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Wahl maps and extensions of canonical curves and K3

surfaces

Ciro Ciliberto, Thomas Dedieu, and Edoardo Sernesi

Abstract. Let C be a smooth projective curve (resp. (S, L) a polarized K3 surface) of
genus g > 11, non-tetragonal, considered in its canonical embedding in P

g−1 (resp. in its
embedding in |L|∨ ∼= P

g). We prove that C (resp. S) is a linear section of an arithmetically
Gorenstein normal variety Y in P

g+r, not a cone, with dim(Y ) = r+2 and ωY = OY (−r), if
the cokernel of the Gauss–Wahl map of C (resp. H1(TS �L∨)) has dimension larger or equal
than r + 1 (resp. r). This relies on previous work of Wahl and Arbarello–Bruno–Sernesi.
We provide various applications.

A central theme of this text is the extendability problem: Given a projective (irreducible)
variety X ⊂ Pn, when does there exist a projective variety Y ⊂ Pn+1, not a cone, of which
X is a hyperplane section? Given a positive integer r, an r-extension of X ⊂ Pn is a variety
Y ⊂ Pn+r having X as a section by a linear space. The variety X is r-extendable if it has an
r-extension that is not a cone, and extendable if it is at least 1-extendable. The following result
provides a necessary condition for extendability.

(0.1) Theorem (Lvovski [25]). Let X ⊂ Pn be a smooth, projective, irreducible, non-degenerate
variety, not a quadric. Set

α(X) = h0(NX/Pn (−1)) − n− 1.

If X is r-extendable and α(X) < n, then r 6 α(X).

In particular, if X is extendable then α(X) > 0. The condition α(X) < n is necessary in
Lvovski’s proof, and implies that X is not a complete intersection. The so-called Babylonian
tower theorem, due to Barth, Van de Ven, and Tyurin (see, e.g., [15]), asserts that complete inter-
sections are the only infinitely extendable varieties among local complete intersection varieties.
As far as we know, it is an open question whether the assumption α(X) < n in Theorem (0.1)
can be replaced by the a priori weaker condition that X is not a complete intersection.

One of the objectives of this article is to establish that conversely, the condition α(X) > r
is sufficient for the r-extendabilty of canonical curves (Theorem (2.1)) and K3 surfaces (Theo-
rem (2.18)).

Let C ⊂ Pg−1 be a canonical curve of genus g. We consider its Wahl map

ΦC :
∑

i si ∧ ti ∈
∧2

H0(C, ωC) 7−→
∑

i(si · dti − ti · dsi) ∈ H0(C, ω�3
C ),

see, e.g., [10]. The invariant α(C) in Theorem (0.1) equals the corank cork(ΦC) of the Wahl
map, see Lemma (3.2). Thus, as a particular case of Theorem (0.1), one has that if a smooth
curve C sits on a K3 surface then ΦC is non-surjective. This was originally proved by Wahl [40],
using the deformation theory of cones. Beauville and Mérindol [5] gave another proof, based
on the observation that for a smooth and irreducible curve C sitting on a K3 surface S, the
surjectivity of ΦC implies the splitting of the normal bundle exact sequence,

0 → TC → TS|C → NC/S → 0.
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This introduced the idea, explicit in Voisin’s article [38], that the elements of (coker(ΦC))∨ (or
rather of ker(TΦC)) should be interpreted as ribbons, or infinitesimal surfaces, embedded in Pg

and extending C: see Section 4.
The following statement is a first converse to Theorem (0.1), and a central element of the

proofs of our Theorems (2.1) and (2.18).

(0.2) Theorem (Wahl [43], Arbarello–Bruno–Sernesi [3]). Let C be a smooth curve of genus

g > 11, and Clifford index Cliff(C) > 2. Every ribbon v ∈ ker(TΦC) may be integrated to (i.e. is
contained in) a surface S in Pg having the canonical model of C as a hyperplane section.

Note that if v 6= 0, then the surface S is not a cone as only the trivial ribbon may be
integrated to a cone. Conversely, we observe that actually unicity holds in Theorem (0.2) (see
(2.2.2) and Remark (4.8)): up to isomorphisms, given a ribbon v ∈ ker(TΦC), the surface S
integrating it in Pg is unique. For v = 0, this is the content of the aforementioned theorem of
Wahl and Beauville–Mérindol, see (2.3).

We prove a statement for K3 surfaces analogous to Theorem (0.2) (Theorem (2.17)).

Theorem (0.2) provides a characterization of those curves having non-surjective Wahl map
in the range g > 11 and Cliff > 2. Wahl [42, p. 80] suggested to study the stratification of the
moduli space of curves by the corank of the map ΦC : This is done in our Theorem (2.1) to the
effect that, in the same range, the curves with cork(ΦC) > r are those which are r-extendable.

We give various applications of our results, in particular to the smoothness of the fibres of
the forgetful map which to a pair (S,C) associates the modulus of C, where S ⊂ Pg is a K3
surface and C is a canonical curve hyperplane section of S (Theorem (2.6)). The same result
is proven for the analogous map on pairs (V, S) where V is a Fano threefold and S a smooth
anticanonical section of V (Theorem (2.19)); in this case, this is closely related to Beauville’s
main result in [6]. We also answer a question asked in that article, see Proposition (2.21).

We also study the Wahl maps and extensions of (the smooth models of) plane curves with
up to nine ordinary singularities, and apply this to solve a conjecture of Wahl [42, p. 80] in the
particular case of Del Pezzo surfaces (Proposition (9.5)).

We give a detailed account of our results in § 2. The substance of the proofs, together
with the technical material needed for them, is contained in § 3–9. More information on the
organization of the paper is given along § 2.

Thanks. We thank (in alphabetical order) Gavin Brown, Cinzia Casagrande, Andreas Höring,
Andreas Knutsen, and Serge Lvovski, for their kind and inspiring answers to our questions. We
also thank the anonymous referee for valuable comments and suggestions.

1 – Notation and conventions

We work over the field C of complex numbers. All varieties, e.g., curves, surfaces, threefolds,
etc., are assumed to be integral and projective. We denote by:
• Mg the moduli stack of smooth curves of genus g;
• Kg (resp. Kprim

g ) the moduli stack of polarised (resp. primitively polarised) K3 surfaces of
genus g, i.e. pairs (S,L) with S a smooth K3 surface, and L an ample, globally generated (resp.
and primitive) line bundle on S with L2 = 2g − 2;
• Kcan

g the moduli stack of polarised, possibly singular, K3 surfaces of genus g, i.e. pairs (S,L)
with S a surface with canonical singularities whose minimal desingularisation is a K3 surface,
and L an ample, globally generated line bundle on S with L2 = 2g − 2, see [21, 5.1.4];
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• KCg (resp. KCprim
g , KCcan

g ) the moduli stack of pairs (S,C) with C a smooth curve on S and
(S,OS(C)) ∈ Kg (resp. Kprim

g , KCcan
g );

• Fg the moduli stack of Fano threefolds V genus g (not necessarily of index 1), i.e. smooth
varieties V with −KV ample, and K3

V = 2 − 2g;
• FSg the moduli stack of pairs (V, S) with V ∈ Fg and S ∈ | −KV | a smooth surface, so that
(S, −KV |S) ∈ Kg;
• KR

g , where R = (R, λ) consists of a lattice R and a distinguished element λ ∈ R with λ2 =
2g − 2, the moduli stack of R-polarised K3 surfaces, i.e. polarised K3 surfaces (S,L) together
with a fixed embedding of R as a primitive sublattice of Pic(S), sending λ to the class of L;
• KCR

g , with R as above, the moduli stack of pairs (S,C) with S an R-polarised K3 surface and
C a smooth curve on S in the class λ;
• FR

g and FSR
g the stacks of Fano varieties analogous to KR

g and KCR
g ;

• cg : KCg → Mg, c
prim
g : KCprim

g → Mg, and cR
g : KCR

g → Mg the forgetful maps;

• sg : FSg → Kg and sR
g : FSR

g → KR
g the forgetful maps.

A K3 surface is a smooth complete surface S such that ωS ∼= OS and H1(S,OS) = 0; a K3
surface with canonical singularities, or K3 surface possibly with ADE singularities, or possibly
singular K3 surface, is a surface with canonical singularities whose minimal desingularisation is
a K3 surface. A fake K3 surface is a non-degenerate, projective surface in Pg, not a possibly
singular K3 surface, having as a hyperplane section a smooth, canonical curve C ⊂ Pg−1 of
genus g > 3.

The Clifford index Cliff(S,L) of a polarized K3 surface (S,L) is the Clifford index of any
smooth curve C ∈ |L|; by [20], this does not depend on the choice of C.

2 – Main results

Canonical curves. Our first result is the following converse to Lvovski’s Theorem (0.1) for
canonical curves.

(2.1) Theorem. Let C be a smooth genus g curve with Clifford index Cliff(C) > 2, and r a
non-negative integer. We consider the following two propositions:
(i) cork(ΦC) > r + 1;
(ii) there is an arithmetically Gorenstein normal variety Y in Pg+r, not a cone, with dim(Y ) =
r+ 2, ωY = OY (−r), which has a canonical image of C as a section with a (g− 1)-dimensional
linear subspace of Pg+r (in particular, C ⊂ Pg−1 is (r + 1)–extendable).

If g > 11, then (i) implies (ii). Conversely, if g > 22 and the canonical image of C is a
hyperplane section of some smooth K3 surface in Pg, then (ii) implies (i).

(2.2) Actually, we prove more than Theorem (2.1), see Corollary (5.5). Let C be a smooth
curve of genus g > 11 with Cliff(C) > 2, and let r := cork(ΦC) − 1.

(2.2.1) There is an arithmetically Gorenstein normal variety X of dimension r + 2 in Pg+r,
not a cone, containing a canonical image C0 of C as a section by a linear (g − 1)-space, and
satisfying the following property: for all [v] ∈ P(ker(TΦC)), there is a unique section of X by a
linear g-space containing a ribbon over C0 belonging to the isomorphism class [v].

(See Section 4 for background on ribbons and their relation with the Wahl map ΦC).

(2.2.2) For all [v] ∈ P(ker(TΦC)), there is a unique (up to projectivities pointwise fixing C,
see Remark (4.8)) surface S ⊂ Pg containing a ribbon over a canonical model of C in the
isomorphism class [v].
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(2.2.3) Definition. We say that an extension X of C0 as in (2.2.1) is universal. By (2.2.2), a
universal extension of C0 has as linear sections all possible surface extensions of C0 but cones.

No matter the genus, Lvovski’s Theorem (0.1) tells us that (ii) of Theorem (2.1) implies the
inequality

cork(ΦC) > min(g − 1, r + 1).

When r = 0, ’(ii) ⇒ (i)’ in Theorem (2.1) was proved by Wahl [40] and later independently by
Beauville and Mérindol [5], and ’(i) ⇒ (ii)’ is Theorem (0.2) by Wahl and Arbarello–Bruno–
Sernesi. To prove (i) ⇒ (ii) for arbitrary r, we show that Wahl’s extension construction [43,
Theorem 7.1] (the requirements of which are met thanks to [3, Theorem 3]) works in families,
see § 5.

Statement (2.2.2) is implicitly contained in the proof of [43, Theorem 7.1] as we observe in
Remark (4.8), although it apparently remained unnoticed so far.

(2.3) If g > 11 and Cliff(C) > 2, the unicity of the extension of the ribbon v = 0 in The-
orem (0.2) (see Remark (4.8)) tells us that the cone over a canonical model of C is the only
surface in Pg containing the trivial ribbon over C. Thus, if C sits on a K3 surface, the ribbon
over C defined by S is non-trivial, hence ΦC is not surjective: this is the theorem of Wahl
and Beauville–Mérindol, though a priori only for curves of genus g > 11 and Clifford index
Cliff(C) > 2; the remaining cases can be dealt with directly: curves with g < 10 or Cliff(C) 6 2
all have non-surjective Wahl map [42, 13, 14, 7], and curves of genus 10 sitting on a K3 have
non-surjective Wahl map by [17].

Proof of Theorem (2.1). The fact that (i) implies (ii) provided g > 11 is the content of Corollary
(5.6.1). The converse implication is given by Lvovski’s Theorem (0.1) as follows. Identify
C with its canonical model in Pg−1. Then α(C) = h0(NC/Pg−1 (−1)) − g equals cork(ΦC)
by Lemma (3.2), so one has α(C) 6 20 by Corollary (8.5). It follows that the assumption
α(C) < g − 1 holds if g > 22; in this case, Theorem (0.1) says that (ii) implies (i). ✷

We obtain the bound α(C) 6 20 used in the above proof of Theorem (2.1) as a corollary of
Proposition (8.4). The latter Proposition also has the following consequence.

(2.4) Proposition (Corollary (8.6)). Let (S,C) ∈ KCcan
g with g > 11 and Cliff(C) > 2. There

are only finitely many members C′ of |OS(C)| that are isomorphic to C.

The following is a consequence of (2.2):

(2.5) Corollary. Let C be a smooth curve of genus g > 11 with Cliff(C) > 2. The curve C
cannot sit on two K3 surfaces S and S′ such that its respective classes in Pic(S) and Pic(S′)
have different divisibilities.

Proof. By (2.2), all extensions of the canonical model of C are packaged together in an irreducible
family. The Corollary thus follows from the fact that the divisibility of [C] in Pic(S) is a
topological character, hence constant under deformations of the pair (C, S). ✷

Next, we study the ramification of the forgetful map cg : KCg → Mg. To put our results in
perspective, recall that

dim(KCg) − dim(Mg) = (19 + g) − (3g − 3) = 2(11 − g).
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The primitively polarised case has been classically studied: for g > 11, the map cprim
g is birational

onto its image if g 6= 12, whereas its generic fibre is irreducible of dimension 1 if g = 12 ([12,
§ 5.3] and [28]); for g 6 11, the map cprim

g is dominant if g 6= 10 [27], and onto a hypersurface
of M10 if g = 10 [17], with irreducible general fibre in any case [13, 12]. The non-primitively
polarised cases have been studied in [9, 23] where it is shown that, if g > 11 then cg is generically
finite in all but possibly finitely many cases.

It turns out that in the range g > 11, the map cg has smooth fibres over the locus of curves
with Clifford index greater than 2.

(2.6) Theorem. Let (S,C) ∈ KCg with g > 11 and Cliff(C) > 2. Then

dim(ker(dcg)(S,C)) = dim(c−1
g (C)) = cork(ΦC) − 1.

Over curves with Cliff(C) 6 2 the situation is more complicated, if only because then the
spaces H0(NC/Pg−1 (−k)), k > 2, don’t necessarily vanish (equivalently the higher Gaussian
maps Φω�k

C
,ωC

, k > 2, are not necessarily surjective [41]), contrary to what happens when

Cliff(C) > 2, compare Lemma (3.6). See [13, Cor. 4.4] for the situation over the general curve
of genus g 6 6.

(2.7) Remark. Beauville [6, Sec. 5] observed that the map cg is not everywhere unramified, as
it has positive dimensional fibres at those points (S,C) such that S is an anticanonical divisor
of some smooth Fano threefold V . Theorems (2.6) and (2.1) together say that, in the range of
application of Theorem (2.6), all the ramification of cg is accounted for by this phenomenon.

This reflects the fact that for g 6 12, g 6= 11, the positive dimensionality of the generic fibre
of cprim

g is explained by the existence of Fano varieties with coindex 3 and Picard number 1 (see,
e.g., [34, Chap. 5]).

Proof of Theorem (2.6). We have the following chain of (in)equalities:

cork(ΦC) − 1 6 dim(c−1
g (C)) by Corollary (7.1)

6 dim(ker(dcg)(S,C)) obviously

= h1(TS(−1)) by Lemma (7.2)

6 cork(ΦC) − 1 by Proposition (7.3).

✷

The following result is a straightforward but noteworthy consequence of the proof of The-
orem (2.6). It says in particular that the corank of the Wahl map is the same for all smooth
hyperplane sections of a given K3 surface.

(2.8) Corollary. Let (S,L) ∈ Kg, and assume that g > 11 and Cliff(S,L) > 2. For every
smooth member C ∈ |L|, one has

cork(ΦC) = h1(TS(−1)) + 1.
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(2.9) It is a known fact that a threefold V in Pg+1 having as hyperplane section a K3 surface
S, possibly with ADE singularities, is an arithmetically Gorenstein normal Fano threefold with
canonical singularities, see Corollary (5.6). Consequently, in the setting of Theorem (2.1),
if we assume in addition that there exists an extension of C to a surface S with at worst
ADE singularities (so that S is a K3 surface, possibly singular), then the sections of Y with
linear subspaces of dimension g + 1 containing S are Fano threefolds of genus g, with canonical
singularities. We may thus use the boundedness of Fano varieties to derive the following corollary
from our previous results.

(2.10) Corollary. Let C be a smooth curve of genus g > 37, and Clifford index Cliff(C) > 2.
If the canonical model of C is a hyperplane section of a K3 surface S, possibly with ADE
singularities, then cork(ΦC) = 1.

Proof. If C is a hyperplane section of a K3 surface S and cork(ΦC) > 1, then by Corollary (5.6)
there is an arithmetically Gorenstein Fano threefold of genus g, with canonical singularities, and
having C as a curve section. By [29, Thm. 1.5] all such threefolds have genus g 6 37. ✷

(2.11) Remark. Based on the above statement, one may be tempted to speculate that all
smooth curves C of genus g > 37 with Cliff(C) > 2 have cork(ΦC) 6 1; this is not true.

If one drops the assumption that the curve C lies on a K3 surface in Corollary (2.10), one
has to deal with the possibility that all surface extensions of the curve C may have singularities
worse than ADE singularities. In such a situation, threefolds extending C are no longer Fano,
and there is no boundedness result in this case.

As a matter of fact, plane curves provide examples of curves of arbitrarily large genus, having
Clifford index greater than 2, and for which the Wahl map has corank 10 [42, Thm. 4.8].

(2.12) In Section 9 we study the extensions of the canonical models of the normalizations of
plane curves, continuing a long story contributed to by numerous authors (see at least [18, 3]
and the references therein). Such surface extensions are rational, hence not K3, and have indeed
an elliptic (in general non-smoothable) singularity.

We give an explicit construction of the universal extensions of such curves. These extensions
are not Fano, and provide an unbounded family of “fake Fano” varieties, i.e. irreducible varieties
X of dimension r+ 2 in Pg+r (r > 0), with non-canonical singularities, and with curve sections
canonical curves of genus g. Whereas fake K3 surfaces are fairly well understood (for instance,
there is a classification [18]), understanding fake Fano varieties is a wide open problem.

We use the precise relation between extensions and cokernel of the Gauss map to prove a
conjecture of Wahl [42, p. 80] in the case of Del Pezzo surfaces, see Proposition (9.5); the case
of the projective plane was already handled in [42].

(2.13) Remark. All canonical curves in smooth Fano threefolds V with Picard number ρ(V ) >
2 are Brill–Noether special.

More precisely, we claim that if V is a smooth Fano threefold V with ρ(V ) > 2, then the
smooth curves in V complete intersections of two elements of | −KV | are Brill–Noether special.
To see this, one has to consider one by one all the elements in the list [34, Chap. 12], and check
that in each case there is a line bundle on V that gives Brill–Noether special linear series on the
canonical curves contained in V . We do not dwell on this here.

Since all smooth Fano threefolds with Picard number 1 have genus g 6 12, g 6= 11, Re-
mark (2.13) together with (2.9) leads to the following question.
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(2.14) Question. Does there exist any Brill–Noether general curve of genus g > 11, g 6= 12,
such that cork(ΦC) > 1?

We cannot answer this question so far, for the following two reasons: (i) as far as we know,
no classification of Fano threefolds with Gorenstein canonical singularities is available, and (ii)
there is the possibility that all surface extensions of a given curve have singularities worse than
ADE singularities.

Note however that the singularities of a surface extension of a Brill–Noether–Petri general
curve cannot be too bad: it is proven in [3] that such an extension is smoothable to a K3 surface
if g > 12.

The so-called du Val curves (a particular instance of the curves we study in § 9, see [2]) are
an interesting example with regard to this problematic. Under suitable generality assumptions,
a du Val curve is Brill–Noether–Petri general [36, 2]; its Wahl map has corank 1 if g is odd
[1], and is unknown otherwise; this leaves Question (2.14) open. Note that when g is odd, the
canonical model of a general du Val curve has a unique surface extension, which is a rational
surface with a smoothable elliptic singularity (see Proposition (9.1)).

(2.15) In Corollary (8.5), we prove as a consequence of Proposition (2.4) (Proposition (8.4))
that cork(ΦC) 6 20 for any smooth curve of genus g > 11 and Cliff(C) > 2 lying on a smooth
K3 surface. We suspect that this bound is far from being sharp.

The corank of the Wahl map of a general tetragonal curve of genus g > 7 equals 9 [7]. On
the other hand, the corank of the Wahl map of a hyperelliptic (resp. trigonal) curve of genus g
is 3g − 2 [42, 14] (resp. g + 5 [7, 14]). Note that [42, 14] also assert that 3g − 2 is the maximal
possible value for the corank of the Gauss map of a curve of genus g, and is attained only for
hyperelliptic curves.

(2.16) Question. Does there exist a universal, genus independent, bound on cork(ΦC) for
curves C with Clifford index Cliff(C) > 2?

K3 surfaces. Generally speaking, the results about canonical curves discussed above pass to
their smooth extensions in Pg, namely K3 surfaces. First of all, we prove the following result
for K3 surfaces, analogous to Theorem (0.2). Given (S,L) ∈ Kg, we consider S in its embedding
in Pg = |L|∨.

(2.17) Theorem. Let (S,L) ∈ Kg be a polarized K3 surface of genus g > 11, such that

Cliff(S,L) > 2. Every ribbon v ∈ H1(TS � L∨) may be integrated to a unique threefold V in
Pg+1, up to projectivities.

As in Theorem (0.2), if v 6= 0 in the above statement, then V is not a cone. In particular,
a polarized K3 surface (S,L) with g > 11 and Cliff(S,L) > 2 lies on a Fano threefold (with
canonical Gorenstein singularities, see (2.9)) if and only if H1(TS � L∨) 6= 0.

The necessary background on ribbons is given in § 4, and the proof of Theorem (2.17) in
§ 6; it relies on the existence of a universal extension for canonical curves (see (2.2)) and on
Corollary (2.8). Next, Theorems (2.18) and (2.19) are the exact analogues for K3 surfaces of
Theorems (2.1) and (2.6).

(2.18) Theorem. Let (S,L) ∈ Kg be a polarized K3 surface with Clifford index Cliff(S,L) > 2.
We consider the following two propositions:
(i) h1

(

TS � L∨
)

> r;

7



(ii) there is an arithmetically Gorenstein normal variety X in Pg+r, with dim(X) = r + 2,
ωX = OX(−r), X not a cone, having the image of S by the linear system |L| as a section with
a linear subspace of dimension g.

If g > 11, then (i) implies (ii). Conversely, if g > 22 then (ii) implies (i).

By Lemma (3.5), one has

α(S) = h1
(

TS(−1)
)

= h1
(

TS � L∨
)

Similar to the curve case, if (ii) holds then h1
(

TS(−1)
)

> min(g + 1, r) by Lvovski’s Theo-

rem (0.1); in particular, S is extendable if and only if h1
(

TS(−1)
)

> 0.

Proof of Theorem (2.18). Let C be a smooth hyperplane section of S ⊂ Pg: it is a canonical
curve of genus g and Clifford index Cliff(C) = Cliff(S,L), and one has cork(ΦC) = h1(TS(−1))+
1 by Corollary (2.8). Then Theorem (2.18) follows at once from Theorems (2.1) and (2.2). ✷

(2.19) Theorem. Let (V, S) ∈ FSg with g > 11 and Cliff(C) > 2. Then

dim(ker(dsg)(V,S)) = dim(s−1
g (S)) = h1

(

TS(−1)
)

− 1.

The proof of Theorem (2.19) is exactly the same as that of Theorem (2.6). In analogy with
Corollary (2.8), it gives

(2.19.1) h1(TS(−1)) − 1 = h1(TV (−S)) = h2,1(V ) = b3(V )/2.

Theorem (2.19) is closely related to the following result.

(2.20) Theorem (Beauville, [6]). The morphism sR
g : FSR

g → KR
g is smooth and dominant.

Its relative dimension at the point (V, S) is b3(V )/2.

Beauville [6, (4.4)] asked: For those families of Fano threefolds for which b3 = 0, the map
sR
g is étale; is it an isomorphism onto an open substack of KR

g ? We give the following answer.

(2.21) Proposition. Let (V, S) ∈ FSg be such that g > 11, Cliff(S,− KV |S) > 2, and b3(V ) =

0. The fibre (sR
g )−1(S) is reduced to a point if and only if there is no non-trivial automorphism

of V induced by a projectivity of | −KV |.

Proof. One has h1(TS(−1)) = 1 by (2.19.1). From this we deduce by Theorem (2.17) that up to
isomorphism V is the only Fano threefold that may contain S as an anticanonical divisor. As
a consequence, the fibre s−1

g (S) has cardinality greater than 1 if and only if there are several
anticanonical divisors in V isomorphic to S. The latter property implies the existence of an
automorphism of V , induced by a projectivity of Pg+1, that transforms one copy of S as an
anticanonical divisor into another. ✷

3 – Gaussian maps and twisted normal bundles

(3.1) Let X be a smooth variety and L a line bundle on X . We consider the multiplication
map

(3.1.1) µL,ωX
: H0(L) � H0(ωX) → H0(L� ωX),
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whose kernel we denote by R(L, ωX). If X is a curve C, one defines the (L, ωC)-Gaussian map

(3.1.2) ΦL,ωC
: R(L, ωC) → H0(L� ω�2

C ) by
∑

i si � ti 7→
∑

i(si · dti − ti · dsi),

see [10] for more details. The map ΦωC ,ωC
identifies with the Wahl map ΦC .

(3.2) Lemma ([41], see also [13, Prop. 1.2]). Let C be a smooth curve of positive genus and L

a very ample line bundle on C. We consider C ⊂ Pr := P(H0(L)∨). Then one has the exact
sequence

(3.2.1) 0 → H0(L)∨ → H0
(

NC/Pr � L∨
)

→ coker(ΦL,ωC
)∨ → 0.

(3.3) In order to state some identifications worth keeping in mind, valid for a curve of arbitrary
genus, we sketch the proof of Lemma (3.2). The Euler exact sequence twisted by L∨, together
with Serre duality, gives the exact sequence

0 → H0(L)∨ → H0
(

TPr �L∨
)

→ H0(L�ωC)∨
TµL,ωC−−−−→ H0(L)∨

�H0(ωC)∨ → H1
(

TPr �L∨
)

→ 0,

from which it follows that:

0 → H0(L)∨ → H0
(

TPr |C � L∨
)

→ ker
(

TµL,ωC

)

→ 0 is an exact sequence;(3.3.1)

H1
(

TPr |C � L∨
)

∼= coker
(

TµL,ωC

)

∼= R(L, ωC)∨.(3.3.2)

Then, TΦL,ωC
identifies with the map

(3.3.3) H1
(

TC � L∨
)

→ H1
(

TPr |C � L∨
)

induced by the inclusion TC ⊂ TPr |C . Eventually, if C ⊂ Pr is neither a line nor a conic, the
normal bundle exact sequence twisted by L∨ gives the exact sequence

(3.3.4) 0 → H0
(

TPr |C � L∨
)

→ H0
(

NC/Pr � L∨
)

→ ker(TΦL,ωC
) → 0.

When C has positive genus, the map µL,ωC
is surjective [4, 8, 19], and Lemma (3.2) follows from

(3.3.1) and (3.3.4).

(3.4) The space H0(NC/Pr � L∨) is the Zariski tangent space to the space of deformations of

C in Pr fixing a given hyperplane section H ∩C. The inclusion of H0(L)∨ in this space, at the
left-hand-side of (3.2.1), comes from the isomorphism H0(L)∨ ∼= H0(TPr �L∨) given by (3.3.1),
which identifies H0(L)∨ with a space of infinitesimal automorphisms inside H0(NC/Pr � L∨).

It is useful in our setup to express this identification in coordinates. Fix homogeneous
coordinates (x0 : . . . : xr) such that H has equation x0 = 0. The space H0(TPr ) is the tangent
space at the origin to PGLr+1, and H0(TPr � L∨) is the tangent space at the origin to the
subgroup

Cr
⋊ C∗ < PGLr+1

of projectivities fixing H point by point. The latter are given in the affine chart x0 = 1 by
xi 7→ λxi+ai (1 6 i 6 r), with (a1, . . . , ar) ∈ Cr and λ ∈ C∗. The elements ofH0(TPr �L∨) thus
identify with the infinitesimal automorphisms given in affine coordinates by xi 7→ (1+tε0)xi+tεi
(1 6 i 6 r), where t2 = 0 and ε = (ε0, ε1, . . . , εr) ∈ Cr+1. The isomorphism H0(L)∨ ∼=
H0(TPr � L∨) maps the linear form x 7→ ε · x to the latter infinitesimal automorphism.

The following statement is a higher dimensional version of Lemma (3.2), and the proofs of
the two go along the same lines.

9



(3.5) Lemma. Let X be a smooth variety of dimension n > 2 with h1(OX) = 0, and L a very
ample line bundle on X, with (X,L) different from (Pn,OPn(1)). If X is a surface, we assume
in addition that the multiplication map µL,ωX

is surjective. We consider X ⊂ Pr := P(H0(L)∨).
Then one has the exact sequence

(3.5.1) 0 → H0(L)∨ → H0
(

NX/Pr � L∨
)

→ H1(TX � L∨) → 0.

If n = 2 and X is a K3 surface, then µL,ωX
is surjective, and moreover

H1
(

NX/Pr � L∨
)

∼= H2(TX � L∨).

Proof. The Euler exact sequence twisted by L∨, together with the the Kodaira Vanishing The-
orem imply that

(3.5.2) H0(TPr |X � L∨) ∼= H0(L)∨.

Moreover

(3.5.3) H1(TPr |X � L∨) = 0 :

this follows from the vanishing of H1(OX) and, if n > 3 the vanishing of H2(L∨), or if n = 2 by
the surjectivity of µL,ωX

.
Next we consider the twisted normal bundle exact sequence

(3.5.4) 0 → TX � L∨ → TPr |X � L∨ → NX/Pr � L∨ → 0.

By the Mori–Sumihiro–Wahl Theorem [26, 39], one has H0(TX �L∨) = 0. Then (3.5.1) follows
from (3.5.2), (3.5.3), and the long exact sequence of cohomology of (3.5.4).

If ωX is trivial then µL,ωX
is an isomorphism hence, if n = 2, H2(TPr |X �L∨) vanishes, and

the final assertion follows from the cohomology sequence of (3.5.4). ✷

(3.6) Lemma (see, e.g., [40, § 2] and [24, Lemma 2.7 (ii)]). Let X ⊂ Pn be a local complete
intersection variety such that the homogeneous ideal of X is generated by quadrics and the first
syzygy module is generated by linear syzygies. Then H0(NX(−k)) = 0 for all k > 2.

Note that this applies to any canonical curve C with Cliff(C) > 2 by [37, 31], resp. to any
K3 surface S ⊂ Pg with Cliff(S,OS(1)) > 2 [30]. In the latter case, Andreas Knutsen kindly
indicated to us how to prove that H0(NS(−2)) = 0 if g > 11 without any assumption on the
Clifford index. We don’t dwell on this here.

4 – Ribbons and extensions

In this Section we recall the required background on ribbons, and their relation with Wahl maps
in the case of canonical curves. We review [43, Proof of Thm 7.1] in some details, as we will
need this later. We make our observation that unicity holds in Theorem (0.2) (Remark (4.8)).

(4.1) Let Y be a reduced connected scheme and L an invertible sheaf on Y . A ribbon over Y

with normal bundle L (or conormal bundle L∨) is a scheme Ỹ such that Ỹred = Y , I2
Y/Ỹ

= 0

10



and L∨ ∼= IY/Ỹ = ker
(

OỸ → OY

)

. To each ribbon one associates the extension class eỸ ∈

Ext1
Y (Ω1

Y , L
∨) determined by the conormal sequence of Y ⊂ Ỹ :

0 // L∨ // OỸ
//

��

OY
//

��

0

eỸ : 0 // L∨ // Ω1
Ỹ

∣

∣

Y
// Ω1
Y

// 0

Note that the upper row is an extension of sheaves of algebras, while the lower one is an
extension of OY -modules; the middle and right vertical arrows are differentials and therefore
are not OỸ -linear. Conversely, to each element of Ext1

Y (Ω1
Y , L

∨) there is associated a unique
ribbon constructed in a standard way (see, e.g., [32, Thm. 1.1.10]).

(4.1.1) The trivial extension corresponds to the split ribbon, the unique one such that the

inclusion Y ⊂ Ỹ admits a retraction Ỹ → Y . Two extensions define isomorphic ribbons if and
only if they are proportional. Therefore the set of isomorphism classes of non-split ribbons is in
1 : 1 correspondence with P

(

Ext1
Y (Ω1

Y , L
∨)

)

.

(4.2) Let Y ⊂ X be a nonsingular hypersurface in a variety X smooth along Y . The conormal

sequence of Y ⊂ X yields an element κY/X ∈ Ext1
Y (Ω1

Y , N
∨
Y/X), defining a ribbon Ỹ over Y with

normal bundle NY/X . A priori we have another ribbon Ȳ over Y , defined by OȲ = OX/I
2
Y =

OX/OX(−2Y ); by definition, one has Ȳ ⊂ X . On the other hand it follows from the conormal
sequence of Ȳ ⊂ X that Ω1

X

∣

∣

Y
= Ω1

Ȳ

∣

∣

Y
. Therefore Ỹ = Ȳ . We call Ỹ a double hypersurface in

X and we denote it by 2YX .

(4.2.1) If H ⊂ Pr+1 is a hyperplane, then 2HPr+1 is a split ribbon. This can be seen in two ways.
Firstly, projecting from a point p /∈ H we obtain a retraction 2HPr+1 → H . Alternatively, the
extension defining 2HPr+1 belongs to Ext1

H(ωH ,OH(−1)) = H1(H,OH(r)) = 0, and therefore
splits.

(4.3) Consider a smooth variety X ⊂ Pn, and identify this Pn with a hyperplane H ⊂ Pn+1.

Let L = OX(1). The restriction map r : Ω1
H

∣

∣

X
→ Ω1

X induces a map

η : Ext1
X(Ω1

X , L
∨) → Ext1

X(Ω1
H

∣

∣

X
, L∨).

The following result characterizes in terms of this map η those abstract ribbons X̃ over X with
normal bundle L, which can be embedded in the embedded ribbon 2HPn+1 ⊂ Pn+1 in a way
compatible with the embedding X ⊂ Pn = H .

(4.4) Lemma (see [38, § 0]). In the situation of (4.3), consider an element e ∈ Ext1
X(Ω1

X , L
∨),

and let X̃ be the ribbon over X defined by e. There exists an inclusion X̃ ⊂ 2HPn+1 such that
X = X̃ ∩H if and only if η(e) = 0.

Proof. Consider the following diagram:

e2H
Pn+1

∣

∣

X
: 0 // L∨ // Ω1

Pn+1

∣

∣

X

��
✤

✤

// Ω1
H

∣

∣

X
// 0

η(e) : 0 // L∨ // E

��

// Ω1
H

∣

∣

X
//

r
��

0

e : 0 // L∨ // Ω1
X̃

∣

∣

∣

X

// Ω1
X

// 0
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There exists an inclusion X̃ ⊂ 2HPn+1 such that X = X̃ ∩ H if and only if there exists
a dashed arrow such that the diagram commutes, and the latter condition is equivalent to
η(e) ∼= e2H

Pn+1

∣

∣

X
. The result follows by the fact that the ribbon 2HPn+1 is split, whence

e2H
Pn+1

= 0. ✷

In particular, Lemma (4.4) tells us that if η is injective, then every ribbon X̃ ⊂ 2HPn+1 such
that X = X̃ ∩H is split.

(4.5) Lemma. When X = C is a canonical curve (resp. X = S a K3 surface), the map η is
TΦC (resp. 0).

Proof. In the case of a canonical curve, the identification of the map η with TΦC is merely the
definition of the Wahl map ΦC , see (3.3). In the case of a K3 surface, the target of the map η
is H1(TPg |S (−1)), which vanishes by (3.5.3). ✷

(4.6) Let C ⊂ Pg−1 be a canonical curve. The upshot of the previous paragraphs is that the

space P(ker(TΦC)) canonically identifies with the space of isomorphism classes of ribbons C̃ over
C for which there may be a surface S ⊂ Pg not a cone, such that C̃ = 2CS .

Similarly, for a K3 surface S ⊂ Pg, the space P(H1(TS(−1))) parametrizes isomorphism
classes of ribbons S̃ over S that may come from a threefold V ⊂ Pg+1 not a cone, having S as
a hyperplane section. The vanishing of η for K3 surfaces tells us that, quite surprisingly, if a
ribbon over S has the appropriate normal bundle OS(1), there is no obstruction to embed it as
an infinitesimal threefold in Pg+1 with hyperplane section S.

(4.7) Let us now recall some detail of Wahl’s extension construction [43, Proof of Thm 7.1]; it
follows Stevens’ approach, see, e.g., [35]. Let C ⊂ Pg−1 be a canonical curve with Cliff(C) > 2,
hence of genus g > 7. Let x = (x0 : . . . : xg−1) be homogeneous coordinates in Pg−1 and let
f(x) = 0 be the homogeneous quadratic equations of C in the form of a vector of length m. Since
Cliff(C) > 2, we know by [37, 31] that the homogenous ideal of C has a minimal presentation

(4.7.1) OPg−1 (−3)�m1
r

−→ OPg−1 (−2)�m f
−→ IC/Pg−1 −→ 0.

Assume now that g > 11. By [3, Theorem 3] one has H1(Pg−1, I2
C/Pg−1 (k)) = 0 for all k > 3,

so that [43, Theorem 7.1] can be applied: Consider a non-zero v ∈ coker(ΦC)∨, and let Cv be
the ribbon over C corresponding to v; this ribbon Cv lies in Pg by Lemmas (4.4) and (4.5); the
construction in the proof of [43, Theorem 7.1] provides a surface Sv in Pg such that Cv = 2CSv

.
We shall now outline this construction. Because of (3.2.1), coker(ΦC)∨ is a quotient of

H0(C,NC/Pg−1 (−1)); we choose a lift of v with respect to this quotient. The inclusion of

H0(C,NC/Pg−1 (−1)) in H0(C,OC(1))�m coming from (4.7.1) represents this lift of v as a length
m vector fv of linear forms on Pg−1. The scheme Cv is defined by the equations

(4.7.2) f(x) + tfv(x) = 0, t2 = 0

in the g-dimensional projective space with homogeneous coordinates (x : t) = (x0 : . . . : xg−1 : t).
Wahl proves that there is a vector hv of constants such that Sv is defined by the equations

(4.7.3) f(x) + tfv(x) + t2hv = 0.

12



(4.8) Remark. Let C ⊂ Pg−1 be a canonical curve of genus g > 11 and Clifford index

Cliff(C) > 2. Given a ribbon v ∈ ker(TΦC) over C, there is a surface Sv ⊂ Pg extending
it; it is uniquely determined up to the action of a group of projective transformations of Pg

pointwise fixing C, whose tangent space identifies with H0(ωC)∨ (see (3.4)).

This is a mere consequence of [43, Proof of Thm. 7.1]. In a nutshell, the idea is that any
1-extension of C is given by equations as in (4.7.3), where, by sequence (3.2.1), fv is determined
by v up to an element of H0(ωC)∨, i.e. up to an infinitesimal automorphism as in (3.4), which
does not change the isomorphism class of the ribbon Cv. Then the extension Sv depends only
on the choice of hv. Now any two such choices differ by an element of H0(C,NC/Pg−1 (−2)) as
we recall in (4.9) below, and this space is zero by Lemma (3.6) because Cliff(C) > 2.

(4.9) To justify our affirmations above, let us briefly recall how the vector of constants hv may

be chosen in [43, Proof of Thm. 7.1]. Set S = Sym• H0(C, ωC), IC ⊂ S the homogeneous ideal
of C in Pg−1, and SC = S/IC . In terms of graded S-modules, the presentation (4.7.1) writes

(4.9.1) S(−3)�m1
r

−→ S(−2)�m f
−→ S −→ SC −→ 0.

We need to recall the definition of T 2
SC

from [32, § 3.1.2]. Denote by

RC := ker(f) = im(r) ⊂ S(−2)�m

the graded module of relations. It contains the graded submodule R0 of trivial (or Koszul)
relations. An elementary remark shows that RC/R0 is killed by IC and therefore it is an SC -
module. Thus the presentation (4.9.1) induces an exact sequence:

RC/R0 −→ SC(−2)�m −→ IC/I
2
C −→ 0.

The following exact sequence,

(4.9.2) 0 → Hom(IC/I
2
C , SC) // Hom(S�m

C (−2), SC)
r̃
// Hom(RC/R0, SC) → T 2

SC
→ 0

Hom(S�m
C , SC(2))

defines T 2
SC

.
By flatness of the family of affine schemes over Spec(C[t]/(t2)) defined by (4.7.2), the rela-

tions r lift, i.e. there is an m×m1 matrix of constants rv such that

(f + tfv)(r + trv) = 0 mod t2, i.e. t(fvr + frv) = 0.

Now the vector of constants hv is only subject to the condition that the equations (4.7.3) define a
flat family of affine schemes over Spec(C[t]/(t3)) (this, as in the proof of [43, Proof of Thm. 7.1],
eventually ensures flatness over Spec(C[t])), which in turn boils down to

(4.9.3) t2(fvrv + hvr) = 0.

The map fvrv : S�m1 → S(1) → SC(1) induces a map belonging to Hom(RC/R0, SC)−2, and
condition (4.9.3) is equivalent to

hv ∈ Hom(S�m, S)0 = Hom(S�m
C , SC)0 = Hom(S�m

C , SC(2))−2
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being a lift of −fvrv ∈ Hom(RC/R0, SC)−2 with respect to the map r̃ in the exact sequence
(4.9.2); two such lifts differ by an element of

Hom(IC/I
2
C , SC)−2 = H0(C,NC/Pg−1 (−2)) = (0).

✷

The existence of a lift hv, on the other hand, comes from the identification (T 2
SC

)∨
−2

∼=

H1(Pg−1, IC/Pg−1 (−3)) [43, Cor. 1.6] and the vanishing of the latter cohomology group [3,
Thm. 3].

(4.9.4) Observation. In the above proof, as both fv and rv depend linearly on v, and hv is a lift
of −fvrv, the vector of constants hv depends quadratically on v.

(4.10) Remark. It is not always true that the extension of a ribbon over a canonical curve
is unique. Beauville and Mérindol [5, Proposition 3 et Remarque 4] classify the curves C for
which there is a K3 surface extending the trivial ribbon over the canonical model of C (this
indeed contradicts the unicity, as in any event the cone over C extends the trivial ribbon). They
show that such a curve is either the normalization of a plane sextic, or a complete intersection
of bidegree (2, 4) in P3. In both cases one has H0(C,NC/Pg−1 (−2)) 6= 0; we leave this to the
reader.

(4.11) The line of argument of (4.9) may be applied to the more general situation in which C is a
curve with Clifford index greater than 2, embedded by the complete linear system of an arbitrary
very ample line bundle L, with the proviso that the multiplication map µL,ωC

is surjective,
which is equivalent to the condition that C has positive genus. If the multiplication map is not
surjective, then the relation between H0(NC � L∨) and ker(TΦL,ωC

) is more complicated (see
(3.3)), and indeed for rational normal curves of degree d > 3, there exist ribbons with several
extensions, see [44, p. 276]. For non-linearly normal curves, the same problem may also appear
in positive genus, e.g., for hyperplane sections of irregular scrolls.

5 – Wahl maps and extensions of canonical curves

This Section is devoted to the proof of our main extension result, Theorem (2.1), and its variant
(2.2). We start by recalling the following auxiliary result.

(5.1) Theorem. Let X ⊂ Pm be a variety of dimension n having a linear section which
is a canonical curve. Then X is arithmetically Gorenstein, normal, and has canonical sheaf
ωX ∼= OX(2 − n).

This theorem is clear for n = 1 and follows in general by the hyperplane principle; proofs in
the cases n = 2, 3 may be found in [18], [16] respectively.

(5.2) For the rest of the Section, we let C ⊂ Pg−1 be a canonical curve of genus g > 11 and
Clifford index Cliff(C) > 2. We choose a section

(5.2.1) v ∈ ker(TΦC) 7−→ fv ∈ H0(C,NC/Pg−1 (−1))

of the extension (3.2.1) (for L = ωC) of vector spaces, and fix homogeneous coordinates (x :
t) = (x0 : . . . : xg−1 : t) on Pg, so that for all v ∈ ker(TΦC) there is a uniquely determined
extension Sv of the ribbon Cv in Pg, given by equations (4.7.3).
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(5.3) Lemma. Let v ∈ ker(TΦC), v 6= 0, and λ ∈ C∗. The surface Sλv is obtained by applying
to Sv the projective transformation ωλ−1 : (x : t) 7→ (x : λ−1t).

Proof. By linearity of the map (5.2.1), the equations of Sλv are

f(x) + λtfv(x) + t2hλv = 0.

Then the equations of the surface ωλ(Sλv) are

f(x) + tfv(x) +
t2

λ2
hλv = 0.

The surface ωλ(Sλv) thus contains Cv, and therefore coincides with Sv. ✷

We remark that the above proof shows that hv depends quadratically on v, thus giving
another justification to our Observation (4.9.4).

(5.4) Proposition. Set cork(ΦC) = r + 1 and Pr = P(ker(TΦC)). There is a diagram1

(5.4.1) S ⊂

p
%%❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

P(O�g
Pr � OPr (1))

π

��

Pr

where p : S → Pr is a flat family of surfaces such that:
(i) the intersection of S with P(O�g

Pr ) ∼= Pg−1 × Pr is equal to C × Pr;

(ii) for any ξ = [v] ∈ Pr, the inclusion Sξ ⊂ P(O�g
Pr � OPr (1))ξ ∼= Pg of fibres of p and π, is

the extension Sv of C = S ∩ P(O�g
Pr )ξ.

Proof. For simplicity we will do the case r = 1, the general case being similar. Let v0, v1 be a
basis of coker(ΦC)∨. For i = 0, 1, consider the diagrams

(5.4.2) Si ⊂

pi
!!❈

❈

❈

❈

❈

❈

❈

❈

Pg × A1

πi

��

A1

given by the equations

f(x) + tfv0+a1v1
(x) + t2hv0+a1v1

= 0, resp. f(x) + tfa0v0+v1
(x) + t2ha0v0+v1

= 0,

where a1, resp. a0, are affine coordinates on A1. By Lemma (5.3), these two diagrams are
isomorphic over A1 −{0} via the map ([x : t], a1) ∈ S0 7→ ([x : a1t], 1/a1) ∈ S1. Diagram (5.4.1)
is obtained by glueing the diagrams (5.4.2) via this map. ✷

1Beware that here P(O�g

Pr � OPr (1)) denotes the projective bundle of one-dimensional quotients, whereas
everywhere else in the text we use the classical notation for projective spaces.
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(5.5) Corollary. Under the assumptions of Proposition (5.4), there is an arithmetically Goren-
stein normal variety X of dimension r + 2 in Pg+r with ωX ∼= OX(−r), not a cone, having
C as a linear section, and satisfying the following property: the surface linear sections of X
containing C are in 1 : 1 correspondence with the surface extensions of C in Pg that are not
cones.

Proof. We keep the notation of Proposition (5.4). The O(1) bundle of P(O�g
Pr � OPr (1)) defines

a morphism φ to Pg+r which is the blow-up of Pg+r along the Pg−1 image of the trivial
subbundle P(O�g

Pr ). Let X = φ(S). The map φ|S is the contraction of C × Pr = S ∩ P(O�g
Pr )

to C ⊂ Pg−1 ⊂ Pg+r . The fibres of p are isomorphically mapped to the sections of X with
the Pg’s containing the Pg−1. None of these surfaces is a cone, because the corresponding first
order extensions of C on them are non-trivial. Therefore X is not a cone. The property that the
surface linear sections of X containing C are in 1 : 1 correspondence with the surface extension
of C in Pg other than cones follows from assertion (ii) in Proposition (5.4) and Remark (4.8).
The rest of the assertions follows by Theorem (5.1). ✷

(5.6) Corollary. Consider a non-negative integer r such that cork(ΦC) > r + 1.
(5.6.1) There is an arithmetically Gorenstein normal variety Y ⊂ Pg+r of dimension r+2 with
ωY ∼= OY (−r), not a cone, having C as a curve section with Pg−1.
(5.6.2) Assume r > 0. If there is a surface section of Y with at worst ADE singularities, then
the general threefold section V of Y has canonical singularities.

Note that (5.6.2) applies to a universal extension of C as soon as C sits on a K3 surface
with at worst ADE singularities.

Proof. Assertion (5.6.1) follows directly from the previous Corollary (5.5): take Y a linear section
of X containing C of the appropriate dimension. To prove (5.6.2), we note that by the argument
in [29, Introduction], if V had non-canonical singularities, it would be a cone, a contradiction.
✷

6 – Integration of ribbons over K3 surfaces

In this Section we prove Theorem (2.17), to the effect that any ribbon on a K3 surface in
Pg may be integrated to a unique threefold in Pg+1 (under suitable assumptions). It will be
deduced from the integrability of ribbons on canonical curves by a hyperplane principle. Key
to this principle is the relation between ribbons over a variety in projective space and over its
hyperplane sections, as explained in the following paragraph.

(6.1) In this paragraph, we use without further reference the notions and results recalled in
Section 4. Let S be a smooth K3 surface in Pg, and C a smooth hyperplane section of S. Recall
that we denote by [2CS ] ∈ P(ker(TΦC)) ⊆ P(H1(TC(−1)) the ribbon over C, considered up to
isomorphism, given by its being a hypersurface in S.

Let [S̃] ∈ P(H1(TS(−1))). This is the isomorphism class of the ribbon S̃ ⊂ Pg+1 over S,
contained in the ribbon 2(HS)Pg+1 over the hyperplane HS = 〈S〉, and such that S̃ ∩HS = S.

Now for any hyperplane H ⊂ Pg+1 containing C, H 6= HS , the intersection H ∩ S̃ is a
ribbon CH over C in H ∼= Pg, contained in the ribbon 2〈C〉H over 〈C〉 ∼= Pg−1, and such that
CH ∩ 〈C〉 = C. As such, it determines a point of P(ker(TΦC)).

16



Thus, the pencil of hyperplanes of Pg+1 containing C defines a line in P(ker(TΦC)) passing
through the point [2CS ]; in other words, S̃ defines a point lS̃ ∈ P

(

ker(TΦC)
)

/[2CS ].2 We are
abusing terminology here, as this “line” may actually be reduced to the sole point [2CS ] if all
H containing C cut out the same ribbon over C on S̃, and in this case lS̃ is not well-defined; it
will be a consequence of (6.2) below that this does not happen.

(6.2) Proof of the existence part of Theorem (2.17). We identify S with its image in Pg = |L|∨.
Choose any smooth hyperplane section C of S. It satisfies the same assumptions as S on the
genus and Clifford index, so we may consider its universal extension X ⊂ Pg+r constructed in
Corollary (5.5), with

r = cork(ΦC) − 1 = h1(TS(−1)),

the second equality in this equation coming from Corollary (2.8). By Corollary (5.5), we may
consider S as a linear section of X .

Now, every linear (g + 1)-subspace Λ of Pg+r containing S cuts out a threefold XΛ on X
having S as a hyperplane section, hence determines a ribbon 2SΛ := 2SX∩Λ ∈ H1(TS(−1)),
which in turn determines a point of P

(

ker(TΦC)
)

/[2CS ] via the mechanism described in (6.1).
We thus have a composed map

(6.2.1) ψS : Λ ∈ Pg+r/〈S〉 7−→ [2SΛ] ∈ P(H1(TS(−1))) 7−→ l2SΛ
∈ P

(

ker(TΦC)
)

/[2CS ],

albeit maybe only defined so far on a (possibly empty!) Zariski open subset of Pg+r/〈S〉 because
of the abuse of terminology mentioned in (6.1).

We claim that the universality of X implies the surjectivity of ψS . Consider a point of
P

(

ker(TΦC)
)

/[2CS ], and represent it as a point [C̃] of P(ker(TΦC)) distinct from [2CS ]. The

universality of X tells us that there exists a linear g-subspace Γ of Pg+r such that C̃ = 2CX∩Γ.
Then Λ := 〈Γ, S〉 is a (g + 1)-subspace of Pg+r such that, by construction, ψS(Λ) = [C̃]. This
proves our claim.

Now note that in diagram (6.2.1), all three projective spaces have the same dimension r− 1,
and the two maps whose composition is ψS are linear. Therefore, the map ψS may be surjective
only if it is an isomorphism, and the two maps in (6.2.1) are isomorphisms as well. We conclude
by observing that the surjectivity of the first map in (6.2.1) tells us that for every isomorphism
class of ribbons [S̃] ∈ P(H1(TS(−1))) there is a threefold X ∩ Λ such that [S̃] = [2SX∩Λ]. ✷

(6.3) Proof of the unicity part of Theorem (2.17). Consider two threefold extensions V and
V ′ of S such that the two corresponding ribbons 2SV and 2SV ′ are proportional. It follows
from the considerations in (6.1) and the unicity of integrals of ribbons over canonical curves
(Remark (4.8)), that the two threefolds V and V ′ respectively contain two isomorphic pencils
of hyperplane sections, and this implies that they are isomorphic. ✷

(6.4) Remark. In the case of the trivial ribbon, the conclusion of (6.3) is that if a K3 surface
as in Theorem (2.17) sits on a threefold V ⊂ Pg+1, not a cone, then the conormal exact sequence
of S in V is not split. By reproducing the argument of [5, Proposition 3], this implies that there
does not exist any automorphism of V of order 2 and with S as fix locus.

2Here and in the rest of this Section, we use the following non-standard but convenient notation: if W is a
vector subspace of V , we write P(V )/P(W ) for P(V/W ).
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7 – Study of the moduli maps

This Section contains the building blocks of the proofs of Theorems (2.6) and (2.19). The
following Corollary of Theorems (0.2) and (2.17) comes in a straightforward manner once one
understands the latter Theorems as integration results for ribbons.

(7.1) Corollary. Let (S,C) ∈ KCg (resp. (V, S) ∈ FSg) be such that Cliff(C) > 2 (resp.
Cliff(S,− KV |S) > 2). Then

dim(c−1
g (C)) > cork(ΦC) − 1 (resp. dim(s−1

g (S)) > h1
(

TS(−1)
)

− 1).

Proof. Consider the family p : S → P(ker(TΦC)) constructed in Proposition (5.4). The K3
surface S is a fibre of p, so the fibre S[v] of p over the general [v] ∈ P(ker(TΦC)) is a K3 surface
as well, hence gives rise to a point (S[v], C) ∈ c−1

g (C). We claim that these points are pairwise
distinct, from which the assertion follows at once.

Let [v], [v′] be two distinct points of P(ker(TΦC)). If S[v] and S[v′] are not isomorphic, then
the claim is trivial; else, we may assume S[v] = S[v′], and call this surface S0. There are two
copies C[v] and C[v′] of C in S0, and since [v] 6= [v′], the respective infinitesimal neighbourhoods
of C[v] and C[v′] in S0 are not isomorphic, which implies that C[v] and C[v′] correspond to two
distinct points of the linear system |OS0

(C)| and there is no automorphism of S0 sending one
of the two curves to the other. This proves the first instance of the statement.

The proof of the second instance is exactly the same, after one notes that there exists a
family p : V → P(H1(TS(−1))) with properties analogous to those of the previous family
p : S → P(ker(TΦC)), as follows from the arguments in Section 6: this is Theorem (2.18)! ✷

The two following results bound from above the dimensions of the kernels of the differentials
of cg and sg.

(7.2) Lemma (see [32], § 3.4.4). Let (S,C) ∈ KCg (resp. (V, S) ∈ FSg). The kernel of the

differential of cg at (S,C) (resp. of sg at (V, S)) is H1
(

TS(−C)
)

(resp. H1
(

TV (−S)
)

).

(7.3) Proposition. Let (S,C) ∈ KCg (resp. (V, S) ∈ FSg) be such that Cliff(C) > 2 (resp.
Cliff(S,− KV |S) > 2). Then

h1(TS(−1)) + 1 6 cork(ΦC) (resp. h1(TV (−1)) + 1 6 h1(TS(−1))).

Proof. We prove only the first instance of the statement, the other one being entirely similar.
The curve C is the complete intersection of S ⊂ Pg with a hyperplane H ∼= Pg−1, so one has

(7.3.1) NC/Pg−1
∼= NS/Pg

∣

∣

C
.

By Lemma (3.6) one has H0(NS/Pg (−2)) = 0, so one deduces from the twisted restriction exact
sequence that

(7.3.2) h0(NS/Pg (−1)) 6 h0(NS/Pg

∣

∣

C
(−1)).
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We may now conclude:

cork(ΦC) + g = h0(NC/Pg−1 (−1)) by Lemma (3.2)

= h0(NS/Pg (−1)
∣

∣

C
) by (7.3.1)

> h0(NS/Pg (−1)) by (7.3.2)

= h1(TS(−1)) + g + 1 by Lemma (3.5).

✷

8 – A general bound on the corank of the Wahl map

In this Section we prove that under our usual assumptions, a given canonical curve can be
integrated to a given K3 surface in only finitely many ways, and use this to bound the corank of
the Wahl maps of the curves that sit on a K3 surface. We first recall the two following results
from [18].

(8.1) Theorem [18, p. iii]. Let S be a non-degenerate projective surface in Pg, having as a
hyperplane section a smooth canonical curve C ⊂ Pg−1 of genus g > 3. Then only the following
cases are possible:
(i) S is a K3 surface with canonical singularities;
(ii) S is a rational surface with a minimally elliptic singularity, plus perhaps canonical singu-
larities;
(iii) S is a ruled surface over a curve of genus q > 1 with only one singularity of genus q + 1,
plus perhaps canonical singularities;
(iv) S is a ruled surface over a curve of genus q = 1, with two simple elliptic singularities, plus
perhaps canonical singularities.

Surfaces of type (ii)–(iv) are fake K3 surfaces; their Kodaira dimension is −∞.

(8.2) Proposition [18, Theorem 2.1, p. 38]. Assume we are in one of the cases (iii)–(iv)
of Theorem (8.1). Let µ : S → Σ be a minimal model of S; it has a structure of P1-bundle
f : Σ → D, where D is a smooth curve of genus q. If the image of C in Σ is a section of f ,
then S is a cone over C.

(8.3) Let C ⊂ Pg−1 be a smooth canonical curve of genus g > 11 with Cliff(C) > 2, set
r + 1 = cork(ΦC) and Pr = P(coker(ΦC)∨), and assume r > 0.

Consider the flat family p : S → Pr constructed in Proposition (5.4). Note that no surface
of this family is a cone over C. Suppose that the general member of this family is a K3 surface,
possibly with ADE singularities. Then we have the rational modular map

s : Pr
99K Kcan

g ,

whose indeterminacy locus Z consists of the points [v] ∈ Pr such that the corresponding exten-
sion Sv of C is a fake K3 surface. So s is defined on the dense Zariski open subset U = Pr −Z.

(8.4) Proposition. The morphism s|U : U → Kcan
g is finite on its image.

Proof. We argue by contradiction, and suppose there is an irreducibe curve γ ⊂ U such that s(γ)
is a point. Since s corresponds to a linear system on Pr, this implies that the Zariski closure Γ
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of γ in Pr intersects the indeterminacy locus Z of s at a point ξ. Looking at the normalization
of Γ at ξ, we see that there is an analytic morphism ν : D → Γ, where D is the complex unit
disc and ν(0) = ξ. By pulling back p : S → Pr to D, we find a flat family p′ : S′ → D which is
isotrivial over D − {0}, with general fibre a K3 surface S1, and central fibre a fake K3 surface
S0. Since the automorphisms of S1 have finite order we may assume, up to performing a finite
base change, that p′ is actually trivial over D − {0}. Moreover there is an inclusion:

D × C

pr1
  ❆

❆

❆

❆

❆

❆

⊂ S′

p′

��

D

Now consider a semistable reduction p̃ : S̃ → D of p′ : S′ → D; we still have the inclusion:

(8.4.1) D × C

pr1
��
❅

❅

❅

❅

❅

❅

⊂ S̃

p̃
��

D

The central fibre of p̃ consists of the proper transform S̃0 of the central fibre S0 of p, plus
possibly other components. The central fibre C of the trivial family D ×C ⊂ S̃ sits on S̃0, and
is entirely contained in the smooth locus of the central fibre of p̃.

Since p′ is trivial over D − {0}, so is p̃. This implies that there is a diagram:

S̃ ψ
//❴❴❴

p̃
$$■

■

■

■

■

■

■

■

■

D × S1

pr1

��

D

where ψ is a birational map contracting all components of the central fibre of p̃ but one, and S1

is the general fibre of p′. By composing the inclusion (8.4.1) with ψ, we still have an inclusion:

(8.4.2) D × C

pr1

$$■
■

■

■

■

■

■

■

⊂ D × S1

pr1

��

D

We claim that S̃0 has to be contracted by ψ. Indeed, being birational to S0 which is a fake
K3 surface, S̃0 has Kodaira dimension −∞, whereas S1 is a genuine K3 surface. On the other
hand, because of the inclusion (8.4.2), S̃0 has to be contracted to a curve isomorphic to C. This
implies that S̃0 is a ruled surface over C, and so is S0. Consider a minimal model µ : S0 → Σ
of S0 (and of S̃0 as well). Then Σ is a P1-bundle f : Σ → C, and the image of C to Σ via µ is
a section of f : Σ → C. By Proposition (8.2), S0 must be a cone over C, a contradiction. ✷

(8.5) Corollary. Let C be a canonical curve of genus g > 11 in Pg−1, with Clifford index
Cliff(C) > 2. If C is a hyperplane section of a K3 surface S (possibly with ADE singularities)
in Pg, then cork(ΦC) 6 20.

Proof. By Proposition (8.4), there is a rational map s : P(ker(TΦC)) 99K Kcan
g which is generically

finite on its image. Therefore cork(ΦC) − 1 6 dim(Kcan
g ) = 19. ✷

20



(8.6) Corollary (Proposition (2.4)). Let (S,C) ∈ KCcan
g with g > 11 and Cliff(C) > 2. There

are only finitely many members C′ of |OS(C)| that are isomorphic to C.

Proof. Assume by contradiction that there is an infinite family (Ci) of curves isomorphic to
C in |OS(C)|. By Proposition (8.4), we may furthermore assume that the curves Ci all have
the same ribbon in S. We consider the pair (S,C) embedded in Pg. Taking C as a common
canonical model for all the curves Ci, we obtain a family (Si) of surfaces in Pg, such that each
Si is the image of S by a projectivity of Pg fixing C. By unicity of the integration of ribbons, see
Remark (4.8), we must have Si = S for all i, and it follows that S has infinitely many projective
automorphisms, a contradiction. ✷

(8.7) Remark. It is claimed in [11, Proposition 1.2 and Corrigendum] that for a smooth curve

C sitting on a K3 surface S, one has H0(C, TS|C) = 0; this would imply the injectivity of the
coboundary map

∂ : H0(C,NC/S) → H1(C, TC)

induced by the conormal exact sequence of C in S.
Let |OS(C)|◦ be the Zariski open subset of |OS(C)| parametrizing smooth members of the

linear system, and c : |OS(C)|◦ → Mg be the morphism mapping a smooth member C′ of
|OS(C)| to its modulus in Mg. Since ∂ is the differential of c, the injectivity of ∂ would be a
stronger result than Corollary (8.6).

However, there exist smooth curves C sitting on K3 surfaces S for which the conormal exact
sequence is split [5, Proposition 3 et Remarque 4], see also Remark (4.10). For such pairs (C, S),
the boundary map ∂ is downright zero. This shows that there is a problem with the claim of
[11, Proposition 1.2 and Corrigendum]. This problem does not affect the results of [ibid.].

Note that for a pair (C, S) with split conormal sequence as above, the assumptions of Propo-
sition (8.4), described in (8.3), are not verified: one has Cliff(C) = 2, as C carries either a g1

4 or
a g2

6 [5, Remarque 4], see also Remark (4.10).

9 – Plane curves with ordinary singularities

In this Section we construct an extension of plane curves with a 6 9 ordinary singularities to
an (11 − a)-dimensional variety, and thus give a lower bound on the coranks of their respective
Gauss maps. The construction proposed in the following proposition is not new, see, e.g., [18].

(9.1) Proposition. Let C ⊂ P2 be an integral curve with a 6 9 singular points in general
position, such that a simple blow-up of P2 at these a points resolves the singularities of C
(e.g., C has a ordinary singular points in general position and no other singularities). Assume
moreover that C has genus g > 3. There is a family of dimension 9 − a of mutually non-
isomorphic surfaces in Pg having the canonical image of the resolution of C as a hyperplane
section.

Proof. Let C ⊂ P2 be an integral curve of degree d satisfying the assumptions of the Proposition;
we call p1, . . . , pa its singular points, and m1, . . . ,ma > 1 the respective multiplicities of C at
these points. Let T be a smooth cubic passing through p1, . . . , pa. We call pa+1, . . . , ph the
intersection points, possibly infinitely near, of T and C off p1, . . . , pa, and set ma+1 = · · · =

mh = 1, so that
∑h

i=1 mi = 3d.
Consider the blow-up σT : P̃T → P2 at all the intersection points p1, . . . , ph of T and C,

and call Ei the exceptional divisor over the point pi (note that it is a chain of reduced rational
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curves, such that E2
i = −1). The proper transform CT of C is smooth by assumption, and

disjoint from the proper transform T̂ of T . The curve T̂ is an anticanonical divisor on P̃T . Let
H be the line class on P2, and consider the linear system

(9.1.1)
∣

∣CT
∣

∣ =
∣

∣d·σ∗
TH−

∑h
i=1 miEi

∣

∣ =
∣

∣(d−3)σ∗
TH−

∑h
i=1(mi−1)Ei+ T̂

∣

∣ =
∣

∣K
P̃T

+CT + T̂
∣

∣.

It restricts to the complete canonical series on CT , and defines a birational map φT : P̃T 99K Pg.
It follows that the image surface ST = φT (P̃T ) is an extension of the canonical model of the
resolution of C. The curve T̂ is contracted to an elliptic singularity by φT .

Now the cubic curves passing through p1, . . . , pa form a linear system of dimension 9 − a,
and the generic such cubic is smooth. The Proposition therefore follows from the fact that two
different choices of T give two non-isomorphic surfaces ST , which is the content of Lemma (9.2)
below. ✷

(9.2) Lemma. Maintain the notation of the proof of Proposition (9.1), and let T ′ be another
cubic satisfying the same assumptions as T . The surfaces ST and ST ′ are not isomorphic.

Proof. The cubics through p1, . . . , pa cut a base-point-free g9−a
h−a on the normalisation of C. On

the other hand, ST and ST ′ each have h− a lines, corresponding respectively to the simple base
points of the linear systems σT∗|CT | and σT ′∗|CT ′ | on the plane.

If ST and ST ′ are isomorphic, the two elliptic curves T and T ′ are isomorphic as well. Also,
the isomorphism ST ∼= ST ′ sends the aforementioned lines on ST to their counterparts on ST ′ .
This implies that T and T ′ cut out the same member of the g9−a

h−a on the normalisation of C,
hence coincide. ✷

Note that if h > 19 (recall that h is the number of points in the set-theoretic intersection
C ∩ T ), the surfaces ST are neither K3 surfaces nor limits of such, because in this case the
curve T̂ is contracted by φT to an elliptic singularity which is not smoothable; see [3] and the
references therein for more details.

(9.3) Corollary. Let C ⊂ P2 be an integral curve of geometric genus g > 11, with a 6 9
singular points in general position, such that a simple blow-up of P2 at these a points resolves
the singularities of C. Let C̄ be the normalization of C. One has

(9.3.1) cork(ΦC̄) > 10 − a.

Proof. We first prove (9.3.1) under the assumption that Cliff(C) > 2. By Proposition (9.1),
there is a family of dimension 9 − a of mutually non-isomorphic extensions of the canonical
model of C̄. By Remark (4.8), these correspond to mutually non-isomorphic ribbons C̃ over
C̄ ⊂ Pg−1, and it follows that P(ker(TΦC)) has dimension at least 9 − a, see (4.6).

On the other hand, if Cliff(C) 6 2, then C̄ is either hyperelliptic, trigonal, or tetragonal,
since g > 11. In all these cases, it is known that cork(ΦC̄) > 10 − a by the results quoted in
(2.15), except possibly if a = 0 and C̄ is tetragonal; in the latter case C is necessarily a smooth
plane quintic, in contradiction with the assumption g > 11. ✷

(9.4) Conjecture [42, p. 80]. Let S be a regular surface. There should exist an integer g0 such
that for every non-singular curve C ⊂ S of genus g > g0, one has

cork(ΦC) > h0(S, ω−1
S ).

In the same article, this conjecture is proved for S = P2 [42, Thm. 4.8].
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(9.5) Proposition. The Wahl Conjecture (9.4) holds for any blow-up of the projective plane
having an anticanonical curve, e.g., when S is the projective plane blown-up at a 6 9 points in
general position.

Proof. Let ε : S → P2 be the blow-up of a 6 9 points in general position, and set g0 = 11. One
has h0(S, ω−1

S ) = 10 − a. Let C be a smooth curve in S of genus g > g0; it is the normalization
of ε(C), and the latter has at most a singular points in general position resolved in one single
blow-up, namely ε|C . It thus follows from Corollary (9.3) that cork(ΦC) > 10 − a as required.

The same argument works for any blow-up of the plane having an anticanonical curve T̂
(which is easily seen to have h0(OT̂ ) = 1); we leave this to the reader. ✷

(9.6) Remark. Corollary (9.3) and Conjecture (9.4) contradict [22, Theorem B, (ii)], which
asserts that the Wahl map of the normalization of a plane curve of degree d with one node and
one ordinary (d − 5)-fold point, and no other singularity, has corank 7. We double-checked,
using cohomological methods, that the corank is indeed greater or equal than 8 in this case.

(9.7) Example. For curves C as in Proposition (9.1), it is possible to construct a (9 − a)-
extension containing as linear sections all the surface extensions constructed in the proof of
Proposition (9.1). This is the universal extension of C whenever one has equality in (9.3.1),
which happens when C is smooth [42, Thm. 4.8], or has up to two nodes [22], or in various other
cases [22, 33].

Assume for simplicity that C is smooth, and consider the product P2 × P9. It contains
C = C × P9 and the universal family of plane cubics T over P9 ∼= |OP2 (3)|. We let L be the
linear system of hypersurfaces of bidegree (d, 1) in P2 × P9 containing the intersection scheme
C ∩ T ; we claim that it defines a birational map, the image of which is the extension X ⊂ Pg+9

of C we are looking for.
We first observe that the linear system L restricts on the fibres of the second projection to

the linear systems (9.1.1) defining the various extensions of the canonical model of C. It follows
that it defines a birational map, and that its image has as linear sections the various surfaces
images of the linear systems (9.1.1). Moreover, it maps T to a P9; for each surface extension
ST of the canonical model of C, this P9 image of T intersects 〈ST 〉 ∼= Pg at one point, which is
the elliptic singularity of ST .

On the other hand, the members of L restrict to hyperplanes on the fibres of the first
projection; over a point p ∈ C ⊂ P2, they all restrict to the same hyperplane of P9 ∼= |OP2 (3)|,
namely the one parametrizing plane cubics passing through p. It follows that the birational map
defined by L contracts C = C × P9 to C. We leave the remaining details to the reader.
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