which is ≥ 2g+2 if nd ≥ 4 and ≥ 2g if nd ≥ 2, so that Corollary (2.11) applies. When d = n = 1,
we are considering the pencil |−KX |, the general member of which is a smooth irreducible curve
of genus 1. ✷

(4.5) Remark. Observe that the case of V−KX ,0 when X is a Del Pezzo surface of degree 1 is
a true exception, as the following example shows.

Let D ⊂ P2 be an irreducible cuspidal cubic, and let X be the blow-up of P2 at eight of the
nine points of intersection of D with a general cubic. The proper transform C of D is isolated
in V−KX ,0, and is not nodal. In fact C̄ = P1, and

h0
(
C̄, ωC̄ � ϕ∗ω−1

X

)
= h0

(
P1,OP1(−1)

)
= 0 = dim

(
Vω−1

X
,0

)
,

but ωC̄ � ϕ∗ω−1
X = OP1(−1) is not globally generated, so that Theorem (2.8) does not apply.

It is remarkable that, when unlike the above situation X is P2 blown-up at eight general
enough points, all members of V−KX ,0 are nodal curves.

(4.6) Corollary. Let X := Fn = P (OP1 � OP1(n)) be a Hirzebruch surface (n ≥ 0). For every
effective L ∈ PicX and 0 ≤ g ≤ pa(L), the general member of every irreducible component of
VL,g is a nodal curve.

Proof. Let E and F be the respective linear equivalence classes of the exceptional section and a
fibre of the ruling, and H = E + nF . It is enough to consider the case L = dH + kF , d, k ≥ 0,
since every effective divisor on X not containing the exceptional section belongs to such an |L|.
Consider an integral curve C ∈ |L| of genus g. One has

deg
(
ωC̄ � ϕ∗ω−1

X

)
= 2g − 2−KX · C = 2g − 2 + dn+ 2d+ 2k,

which is ≥ 2g+2 (so that Corollary (2.11) safely applies), unless either d = 0 and k = 1 or d = 1,
k = 0 and n ≤ 1. An elementary case by case analysis shows that the latter cases are all trivial. ✷

4.2 – Applications to surfaces with numerically trivial canonical bundle

We now deal with the case when KX ≡ 0. In this situation Corollary (2.11) does not apply
directly and further arguments are required.

20



K3 surfaces

Let (X,L) be a polarized K3 surface, with L2 = 2p − 2, p ≥ 2, and let 0 ≤ g ≤ p. Then X is
regular, and p equals both the dimension of |L| and the arithmetic genus of a member of this
linear system. Moreover, it follows from (2.6) and (2.2.3) that

g − 1 6 dimVL,g 6 g. (4.6.1)

In this case, the existence of deformations of projective K3 surfaces into non algebraic ones
enables one to refine the former dimension estimate, still by using the techniques of §2.1. This
is well-known to the experts. We shall nevertheless prove it here for the sake of completeness,
along the lines of [25, Exercise II.1.13.1] and [29, Corollary 4].

(4.7) Proposition. Every irreducible component V of VL,g has dimension g.

Proof. Using Lemma (2.6) and inequality (4.6.1), it suffices to prove that for every irreducible
component M of Mg(X) and general [φ : D → X ] ∈M , one has

dim[φ]M ≥ g + dim(AutD). (4.7.1)

We consider X → ∆ an analytic deformation of X parametrized by the disc, such that the fibre
over t 6= 0 does not contain any algebraic curve. Then we let πg : Dg → Sg be a modular family
of smooth projective curves of genus g as in (2.1), and

M ′
g(X ) := Hom(Dg ×∆/Sg ×∆,X × Sg/Sg ×∆)

By [25, Theorem II.1.7], we have

dim[φ]M
′
g(X ) ≥ χ(ϕ∗(TX)) + dim(S ×∆)

= [− deg(ϕ∗KX) + 2χ(OC̄)] + [3g − 2 + dim(AutD)]

= g + dim(AutD).

By construction and functoriality, an étale cover of M ′
g(X ) maps finite-to-one into Mg(X), so

the above inequality implies the required (4.7.1). ✷

Note that Proposition (4.7) does not imply that the varieties VL,g are non-empty. If the pair
(X,L) is general, this is true for 0 ≤ g ≤ pa, as a consequence of the main theorem in [8].

(4.8) Proposition. For g > 0, the general element C of every irreducible component of VL,g

is immersed. If moreover C has a non-trigonal normalization, then it is nodal.

Proof. We have ωC̄ � ϕ∗ω−1
X = ωC̄ . This line bundle is globally generated since g ≥ 1, and

h0(ωC̄ � ϕ∗ω−1
X ) = g = dim(V ) by Proposition (4.7). Therefore conditions (a) and (b) of The-

orem (2.8) are satisfied and the first part follows. If the normalization C̄ is not trigonal, then
condition (c) of Theorem (2.8) is also satisfied and C is nodal. ✷

(4.9) Corollary. Let (X,L) be a very general primitively polarized K3 surface (i.e. L is indi-
visible in PicX) with L2 = 2p− 2, p ≥ 2, and 0 < g ≤ p. If

g +
⌊g
4

⌋(
g − 2

⌊g
4

⌋
− 2

)
> p, (4.9.1)
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then the general element of every irreducible component of VL,g is nodal.

Proof. By [14, Thm 3.1], inequality (4.9.1) ensures that for every C ∈ |L|, the normalization of
C does not carry any g13 . ✷

(4.10) Proposition. Let (X,L) be a very general primitively polarized K3 surface, with L2 =
2p− 2. If g > p

2 , then the general element of every irreducible component of VL,g is nodal.

(4.11) Before we prove this, recall that the Clifford index of an integral projective curve C of
arithmetic genus p ≥ 2 is

Cliff(C) := min

{⌊p− 1

2

⌋
, min{

A∈PicC s.t. r(A)≥1 and r(KC−A)≥1
}(degA− 2r(A)

)}
,

where PicC is the set of rank 1 torsion–free sheaves on C, and r(M) stands for h0(M)− 1 for
any M ∈ PicC. The bigger Cliff(C) is, the more general C is with respect to Brill–Noether
theory.

Proof of Proposition (4.10). We apply the strategy described in (3.13), and circumvent the issue
therein underlined by using the theory of generalized divisors on singular curves, as recalled in
subsection 3.4 (we freely use the notations introduced in that subsection): let V be an irreducible
component of VL,g, [C] a general member of V , and assume by contradiction that C is not nodal.
We have

dim V ≤ dimES(C) = h0
(
C, IC � OC(C)

)
,

and we shall show that

h0
(
C, IC � OC(C)

)
< h0

(
C,AC � OC(C)

)
= g, (4.11.1)

thus contradicting Proposition (4.7) and ending the proof (the right–hand–side equality in
(4.11.1) comes from Lemma (3.3)).

If h1
(
C,OC(E)

)
< 2, then

h0
(
I � OC(C)

)
= h0

(
ωC(−E)

)
= h1

(
OC(E)

)
≤ 1 < g,

and (4.11.1) holds. If on the other hand h0
(
C,OC(E)

)
< 2, then (4.11.1) still holds, since

Lemma (3.22) together with (3.23) yield

h0
(
C,NC/X �A)

)
− h0

(
C,NC/X � I

)
> 1− h0

(
C,OC(E)

)
.

For the remaining of the proof, we therefore assume that both h0
(
C,OC(E)

)
and h1

(
C,OC(E)

)

are ≥ 2.
Now, being (X,L) a very general primitively polarized K3 surface, and C ∈ |L| an integral

curve of geometric genus g ≥ 2, it follows from [5] together with [17] that the Clifford index of
C is that of a general smooth curve of genus p, i.e. Cliff(C) = ⌊p−1

2 ⌋. This implies

p+ 1−
[
h0

(
OC(E)

)
+ h0

(
ωC(−E)

)]
= degE − 2r(E) ≥

⌊p− 1

2

⌋
,

hence
h0

(
ωC(−E)

)
≤ p

2
+ 2− h0

(
OC(E)

)
≤ p

2
,

so that (4.11.1) again holds. ✷
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(4.12) Remark. In a private correspondence concerning a previous version of this paper,
X. Chen has shown (using methods completely different from ours) that the statement of Propo-
sition (4.10) holds more generally without the limitation g > p

2 .

(4.13) Remark. The case g = 0 in Proposition (4.8) is a true exception. For example, there
exist irreducible rational plane quartic curves with one cusp and two nodes. Pick a general such
curve: then there is a nonsingular quartic surface in P3 containing it as a hyperplane section.

On the other hand, it seems fairly reasonable to formulate the following conjecture, which
predicts that the case g = 0 holds for very general (X,L). It is of particular interest in the context
of enumerative geometry, in that it provides a good understanding of the various formulae
counting rational curves on K3 surfaces (see [16, 6]).

(4.14) Conjecture. Let (X,L) be a very general polarized K3 surface. Then all rational curves
in |L| are nodal.

This has been proved by Chen [9] in the particular case of indivisible L, using a degeneration
argument.

Enriques surfaces

(4.15) Theorem. Let X be an Enriques surface and L an invertible sheaf on X. If g ≥ 3, and
[C] ∈ VL,g has a non-hyperelliptic normalization C̄, then the general element of every component
of VL,g containing C has no cusps. If moreover Cliff(C̄) ≥ 5 then C is nodal.

Proof. The sheaf L := ωC̄ � ϕ∗ω−1
X has degree 2g − 2, and it is Prym-canonical: in particular,

it is non-special. On a non-hyperelliptic curve, every Prym-canonical sheaf is globally gener-
ated (see, e.g., [26, Lemma (2.1)]). Therefore, the first part follows from Corollary (2.11). If
Cliff(C) ≥ 5 then ϕL(C) ⊂ Pg−2 has no trisecants, by [26, Proposition (2.2)], and therefore
condition (c) of Theorem (2.8) is also satisfied. ✷

Abelian surfaces

Let (X, ξ) be a polarized Abelian surface, and let p = pa(ξ). For each [C] ∈ CurvesξX we have

dim |C| = p−2, so that CurvesξX is a Pp−2-fibration over the dual Abelian surface X̂. A general
Abelian surface does not contain any curve of geometric genus ≤ 1. On the other hand, the
arguments for Propositions (4.7) and (4.8) apply mutatis mutandis to this situation, so one has:

(4.16) Proposition. Let 2 ≤ g ≤ pa, and V an irreducible component of V ξ
g . Then dimV = g,

and the general [C] ∈ V corresponds to a curve with only immersed singularities. If moreover
C has non–trigonal normalization, then it is nodal.

Note however that, unlike the case of K3 surfaces, we do not know in general whether the
varieties V ξ

g are non-empty for 2 ≤ g ≤ pa.
For genus 2 curves, more is known [27, Prop. 2.2]: if (X,L) is an Abelian surface of type

(d1, d2), then any genus 2 curve in |L| has at most ordinary singularities of multiplicity ≤
1
2 (1 +

√
8d1d2 − 7). We have the following enlightening and apparently well–known example

which, among other things, shows that this bound is sharp.
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(4.17) Example. Let X be the Jacobian of a general genus 2 curve Σ, and choose an iso-

morphism X ≃ Pic1 Σ; it yields an identification Σ ≃ ΘΣ. Denote by {ΘΣ} the corresponding
polarization on X . The curve Σ has six Weierstrass points w1, . . . , w6, and the divisors 2wi on
Σ are all linearly equivalent. It follows that the image of Σ ⊂ X by multiplication by 2 is an
irreducible genus 2 curve C which belongs to the linear system

∣∣22 ·ΘΣ

∣∣, and has a 6-fold point,
the latter being ordinary by [27, Prop. 2.2] quoted above.

The curve C and its translates are parametrized by an irreducible (two-dimensional) com-

ponent V of V
{4ΘΣ}
2 . Since ωC̄ � ϕ∗ω−1

X = ωΣ is globally generated and dimV = 2 = h0(ωΣ),
conditions (a) and (b) of Theorem (2.8) are satisfied. On the other hand, condition (c) of
Theorem (2.8) is clearly not fullfilled and C is not nodal, showing that this condition is not
redundant.

We emphasize that this is an explicit illustration of the warning given in (3.13). We have
here (letting as usual ν denote the normalization of C)

ν∗
∣∣NC/X �AC

∣∣ =
∣∣ν∗(NC/X �AC)

∣∣ = |ωC̄ |

which is a base–point–free linear system on C̄, whereas

∣∣NC/X �AC

∣∣ =
∣∣NC/X � IC

∣∣

even though IC  Ac. Observe also that ν∗IC = ν∗AC by Example (3.15).

5 – A museum of noteworthy behaviours

5.1 – Maximal equigeneric families with non-nodal general member

The examples in this subsection are mainly intended to show that the assumption that ωC̄ �

ϕ∗ω−1
X is globally generated in Theorem (2.8) is necessary. The same goal was achieved by the

examples provided in Remarks (4.5) and (4.13), but the ones presented here are hopefully less
peculiar (e.g., the involved equigeneric families are in general not 0-dimensional).

(5.1) Example. (a complete positive dimensional ample linear system on a rational surface,
all members of which have a cuspidal double point)

The surface will be a plane blown-up at distinct points, which will allow us the use of
a Cayley-Bacharach type of argument. Let C1, C2 ⊂ P2 be two irreducible sextics having
an ordinary cusp at the same point s0 ∈ P2, with the same principal tangent line, no other
singularity, and meeting transversely elsewhere. Their local intersection number at s0 is (C1 ·
C2)s0 = 6, so we can consider 26 pairwise distinct transverse intersection points p1, . . . , p26 ∈
C1∩C2\{s0}. Let π : X → P2 be the blow-up at p1, . . . , p26, and let L := 6H−∑

1≤i≤26Ei, where
H = π∗OP2(1), and the Ei’s are the exceptional curves of π. Then, since dim |OP2(6)| = 27, |L|
is a pencil generated by the proper transforms of C1 and C2, hence consists entirely of curves
singular at the point s = π−1(s0) and with a non ordinary singularity there. The general C ∈ |L|
is irreducible of genus nine, and VL,9 is therefore an open subset of |L|, not containing any nodal
curve.

For general C ∈ |L|, one computes h0(ωC̄ � ϕ∗ω−1
X ) = 1, which shows that the line bundle

ωC̄ � ϕ∗ω−1
X on C̄ is not globally generated (we let, as usual, C̄ → C be the normalization of

C, and ϕ its composition with the inclusion C ⊂ X). Thus condition (a) of Theorem (2.8) does
not hold, while condition (b) is verified. As a sideremark, note that (−KX · L) < 0 and L is
ample (see also Remark (2.7) above about this example).
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This example can be generalized to curves with an arbitrary number of arbitrarily nasty
singularities: simply note that the dimension of |OP2(d)| grows as d2/2 when d tends to infinity,
and is therefore smaller by as much as we want than the intersection number of two degree d
plane curves for d big enough.

(5.2) Examples. The forthcoming examples all are degree n cyclic coverings π : X → P2,
branched over a smooth curve B ⊂ P2 of degree d. They are smooth and regular. Let L =
π∗OP2(1). One has

H0
(
X, kL

)
= π∗ H0

(
P2,OP2(k)

)

if and only if k < d
n .

(5.2.1) (a complete ample linear system with a codimension 1 equigeneric stratum, the general
member of which has an An−1-double point)

As a local computation shows, the inverse image in X of a plane curve simply tangent to B
is a curve with an An−1–double point at the preimage of the tangency point.

It follows that for 1 ≤ k < d
n there is a codimension 1 locus in |kL| that parametrizes curves

with an An−1-double point, although the general member of |kL| is a smooth curve. This is
an irreducible component of VkL,pa(kL)−⌊d/2⌋. It is superabundant, since one expects in general
that codimension c equigeneric strata are components of VkL,pa(kL)−c.

(5.2.2) (a complete ample linear system containing two codimension 1 equigeneric strata, that
respectively parametrize curves of genera g1 and g2, g1 6= g2)

The inverse image in X of a plane curve having a node outside of B is a curve having n
distinct nodes. Consequently, there is for every 3 ≤ k < d

n a codimension 1 locus in |kL|
that parametrizes integral curves with d distinct nodes. This is an irreducible component of
VkL,pa(kL)−d, and it too is superabundant.

As a conclusion, notice that the discriminant locus in |kL| is reducible, and has two of its
irreducible components contained in VkL,pa(kL)−[d/2] and VkL,pa(kL)−d respectively.

(5.2.3) (further examples of 0-dimensional equigeneric loci)
(i) Assume there exists a line which meets B at some point s with multiplicity 4. Then its

inverse image in X is a curve with a tacnode. The corresponding point of |L| is a component of
VL,pa(L)−2, that is not superabundant.

(ii) Assume there exists a line D which is tangent to B at three distinct points: its inverse
image is then a curve with three distinct nodes. The corresponding point of |L| is a component
of VL,pa(L)−3: it does correspond to a nodal curve, but it is superabundant. If one further
assumes one of the tangency points of D with B to be a flex of B, then the inverse image of D
is no longer nodal: it has two nodes and a cusp.

It should be clear by now, how these two examples can be generalized to produce an infinite
series of examples.

5.2 – Singular maximal equisingular families

Let X be a smooth projective surface, ξ ∈ NS(X), and C an integral curve of genus g and class
ξ. We wish to illustrate in this subsection the fact that the local structures at [C] of both V ξ

g

and ES(C) are not as nice as one would expect them to be by looking at their counterparts
in the deformation theory of a single planar curve singularity. In fact, the situation is already
messy in the simplest case X = P2.
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(5.3) Let p1, . . . , pδ be the singular points of C, and let Ĉi be the germ of C at pi for each
i = 1, . . . , δ, and

Ĉi

��

�

�

// Ĉi

��

Spec(C) // Bi

be the étale semiuniversal deformation of Ĉi (see [15] for a precise account on this). By their

universal properties, there exists an étale neighborhood W → CurvesξX of [C] such that there is
a restriction morphism

r :W →
∏

iBi.

The general philosophy we want to underline can be summed up as follows.

(5.4) Remark. In general, the restriction map r is not smooth. Note that both domain and

codomain of r are smooth. In particular, the smoothness of r is equivalent to the surjectivity
of its differential.

(5.5) The equigeneric and equisingular loci inside each one of the deformation spaces Bi are
known to be well-behaved (we refer to [15] for details). Among others, let us mention that the
equisingular locus is smooth, and that the general point in the equigeneric locus corresponds to
a deformation of pi in a union of nodes. Now, the smoothness of r would transport these good
properties to V ξ

g and ES(C). In particular, it would imply the two following facts:

(a) the general point of every irreducible component V of V ξ
g corresponds to a nodal curve;

(b) ES(C) is smooth, and of the expected codimension in CurvesξX .

Now Remark (5.4) follows from the fact that neither (a) nor (b) is true in general. For (a),
this was discussed previously in §5.1. On the other hand, property (b) can be contradicted in
several ways: we refer to [18] for a discussion of these problems and for a survey of what is
known. Here we solely mention a few examples which are relevant to our point of view.

(5.6) Examples. If C has n nodes, κ ordinary cusps, and no further singularity, then ES(C) is

the locus of curves with n nodes and κ cusps, and has expected codimension n+2κ in CurvesξX .
Here, we let X = P2, and adopt the usual notation Vd,n,κ for the scheme of irreducible plane
curves of degree d, with n nodes, κ cusps, and no further singularity.

(5.6.1) (B. Segre [30], see also [42, p. 220]) For m ≥ 3, there exists an irreducible component of
V6m,0,6m2 , which is nonsingular and has dimension strictly larger than the expected one.

(5.6.2) (Wahl [40]) The scheme V104,3636,900 has a non-reduced component of dimension 174 >

128 = 104·107
2 − 3636− 2 · 900.

(5.6.3) There also exists an equisingular stratum Vd,n,κ having a reducible connected component.

The construction of the latter, which we shall now outline, follows the same lines as that of
Wahl [40], and is based on the example of [32] (for a thorough description of which we refer to
[23, §13 Exercises]).

Start from a nonsingular curve A of type (2, 3) on a nonsingular quadric Q ⊂ P3, and let
F,G ⊂ P3 be respectively a general quartic and a general sextic containingA. Then F∩G = A∪γ
where γ is a nonsingular curve of degree 18 and genus 39. As shown in [32], the curve γ

is obstructed. Precisely, [γ] is in the closure of two components of HilbP
3

, each consisting
generically of projectively normal, hence unobstructed, curves.
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Now consider an irreducible surface S ⊂ P3 of degree N ≫ 0, having ordinary singularities
along γ, and let C ⊂ P2 be the branch curve of a generic projection of S on P2, d := deg(C).
By [13], C is irreducible, and has n nodes and κ cusps as its only singularities. It then follows

from the results of [40], that HilbP
3

at [γ] is smoothly related with Vd,n,κ at [C]. Therefore
Vd,n,κ is analytically reducible at [C].

In fact, one can show more precisely that Vd,n,κ is reducible at [C], by taking generic projec-
tions of irreducible surfaces S′ of degree N having ordinary singularities along curves γ′ which

are in a neighbourhood of [γ] ∈ HilbP
3

.
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