Numerical characterisation of quadrics

Thomas Dedieu, Andreas Höring

To cite this version:

Thomas Dedieu, Andreas Höring. Numerical characterisation of quadrics. Algebraic Geometry, 2017, 4 (1), pp.120-135. 10.14231/AG-2017-006 . hal-01979015

HAL Id: hal-01979015
 https://hal.science/hal-01979015

Submitted on 12 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NUMERICAL CHARACTERISATION OF QUADRICS

THOMAS DEDIEU AND ANDREAS HÖRING

Abstract

Let X be a Fano manifold such that $-K_{X} \cdot C \geq \operatorname{dim} X$ for every rational curve $C \subset X$. We prove that X is a projective space or a quadric.

1. Introduction

Let X be a Fano manifold, i.e. a complex projective manifold with ample anticanonical divisor $-K_{X}$. If the Picard number of X is at least two, Mori theory shows the existence of at least two non-trivial morphisms $\varphi_{i}: X \rightarrow Y_{i}$ which encode some interesting information on the geometry of X. On the contrary, when the Picard number equals one Mori theory does not yield any information, and one is thus led to studying X in terms of the positivity of the anticanonical bundle. A well-known example of such a characterisation is the following theorem of Kobayashi-Ochiai.
1.1. Theorem [KO73]. Let X be a projective manifold of dimension n. Suppose that $-K_{X} \sim d H$ with H an ample divisor on X.
a) Then one has $d \leq n+1$ and equality holds if and only if $X \simeq \mathbb{P}^{n}$.
b) If $d=n$, then $X \simeq \mathbb{Q}^{n}$.

The divisibility of $-K_{X}$ in the Picard group is a rather restrictive condition, so it is natural to ask for similar characterisations under (a priori) weaker assumptions. Based on Kebekus' study of singular rational curves [Keb02b], Cho, Miyaoka and Shepherd-Barron proved a generalisation of the first part of Theorem 1.1:
1.2. Theorem [CMSB02, Keb02a]. Let X be a Fano manifold of dimension n. Suppose that

$$
-K_{X} \cdot C \geq n+1 \quad \text { for all rational curves } C \subset X
$$

Then $X \simeq \mathbb{P}^{n}$.

The aim of this paper is to prove the following, which is a similar generalisation for the second part of Theorem 1.1:
1.3. Theorem. Let X be a Fano manifold of dimension n. Suppose that

$$
-K_{X} \cdot C \geq n \quad \text { for all rational curves } C \subset X \text {. }
$$

Then $X \simeq \mathbb{P}^{n}$ or $X \simeq \mathbb{Q}^{n}$.

Date: January 12, 2019.

This statement already appeared in a paper of Miyaoka [Miy04, Thm.0.1], but the proof there is incomplete (cf. Remark 5.2 for instance). In this paper we borrow some ideas and tools from Miyaoka's, yet give a proof based on a completely different strategy. Note also that Hwang gave a proof under the additional assumption that the general VMRT (see below) is smooth [Hwa13, Thm.1.11], a property that does not hold for every Fano manifold [CD15, Thm.1.10].

In the proof of Theorem 1.3, we have to assume $n \geq 4$; for $n \leq 3$ the statement follows directly from classification results.

The assumption that X is Fano assures that $\rho(X)=1$ because of the IonescuWiśniewski inequality [Ion86, Thm.0.4], [Wiś91, Thm.1.1] (see §4.1). It is possible to remove this assumption: the Ionescu-Wiśniewski inequality together with [HN13, Thm.1.3] enable one to deal with the case $\rho(X)>1$, and one gets the following.
1.4. Corollary. Let X be a projective manifold of dimension n containing a rational curve. If

$$
-K_{X} \cdot C \geq n \quad \text { for all rational curves } C \subset X
$$

then X is a projective space, a hyperquadric, or a projective bundle over a curve.
(Note that under the assumptions of Corollary 1.4, if $\rho(X)=1$ then X is Fano.)

Outline of the proof. In the situation of Theorem 1.3 let \mathcal{K} be a family of minimal rational curves on X. By Mori's bend-and-break lemma a minimal curve $[l] \in \mathcal{K}$ satisfies $-K_{X} \cdot l \leq n+1$ and if equality holds then $X \simeq \mathbb{P}^{n}$ by [CMSB02]. By our assumption we are thus left to deal with the case $-K_{X} \cdot l=n$. Then, for a general point $x \in X$ the normalisation \mathcal{K}_{x} of the space parametrising curves in \mathcal{K} passing through x has dimension $n-2$, and by [Keb02b, Thm.3.4] there exists a morphism

$$
\tau_{x}: \mathcal{K}_{x} \rightarrow \mathbb{P}\left(\Omega_{X, x}\right)
$$

which maps a general curve $[l] \in \mathcal{K}_{x}$ to its tangent direction $T_{l, x}^{\perp}$ at the point x. By [HM04, Thm.1] this map is birational onto its image \mathcal{V}_{x}, the variety of minimal rational tangents (VMRT) at x. We denote by $\mathcal{V} \subset \mathbb{P}\left(\Omega_{X}\right)$ the total VMRT, i.e. the closure of the locus covered by the VMRTs \mathcal{V}_{x} for $x \in X$ general. To prove Theorem 1.3, we compute the cohomology class of the total VMRT $\mathcal{V} \subset \mathbb{P}\left(\Omega_{X}\right)$ in terms of the tautological class ζ and $\pi^{*} K_{X}$, where $\pi: \mathbb{P}\left(\Omega_{X}\right) \rightarrow X$ is the projection map. This computation is based on the construction, on the manifold X, of a family \mathcal{W}° of smooth rational curves such that for every $[C] \in \mathcal{W}^{\circ}$ one has

$$
\left.T_{X}\right|_{C} \simeq \mathcal{O}_{\mathbb{P}^{1}}(2)^{\oplus n}
$$

it lifts to a family of curves on $\mathbb{P}\left(\Omega_{X}\right)$ by associating to a curve $C \subset X$ the image \tilde{C} of the morphism $C \rightarrow \mathbb{P}\left(\Omega_{X}\right)$ defined by the invertible quotient

$$
\left.\Omega_{X}\right|_{C} \rightarrow \Omega_{C}
$$

The main technical statement of this paper is:
1.5. Proposition. Let $X \nsim \mathbb{P}^{n}$ be a Fano manifold of dimension $n \geq 4$, and suppose that

$$
-K_{X} \cdot C \geq n \quad \text { for all rational curves } C \subset X
$$

Then, in the above notation, one has $\mathcal{V} \cdot \tilde{C}=0$ for all $[C] \in \mathcal{W}^{\circ}$.

Once we have shown this statement a similar intersection computation involving a general minimal rational curve l yields that the VMRT $\mathcal{V}_{x} \subset \mathbb{P}\left(\Omega_{X, x}\right)$ is a hypersurface of degree at most two. We then conclude with some earlier results of Araujo, Hwang, and Mok [Ara06, Hwa07, Mok08].

Acknowledgements. We warmly thank Stéphane Druel for his numerous comments during this project. We also thank the anonymous referee for his careful reading and useful remarks. This work was partially supported by the A.N.R. project CLASS ${ }^{1}$.

2. Notation and conventions

We work over the field \mathbb{C} of complex numbers. Throughout the paper, \mathbb{Q}^{n} designates a smooth quadric hypersurface in \mathbb{P}^{n+1} for any positive integer n. Topological notions refer to the Zariski topology.

We use the modern notation for projective spaces, as introduced by Grothendieck: if \mathcal{E} is a locally free sheaf on a scheme X, we let $\mathbb{P}(\mathcal{E})$ be $\operatorname{Proj}(\operatorname{Sym} \mathcal{E})$. If L is a line in a vector space V, L^{\perp} designates the corresponding point in $\mathbb{P}\left(V^{\vee}\right)$. The symbols \equiv and $\sim_{\mathbb{Q}}$ refer to numerical and \mathbb{Q}-linear equivalence respectively.

A variety is an integral scheme of finite type over \mathbb{C}, a manifold is a smooth variety. A fibration is a proper surjective morphism with connected fibres $\varphi: X \rightarrow$ Y such that X and Y are normal and $\operatorname{dim} X>\operatorname{dim} Y>0$.

We use the standard terminology and results on rational curves, as explained in [Kol96, Ch.II], [Deb01, Ch.2,3,4], and [Hwa01]. Let X be a projective variety. We remind the reader that following [Kol96, II, Def.2.11], the notation RatCurves ${ }^{\text {n }} X$ refers to the union of the normalisations of those locally closed subsets of the Chow variety of X parametrising irreducible rational curves (the superscript ${ }^{\mathrm{n}}$ is a reminder that we normalised, and has nothing to do with the dimension).

For technical reasons, we have to consider families of rational curves on X as living alternately in RatCurves ${ }^{\mathrm{n}} X$ and in $\operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$. Our general policy is to call $\operatorname{Hom}_{\mathcal{R}} \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ the family corresponding to a normal variety $\mathcal{R} \subset$ RatCurves $^{\mathrm{n}} X$.

3. Preliminaries on conic bundles

In this section, we establish some basic facts about conic bundles over a curve and compute some intersection numbers which will turn out to be crucial for the proof of Proposition 1.5. All these statements appear in one form or another in [Miy04, §2], but we recall them and their proofs for the clarity of exposition.
3.1. Definition. A conic bundle is an equidimensional projective fibration φ : $X \rightarrow Y$ such that there exists a rank three vector bundle $V \rightarrow Y$ and an embedding $X \hookrightarrow \mathbb{P}(V)$ that maps every φ-fibre $\varphi^{-1}(y)$ onto a conic (i.e. the zero scheme of a degree 2 form) in $\mathbb{P}\left(V_{y}\right)$. The set

$$
\Delta:=\left\{y \in Y \mid \varphi^{-1}(y) \text { is not smooth }\right\}
$$

is called the discriminant locus of the conic bundle.

[^0]3.2. Lemma. Let S be a smooth surface admitting a projective fibration $\varphi: S \rightarrow T$ onto a smooth curve such that the general fibre is \mathbb{P}^{1}, and such that $-K_{S}$ is φ-nef. Let F be a reducible φ-fibre and suppose that
$$
F=C_{1}+C_{2}+F^{\prime}
$$
where the C_{i} are (-1)-curves and $C_{i} \not \subset S u p p\left(F^{\prime}\right)$. Then $F^{\prime}=\sum E_{j}$ is a reduced chain of (-2)-curves and the dual graph of F is as depicted in Figure 1.

Figure 1

Proof. Write $F^{\prime}=\sum_{j=1}^{k} a_{j} E_{j}, a_{j} \in \mathbb{N}$, where E_{1}, \ldots, E_{k} are the irreducible components of F^{\prime}. First note that since $-K_{S} \cdot F=2$ and $-K_{S} \cdot C_{i}=1$, the fact that $-K_{S}$ is φ-nef implies $-K_{S} \cdot E_{j}=0$ for all j. Since E_{j} is an irreducible component of a reducible fibre, we have $E_{j}^{2}<0$. Thus we see that each E_{j} is a (-2)-curve.

We will now proceed by induction on the number of irreducible components of F^{\prime}, the case $F^{\prime}=0$ being trivial. Let $\mu: S \rightarrow S^{\prime}$ be the blow-down of the (-1) curve C_{2}; then by the rigidity lemma [Deb01, Lemma 1.15], there is a morphism $\varphi^{\prime}: S^{\prime} \rightarrow T$ such that $\varphi=\varphi^{\prime} \circ \mu$. Note that S^{\prime} is smooth and $-K_{S^{\prime}}$ is φ^{\prime}-nef. We also have

$$
0=C_{2} \cdot F=-1+C_{2} \cdot\left(C_{1}+\sum_{i=1}^{k} a_{i} E_{i}\right)
$$

so C_{2} meets $C_{1}+\sum_{i=1}^{k} a_{i} E_{i}$ transversally in exactly one point. If $C_{2} \cdot C_{1}>0$, then $\mu_{*}\left(C_{1}\right)$ has self-intersection 0 , yet it is also an irreducible component of the reducible fibre $\mu_{*}\left(C_{1}+\sum_{i=1}^{k} a_{i} E_{i}\right)$, a contradiction. Thus (up to renumbering) we can suppose that $C_{2} \cdot E_{1}=1$ and $a_{1}=1$. In particular $\mu_{*}\left(E_{1}\right)$ is a (-1)-curve, so

$$
\mu_{*}\left(C_{1}+\sum_{i=1}^{k} a_{i} E_{i}\right)=\mu_{*}\left(C_{1}\right)+\mu_{*}\left(E_{1}\right)+\mu_{*}\left(\sum_{i=2}^{k} a_{i} E_{i}\right)
$$

satisfies the induction hypothesis.

In the following we use that for every normal surface one can define an intersection theory using the Mumford pull-back to the minimal resolution, cf. [Sak84].
3.3. Lemma. Let S be a normal surface admitting a projective fibration $\varphi: S \rightarrow T$ onto a smooth curve such that the general fibre is \mathbb{P}^{1} and such that every fibre is reduced and has at most two irreducible components. Then
a) φ is a conic bundle;
b) S has at most A_{k}-singularities; and
c) if $s \in S_{\text {sing }}$, then $s=F_{\varphi(s), 1} \cap F_{\varphi(s), 2}$ where $F_{\varphi(s)}=F_{\varphi(s), 1}+F_{\varphi(s), 2}$ is the decomposition of the fibre over $\varphi(s)$ in its irreducible components. In particular $F_{\varphi(s)}$ is a reducible conic.

Proof. If a fibre $\varphi^{-1}(t)$ is irreducible, then φ is a \mathbb{P}^{1}-bundle over a neighbourhood of t [Kol96, II, Thm.2.8]. Thus we only have to consider points $t \in T$ such that $S_{t}:=\varphi^{-1}(t)$ is reducible. Since $p_{a}\left(S_{t}\right)=0$ and $S_{t}=C_{1}+C_{2}$ is reduced, we see that S_{t} is a union of two \mathbb{P}^{1} 's meeting transversally in a point. Since $S_{t}=\varphi^{*} t$ is a Cartier divisor, this already implies c).

Let $\varepsilon: \hat{S} \rightarrow S$ be the canonical modification [Kol13, Thm.1.31] of the singular points lying on S_{t}. Then we have

$$
K_{\hat{S}} \equiv \varepsilon^{*} K_{S}-E
$$

with E an effective ε-exceptional \mathbb{Q}-divisor whose support is equal to the ε exceptional locus. Denote by \hat{C}_{i} the proper transform of C_{i}. If $K_{\hat{S}} \cdot \hat{C}_{i}<-1$, then \hat{C}_{i} deforms in \hat{S} [Kol96, II, Thm.1.15]. Yet \hat{C}_{i} is an irreducible component of a reducible $\varphi \circ \varepsilon$-fibre, so this is impossible. So we have

$$
K_{S} \cdot C_{i} \geq K_{\hat{S}} \cdot \hat{C}_{i} \geq-1
$$

for $i=1,2$. Since $K_{S} \cdot\left(C_{1}+C_{2}\right)=-2$, this implies that $K_{S} \cdot C_{i}=-1$ and $E=0$. Thus S has canonical singularities. Since canonical surface singularities are Gorenstein we see that $-K_{S}$ is Cartier, φ-ample and defines an embedding

$$
S \subset \mathbb{P}\left(V:=\varphi_{*}\left(\mathcal{O}_{S}\left(-K_{S}\right)\right)\right)
$$

into a \mathbb{P}^{2}-bundle mapping each fibre onto a conic. This proves a).
Let now $\tilde{\varepsilon}: \tilde{S} \rightarrow S$ be the minimal resolution. It is crepant, so the divisor $-K_{\tilde{S}}$ is $\varphi \circ \tilde{\varepsilon}$-nef. Moreover the proper transforms \tilde{C}_{i} of the curves C_{i} are (-1)-curves in \tilde{S}. By Lemma 3.2 this proves b).

The following fundamental lemma should be seen as an analogue of the basic fact that a projective bundle over a curve contains at most one curve with negative self-intersection.
3.4. Lemma [Miy04, Prop.2.4]. Let S be a normal projective surface that is a conic bundle $\varphi: S \rightarrow T$ over a smooth curve T, and denote by Δ the discriminant locus. Suppose that φ has two disjoint sections σ_{1} and σ_{2}, both contained in the smooth locus of S. Suppose moreover that for every $t \in \Delta$, the fibre F_{t} has a decomposition $F_{t}=F_{t, 1}+F_{t, 2}$ such that

$$
\begin{equation*}
\sigma_{i} \cdot F_{t, j}=\delta_{i, j} \tag{C1}
\end{equation*}
$$

(Kronecker's delta). Assume also that we have

$$
\begin{equation*}
\sigma_{1}^{2}<0 \text { and } \sigma_{2}^{2}<0 \tag{C2}
\end{equation*}
$$

Let $\varepsilon: \hat{S} \rightarrow S$ be the minimal resolution. Let σ be a φ-section, and $\hat{\sigma} \subset \hat{S}$ its proper transform. Then the following holds:
a) If $(\hat{\sigma})^{2}<0$, then $\sigma=\sigma_{1}$ or $\sigma=\sigma_{2}$.
b) If $(\hat{\sigma})^{2}=0$ then σ is disjoint from $\sigma_{1} \cup \sigma_{2}$.
3.5. Remarks. 1. In the situation above all the fibres are reduced, since there exists a section that is contained in the smooth locus.
2. The two inequalities (C 2) are satisfied if there exists a birational morphism $S \rightarrow S^{\prime}$ onto a projective surface S^{\prime} that contracts σ_{1} and σ_{2}. More generally, the

Hodge index theorem implies that (C2) holds if there exists a nef and big divisor H on S such that $H \cdot \sigma_{1}=H \cdot \sigma_{2}=0$.

Proof. Preparation: contraction to a smooth ruled surface. Lemma 3.3 applies to the surface S. It follows that S has an $A_{k_{t}}$-singularity ($k_{t} \geq 0$) in $F_{t, 1} \cap F_{t, 2}$ for every $t \in \Delta$, and no further singularity. In particular, the dual graph of $(\varphi \circ \varepsilon)^{-1}(t)$ is as described in Figure 1 for every $t \in \Delta$.

We consider the birational morphism

$$
\hat{\mu}: \hat{S} \rightarrow S^{b}
$$

defined as the composition, for every $t \in \Delta$, of the blow-down of the proper transform $\hat{F}_{t, 1}$ of $F_{t, 1}$ and of all the $k_{t}(-2)$-curves contained in $(\varphi \circ \varepsilon)^{-1}(t)$. Since $\hat{\mu}$ is a composition of blow-down of (-1)-curves, the surface S^{b} is smooth. By the rigidity lemma [Deb01, Lemma 1.15], there is a morphism $\varphi^{b}: S^{b} \rightarrow T$. All its fibres are irreducible rational curves, so it is a \mathbb{P}^{1}-bundle by [Kol96, II, Thm.2.8]. Again by the rigidity lemma, $\hat{\mu}$ factors through ε, i.e. there is a birational morphism $\mu: S \rightarrow S^{b}$ such that $\hat{\mu}=\mu \circ \varepsilon$; it is the contraction of all the curves $F_{t, 1}, t \in \Delta$.

Since σ_{1} meets $F_{t, 1}$ in a smooth point of S, the proper transforms $\hat{\sigma}_{1}$ and $\hat{F}_{t, 1}$ meet in the same point. Thus (the successive images of) $\hat{\sigma}_{1}$ meets the exceptional divisor of all the blow-downs of (-1)-curves composing $\hat{\mu}$, and since the section $\sigma_{1}^{b}:=\hat{\mu}\left(\hat{\sigma}_{1}\right)$ is smooth, all the intersections are transversal. Vice versa we can say that \hat{S} is obtained from S^{b} by blowing up points on (the successive proper transforms of) σ_{1}^{b}.

By the symmetry condition (C 1) the curve σ_{2} is disjoint from the μ-exceptional locus, so if we set $\sigma_{2}^{b}:=\mu\left(\sigma_{2}\right)$, then we have $\left(\sigma_{2}^{b}\right)^{2}=\left(\sigma_{2}\right)^{2}<0$. Thus, in the notation of [Har77, V,Ch.2], $\varphi^{b}: S^{b} \rightarrow T$ is a ruled surface with invariant $-e:=$ $\left(\sigma_{2}^{b}\right)^{2}>0$. In particular the Mori cone $\overline{\mathrm{NE}}\left(S^{b}\right)$ is generated by a general φ^{b}-fibre F and σ_{2}^{b}. Since $\sigma_{1}^{b} \cdot \sigma_{2}^{b}=0$ and $\sigma_{1}^{b} \cdot F=1$, we have

$$
\begin{equation*}
\sigma_{1}^{b} \equiv \sigma_{2}^{b}+e F \tag{3.5.1}
\end{equation*}
$$

Conclusion. Let now $\sigma \subset S$ be a section that is distinct from both σ_{1} and σ_{2}. Then $\sigma^{b}:=\mu(\sigma)$ is distinct from both σ_{1}^{b} and σ_{2}^{b}. Since $\sigma^{b} \neq \sigma_{2}^{b}$ we have

$$
\begin{equation*}
\sigma^{b} \equiv \sigma_{2}^{b}+c F \tag{3.5.2}
\end{equation*}
$$

for some $c \geq e\left[\operatorname{Har} 77\right.$, V, Prop.2.20]. Since $\sigma^{b} \neq \sigma_{1}^{b}$ we have

$$
\begin{equation*}
\sigma^{b} \cdot \sigma_{1}^{b} \geq \sum_{t \in \Delta} \tau_{t} \tag{3.5.3}
\end{equation*}
$$

where τ_{t} is the intersection multiplicity of σ^{b} and σ_{1}^{b} at the point $F_{t} \cap \sigma_{1}^{b}$. Denote by $\hat{\sigma} \subset \hat{S}$ the proper transform of $\sigma \subset S$, which is also the proper transform of $\sigma^{b} \subset S^{b}$. By our description of $\hat{\mu}$ as a sequence of blow-ups in σ_{1}^{b} we obtain

$$
(\hat{\sigma})^{2}=\left(\sigma^{b}\right)^{2}-\sum_{t \in \Delta} \min \left(\tau_{t}, k_{t}+1\right) \geq\left(\sigma^{b}\right)^{2}-\sum_{t \in \Delta} \tau_{t}
$$

By (3.5.3) this implies

$$
(\hat{\sigma})^{2} \geq\left(\sigma^{b}\right)^{2}-\sigma^{b} \cdot \sigma_{1}^{b}=\sigma^{b} \cdot\left(\sigma^{b}-\sigma_{1}^{b}\right)
$$

Plugging in (3.5.1) and (3.5.2) we obtain

$$
\begin{equation*}
(\hat{\sigma})^{2} \geq c-e \geq 0 \tag{3.5.4}
\end{equation*}
$$

This shows statement a).
Suppose now that $(\hat{\sigma})^{2}=0$. Then by (3.5.4) we have $c=e$, hence $\sigma^{b} \cdot \sigma_{2}^{b}=0$. Being distinct, the two curves σ^{b} and σ_{2}^{b} are therefore disjoint, and so are their proper transforms $\hat{\sigma}$ and $\hat{\sigma}_{2}$. Note now that ε is an isomorphism in a neighbourhood of $\hat{\sigma}_{2}$, so $\sigma=\varepsilon(\hat{\sigma})$ is disjoint from $\sigma_{2}=\varepsilon\left(\hat{\sigma}_{2}\right)$. In order to see that σ and σ_{1} are disjoint, we repeat the same argument but contract those fibre components which meet σ_{2}. This proves statement b).

4. The main construction

4.1. Set-up. For the whole section, we let $X \not 千 \mathbb{P}^{n}$ be a Fano manifold of dimension $n \geq 4$, and suppose that

$$
\begin{equation*}
-K_{X} \cdot C \geq n \quad \text { for all rational curves } C \subset X \tag{4.1.1}
\end{equation*}
$$

this is the situation of Proposition 1.5. It then follows from the Ionescu-Wiśniewski inequality that the Picard number $\rho(X)$ equals 1, see [Miy04, Lemma 4.1].

Recall that a family of minimal rational curves is an irreducible component \mathcal{K} of RatCurves ${ }^{\mathrm{n}}(X)$ such that the curves in \mathcal{K} dominate X, and for $x \in X$ general the algebraic set $\mathcal{K}_{x}^{b} \subset \mathcal{K}$ parametrising curves passing through x is proper. We will use the following simple observation:
4.2. Lemma. In the situation of Proposition 1.5, let $l \subset X$ be a rational curve such that $-K_{X} \cdot l=n$. Then any irreducible component \mathcal{K} of RatCurves $^{n} X$ containing [l] is a family of minimal rational curves.

Proof. Condition (4.1.1) implies the properness of $\mathcal{K}[K o l 96$, II, (2.14)]. On the other hand, we know by [Kol96, IV, Cor.2.6.2] that the curves parametrised by \mathcal{K} dominate X.
4.3. Minimal rational curves and VMRTs. Since X is Fano, it contains a rational curve $l\left[\operatorname{Mor} 79\right.$, Thm.6]. Since $X \nsimeq \mathbb{P}^{n}$, there exists a rational curve with $-K_{X} \cdot l=n$ by [CMSB02], and by Lemma 4.2 there exists a family of minimal rational curves containing the point $[l] \in \operatorname{RatCurves}^{\mathrm{n}}(X)$. We fix once and for all such a family, which we call \mathcal{K}.

For $x \in X$ general, denote by \mathcal{K}_{x} the normalisation of the algebraic set $\mathcal{K}_{x}^{b} \subset \mathcal{K}$ parametrising curves passing through x. Every member of \mathcal{K}_{x}^{b} is a free curve (this follows from the argument of [Kol96, II, proof of Thm.3.11]), so \mathcal{K}_{x} is smooth and has dimension $n-2 \geq 2$ [Kol96, II, (1.7) and (2.16)].

By results of Kebekus, a general curve $[l] \in \mathcal{K}_{x}^{b}$ is smooth [Keb02b, Thm.3.3], and the tangent map

$$
\tau_{x}: \mathcal{K}_{x} \rightarrow \mathbb{P}\left(\Omega_{X, x}\right)
$$

which to a general curve $[l]$ associates its tangent direction $T_{l, x}^{\perp}$ at the point x is a finite morphism [Keb02b, Thm.3.4]. Its image \mathcal{V}_{x} is called the variety of minimal rational tangents (VMRT) at x. The map τ_{x} is birational by [HM04, Thm.1], so the normalisation of \mathcal{V}_{x} is \mathcal{K}_{x}, which is smooth (this is [HM04, Cor.1]). Also, one can associate to a general point $v \in \mathcal{V}_{x}$ a unique minimal curve $[l] \in \mathcal{K}_{x}$. We denote
by $\mathcal{V} \subset \mathbb{P}\left(\Omega_{X}\right)$ the total $V M R T$, i.e. the closure of the locus covered by the VMRTs \mathcal{V}_{x} for $x \in X$ general. Since \mathcal{K}_{x} has dimension $n-2$, the total VMRT \mathcal{V} is a divisor in $\mathbb{P}\left(\Omega_{X}\right)$.

For a general $[l] \in \mathcal{K}$, one has

$$
\begin{equation*}
\left.T_{X}\right|_{l} \simeq \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)^{\oplus n-2} \oplus \mathcal{O}_{\mathbb{P}^{1}} \tag{4.3.1}
\end{equation*}
$$

[Kol96, IV, Cor.2.9]. We call a minimal rational curve $[l] \in \mathcal{K}$ standard if l is smooth and the bundle $\left.T_{X}\right|_{l}$ has the same splitting type as in (4.3.1).
4.4. Smoothing pairs of minimal curves. For a general point $x_{1} \in X$ the curves parametrised by $\mathcal{K}_{x_{1}}$ cover a divisor $D_{x_{1}} \subset X$ [Kol96, IV, Prop.2.5]. This divisor is ample because $\rho(X)=1$, so for $x_{2} \in X$ and $\left[l_{2}\right] \in \mathcal{K}_{x_{2}}$ the curve l_{2} intersects $D_{x_{1}}$. Thus for a general point $x_{2} \in X$ we can find a chain of two standard minimal curves $l_{1} \cup l_{2}$ connecting the points x_{1} and x_{2}. By [Kol96, II, Ex.7.6.4.1] the union $l_{1} \cup l_{2}$ is dominated by a transverse union $\mathbb{P}^{1} \cup \mathbb{P}^{1}$. Since both rational curves are free we can smooth the tree $\mathbb{P}^{1} \cup \mathbb{P}^{1}$ keeping the point x_{1} fixed [Kol96, II, Thm.7.6.1]. Since x_{1} is general in X this defines a family of rational curves dominating X, and we denote by \mathcal{W} the normalisation of the irreducible component of Chow (X) containing these rational curves.
4.5. Since a general member $[C]$ of the family \mathcal{W} is free and $-K_{X} \cdot C=2 n$, we have $\operatorname{dim} \mathcal{W}=3 n-3$. We pick an arbitrary irreducible component of the subset of \mathcal{W} parametrising cycles containing x_{1}, and let $\mathcal{W}_{x_{1}}$ be its normalisation; then we have $\operatorname{dim} \mathcal{W}_{x_{1}}=2 n-2$. Let $\mathcal{U}_{x_{1}}$ be the normalisation of the universal family of cycles over $\mathcal{W}_{x_{1}}$. The evaluation map $\mathrm{ev}_{x_{1}}: \mathcal{U}_{x_{1}} \rightarrow X$ is surjective: its image is irreducible, and it contains both the divisor $D_{x_{1}}$ (because it is contained in the image of the restriction of $\mathrm{ev}_{x_{1}}$ to those members of $\mathcal{W}_{x_{1}}$ that contain a minimal curve through x_{1}) and the point x_{2} which is general in X (in particular $x_{2} \notin D_{x_{1}}$).

Next, we choose an arbitrary irreducible component of the subset of \mathcal{W} parametrising cycles passing through x_{1} and x_{2}, and let $\mathcal{W}_{x_{1}, x_{2}}$ be its normalisation, $\mathcal{U}_{x_{1}, x_{2}}$ the normalisation of the universal family over $\mathcal{W}_{x_{1}, x_{2}}$. We denote by

$$
q: \mathcal{U}_{x_{1}, x_{2}} \rightarrow \mathcal{W}_{x_{1}, x_{2}}, \quad \text { ev }: \mathcal{U}_{x_{1}, x_{2}} \rightarrow X
$$

the natural maps. It follows from the considerations above that $\mathcal{W}_{x_{1}, x_{2}}$ is non-empty of dimension $n-1$.

By construction, a general curve $[C] \in \mathcal{W}_{x_{1}, x_{2}}$ is smooth at $x_{i}, i \in\{1,2\}$, so the preimage $\mathrm{ev}^{-1}\left(x_{i}\right)$ contains a unique divisor σ_{i} that surjects onto $\mathcal{W}_{x_{1}, x_{2}}$. Since ev is finite on the q-fibres and $\mathcal{W}_{x_{1}, x_{2}}$ is normal, we obtain that the degree one map $\sigma_{i} \rightarrow \mathcal{W}_{x_{1}, x_{2}}$ is an isomorphism. We call the divisors σ_{i} the distinguished sections of q. We denote by $\Delta \subset \mathcal{W}_{x_{1}, x_{2}}$ the locus parametrising non-integral cycles.

Let $\operatorname{loc}_{x_{1}}^{1}$ be the locus covered by all the minimal rational curves of X passing through x_{1}. It is itself a divisor, but may be bigger than $D_{x_{1}}$ since in general there are finitely many families of minimal curves. From now on we choose a general point $x_{2} \in X$ such that $x_{2} \notin \operatorname{loc}_{x_{1}}^{1}$ (which implies $x_{1} \notin \operatorname{loc}_{x_{2}}^{1}$).
4.6. Lemma. In the situation of Proposition 1.5 and using the notation introduced above, let C be a non-integral cycle corresponding to a point $[C] \in \Delta$. Then $C=$ $l_{1}+l_{2}$, with the l_{i} minimal rational curves such that $x_{i} \in l_{j}$ if and only if $i=j$.

Remark. Note that we do not claim that the curves l_{i} belong to the family \mathcal{K}. However by construction of the family \mathcal{W} as smoothings of pairs $l_{1} \cup l_{2}$ in \mathcal{K} there exists an irreducible component $\Delta_{\mathcal{K}} \subset \Delta$ such that $l_{i} \in \mathcal{K}$ when $\left[l_{1}+l_{2}\right] \in \Delta_{\mathcal{K}}$.

Proof. We can write $C=\sum a_{i} l_{i}$ where the a_{i} are positive integers and l_{i} integral curves. By [Kol96, II, Prop.2.2] all the irreducible components l_{i} are rational curves. We can suppose that up to renumbering one has $x_{1} \in l_{1}$. If $a_{1} \geq 2$, then $-K_{X} \cdot C=$ $2 n$ and $-K_{X} \cdot l_{1} \geq n$ implies that $C=2 l_{1}$ and l_{1} is a minimal rational curve. Yet this contradicts the assumption $x_{2} \notin \operatorname{loc}_{x_{1}}^{1}$. Thus we have $a_{1}=1$ and since C is not integral there exists a second irreducible component l_{2}. Again $-K_{X} \cdot C=2 n$ and $-K_{X} \cdot l_{i} \geq n$ implies $C=l_{1}+l_{2}$ and the l_{i} are minimal rational curves by Lemma 4.2. The last property now follows by observing that $x_{2} \notin \operatorname{loc}_{x_{1}}^{1}$ implies that $x_{1} \notin \operatorname{loc}_{x_{2}}^{1}$.

By [Kol96, II, Thm.2.8], the fibration $q: \mathcal{U}_{x_{1}, x_{2}} \rightarrow \mathcal{W}_{x_{1}, x_{2}}$ is a \mathbb{P}^{1}-bundle over the open set $\mathcal{W}_{x_{1}, x_{2}} \backslash \Delta$. Although Lemma 4.6 essentially says that the singular fibres are reducible conics, it is a priori not clear that q is a conic bundle (cf. Definition 3.1). This becomes true after we make a base change to a smooth curve.
4.7. Lemma. In the situation of Proposition 1.5 and using the notation introduced above, let $Z \subset \mathcal{W}_{x_{1}, x_{2}}$ be a curve such that a general point of Z parametrises an irreducible curve. Then there exists a finite morphism $T \rightarrow Z$ such that the normalisation S of the fibre product $\mathcal{U}_{x_{1}, x_{2}} \times \mathcal{W}_{x_{1}, x_{2}} T$ has a conic bundle structure $\varphi: S \rightarrow T$ that satisfies the conditions of Lemma 3.4.

Proof. Let $\nu: \tilde{Z} \rightarrow Z$ be the normalisation, and let N be the normalisation of $\mathcal{U}_{x_{1}, x_{2}} \times \mathcal{W}_{x_{1}, x_{2}} \tilde{Z}, f_{N}: N \rightarrow X$ the morphism induced by ev : $\mathcal{U}_{x_{1}, x_{2}} \rightarrow X$. Since all the curves pass through x_{1} and x_{2} there exists a curve $Z_{1} \subset N\left(\right.$ resp. $\left.Z_{2} \subset N\right)$ that is contracted by f_{N} onto the point x_{1} (resp. x_{2}). Since ev is finite on the q-fibres, the curves Z_{1} and Z_{2} are multisections of $N \rightarrow \tilde{Z}$. If \tilde{Z}_{i} is the normalisation of Z_{i}, then the fibration $\left(N \times_{\tilde{Z}} \tilde{Z}_{i}\right) \rightarrow \tilde{Z}_{i}$ has a section given by $c \mapsto(c, c)$. Thus there exists a finite base change $T \rightarrow \tilde{Z}$ such that the normalisation $\varphi: S \rightarrow T$ of the fibre product $\left(\mathcal{U}_{x_{1}, x_{2}} \times \mathcal{W}_{x_{1}, x_{2}} T\right) \rightarrow T$ has a natural morphism $f: S \rightarrow X$ induced by ev: $\mathcal{U}_{x_{1}, x_{2}} \rightarrow X$ and contracts two φ-sections σ_{1} and σ_{2} on x_{1} and x_{2} respectively.

Since $Z \not \subset \Delta$, the general φ-fibre is \mathbb{P}^{1}. Moreover by Lemma 4.6 all the φ-fibres are reduced and have at most two irreducible components. By Lemma 3.3 this implies that φ is a conic bundle and if $s \in S_{\text {sing }}$, then $F_{\varphi(s)}$ is a reducible conic and the two irreducible components meet in s. Thus we have $\sigma_{i} \subset S_{s m}$, where $S_{s m}$ denotes the smooth locus, since otherwise both irreducible components would pass through x_{i}, thereby contradicting the property that $x_{2} \notin \operatorname{loc}_{x_{1}}^{1}$. For the same reason we can decompose any reducible φ-fibre F_{t} by defining $F_{t, i}$ as the unique component meeting the section σ_{i}. Since $\sigma_{i} \cdot F=1$ for a general φ-fibre we see that (C1) holds. Condition (C2) holds with H the pull-back of an ample divisor on X.

From this one deduces with Lemma 3.4 the following statement, in the spirit of the bend-and-break lemma [Deb01, Prop.3.2].
4.8. Lemma. The restriction of the evaluation map ev : $\mathcal{U}_{x_{1}, x_{2}} \rightarrow X$ to the complement of $\sigma_{1} \cup \sigma_{2}$ is quasi-finite. In particular ev is generically finite onto its image.

Proof. We argue by contradiction. Since ev is finite on the q-fibres there exists a curve $Z \subset \mathcal{W}_{x_{1}, x_{2}}$ such that the natural map from the surface $q^{-1}(Z)$ onto $\operatorname{ev}\left(q^{-1}(Z)\right)$ contracts three disjoint curves σ_{1}, σ_{2} and σ onto the points x_{1}, x_{2} and $x:=\operatorname{ev}(\sigma)$.

If $Z \not \subset \Delta$, then by Lemma 4.7 we can suppose, possibly up to a finite base change, that $q^{-1}(Z) \rightarrow Z$ satisfies the conditions (C1) of Lemma 3.4. After a further base change we can assume that σ is a section. Since σ is contracted by ev we have $\sigma^{2}<0$. By Lemma 3.4, a), this implies $\sigma=\sigma_{1}$ or $\sigma=\sigma_{2}$, a contradiction.

If $Z \subset \Delta$, then all the fibres over Z are unions of two minimal rational curves. Thus the normalisation of $q^{-1}(Z)$ is a union of two \mathbb{P}^{1}-bundles mapping onto Z and by construction they contain three curves which are mapped onto points. However a ruled surface contains at most one contractible curve, a contradiction.
4.9. Since $\operatorname{dim} \mathcal{U}_{x_{1}, x_{2}}=\operatorname{dim} X$, one deduces from Lemma 4.8 above that the cycles $[C] \in \mathcal{W}$ passing through x_{1}, x_{2} cover the manifold X. By [Deb01, 4.10] this implies that a general member $[C] \in \mathcal{W}_{x_{1}, x_{2}}$ is a 2-free rational curve [Deb01, Defn.4.5]. Since $-K_{X} \cdot C=2 n$, this forces

$$
\begin{equation*}
f^{*} T_{X} \simeq \mathcal{O}_{\mathbb{P}^{1}}(2)^{\oplus n} \tag{4.9.1}
\end{equation*}
$$

where $f: \mathbb{P}^{1} \rightarrow C \subset X$ is the normalisation of C. As a consequence, one sees from [Kol96, II, Thm.3.14.3] that a general member $[C] \in \mathcal{W}$ is a smooth rational curve in X.

Let $\operatorname{Hom}_{\mathcal{W}}^{\circ} \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ be the irreducible open set parametrising morphisms $f: \mathbb{P}^{1} \rightarrow X$ such that the image $C:=f\left(\mathbb{P}^{1}\right)$ is smooth, the associated cycle $[C] \in \operatorname{Chow}(X)$ is a point in \mathcal{W}, and $f^{*} T_{X}$ has the splitting type (4.9.1). By what precedes, the image of $\operatorname{Hom}_{\mathcal{W}}^{\circ}$ in \mathcal{W} under the natural map $\operatorname{Hom}\left(\mathbb{P}^{1}, X\right) \rightarrow$ $\operatorname{Chow}(X)$ is a dense open set $\mathcal{W}^{\circ} \subset \mathcal{W}$.
4.10. Denote by $\pi: \mathbb{P}\left(\Omega_{X}\right) \rightarrow X$ the projection map. We define an injective map

$$
i: \operatorname{Hom}_{\mathcal{W}}^{\circ} \hookrightarrow \operatorname{Hom}\left(\mathbb{P}^{1}, \mathbb{P}\left(\Omega_{X}\right)\right)
$$

by mapping $f: \mathbb{P}^{1} \rightarrow X$ to the morphism $\tilde{f}: \mathbb{P}^{1} \rightarrow \mathbb{P}\left(\Omega_{X}\right)$ corresponding to the invertible quotient $f^{*} \Omega_{X} \rightarrow \Omega_{\mathbb{P}^{1}}$. Correspondingly, for $[C] \in \mathcal{W}^{\circ}$ with normalisation f, we call $[\tilde{C}]$ the member of $\operatorname{Chow}\left(\mathbb{P}\left(\Omega_{X}\right)\right)$ corresponding to the lifting \tilde{f}.

We let $\operatorname{Hom}_{\mathcal{W}}$ be the image of i. Note that it parametrises a family of rational curves that dominates $\mathbb{P}\left(\Omega_{X}\right)$, but it is not an irreducible component of $\operatorname{Hom}\left(\mathbb{P}^{1}, \mathbb{P}\left(\Omega_{X}\right)\right)$. Indeed, $\operatorname{Hom}_{\mathcal{W}}$ is contained in a (much bigger) irreducible component defined by morphisms corresponding to arbitrary quotients $f^{*} \Omega_{X} \rightarrow$ $\mathcal{O}_{\mathbb{P}^{1}}(-2)$.

The following property is well-known to experts. Since Hom $\tilde{\mathcal{W}}$ is not an open set of the space $\operatorname{Hom}\left(\mathbb{P}^{1}, \mathbb{P}\left(\Omega_{X}\right)\right)$, we have to adapt the proof of [Kol96, II,Prop.3.7].
4.11. Lemma. In the situation of Proposition 1.5, let $\mathcal{V}_{0} \subset \mathcal{V}$ be a dense, Zariski open set in the total VMRT \mathcal{V}, and let $\tilde{C}:=\tilde{f}\left(\mathbb{P}^{1}\right)$ be a rational curve parametrised by a general point of $\mathrm{Hom}_{\mathcal{W}}^{\sim}$. Then one has

$$
(\mathcal{V} \cap \tilde{C}) \subset\left(\mathcal{V}_{0} \cap \tilde{C}\right)
$$

Proof. Set $Z:=\mathcal{V} \backslash \mathcal{V}_{0}$. A point $z \in \mathbb{P}\left(\Omega_{X}\right)$ is $z=\left(v_{z}^{\perp}, x\right)$, where $\mathbb{C} v_{z} \subset T_{X, x}$ is a tangent direction in X at $x=\pi(z)$. So for all $p \in \mathbb{P}^{1}, z=\left(v_{z}^{\perp}, x\right) \in \mathbb{P}\left(\Omega_{X}\right)$, the morphisms $[\tilde{f}] \in \operatorname{Hom}_{\mathcal{W}} \tilde{}$ mapping p to z correspond to morphisms $f: \mathbb{P}^{1} \rightarrow X$ in $\operatorname{Hom}_{\mathcal{W}}{ }^{\circ}$ mapping p to x with tangent direction $\mathbb{C} v_{z}$. Since f has the splitting type (4.9.1), the set of these morphisms has dimension exactly n. It follows that

$$
\operatorname{Hom}_{\mathcal{W}, Z}:=\left\{[\tilde{f}] \in \operatorname{Hom}_{\mathcal{W}} \mid \tilde{f}\left(\mathbb{P}^{1}\right) \cap Z \neq \emptyset\right\}=\bigcup_{z \in Z} \bigcup_{p \in \mathbb{P}^{1}}\left\{[\tilde{f}] \in \operatorname{Hom}_{\mathcal{W}} \mid \tilde{f}(p)=z\right\}
$$

has dimension at most $\operatorname{dim} Z+1+n$.
Now $\mathcal{V} \subset \mathbb{P}\left(\Omega_{X}\right)$ is a divisor, and Z has codimension at least one in \mathcal{V}, so Z has dimension at most $2 n-3$, and the set $\operatorname{Hom}_{\mathcal{W}, Z}$ above has dimension at most $3 n-2$. Since $\operatorname{Hom}_{\mathcal{W}}^{\circ}$ has dimension $3 n$ and $\operatorname{Hom}_{\mathcal{W}}^{\circ} \rightarrow \operatorname{Hom}_{\mathcal{W}}^{\sim}$ is injective, a general point $[\tilde{f}] \in \operatorname{Hom}_{\mathcal{W}}$ is not in $\operatorname{Hom}_{\mathcal{W}, Z}$.

We need one more technical statement:
4.12. Lemma. In the situation of Proposition 1.5 and using the notation introduced above, let $[f] \in \operatorname{Hom}_{\mathcal{W}}^{\circ}$ be a general point. Then for every $x \in f\left(\mathbb{P}^{1}\right)$ we have $f\left(\mathbb{P}^{1}\right) \not \subset \operatorname{loc}_{x}^{1}$.

Proof. Fix two general points $x_{1}, x_{2} \in X$. A general morphism $[f] \in \operatorname{Hom}_{\mathcal{W}}^{\circ}$ passing through x_{1} and x_{2} is 2-free and up to reparametrisation we have $f(0)=x_{1}, f(\infty)=$ x_{2}. Set $g:=\left.f\right|_{\{0, \infty\}}$, then f is free over g [Kol96, II, Defn.3.1]. Suppose now that such a curve has the property $f\left(\mathbb{P}^{1}\right) \subset \operatorname{loc}_{x_{0}}^{1}$ for some $x_{0} \in f\left(\mathbb{P}^{1}\right)$. Thus $x_{1}, x_{2} \in \operatorname{loc}_{x_{0}}^{1}$, hence by symmetry $x_{0} \in\left(\operatorname{loc}_{x_{1}}^{1} \cap \operatorname{loc}_{x_{2}}^{1}\right)$. Yet the intersection

$$
\operatorname{loc}_{x_{1}}^{1} \cap \operatorname{loc}_{x_{2}}^{1}
$$

has codimension two in X. By [Kol96, II, Prop.3.7] a general deformation of f over g is disjoint from this set.
4.13. Proof of Proposition 1.5. Arguing by contradiction, we suppose that $\mathcal{V} \cdot \tilde{C}>0\left(\tilde{C}\right.$ is not contained in \mathcal{V} for the general $\left.[C] \in \mathcal{W}^{\circ}\right)$. Applying Lemma 4.11 with

$$
\mathcal{V}_{0}:=\left\{v^{\perp} \in \mathcal{V} \mid \mathbb{C} v=T_{l, \pi(v)} \text { where }[l] \in \mathcal{K} \text { is standard }\right\}
$$

we see that for a general point $[C] \in \mathcal{W}$ there exists a point $x_{1} \in C$ and a standard curve $[l] \in \mathcal{K}_{x_{1}}$ such that

$$
\begin{equation*}
T_{C, x_{1}}=T_{l, x_{1}} \tag{4.13.1}
\end{equation*}
$$

We shall now reformulate the property (4.13.1) in terms of the universal family $\mathcal{U}_{x_{1}, x_{2}}$, with x_{2} a point chosen in $C \backslash \operatorname{loc}_{x_{1}}^{1}$ thanks to Lemma 4.12. Consider the blow-up $\varepsilon: \tilde{X} \rightarrow X$ at the point x_{1}, with exceptional divisor E_{1}. There is a rational map $\tilde{\mathrm{ev}}: \mathcal{U}_{x_{1}, x_{2}} \rightarrow \tilde{X}$ such that $\varepsilon \circ \tilde{\mathrm{ev}}=\mathrm{ev}$ (on the locus where $\tilde{\mathrm{ev}}$ is defined); since the general member of $\mathcal{W}_{x_{1}, x_{2}}$ is smooth at x_{1}, this map $\tilde{\text { ev }}$ is well-defined in a general point of σ_{1}, and restricts to a rational map $\sigma_{1} \rightarrow E_{1}$. The latter is dominant and therefore generically finite, because the general member of $\mathcal{W}_{x_{1}, x_{2}}$ is 2 -free. In particular we may assume it is finite in a neighbourhood of the point $C \cap \sigma_{1}$.

We then consider the proper transform \tilde{l} of l under ε, and let Γ be an irreducible component of $\tilde{\mathrm{ev}}^{-1}(\tilde{l})$ passing through $C \cap \sigma_{1}$. It is a curve that is mapped to a
curve in $\mathcal{W}_{x_{1}, x_{2}}$ by q. Also, applying the same construction to the divisor $D_{x_{1}} \subset X$, one gets a prime divisor $G \subset \mathcal{U}_{x_{1}, x_{2}}$ mapping surjectively onto $D_{x_{1}}$ and $\mathcal{W}_{x_{1}, x_{2}}$ respectively.

In general the curve Γ could be contained in the locus where $\left.q\right|_{G}$ or $\left.\mathrm{ev}\right|_{G}$ are not étale. However the standard rational curves $[l] \in \mathcal{K}$ such that a corresponding curve Γ is not contained in these ramification loci form a non-empty Zariski open set in \mathcal{K}. Hence their tangent directions define a non-empty Zariski open set in \mathcal{V}. Applying Lemma 4.11 a second time we can thus replace C by a general curve C^{\prime} such that $\left[C^{\prime}\right] \in \mathcal{W}^{\circ} \cap \mathcal{W}_{x_{1}, x_{2}}$ and hence l by a general $\left[l^{\prime}\right] \in \mathcal{K}_{x_{1}}$ such that there exists a curve $\Gamma^{\prime} \subset G$ such that $q\left(\Gamma^{\prime}\right)$ is a curve, $\operatorname{ev}\left(\Gamma^{\prime}\right)=l^{\prime}$, and both maps $\left.q\right|_{G}$ and $\left.\mathrm{ev}\right|_{G}$ are étale at the general point $x \in \Gamma^{\prime}$. By construction the point $C^{\prime} \cap \sigma_{1}$ lies on Γ^{\prime}. This is a contradiction to Proposition 4.14 below.
4.14. Proposition [Miy04, Lemma 3.9]. In the situation of Proposition 1.5, let $x_{1}, x_{2} \in X$ be general points, and $[l]$ a general member of $\mathcal{K}_{x_{1}}$. Consider an irreducible curve $\Gamma \subset \mathcal{U}_{x_{1}, x_{2}}$ such that $\mathrm{ev}(\Gamma)=l$ and $q(\Gamma)$ is a curve, and assume there exists a prime divisor $G \subset \mathcal{U}_{x_{1}, x_{2}}$ mapped onto $D_{x_{1}}$ by ev and containing Γ, such that both maps $\left.q\right|_{G}$ and $\left.\mathrm{ev}\right|_{G}$ are étale at a general point of Γ. Then $\Gamma \cap \sigma_{1}$ does not contain any point $C \cap \sigma_{1}$ with $[C] \in \mathcal{W}^{\circ} \cap \mathcal{W}_{x_{1}, x_{2}}$.

We give the proof for the sake of completeness.
Proof. Since [l] is general in $\mathcal{K}_{x_{1}}$, we have

$$
\left.T_{X}\right|_{l} \simeq \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)^{n-2} \oplus \mathcal{O}_{\mathbb{P}^{1}}
$$

and $\mathcal{K}_{x_{1}}$ is smooth with tangent space $H^{0}\left(l, N_{l / X}^{+} \otimes \mathcal{O}_{l}\left(-x_{1}\right)\right)$ at $[l]$, where \mathcal{E}^{+} denotes the ample part of a vector bundle $\mathcal{E} \rightarrow \mathbb{P}^{1}$, i.e. its ample subbundle of maximal rank.

Let $x \in \Gamma$ be a general point, and set $y=\mathrm{ev}(x) \in l$. For some analytic neighbourhood $V \subset \mathcal{K}_{x_{1}}$ of $[l]$, we have an evaluation map

$$
\mathbb{P}^{1} \times V \longrightarrow D_{x_{1}}
$$

which is étale at $(y,[l])$, and the tangent space to $D_{x_{1}}$ at y is thus

$$
T_{D_{x_{1}}, y}=T_{l, y} \oplus\left(N_{l / X}^{+} \otimes \mathcal{O}_{l}\left(-x_{1}\right)\right)_{y}=\left.T_{X}\right|_{l, y} ^{+}
$$

Since ev $\left.\right|_{G}$ is étale in x, we obtain that the tangent map

$$
d_{x} \mathrm{ev}: T_{\mathcal{U}_{x_{1}, x_{2}}, x} \rightarrow \operatorname{ev}^{*}\left(T_{X, \operatorname{ev}(x)}\right)
$$

maps $T_{G, x}$ isomorphically into the ample part i.e. we have

$$
\begin{equation*}
d_{x} \mathrm{ev}\left(T_{G, x}\right) \simeq \mathrm{ev}^{*}\left(\left.T_{X}\right|_{l, \mathrm{ev}(x)} ^{+}\right) \tag{4.14.1}
\end{equation*}
$$

We argue by contradiction and suppose that there exists $[C] \in \mathcal{W}^{\circ} \cap \mathcal{W}_{x_{1}, x_{2}}$ such that $\left(C \cap \sigma_{1}\right) \in\left(\Gamma \cap \sigma_{1}\right)$. Since Γ maps onto l it is not contained in the divisor σ_{1}. Since the smooth rational curve C is 2 -free, there exists by semicontinuity a neighbourhood U of $[C] \in \mathcal{W}_{x_{1}, x_{2}}$ parametrising 2 -free smooth rational curves. For a 2 -free rational curve, the evaluation morphism ev is smooth in the complement of the distinguished divisors σ_{i} [Kol96, II, Prop.3.5.1]. Thus if we denote by $R \subset$ $\mathcal{U}_{x_{1}, x_{2}}$ the ramification divisor of ev, σ_{1} is the unique irreducible component of R
containing the point $C \cap \sigma_{1}$. Thus Γ is not contained in the ramification divisor of ev.

Since $q(\Gamma)$ is a curve, there exists by Lemma 4.7 a finite base change $T \rightarrow$ $q(\Gamma)$ with T a smooth curve, such that the normalisation S of the fibre product $T \times \mathcal{W}_{x_{1}, x_{2}} \mathcal{U}_{x_{1}, x_{2}}$ is a surface with a conic bundle structure $\varphi: S \rightarrow T$ satisfying the conditions of Lemma 3.4. After a further base change we may suppose that there exists a φ-section Γ_{1} that maps onto Γ. Note that since we obtained S by a base change from $\mathcal{U}_{x_{1}, x_{2}}$, the ramification divisor of the map $\mu: S \rightarrow \mathcal{U}_{x_{1}, x_{2}}$ is contained in the φ-fibres, i.e. its image by φ has dimension 0 . In particular Γ_{1} is not contained in this ramification locus.

Since the rational curve C is smooth and 2 -free, the universal family $\mathcal{U}_{x_{1}, x_{2}}$ is smooth in a neighbourhood of $C \cap \sigma_{1}$. Thus σ_{1} is a Cartier divisor in a neighbourhood of $C \cap \sigma_{1}$, and we can use the projection formula to see that

$$
\Gamma_{1} \cdot \mu^{*} \sigma_{1}=\mu_{*}\left(\Gamma_{1}\right) \cdot \sigma_{1}>0
$$

In particular Γ_{1} is not disjoint from the distinguished sections in the conic bundle $S \rightarrow T$. Let now $\varepsilon: \hat{S} \rightarrow S$ be the minimal resolution of singularities, and $\hat{\Gamma}_{1}$ the proper transform of Γ_{1}. Since the distinguished sections are in the smooth locus of S, the section $\hat{\Gamma}_{1}$ is not disjoint from the distinguished sections of $\hat{S} \rightarrow T$. We shall now show that

$$
\left(\hat{\Gamma}_{1}\right)^{2} \leq 0
$$

which is a contradiction to Lemma 3.4.
Denote by $f: \hat{\Gamma}_{1} \rightarrow l$ the restriction of ev $\circ \mu \circ \varepsilon: \hat{S} \rightarrow X$. Since $\hat{\Gamma}_{1}$ is not in the ramification locus of $\mu \circ \varepsilon$ and Γ is not in the ramification divisor of ev, the tangent map

$$
\left.\left.T_{\hat{S}}\right|_{\hat{\Gamma}_{1}} \rightarrow f^{*} T_{X}\right|_{l}
$$

is generically injective. Since $\hat{\Gamma}_{1}$ is a $\varphi \circ \varepsilon$-section, we have an isomorphism

$$
\begin{equation*}
T_{\hat{S} / T} \mid \hat{\Gamma}_{1} \simeq N_{\hat{\Gamma}_{1} / \hat{S}} \tag{4.14.2}
\end{equation*}
$$

Since l has the standard splitting type (4.3.1) we have a (unique) trivial quotient $\left.f^{*} T_{X}\right|_{l} \rightarrow \mathcal{O}_{\hat{\Gamma}_{1}}$, and thanks to (4.14.2) we are done if we prove that the natural map

$$
\left.\left.\left.T_{\hat{S} / T}\right|_{\hat{\Gamma}_{1}} \hookrightarrow T_{\hat{S}}\right|_{\hat{\Gamma}_{1}} \rightarrow f^{*} T_{X}\right|_{l} \rightarrow \mathcal{O}_{\hat{\Gamma}_{1}}
$$

is not zero. It is sufficient to check this property for a general point in $\hat{\Gamma}_{1}$, and since $\hat{\Gamma}_{1} \rightarrow \Gamma$ is generically étale, it is sufficient to check that for a general $x \in \Gamma$, the natural map

$$
T_{\mathcal{U}_{x_{1}, x_{2}} / \mathcal{W}_{x_{1}, x_{2}, x}} \rightarrow \operatorname{ev}^{*}\left(T_{X, \operatorname{ev}(x)}\right)
$$

does not have its image into the ample part $\operatorname{ev}^{*}\left(\left.T_{X}\right|_{l, \text { ev }(x)} ^{+}\right)$. Yet if $T_{\mathcal{U}_{x_{1}, x_{2}} / \mathcal{W}_{x_{1}, x_{2}, x}}$ maps into the ample part, the decomposition $T_{\mathcal{U}_{x_{1}, x_{2}, x}}=T_{\mathcal{U}_{x_{1}, x_{2}} / \mathcal{W}_{x_{1}, x_{2}, x}} \oplus T_{G, x}$ (given by the fact that $\left.q\right|_{G}$ is étale in x) combined with (4.14.1) implies that the tangent map

$$
d_{x} \mathrm{ev}: T_{\mathcal{U}_{x_{1}, x_{2}}, x} \rightarrow \operatorname{ev}^{*}\left(T_{X, \operatorname{ev}(x)}\right)
$$

cannot be surjective. Since Γ is not contained in the ramification locus of ev this is impossible.

5. Proof of the main theorem

5.1. Proof of Theorem 1.3. If $X \simeq \mathbb{P}^{n}$ we are done, so suppose that this is not the case. Then consider the family of minimal rational curves \mathcal{K} constructed in Section 4 and the associated total VMRT \mathcal{V}. Denote by $d \in \mathbb{N}$ the degree of a general VMRT $\mathcal{V}_{x} \subset \mathbb{P}\left(\Omega_{X, x}\right)$.
Step 1. Using the family \mathcal{W}°. In this step we prove that

$$
\begin{equation*}
\mathcal{V} \sim_{\mathbb{Q}} d\left(\zeta-\frac{1}{n} \pi^{*} K_{X}\right) \tag{5.1.1}
\end{equation*}
$$

where ζ is the tautological divisor class on $\mathbb{P}\left(\Omega_{X}\right)$. Note that $\mathbb{P}\left(\Omega_{X}\right)$ has Picard number two, so we can always write

$$
\mathcal{V} \sim_{\mathbb{Q}} a \zeta+b \frac{-1}{n} \pi^{*} K_{X}
$$

with $a, b \in \mathbb{Q}$. Let now \mathcal{W}° be the family of rational curves constructed in Section 4 , and let \tilde{C} be the lifting of a curve $C \in \mathcal{W}^{\circ}$. By Proposition 1.5 we have $\mathcal{V} \cdot \tilde{C}=0$. Since by the definition of \tilde{C} one has $\zeta \cdot \tilde{C}=-2$ and $-\frac{1}{n} \pi^{*} K_{X} \cdot \tilde{C}=2$, it follows that $a=b$. Since $\mathcal{V}_{x}=\left.\left.\mathcal{V}\right|_{\mathbb{P}\left(\Omega_{X, x}\right)} \sim_{\mathbb{Q}} d \zeta\right|_{\mathbb{P}\left(\Omega_{X, x}\right)}$, we have $a=b=d$. This proves (5.1.1).

Step 2. Bounding the degree d. Denote by $\mathcal{K}^{\circ} \subset \mathcal{K}$ the open set parametrising smooth standard rational curves in \mathcal{K}. We define an injective map

$$
j: \mathcal{K}^{\circ} \hookrightarrow \operatorname{RatCurves}^{\mathrm{n}}\left(\mathbb{P}\left(\Omega_{X}\right)\right)
$$

by mapping a curve l to the image \tilde{l} of the morphism $s: l \rightarrow \mathbb{P}\left(\Omega_{X}\right)$ defined by the invertible quotient $\left.\Omega_{X}\right|_{l} \rightarrow \Omega_{l}$. We denote by $\tilde{\mathcal{K}}^{\circ}$ the image of j. Let us start by showing that $\tilde{\mathcal{K}}^{\circ}$ is dense in an irreducible component of RatCurves ${ }^{\mathrm{n}}\left(\mathbb{P}\left(\Omega_{X}\right)\right)$. Since l is standard, the relative Euler sequence restricted to \tilde{l} implies that $H^{0}\left(\tilde{l},\left.T_{\mathbb{P}\left(\Omega_{X}\right) / X}\right|_{\tilde{l}}\right)=0$. Then, using the exact sequence

$$
\left.\left.\left.\left.0 \rightarrow T_{\mathbb{P}\left(\Omega_{X}\right) / X}\right|_{\tilde{l}} \rightarrow T_{\mathbb{P}\left(\Omega_{X}\right)}\right|_{\tilde{l}} \rightarrow\left(\pi^{*} T_{X}\right)\right|_{\tilde{\imath}} \simeq T_{X}\right|_{l} \rightarrow 0
$$

we obtain that the Zariski tangent space of $\operatorname{Hom}\left(\mathbb{P}^{1}, \mathbb{P}\left(\Omega_{X}\right)\right)$ at a point corresponding to the rational curve \tilde{l} has dimension at most $h^{0}\left(l,\left.T_{X}\right|_{l}\right)=2 n$. Thus we can use [Kol96, II, Thm.2.15] to see that RatCurves ${ }^{\mathrm{n}}\left(\mathbb{P}\left(\Omega_{X}\right)\right)$ has dimension at most $2 n-3$ at the point $[\tilde{l}]$, which is exactly the dimension of $\tilde{\mathcal{K}}^{\circ}$.

By construction the lifted curves \tilde{l} are contained in \mathcal{V}. Thus the open set $\tilde{\mathcal{K}}_{0} \subset$ RatCurves ${ }^{\mathrm{n}}\left(\mathbb{P}\left(\Omega_{X}\right)\right)$ is actually an open set in RatCurves ${ }^{\mathrm{n}}(\mathcal{V})$. Since $\mathcal{V} \subset \mathbb{P}\left(\Omega_{X}\right)$ is a hypersurface, the algebraic set \mathcal{V} has lci singularities. Thus we can apply [Kol96, II, Thm.1.3, Thm.2.15] and obtain

$$
2 n-3=\operatorname{dim} \tilde{\mathcal{K}}_{0} \geq\left.\operatorname{deg} \omega_{\mathcal{V}}^{-1}\right|_{\tilde{l}}+(2 n-2)-3
$$

We thus have $\left.\operatorname{deg} \omega_{\mathcal{V}}^{-1}\right|_{\tilde{l}} \leq 2$.
Now by construction we have $-\frac{1}{n} \pi^{*} K_{X} \cdot \tilde{l}=1$ and $\zeta \cdot \tilde{l}=-2$. Since $K_{\mathbb{P}\left(\Omega_{X}\right)}=$ $2 \pi^{*} K_{X}-n \zeta$, the adjunction formula and (5.1.1) yield

$$
2 \geq\left.\operatorname{deg} \omega_{\mathcal{V}}^{-1}\right|_{\tilde{l}}=-\left(K_{\mathbb{P}\left(\Omega_{X}\right)}+\mathcal{V}\right) \cdot \tilde{l}=d
$$

Step 3. Conclusion. If $d=1$ or $d=2$ but \mathcal{V}_{x} is reducible, we obtain a contradiction to [Hwa07, Thm.1.5] (cf. also [Ara06, Thm.3.1]). If $d=2$ and \mathcal{V}_{x} is irreducible, \mathcal{V}_{x} is normal [Har77, II,Ex.6.5(a)], and therefore isomorphic to its normalisation \mathcal{K}_{x}
which is smooth (see $\S 4.3$). It is thus a smooth quadric and we conclude by [Mok08, Main Thm.].
5.2. Remark. Let us explain the difference of our proof with Miyaoka's approach: in the notation of Section 4 , he considers the family $\mathcal{W}_{x_{1}, x_{2}}$. As we have seen above the evaluation map ev : $\mathcal{U}_{x_{1}, x_{2}} \rightarrow X$ is generically finite and his goal is to prove that ev is birational. He therefore analyses the preimage $\mathrm{ev}^{-1}\left(l_{1} \cup l_{2}\right)$, where the $l_{i} \subset X$ are general minimal curves passing through x_{i} respectively such that $\left[l_{1} \cup l_{2}\right] \in \mathcal{W}_{x_{1}, x_{2}}$. If $\Gamma \subset \mathrm{ev}^{-1}\left(l_{1} \cup l_{2}\right)$ is an irreducible curve mapping onto l_{1} one can make a case distinction: if $q(\Gamma)$ is a curve that is not contained in the discriminant locus $\Delta \subset \mathcal{W}_{x_{1}, x_{2}}$ (Case \mathbf{C} in [Miy04, p.227]) Miyaoka makes a very interesting observation which we stated as Proposition 4.14. However the analysis of the 'trivial' case (Case A in [Miy04, p.227]) where $q(\Gamma)$ is a point is not correct: it is not clear that $q(\Gamma)=\left[l_{1} \cup l_{2}\right]$, because there might be another curve in $\mathcal{W}_{x_{1}, x_{2}}$ which is of the form $l_{1} \cup l_{2}^{\prime}$ with $l_{2} \neq l_{2}^{\prime}$. This possibility is an obvious obstruction to the birationality of ev and invalidates [Miy04, Cor.3.11(2), Cor.3.13(1)]. The following example shows that this possibility does indeed occur in certain cases.
5.3. Example. Let $H \subset \mathbb{P}^{n}$ be a hyperplane and $A \subset H \subset \mathbb{P}^{n}$ a projective manifold A of dimension $n-2$ and degree $3 \leq a \leq n$. Let $\mu: X \rightarrow \mathbb{P}^{n}$ be the blowup of \mathbb{P}^{n} along A. Then X is a Fano manifold [Miy04, Rem.4.2] and $-K_{X} \cdot C \geq n$ for every rational curve $C \subset X$ passing through a general point (the μ-fibres are however rational curves with $-K_{X} \cdot C=1$). The general member of a family of minimal rational curves \mathcal{K} is the proper transform of a line that intersects A. Consider the family \mathcal{W} whose general member is the strict transform of a reduced, connected degree two curve C such that $A \cap C$ is a finite scheme of length two. For general points $x_{1}, x_{2} \in X$ the (normalised) universal family $\mathcal{U}_{x_{1}, x_{2}} \rightarrow \mathcal{W}_{x_{1}, x_{2}}$ is a conic bundle and the evaluation map ev : $\mathcal{U}_{x_{1}, x_{2}} \rightarrow X$ is generically finite. We claim that ev is not birational.

Proof of the claim. For simplicity of notation we denote by x_{1}, x_{2} also the corresponding points in \mathbb{P}^{n}. Let $l_{1} \subset \mathbb{P}^{n}$ be a general line through x_{1} that intersects A. Since $x_{2} \in \mathbb{P}^{n}$ is general there exists a unique plane Π containing l_{1} and x_{2}. Moreover the intersection $\Pi \cap A$ consists of exactly a points, one of them the point $A \cap l_{1}$. For every point $x \in \Pi \cap A$ other than $A \cap l_{1}$, there exists a unique line $l_{2, x}$ through x and x_{2}. By Bezout's theorem $l_{1} \cup l_{2}$ is connected, so its proper transform belongs to $\mathcal{W}_{x_{1}, x_{2}}$. Yet this shows that $\mathrm{ev}^{-1}\left(l_{1}\right)$ contains $a-1>1$ copies of l_{1}, one for each point $x \in \Pi \cap A \backslash l_{1} \cap A$. This proves the claim.

Let us conclude this example by mentioning that the conic bundle $\mathcal{U}_{x_{1}, x_{2}} \rightarrow$ $\mathcal{W}_{x_{1}, x_{2}}$ does not satisfy the symmetry conditions of Lemma 3.4.

References

[Ara06] Carolina Araujo. Rational curves of minimal degree and characterizations of projective spaces. Math. Ann., 335(4):937-951, 2006.
[CD15] Cinzia Casagrande and Stéphane Druel. Locally unsplit families of rational curves of large anticanonical degree on Fano manifolds. $I M R N$, doi:10.1093/imrn/rnv011, 2015.
[CMSB02] Koji Cho, Yoichi Miyaoka, and Nicholas I. Shepherd-Barron. Characterizations of projective space and applications to complex symplectic manifolds. In Higher dimensional birational geometry (Kyoto, 1997), volume 35 of Adv. Stud. Pure Math., pages 1-88. Math. Soc. Japan, Tokyo, 2002.
[Deb01] Olivier Debarre. Higher-dimensional algebraic geometry. Universitext. SpringerVerlag, New York, 2001.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[HM04] Jun-Muk Hwang and Ngaiming Mok. Birationality of the tangent map for minimal rational curves. Asian J. Math., 8(1):51-63, 2004.
[HN13] Andreas Höring and Carla Novelli. Mori contractions of maximal length. Publ. Res. Inst. Math. Sci., 49(1):215-228, 2013.
[Hwa01] Jun-Muk Hwang. Geometry of minimal rational curves on Fano manifolds. In School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), volume 6 of ICTP Lect. Notes, pages 335-393. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001.
[Hwa07] Jun-Muk Hwang. Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1. Ann. Inst. Fourier (Grenoble), 57(3):815-823, 2007.
[Hwa13] Jun-Muk Hwang. Varieties of minimal rational tangents of codimension 1. Ann. Sci. Éc. Norm. Supér. (4), 46(4):629-649 (2013), 2013.
[Ion86] Paltin Ionescu. Generalized adjunction and applications. Math. Proc. Cambridge Philos. Soc., 99(3):457-472, 1986.
[Keb02a] Stefan Kebekus. Characterizing the projective space after Cho, Miyaoka and ShepherdBarron. In Complex geometry (Göttingen, 2000), pages 147-155. Springer, Berlin, 2002.
[Keb02b] Stefan Kebekus. Families of singular rational curves. J. Algebraic Geom., 11(2):245256, 2002.
[KO73] Shoshichi Kobayashi and Takushiro Ochiai. Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13:31-47, 1973.
[Kol96] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1996.
[Kol13] János Kollár. Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács.
[Miy04] Yoichi Miyaoka. Numerical characterisations of hyperquadrics. In Complex analysis in several variables-Memorial Conference of Kiyoshi Oka's Centennial Birthday, volume 42 of Adv. Stud. Pure Math., pages 209-235. Math. Soc. Japan, Tokyo, 2004.
[Mok08] Ngaiming Mok. Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents. In Third International Congress of Chinese Mathematicians. Part 1, 2, volume 2 of AMS/IP Stud. Adv. Math., 42, pt. 1, pages 41-61. Amer. Math. Soc., Providence, RI, 2008.
[Mor79] Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. of Math. (2), 110(3):593-606, 1979.
[Sak84] Fumio Sakai. Weil divisors on normal surfaces. Duke Math. J., 51(4):877-887, 1984.
[Wiś91] Jarosław A. Wiśniewski. On contractions of extremal rays of Fano manifolds. J. Reine Angew. Math., 417:141-157, 1991.

Thomas Dedieu, Institut de Mathématiques de Toulouse (CNRS UMR 5219), Université Paul Sabatier, 31062 Toulouse Cedex 9, France

E-mail address: thomas.dedieu@m4x.org
Andreas Höring, Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France

E-mail address: hoering@unice.fr

[^0]: ${ }^{1}$ ANR-10-JCJC-0111

