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IRREDUCIBLE UNIRATIONAL AND UNIRULED COMPONENTS OF

MODULI SPACES OF POLARIZED ENRIQUES SURFACES

CIRO CILIBERTO, THOMAS DEDIEU, CONCETTINA GALATI,
AND ANDREAS LEOPOLD KNUTSEN

Abstract. We prove that, under suitable conditions, some moduli spaces of polarised
Enriques surfaces are irreducible, unirational (resp. uniruled).

1. Introduction

Let E denote the smooth, irreducible 10-dimensional moduli space parameterizing
smooth Enriques surfaces over C, which is known to be rational (cf. [9]), and Eg,φ
(respectively, Eg,φ) denote the moduli space of polarized (resp., numerically polarized)
Enriques surfaces, that is, pairs (S,H) (resp., (S, [H])) such that [S] ∈ E andH ∈ Pic(S)
(resp., [H] ∈ Num(S)) is ample with H2 = 2g − 2 > 2 and φ = φ(H) where

(1) φ(H) := min
{
E ·H | E2 = 0, E > 0

}
,

cf., e.g., [6]. Thus, g is the arithmetic genus of all curves in the linear system |H|. There
is an étale double cover ρ : Eg,φ → Eg,φ mapping (S,H) and (S,H +KS) to (S, [H]) by
[6, Prop. 4.1].

It is an interesting open problem to determine the Kodaira dimension of the various
irreducible components of Eg,φ and Eg,φ (cf. [5, §4]), as well as identifying its various
irreducible components, as these spaces are reducible in many cases. It is also in general
an open problem to determine on which irreducible components of Eg,φ the inverse image
via ρ is irreducible or not. It had been conjectured that the moduli spaces of polarized
Enriques surfaces are all unirational (or at least, of negative Kodaira dimension), but a
recent paper of Gritsenko and Hulek [6] disproves this (cf. [5, §4]). On the other hand, it
is known that E3,2 is irreducible and rational (cf. [2]), that E4,2 is irreducible and rational
(this is the classical case of Enriques sextics, cf. [5, §3]) and that E6,3 is irreducible and

unirational (cf. [11]). Moreover, Eg,φ has negative Kodaira dimension for all g 6 17
(cf. [6]).

In this paper we improve the above results, by describing in many cases (for un-
bounded g and φ) the different irreducible components of Eg,φ and Eg,φ and proving
their unirationality or uniruledness. To explain our results, we need to introduce some
notions.

Recall that by [8, Lemma 2.12], any effective line bundle H such that with H2 > 0
on an Enriques surface may be written as

(2) H ≡ a1E1 + · · ·+ anEn

(here ≡ denotes numerical equivalence), where:
• all Ei are effective, non–zero, isotropic, i.e., E2

i = 0, and primitive, i.e., indivisible in
Num(S);
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• all ai are positive integers;
• n 6 10,
and moreover

(3)





either Ei ·Ej = 1 for all i 6= j,

or E1 ·E2 = 2 and Ei ·Ej = 1 for all other indices i 6= j,

or E1 ·E2 = E1 ·E3 = 2 and Ei ·Ej = 1 for all other indices i 6= j,

up to reordering indices. We call this a simple isotropic decomposition.
We say that two polarized (respectively, numerically polarized) Enriques surfaces

(S,H) and (S′,H ′) in Eg,φ (resp., (S, [H]) and (S, [H ′]) in Eg,φ) admit the same simple
decomposition type if one can write

(4) H ∼ a1E1+· · ·+anEn+εKS and H ′ ∼ a1E
′

1+· · ·+anE
′

n+εKS′ , with ε = 0 or 1

(resp. H ≡ a1E1 + · · ·+ anEn and H ′ ≡ a1E
′

1 + · · ·+ anE
′

n)

where ∼ denotes linear equivalence, with
• all Ei and E′

i effective, non–zero, primitive, isotropic, such that

Ei ·Ej = E′

i · E
′

j for all i 6= j;

• all ai are positive integers;
• n 6 10;
• (3) is satisfied for both H and H ′, possibly after reordering indices.
We call n the length of the decomposition type.

If, possibly after reordering indices, there exists r ≤ n such that a1 = · · · = ar and
Ei · Ej = 1 for 1 ≤ i 6= j ≤ r, then we say that (S,H) and (S′,H ′) admit the same
simple r-symmetric decomposition type.

We note that ε = 1 is only needed in (4) when all ais are even, otherwise one may
substitute any Ei having odd coefficient with Ei +KS .

The various irreducible components of Eg,φ are precisely the loci of pairs admitting
the same simple decomposition type, cf. Proposition 3.4. We do not know if the same
holds for components of Eg,φ, cf. Question 3.5, although it does in many cases by our
results below. One of the advantages of writing polarizations in terms of such simple
decompositions rather than in terms of a basis of Num(S) ≃ U⊕E8(−1), is that it gives
an efficient way to find all irreducible components of Eg,φ for fixed g and φ. Moreover,
the value φ(H) can easily be read off from a simple decomposition, cf. Remark 3.9.

The main results of this paper prove that in many cases the irreducible components of
Eg,φ precisely parameterize pairs (S,H), with H admitting a given simple decomposition
type, and moreover they are unirational or uniruled:

Theorem 1.1. The locus of pairs (S,H) ∈ Eg,φ admitting the same simple decomposition
type of length n 6 4 is an irreducible, unirational component of Eg,φ.

The locus of pairs (S,H) ∈ Eg,φ admitting the same simple decomposition type of
length 5 is an irreducible component of Eg,φ, which is unirational if all Ei · Ej = 1 for
all i 6= j and uniruled otherwise.

Theorem 1.2. The locus of pairs (S,H) ∈ Eg,φ admitting the same simple 7-symmetric
(respectively, 6-symmetric) decomposition type is an irreducible, unirational (resp., unir-
uled) component of Eg,φ.
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The theorems are immediate consequences of Propositions 4.5 and 4.6 proved in §4.
We remark that these theorems apply for unbounded g and φ, in the sense that

line bundles admitting the simple decomposition types as in the statements occur for
unbounded g and φ. For bounded g and φ we can deduce the following corollaries,
proved in §4, which improve [6, Cor. 5.6]:

Corollary 1.3. When φ 6 4 the different irreducible components of Eg,φ are precisely
the loci parameterizing pairs (S,H) admitting the same simple decomposition type and
they are all unirational.

Corollary 1.4. When g 6 20 the different irreducible components of Eg,φ are pre-
cisely the loci parameterizing pairs (S,H) admitting the same simple decomposition
type. Moreover, they are all unirational, except possibly for E16,5 and E17,5, which are
irreducible and uniruled.

In the cases of the corollaries one may write down all irreducible components of Eg,φ,
cf. Lemma 2.5 below and the appendix. For instance, we have
• Eg,1 is irreducible for all g > 2;
• Eg,2 is irreducible for even g and for g = 3, has two irreducible components for g ≡
3 mod 4 (g > 3) and three irreducible components for g ≡ 1 mod 4;
• Eg,3 is irreducible for g 6 8 and for g ≡ 2 mod 3 and has two irreducible components
for g 6≡ 2 mod 3 and g > 9.

We list all irreducible components of Eg,φ and Eg,φ for g 6 30 in the appendix, and
there are only a few cases in which we cannot determine irreducibility, unirationality or
uniruledness. However, we will not make use of this list in the present paper.

At the other extreme, our results can also be used to describe the irreducible compo-
nents of Eg,φ for the highest values of φ with respect to g. Indeed, one has φ2 6 2(g− 1)
(cf. [4, Cor. 2.7.1]) and there are no cases with φ2 < 2(g− 1) < φ2+φ− 2 (cf. [8, Prop.
1.4]). In the bordeline cases, we obtain:

Corollary 1.5. For each even φ, the space Eφ2

2
+1,φ

is irreducible and unirational if

φ ≡ 2 mod 4 and has two irreducible components, both unirational, if φ ≡ 0 mod 4.
For each φ > 1, the space Eφ(φ+1)

2
,φ

is irreducible and unirational when φ 6= 6, and

consists of three irreducible unirational components when φ = 6.

The cases of the latter corollary are of particular interest from a Brill-Noether theo-
retical point of view, since they are precisely the cases where the gonality of a general
curve in the complete linear system |H| is less than both 2φ and ⌊g+3

2 ⌋, the first being
the lowest degree of the restriction of an elliptic pencil on the surface, the latter being
the gonality of a general curve of genus g, cf. [8, Cor. 1.5].

The last application of our results concerns the map ρ : Eg,φ → Eg,φ and precisely the

question of the irreducibility of the preimage via ρ of a component of Eg,φ. We give the
following answer to [6, Question 4.2] in the cases described by Theorems 1.1 and 1.2:

Corollary 1.6. Let C ⊂ Eg,φ be an irreducible component parameterizing classes ad-
mitting the same simple decomposition type of length 6 5 or being 6-symmetric. Then
ρ−1(ρ(C)) is irreducible if and only if C parameterizes classes that are not 2-divisible in
Num(S) or are as in Example 4.9.



4 C. CILIBERTO, T. DEDIEU, C. GALATI, AND A. L. KNUTSEN

We stress that our results are completely independent from [6], except for the already
mentioned Proposition 3.4, which is however logically independent of the rest of the
article.

Our proofs of Theorems 1.1 and 1.2 are based on the fact that a general Enriques
surface has a model in P

3 as an Enriques sextic, i.e., a sextic surface singular along
the six edges of a tetrahedron; such a model corresponds to the datum of an isotropic
sequence (E1, E2, E3) with Ei ·Ej = 1 for i 6= j, the Eis corresponding to three edges of
some face of the tetrahedron. The idea is then to exhibit various irreducible and rational
(resp. uniruled) families F of elliptic curves in P

3 with prescribed intersection numbers
with the edges of some fixed tetrahedron, such that a general Enriques sextic singular
along this particular tetrahedron contains a member of F . One thus gets incidence vari-
eties that are irreducible and rational (resp. uniruled), and dominate the corresponding
components of the moduli space of numerically polarized Enriques surfaces. Section 3
contains technical results which ensure that one can indeed apply this strategy to the
situations of Theorems 1.1 and 1.2.

The paper is organised as follows. In §2 we collect some general facts we need about
linear systems on Enriques surfaces. In particular, Lemma 2.5 contains the classification
of all simple decomposition types of line bundles with φ 6 5. Section 3 is essentially
devoted to proving the useful technical result Proposition 3.2 about sets of isotropic
divisors, which implies that any simple isotropic decomposition can be written in terms
of particular sets of isotropic divisors, cf. Corollary 3.3. This extends previously known
results on isotropic divisors from [4] and we believe it is of independent interest. In §4
we prove our main results and corollaries stated in this introduction. We finish with the
aforementioned appendix.

Acknowledgements. The authors thank Alessandro Verra for useful conversations on
the subject, and Klaus Hulek for interesting correspondence about [6] and for answering
our questions.

2. Generalities on line bundles on Enriques surfaces

Any irreducible curve C on an Enriques surface S satisfies C2 > −2, with equality if
and only if C is smooth and rational. An Enriques surface containing such a curve is
called nodal, otherwise it is called unnodal. On an unnodal Enriques surface, all divisors
are nef and all divisors with positive self-intersection are ample. It is well-known that
the general Enriques surface is unnodal, cf. references in [3, p. 577].

Recall that a divisor E is said to be isotropic if E2 = 0 and E 6≡ 0. By Riemann-Roch,
either E or −E is effective. It is said to be primitive if it is non-divisible in Num(S).
On an unnodal surface, any effective primitive isotropic divisor E is represented by an
irreducible curve of arithmetic genus one.

Let H be a line bundle with H2 > 0 and φ(H) as in (1). By [4, Cor. 2.7.1] one has

(5) φ(H)2 6 H2.

We recall from [4, p. 122] that an isotropic r-sequence on an Enriques surface S (called
exceptional sequence in [3]) is a sequence of isotropic effective divisors {E1, . . . , Er} such
that Ei · Ej = 1 for i 6= j. It is well-known that any Enriques surface contains such
sequences for every r 6 10; moreover, by [4, Cor. 2.5.6], we have

Proposition 2.1. Any isotropic r-sequence with r 6= 9 can be extended to a 10-sequence.
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We will also make use of the following result:

Lemma 2.2. (a) Let {E1, . . . , E10} be an isotropic 10-sequence. Then there exists a
divisor D on S such that D2 = 10, φ(D) = 3 and 3D ∼ E1 + · · · + E10. Furthermore,
for any i 6= j, we have

(6) D ∼ Ei + Ej + Ei,j, with E2
i,j = 0, Ei,j > 0 and Ei · Ei,j = Ej · Ei,j = 2,

and Ek ·Ei,j = 1 for k 6= i, j.
(b) Any divisor D on S such that D2 = 10 and φ(D) = 3 satisfies 3D ∼ E1+· · ·+E10,

for an isotropic 10-sequence {E1, . . . , E10} consisting precisely of all isotropic divisors
computing φ(D) up to numerical equivalence. Moreover, if F is a divisor satisfying
F 2 = 0 and F ·D = 4, then F ≡ Ei,j for some i 6= j, where Ei,j is defined by (6).

Proof. (a) The existence of D is [3, Lemma 1.6.2(i)] or [4, Cor. 2.5.5]. Its properties are
easily checked and Ei,j := D − Ei − Ej , cf. also [3, Lemma 1.6.2(ii)].

(b) The first statement follows from [4, Cor. 2.5.5] and its proof. For the last state-
ment, note that F ·Ei > 0 for i = 1, . . . , 10 by [7, Lemma 2.1], whence, after permuting
indices if necessary, one must have F · (E1 + E2) = 4 and F · Ei = 1 for i = 3, . . . , 10.
Then F · E1,2 = 0 and E3 · F = E3 · E1,2 = 1, so that F ≡ E1,2 by [7, Lemma 2.1]
again. �

Notation 2.3. When writing a simple isotropic decomposition (2) verifying (3) (up
to permutation of indices), we will usually adopt the convention that Ei, Ej , Ei,j are
primitive isotropic satisfying Ei ·Ej = 1 for i 6= j, Ei,j ·Ei = Ei,j ·Ej = 2 and Ei,j ·Ek = 1
for k 6= i, j. This notation has already been used in Lemma 2.2. (By Corollary 3.3 below,
there is no ambiguity in this notation.)

Recall that there are no cases satisfying φ(H)2 < H2 < φ(H)2+φ(H)−2 by [8, Prop.
1.4]. Moreover [8, Prop. 1.4] also classifies the borderline cases as follows:

Proposition 2.4. Let H be an effective line bundle on an Enriques surface satisfying
φ(H)2 6 H2 6 φ(H)2 + φ(H)− 2. Then one of the following occurs:

(i) H2 = φ(H)2, in which case H ≡ φ(H)
2 (E1 + E1,2),

(ii) H2 = φ(H)2 + φ(H)− 2, in which case,

• H ∼ φ(H)−1
2 (E1 +E1,2) + E2 if φ(H) is odd, and

• H ∼ φ(H)−2
2 E1 +

φ(H)
2 E1,2 +E2 or H ≡ 2(E1 +E2 + E1,2) if φ(H) is even.

The following lemma classifies all possible simple decomposition types with φ 6 5.
Note that all decomposition types do exist on any Enriques surface, by Lemma 2.2(a)
and the existence of isotropic 10-sequences.

Lemma 2.5. Assume H is an effective line bundle on an Enriques surface S such that
H2 = 2(g − 1) > 0. If 1 6 φ(H) 6 5, the line bundle H has one and only one of the
following simple isotropic decompositions:

(i) If φ(H) = 1, then H ∼ (g − 1)E1 + E2.
(ii) If φ(H) = 2, then

• H ∼ g−2
2 E1 + E2 + E3 if g is even,

• H ∼ g−1
2 E1 + E1,2 or H ≡ g−1

2 E1 + 2E2 (with g > 5), if g is odd.

(iii) If φ(H) = 3, then
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• H ∼ g−3
3 E1 +E2 +E1,2 or H ∼ g−3

3 E1 + 2E2 +E3 (with g > 9) if g ≡ 0 mod 3,

• H ∼ g−4
3 E1 +E2 +E3 + E4 or H ∼ g−1

3 E1 + 3E2 (with g > 10) if g ≡ 1 mod 3,

• H ∼ g−2
3 E1 + E2 + E1,3 if g ≡ 2 mod 3.

(iv) If φ(H) = 4, then

• H ∼ g−4
4 E1 + 3E2 + E3, g > 16, or

H ∼ g−4
4 E1 + E2 + E3 +E1,4, g > 12,

if g ≡ 0 mod 4,
• H ≡ g−1

4 E1 + 4E2, g > 17, or

H ≡ g−1
4 E1 + 2E1,2, g > 9, or

H ≡ g−5
4 E1 + 2E2 + 2E3, g > 13, or

H ∼ g−5
4 E1 + 2E2 + E1,2, g > 13,

if g ≡ 1 mod 4,
• H ∼ g−6

4 E1 + 2E2 + E3 + E4, g > 14, or

H ∼ g−2
4 E1,2 + E1 + E2, g > 10,

if g ≡ 2 mod 4,
• H ∼ g−3

4 E1 + 2E2 + E1,3, g > 15 or

H ∼ g−7
4 E1 + E2 + E3 +E4 + E5, g > 11,

if g ≡ 3 mod 4.

(v) If φ(H) = 5, then

• H ∼ g−5
5 E1 + E2 + 2E1,2, g > 15, or

H ∼ g−10
5 E1 + 2E2 + E3 + E4 + E5, g > 20, or

H ∼ g−5
5 E1 + 4E2 + E3, g > 25

if g ≡ 0 mod 5,
• H ∼ g−11

5 E1 + E2 + E3 + E4 + E5 + E6, g > 16, or

H ∼ g−6
5 E1 + 2E2 + E3 + E1,4, g > 21, or

H ∼ g−1
5 E1 + 5E2, g > 26

if g ≡ 1 mod 5,
• H ∼ g−7

5 E1 + E2 + E3 +E4 + E1,5, g > 17, or

H ∼ g−7
5 E1 + 3E2 + E1,2, g > 22, or

H ∼ g−7
5 E1 + 3E2 + 2E3, g > 22

if g ≡ 2 mod 5,
• H ∼ g−3

5 E1 + 2E1,3 + E2, g > 18, or

H ∼ g−8
5 E1 + 2E2 + E3 + E1,2, g > 18, or

H ∼ g−8
5 E1 + 3E2 + E3 + E4, g > 23

if g ≡ 3 mod 5,
• H ∼ g−9

5 E1 + 2E2 + 2E3 + E4, g > 19, or

H ∼ g−4
5 E1,2 + E1 + E2 + E3, g > 19, or

H ∼ g−4
5 E1 + 3E2 + E1,3, g > 24

if g ≡ 4 mod 5,

Proof. The proof is tedious but straightforward and similar to [8, pf. of Prop. 1.4 in
§2.2], and we therefore will leave most of it to the reader. The idea is to pick an effective,
isotropic E such that E ·H = φ(H), find a suitable integer k so that φ(H−kE) < φ(H)
(in which case we use the classification for lower φ), or so that φ(H − kE) = φ(H) and
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H − kE is as in Proposition 2.4(i) or (ii). As a sample, we show how this works in the
case φ(H) = 5 and g ≡ 3 mod 5.

We pick an effective, isotropic E such that E · H = φ(H) = 5 and set k := g−13
5 .

Then (H − kE)2 = 24, so that φ(H − kE) 6 4 by (5).

Assume φ(H−kE) = 4 and note that E · (H−kE) = E ·H = 5. By the classification
in the case φ = 4, we have the three possibilities, where we use Notation 2.3:

(a) H − kE ∼ 3F1 + 2F1,2,
(b) H − kE ∼ 2(F1 + F2 + F3),
(c) H − kE ∼ 2F1 + 2F2 + F1,2.

Case (b) is impossible, as 5 = E · (H − kE).
In case (a) we have F1 · (H − kE) = 4 and F1,2 · H = 6, hence E 6≡ F1, F1,2. Thus,

E · F1 = E · F1,2 = 1. Let F := F1 + F1,2 − E. Then F 2 = 0, E · F = 2 and F1 · F = 1,
so that F is effective, non–zero and we have

H ∼ kE + 3F1 + 2F1,2 ∼ (k + 2)E + F1 + 2F.

Using Notation 2.3, we set E1 := E, E2 := F1 and E1,3 := F and, recalling that

k + 2 = g−3
5 , we obtain the desired form

(7) H ∼
g − 3

5
E1 + E2 + 2E1,3.

As 5 = φ(H) 6 E2 ·H = g−3
5 + 2, we have g > 18.

In case (c) we have F1 · (H − kE) = F2 · (H − kE) = 4 and F1,2 · (H − kE) = 8, hence
E 6≡ F1, F2, F1,2. Thus, E · F1 = E · F2 = E · F1,2 = 1. Let F := F2 + F1,2 − E. Then
F 2 = 0, E · F = F1 · F = 2 and F2 · F = 1 and we have

H ∼ kE + 2F1 + 2F2 + F1,2 ∼ (k + 1)E + 2F1 + F2 + F.

Using Notation 2.3, we set E1 := E, E2 := F1, E3 := F2 and E1,2 := F and, recalling

that k + 1 = g−8
5 , we obtain the desired form

(8) H ∼
g − 8

5
E1 + 2E2 + E3 + E1,2.

As 5 = φ(H) 6 E2 ·H = g−8
5 + 3, we have g > 18.

We claim that H cannot simultaneously have a simple isotropic decomposition as
in (7) and (8). Indeed, there are two (respectively, three) isotropic, effective classes

F ∈ Num(S) such that F · H = g+7
5 in case (8) if g > 18 (resp., g = 18), namely

F ≡ E2, E3 (resp., F ≡ E1, E2, E3), whereas there is only one (resp., two) such classes

in case (7), namely F ≡ E2 (resp., F ≡ E1, E2), as E1,3 · H = 2g−1
5 > g+7

5 and

F ·H >
g−3
5 + 1 + 2 = g+12

5 for F 6≡ E1, E2, E1,3 by [7, Lemma 2.1].

Assume φ(H − kE) = 3. By the classification in the case φ = 3, we have the two
possibilities:

(d) H − kE ∼ 3F1 + F2 + F3 + F4,
(e) H − kE ∼ 4F1 + 3F2

In case (d) we have F1 · (H − kE) = 3, hence E 6≡ F1. Thus, we must have E ·F1 = 1
and, possily after rearranging indices, E · F2 = E · F3 = 1 and E ≡ F4. Thus, using
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again Notation 2.3, we set E1 := E, E2 := F1, E3 := F2 and E4 := F3 and, recalling
that k + 1 = g−8

5 , we obtain the desired form

(9) H ∼
g − 8

5
E1 + 3E2 + E3 + E4,

possibly after substituting E4 with E4 +KS . Since 5 = φ(H) 6 E2 ·H = g−8
5 + 2, we

obtain g > 23.
Because of the different values of φ(H − kE), it is again not possible that H can be

written both as in (9) and as in (7) or (8).
In case (e) we have F1 · (H − kE) = 3 and F2 · (H − kE) = 4, whence E 6≡ F1, F2. It

follows that E · F1 > 0 and E · F2 > 0, so that 5 = E · (H − kE) > 7, a contradiction.

Assume φ(H − kE) = 2. By the classification in the case φ = 2, we have the two
possibilities:

(f) H − kE ∼ 6F1 + F1,2,
(g) H − kE ≡ 6F1 + 2F2.

In both cases, since F1 · (H − kE) = 2, we have E 6≡ F1, whence the contradiction
5 = E · (H − kE) > 6E · F1 > 6.

Assume finally φ(H − kE) = 1. By the classification in the case φ = 1, we have
H − kE ∼ 12F1 +F2. As F1 · (H − kE) = 1, we have E 6≡ F1, whence the contradiction
5 = E · (H − kE) > 12E · F1 > 12. �

Remark 2.6. We will later use the observation immediately deduced from parts (i)-(ii)
of Lemma 2.5 that for φ(H) 6 2 there are at most three numerical, effective, isotropic
classes E such that E ·H 6 2.

3. More on simple, isotropic decompositions

The main aim of this section is to prove that the isotropic divisors occurring in a
simple isotropic decomposition can always be extended to an isotropic 10-sequence plus
one of the divisors Ei,j occurring in Lemma 2.2. This will be needed in the proof of our
main results, see the comment right after Propositions 4.5 and 4.6.

Definition 3.1. A set {E1, . . . , En} of primitive isotropic divisors on an Enriques sur-
face is called a simple isotropic set if it satisfies (3), possibly after permuting indices.

It is called a maximal simple isotropic set if it is of the form {E1, . . . , E10, Ei,j}, where
{E1, . . . , E10} is an isotropic 10-sequence and Ei,j is defined up to numerical equivalence
as in (6) for some i 6= j, that is, Ei,j ≡

1
3 (E1 + · · ·+ E10)− Ei − Ej .

Note that since any simple isotropic set of n elements contains members of an isotropic
(n− 1)–sequence, any simple isotropic set contains at most 11 elements (cf. [4, p. 179]).
Also note that by [3, Rem. p. 584] any maximal simple isotropic set form a basis of
Num(S).

We will prove the following result, which can be viewed as a generalization of Propo-
sition 2.1, and which we hope is of independent interest.

Proposition 3.2. Any simple isotropic set can be extended to a maximal simple isotropic
set.1

1This includes the case of simple isotropic sets of 11 elements, which means that such are automatically
maximal.
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Before giving the proof, we discuss some consequences.

Corollary 3.3. Let H be any effective divisor on an Enriques surface such that H2 > 0.
Then there is an isotropic 10-sequence {E1, . . . , E10} (depending on H) such that

(10) H ≡ a0E1,2 + a1E1 + · · · + a10E10,

where E1,2 ≡
1
3 (E1 + · · ·+ E10)− E1 − E2 (cf. (6)) and a0, a1, . . . , a10 are nonnegative

integers, at least one being 0.
More precisely, any simple isotropic decomposition of H occurs in this way.

Proof. By Proposition 3.2, any isotropic divisors occurring in any simple isotropic de-
composition of the form (2) can be extended to a maximal simple isotropic set. �

Proposition 3.4. Two numerically polarized Enriques surfaces (S, [H]) and (S′, [H ′])
lie in the same irreducible component of Eg,φ if and only if they admit the same simple
decomposition type.

Proof. Since the torsion free part of H2(S,Z), which is equal to Num(S) ≃ U ⊕E8(−1)
(see [1, Lemma VIII.15.1]), is constant among all S ∈ E , the only if part is immediate.

Conversely, it is proved in [6] that the irreducible components of Eg,φ correspond
precisely to the different orbits of the action of the orthogonal group on U ⊕ E8(−1).
Since this group acts transitively on the set of isotropic 10-sequences by [4, Lemma 2.5.2],
and E1,2 ≡ 1

3(E1 + · · · + E10) − E1 − E2, we see that any two numerical polarizations
admitting the same simple decomposition type lie in the same irreducible component of
Eg,φ, as claimed. �

Question 3.5. Does Proposition 3.4 also hold for polarized Enriques surfaces? In other
words, is it true that (S,H) and (S,H ′) lie in the same irreducible component of Eg,φ if
and only if H and H ′ admit the same simple decomposition type? (The “only if” part
follows as in the first lines of the proof of 3.4, as Pic(S) ≃ U ⊕ E8(−1) ⊕ Z/2Z is also
constant among all S ∈ E.)

Theorems 1.1 and 1.2 give a positive answer in the case of simple decomposition types
of length 6 5 or 6–symmetric.

Proposition 3.2 is a consequence of Lemmas 3.6, 3.7 and 3.8 below, together with
Proposition 2.1 and Lemma 2.2.

Lemma 3.6. Let {E1, . . . , Er} be an isotropic r-sequence with 2 6 r 6 9, and F an
isotropic divisor such that F · E1 = F · E2 = 2 and F · Ei = 1 for all i ∈ {3, . . . , r}.
Then there is an isotropic 10-sequence {E1, . . . , Er, Er+1, . . . , E10} such that F ·Ei = 1
for all i ∈ {r + 1, . . . , 10}.

Proof. The divisor D := E1 + E2 + F satisfies D2 = 10 and φ(D) = 3 = Ei ·D for all
i ∈ {1, . . . , r}. Thus, 3D ∼ E1 + · · ·+E10 for an isotropic 10-sequence {E1, . . . , E10} by
Lemma 2.2(b). Since F ·D = 4, we have F 6≡ Ei for any i, hence F ·Ei > 0 for all i by
[7, Lemma 2.1]. As 12 = 3F ·D = F · (3D) = 4 + F · (E3 + · · · + E10), we must have
F ·Ei = 1 for all i. �

Lemma 3.7. Let {E1, . . . , E8, F} be an isotropic 9-sequence. Then, for any extensison
of {E1, . . . , E8} to an isotropic 10-sequence {E1, . . . , E10}, we have either

(i) F ≡ Ei, for i = 9 or 10, or
(ii) F ·E9 = F ·E10 = 2.



10 C. CILIBERTO, T. DEDIEU, C. GALATI, AND A. L. KNUTSEN

Proof. If F · Ei = 0 for i = 9 or 10, then F ≡ Ei by [7, Lemma 2.1] and we are done.
Otherwise, as E1 + · · ·+ E10 is 3-divisible by Lemma 2.2, we must have

F · (E9 + E10) ≡ 1 mod 3 and F ·Ei > 0 for i = 9, 10.

We are therefore done if we show that

(11) F · Ei 6 2, for i ∈ {9, 10}.

To prove this, assume by contradiction that n := F · E9 > 3, say. Set k = ⌊n−1
2 ⌋ > 1

and B := F +E9 − kE1. Then B2 ∈ {2, 4} and Ei ·B = 2− k 6 1 for all i ∈ {2, . . . , 8},
contradicting Remark 2.6. This proves (11), whence the lemma. �

Lemma 3.8. Let F1 and F2 be isotropic divisors such that F1 ·F2 = 2 and {E1, . . . , Er}
be an isotropic r-sequence, with 0 6 r 6 8, such that Fi · Ej = 1 for all i ∈ {1, 2},
j ∈ {1, . . . , r}.

Then, for k = 1 or 2, there is an isotropic 10-sequence {Fk, E1, . . . , Er, Er+1, . . . , E9}
such that, for j 6= k, Fj ·Ei = 1 for i ∈ {r + 1, . . . , 8} and Fj · E9 = 2.

Proof. Assume first that r 6 7. By Proposition 2.1, the set A of A ∈ Pic(S) such that

A2 = 0, A · F1 = A · E1 = · · · = A · Er = 1, A 6≡ E1 + E2 + E3 − F2 if r = 3,

is nonempty. Pick A ∈ A such that A · F2 is minimal.

Claim. A · F2 6 2.

Assume, to get a contradiction, that n := A · F2 > 3. Let k = ⌊n−1
3 ⌋ and set

B := A + F2 − kF1. Then 2 6 B2 6 6 and B has a simple isotropic decomposition
containing at least two summands. None of these may be F2, since B − F2 = A− kF1

is not effective, unless k = 0, in which case B = F2 + A is not a simple isotropic
decomposition.

Since F2 ·B = n− 2k, the intersection of F2 with each of the summands in the simple
isotropic decomposition of B is smaller than n. Since F1 ·B = 3, there is at least one of
these summands, say E′, such that F1 ·E

′ = 1. If r = 0, since F2 ·E
′ < n, the curve E′

contradicts the minimality of A and finishes the proof in this case.
If r > 0, then, as Ei · B = 2− k for any i ∈ {1, . . . , r}, we must have k 6 1.

Case k = 0. Then n = 3, B ∼ A + F2, B
2 = 6 and φ(B) = Ei · B = 2. Thus, by

Lemma 2.5, B can be written as a sum of three isotropic divisors, containing all Ei for
i ∈ {1, . . . , r}. This implies r 6 3. Since Fi · B = 3, for i = 1, 2, each summand has
intersection one with Fi, for i = 1, 2. This implies r = 3. Indeed, if r < 3, then at least
one of the summands of B, say E′, is different from the Eis, and has E′ · Ei = 1 for
i = 1, . . . , r. Hence E′ ∈ A and E′ · F2 = 1, contradicting the minimality of A. Since
r = 3, we have B ≡ E1 + E2 + E3. But then A ≡ E1 + E2 + E3 − F2, thus A 6∈ A, a
contradiction.

Case k = 1. One has B ∼ A+F2 −F1 and φ(B) = E1 ·B = 1. Moreover B2 = 2n− 6,
hence (n,B2) ∈ {(4, 2), (5, 4), (6, 6)}.

Subcase (n,B2) = (4, 2). As Ei · B = 1, for i ∈ {2, . . . , r}, by Lemma 2.5(i) we have
r 6 2 and, if r = 2, we have B ≡ E1 + E2. But 3 = F1 · B = F1 · (E1 + E2) = 2, a

contradiction. Hence we have r = 1 and B ∼ E1 +E′

2 with E′

2
2 = 0 and E1 ·E

′

2 = 1.
We have F1 · B = 3, and since F1 · E1 = 1, we have F1 · E

′

2 = 2. Since F2 · B = 2
and F2 · E1 = 1, we have F2 · E′

2 = 1. Set G := F1 + F2 + E′

2. Then G2 = 10,



MODULI SPACES OF POLARIZED ENRIQUES SURFACES 11

F1 · G = 4 and φ(G) = E1 · G = E′

2 · G = F2 · G = 3. By Lemma 2.2(b), we have
3G ∼ E1 +E′

2 +F2 +F ′

1 + · · ·+F ′

7 for an isotropic 10-sequence {E1, E
′

2, F2, F
′

1, . . . , F
′

7}.
As F1 · (3G) = 12, and F1 · (E1 + E′

2 + F2) = 5, it follows that F1 · (F
′

1 + · · ·+ F ′

7) = 7,
whence F1 · F

′

i = 1 for all i ∈ {1, . . . , 7}. Since F2 · F
′

i = 1 for all i ∈ {1, . . . , 7}, we find
a contradiction to the minimality of A.

Subcase (n,B2) = (5, 4). As Ei · B = 1, for i ∈ {2, . . . , r}, by Lemma 2.5(i) we have

r = 1 and B ∼ 2E1 + E′

2 with E′

2
2 = 0 and E1 · E

′

2 = 1. As F1 · B = F2 · B = 3, it
follows that F1 · E

′

2 = F2 · E
′

2 = 1, contradicting the minimality of A.

Subcase (n,B2) = (6, 6). As E1 · B = 1 and F1 · B = 3, we must have B ≡ 3E1 + F1.
But then we get the contradiction

4 = F2 · (A+ F2 − F1) = F2 · B = 3E1 · F2 + F1 · F2 = 5.

Therefore, we have proved the claim that A · F2 6 2.

Assume now that A·F2 = 2. By Lemma 3.6, the isotropic sequence {F1, A,E1, . . . , Er}
can be extended to an isotropic 10-sequence such that F2 · F1 = F2 · A and F2 has
intersection one with the remaining divisors in the sequence. Hence, we are done.

Assume next that A · F2 = 1. We then repeat the process starting with the isotropic
(r + 1)-sequence {E1, . . . , Er, Er+1 := A}, unless r + 1 = 8. We thus reduce to proving
the lemma when r = 8.

For the rest of the proof we therefore let r = 8. Then we can by Proposition 2.1
extend {E1, . . . , E8} to an isotropic 10-sequence {E1, . . . , E10}. We claim that

(12) there is an i ∈ {1, 2} and a j ∈ {9, 10} such that Fi ≡ Ej .

Indeed, if not, by Lemma 3.7 we must have all Fi ·Ej = 2 for i ∈ {1, 2}, j ∈ {9, 10}. Set
B := F1 + F2 + E9 + E10 − 2E1. Then B2 = 6 and Ej · B = 2 for all j ∈ {2, . . . , 8},
which is impossible by Remark 2.6. This proves (12).

By (12) we have, say, F1 ≡ E10. Then E9 6≡ F2, so F2 ·E9 = 2 by Lemma 3.7. Hence,
{F1, E1, . . . , E8, E9} is the desired isotropic 10-sequence. �

We can finally give the:

Proof of Proposition 3.2. Consider the simple isotropic set {E1, . . . , Er} satisfying (3).
If Ei · Ej = 1 for all i 6= j, and if r 6= 9, we apply Proposition 2.1. If instead r = 9, we
apply Lemmas 3.7 and 2.2(b). If E1 · E2 = 2 and otherwise Ei · Ej = 1 for i 6= j, we
apply Lemmas 3.8 and 2.2(b). Finally, if E1 ·E2 = E1 ·E3 = 2 and otherwise Ei ·Ej = 1
for i 6= j, we apply Lemmas 3.6 and 2.2(b). �

Remark 3.9. Writing a simple isotropic decomposition of H as in (10) has the advan-
tage that φ(H) is calculated by one among E1,2, E1, . . . , E10. More precisely, setting

a :=
∑10

i=0 ai, one has

(13) φ(H) = a−max{a1 − a0, a2 − a0, a3, . . . , a10, a0 − a1 − a2}.

Indeed, for any nontrivial isotropic effective E 6≡ E1,2, E1, . . . , E10, one has E ·H > a >

a− ai = Ei ·H, for any i > 3. Then (13) follows since Ei ·H = a+ a0 − ai for i = 1, 2
and E1,2 · H = a + a1 + a2 − a0. By symmetry and Lemma 3.7, one can furthermore
make sure that

(14) a1 > 0, a1 > a2, a3 > · · · > a10 and either a0 > 0 or a2 > a3,
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in which case

(15) φ(H) = min{E1 ·H,E3 ·H,E1,2 ·H} = a−max{a1 − a0, a3, a0 − a1 − a2}.

Remark 3.10. Even imposing the conditions (14) does not make the decomposition
type unique, and the properties such as the length or being r-symmetric may also vary
with the different ways of writing the decompositions. Consider for instance the decom-
position type H ≡ 2E1 + E2 + E3 + E4 + E5 + E6 + E1,7 (with g = 30 and φ(H) = 7).
This has length 7 and is 5-symmetric, but not 6-symmetric. By Proposition 3.2 we may
extend {E1, . . . , E6} to an isotropic 10-sequence so that E1,7 is defined as in (6). Let
also E7,8 be as defined by (6). It follows that E1 + E1,7 ∼ E8 + E7,8. Thus, we may
also write H ≡ E1 + E2 + E3 + E4 + E5 + E6 + E8 + E7,8, which has length 8 and is
6-symmetric.

4. Irreducibility, unirationality and uniruledness of moduli spaces

We have the natural forgetful map

(16) Eg,φ −→ E ,

whose differential at a point (S,H) is the linear map

(17) H1(S, EH) −→ H1(S,TS)

coming from the Atiyah extension of H

0 −→ OS −→ EH −→ TS −→ 0,

by [10, Prop. 3.3.12]. Since h1(OS) = h2(OS) = 0, the map (17) is an isomorphism,
hence Eg,φ is smooth and the map (16) is an étale cover.

We note that Eg,φ need not be irreducible. Moreover, as already mentioned in Ques-
tion 3.5, all members in an irreducible component of Eg,φ must admit the same simple
decomposition type. Theorems 1.1 and 1.2 prove the converse of this in many cases.

We now extend a construction from [11]. First we recall some basic facts about
classical Enriques sextic surfaces in P

3 (see [4]).
Fix homogeneous coordinates (x0 : x1 : x2 : x3) on P

3 and let

T = Z(x0x1x2x3)

be the coordinate tetrahedron. Consider the linear system S of surfaces of degree 6 which
are singular along the edges of T . They are called Enriques sextic surfaces. The surfaces
in S have equations of the form

(18) c3(x0x1x2)
2 + c2(x0x1x3)

2 + c1(x0x2x3)
2 + c0(x1x2x3)

2 +Qx0x1x2x3 = 0,

where Q =
∑

i6j qijxixj . This shows that dim(S) = 13 and we may identify S with the

P
13 with homogeneous coordinates

q = (c0 : c1 : c2 : c3 : q00 : q01 : q02 : q03 : q11 : q12 : q13 : q22 : q23 : q33).

If Σ ∈ S is a general surface, its normalization ϕ : S → Σ is an Enriques surface and
H = ϕ∗(OΣ(1)) is an ample divisor class with H2 = 6 and φ(H) = 2. More precisely,
H ∼ E1 + E2 + E3, with the usual Notation 2.3, and the edges of T are the images of
the curves Ei and E′

i ∼ Ei +KS , with i = 1, 2, 3. (Recall that for a primitive, isotropic
E, the complete linear system |E +KS | has a unique element.) We will write ℓi (resp.
ℓ′i) for the line image of Ei (resp. of E

′

i). This means that we have marked one face of T
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and chosen an ordering of its three edges. We denote by v the vertex of T not contained
in the marked face.

We thus have a natural rational map

p : S 99K E4,2,

assigning to a general surface Σ ∈ S the pair (S,H), where ϕ : S → Σ is the normaliza-
tion andH = ϕ∗(OΣ(1)). Composing with the forgetful map E4,2 → E , we have a rational
map S 99K E , which is dominant. Indeed, given a general, whence unnodal, Enriques
surface S, we can find a 3-isotropic sequence {E1, E2, E3}. If we set H = E1 +E2 +E3,
then (S,H) ∈ E4,2 and the linear system |H| determines a morphism ϕH : S → P

3, cf.,
e.g., [4, Thm. 4.6.3 and 4.7.2], and, up to a change of coordinates, Σ = ϕH(S) is an
Enriques sextic surface. Accordingly, the map p is dominant. If (S,H) is a point of E4,2,
the fibre p−1(S,H) consists of the orbit of Σ = ϕH(S) via the 3–dimensional group of
projective transformations which fix T .

Next we denote by Fi, i = 0, 1, 2, the family of smooth cubic (resp., quartic, quintic)
elliptic curves F ⊂ P

3 such that v 6∈ F and F meets
• all edges of T exactly once, if i = 0;
• the edges ℓ1 and ℓ′1 of T exactly twice, and the remaining edges exactly once, if i = 1;
• the edges ℓ3 and ℓ′3 of T exactly once, and the remaining edges exactly twice, if i = 2.

Lemma 4.1. (a) The family F2 is irreducible, 10-dimensional and rational, and each
F ∈ F2 is contained in a 3-dimensional linear system of Enriques sextics.

(b) The family F1 is irreducible, 8-dimensional and rational, and each F ∈ F1 is
contained in a 5-dimensional linear system of Enriques sextics.

(c) The family F0 is irreducible, 6-dimensional, and rational, and each F ∈ F0 is
contained in a 7-dimensional linear system of Enriques sextics.

Proof. We first prove (b) (resp. (c)). Let F ∈ F1 (resp. F ∈ F0). The linear system S
cuts out on F a linear system of divisors with base locus (containing) T∩F and a moving
part g of degree (at most) 8 (resp., 6). Note that S contains the 9–dimensional linear
system formed by surfaces of the form T+Q, where Q is a general quadric in P

3: looking
at equation (18), these are the surfaces obtained by setting ci = 0, for i = 1, . . . , 4. Since
quadrics cut out on F a complete linear system, we see that g is complete, of dimension
7 (resp. 5). This proves that the linear system of Enriques sextics containing F has
dimension 5 (resp., 7).

The family of quartic elliptic curves in P
3 is 16-dimensional. Let Z be a configuration

of eight points outside the vertices of T and distributed as two points on each of ℓ1
and ℓ′1 and one point on each of the remaining edges of T . Then there is a unique
quartic elliptic curve through Z. Indeed, otherwise there would be a net Q of quadrics
through these 8 points. Fix the attention on a face Π of T containing four of these
points (on three edges). By imposing to the quadrics in Q to contain two general points
of Π, the plane Π splits off the quadrics of Q. Consequently, the remaing four of the
eight points should be coplanar, a contradiction. Hence, the set of quartics with the
given incidences with the edges of T is irreducible, 8-dimensional, and birational to
Sym2(ℓ1)× Sym2(ℓ′1)× ℓ2 × ℓ′2 × ℓ3 × ℓ′3 ≃ P

8. This proves (b).
If F ∈ F0, then F spans a plane ΠF ⊂ P

3, which intersects the set of edges of T in six
points. The set of plane cubics through these six points is a linear system of dimension
3. Thus, F0 is a P

3-bundle over |OP3(1)| ≃ P
3, and is therefore irreducible, rational and

6-dimensional. This proves (c).
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As for item (a), the fact that F2 is irreducible, 10-dimensional and rational is proved
in [11, Prop. 1.1 and §2]. The rest of the assertion is proved exactly in the same way
we did it for cases (b) and (c) above. �

We next define F00 to be the family of ordered pairs (F,F ′) of smooth cubic elliptic
curves F,F ′ ⊂ P

3 such that F,F ′ ∈ F0 and F and F ′ intersect exactly in one point not
on T , with distinct tangent lines.

Lemma 4.2. The family F00 is irreducible, 11-dimensional and rational and each pair
(F,F ′) ∈ F00 is contained in a 2-dimensional linear system of Enriques sextics.

Proof. The family F00 can be constructed in the following way: fix a pair of general
planes Π and Π′ in P

3 intersecting along a line ℓ, and fix a point p ∈ ℓ. Consider in both
Π and Π′ the family of cubic curves passing through p and the six intersection points
of Π and Π′, respectively, with the edges of T ; each of these is a two-dimensional linear
system. Varying Π, Π′ and p and taking the two families of cubic curves, we obtain all
elements of F00. This description shows the rationality and the dimension.

Now fix (F,F ′) ∈ F00 and let SF+F ′ be the linear system of Enriques sextics containing
F ∪ F ′. First we prove that dim(SF+F ′) > 2. Indeed, the linear system SF of Enriques
sextics containing F is 7-dimensional by Lemma 4.1(c). It cuts on F ′ a linear system of
divisors with base locus (containing) T ∩F and p = F ∩F ′ and a moving part of degree
(at most) 5, hence of dimension at most 4. Therefore, containing F ′ imposes at most 5
conditions on SF .

Next we prove that dim(SF+F ′) 6 2, which will finish our proof. Consider the pair
F ⊂ Π and F ′ ⊂ Π′ in F00, with the planes they span. Set ℓ = Π∩Π′ and F∩ℓ = {a, b, p}
and F ′ ∩ ℓ = {a′, b′, p}. Let Σ ∈ SF+F ′ be general. Then ℓ intersects Σ in six points,
among these are {a, b, a′, b′, p}, call p′ the sixth point. The surface Σ intersects Π (resp.,
Π′) in a cubic G off F (resp., G′ off F ′), passing through a′, b′ and p′ (resp., a, b
and p′), in addition to the six intersection points of Π (resp., Π′) with the edges of T .
Thus, G and G′ are uniquely determined. Consequently, Σ∩ (Π∪Π′) may at most vary
with the point p′ ∈ ℓ. Thus the restriction SΠ∪Π′ of SF+F ′ to Π ∪ Π′ is at most one-
dimensional. Consider the restriction map SF+F ′ 99K SΠ∪Π′ , which is linear, rational
and surjective by assumption. Its indeterminacy locus is the unique surface T ∪Π∪Π′.
Since dim(SΠ∪Π′) 6 1, we deduce that dim(SF+F ′) 6 2, as desired. �

We next define F0i, for i = 1, 2, to be the family of ordered pairs of smooth elliptic
curves (F,F ′) in P

3 such that F ∈ F0, F
′ ∈ F1 and F and F ′ intersect exactly in i

points not on T , with distinct tangent lines.

Lemma 4.3. The family F0i is irreducible, uniruled and (14− i)-dimensional and each
pair (F,F ′) ∈ F0i is contained in a linear system SF+F ′ of Enriques sextics of dimension
at least i−1. If (F,F ′) ∈ F0i is contained in an Enriques sextic Σ whose normalization S
is an Enriques surface, then SF+F ′ has dimension exactly i−1, unless F+F ′ is contained
in only nodal Enriques sextics (that is, Enriques sextics whose normalizations contain
smooth rational curves).

Proof. We have a natural dominant map q : F0i → F1 × (P3)∨ sending the pair (F,F ′)
to F ′ ∈ F1 and the plane ΠF spanned by F in (P3)∨.

For i = 1, the fiber of q over (F ′,Π) consists of the union of four 2-dimensional linear
systems of cubics in Π through the six intersection points of Π with the edges of T and



MODULI SPACES OF POLARIZED ENRIQUES SURFACES 15

one of the four intersection points of Π with F ′. This proves the irreduciblity because
the monodromy action of the four intersection points is the symmetric group, and shows
also the uniruledness. The dimension also follows easily.

For i = 2, the fiber of q over (F ′,Π) consists of the union of six 1-dimensional linear
systems of cubics in Π through the six intersection points of Π with the edges of T and
two of the four intersection points of Π with F ′. As above, this proves irreduciblity,
uniruledness and the dimension.

The dimension of the linear system of Enriques sextics SF ′ containing a fixed F ′ ∈ F1

is 5 by Lemma 4.1(b). Containing an additional cubic F ∈ F0 intersecting F ′ in i points,
imposes at most 6− i conditions, arguing as in the proof of Lemma 4.2. Therefore, the
linear system of Enriques sextics SF+F ′ containing a pair (F,F ′) ∈ F0i has dimension
at least 5− (6− i) = i− 1.

Let Σ be an Enriques sextic containing F +F ′ such that its normalization ϕ : S → Σ
is an unnodal Enriques surface. The linear system S cuts on Σ a linear system whose
pull–back on S via ϕ is the sublinear system of |6(E1 +E2 +E3)| with base locus twice
the sum of the pullback of the edges of the tetrahedron, which is

2
(
E1 + E2 + E3 + (E1 +KS) + (E2 +KS) + (E3 +KS)

)
∼ 4(E1 + E2 + E3).

Hence, the free part is |2(E1 + E2 + E3)|. So we have a linear, rational restriction map

SF+F ′ 99K |B|, with B := 2(E1 + E2 + E3)− (F + F ′)

whose indeterminacy locus is just the surface Σ.
We have B2 = 2(i − 2). If i = 1 and S is unnodal, then |B| = ∅, which shows that

SF+F ′ = {Σ} has dimension 0, as wanted. If i = 2, then B2 = 0 and E1 · B = 1,
hence h0(B) = 1 by Riemann–Roch. This implies that dim(SF+F ′) 6 1, proving the
assertion. �

Consider now the incidence varieties

Gi := {(F,Σ) ∈ Fi × S | F ⊂ Σ},

for i = 0, 1, 2, and

G00 := {(F,F ′,Σ) ∈ F00 × S | F + F ′ ⊂ Σ},

which are irreducible, rational and 13-dimensional, by Lemmas 4.1 and 4.2. Similarly,
for i = 1, 2, let

G0i := {(F,F ′,Σ) ∈ F0i × S | Σ is unnodal, F + F ′ ⊂ Σ},

which are irreducible, uniruled and 13-dimensional, by Lemma 4.3.

Proposition 4.4. If G is any of the incidence varieties Gi, for i = 0, 1, 2, G00, G0i,
for i = 1, 2, the obvious projection π : G → S is dominant, hence generically finite.
Accordingly, if ξ ∈ G is a general point, then Σ = π(ξ) is a general element of S and its
normalization S is a general Enriques surface.

Proof. We prove the assertion for G = G00, the proof in the other cases being similar.
Let S be a general Enriques surface. There is an isotropic 5–sequence {E1, . . . , E5}

on S. Set H = E1 + E2 + E3. Then ϕH : S → Σ ⊂ P
3 maps S, up to a projective

transformation, to a general surface in S. Moreover E4, E5 are mapped to two elliptic
cubic curves F,F ′ meeting at a point. This proves the assertion. �
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We now define various maps from these incidence varieties to some Eg,φs, for various
g and φ, which we eventually prove to be dominant, establishing irreducibility and
unirationality or uniruledness.

Consider a general element (F,Σ) of Gi, for i = 0, 1, 2. Then the normalization S of
Σ is an Enriques surface and on S we have the three curves E1, E2, E3, plus the strict
transform of F which, by abuse of notation, we still denote by F . Similar convention
we introduce for G0i, for i = 0, 1, 2.

Fix four nonnegative integers α1, α2, α3, α4, at least two nonzero. Then, for each
i = 0, 1, 2, we have a rational map

f i
α1,α2,α3,α4

: Gi 99K Eg,φ

sending the general point (F,Σ) ∈ Gi to (S,OS(α1E1 + α2E2 + α3E3 + α4F )), where
g = pa(α1E1 +α2E2 +α3E3 +α4F ) and φ = φ(α1E1 +α2E2 +α3E3 +α4F ). Similarly,
for each i = 0, 1, 2, we have a rational map

f i′

α1,α2,α3,α4
: Gi 99K Eg,φ

sending the general point (F,Σ) ∈ Gi to (S,OS(α1E1 + α2E2 + α3E3 + α4F +KS)).
Next, fix five positive integers α1, . . . , α5, at least two nonzero. For each i = 0, 1, 2,

we have a rational map

f0i
α1,α2,α3,α4,α5

: G0i 99K Eg,φ

sending a general (F,F ′,Σ) ∈ G0i to (S,OS(α1E1 + α2E2 + α3E3 + α4F + α5F
′)), where

g = pa(α1E1+α2E2+α3E3+α4F+α5F
′) and φ := φ(α1E1+α2E2+α3E3+α4F+α5F

′).
Similarly we have a map

f0i′
α1,α2,α3,α4,α5

: G0i 99K Eg,φ

sending a general (F,F ′,Σ) ∈ G0i to (S,OS(α1E1 + α2E2 + α3E3 + α4F + α5F
′ +KS)).

Let now (F,Σ) ∈ G2 be general and consider the curves E1, E2, E3, F on S. Then
E1 +E2 +F satisfies the conditions of Lemma 2.2(b). Since Ei · (E1 +E2 +F ) = 3, for
i = 1, 2, 3, we obtain an isotropic 10-sequence {E1, E2, E3, E4, . . . , E10} such that

3(E1 + E2 + F ) ∼ E1 + · · ·+ E10.

Note that each Ei for i > 4 is uniquely determined up to numerical equivalence class
and permutation of indices; in particular, E4 + · · · + E10 ∼ 2E1 + 2E2 + 3F − E3 is a
well-defined element of Pic(S). For any five nonnegative integers α0, . . . , α4 such that
at least one among α0, . . . , α3 is zero, we can consider the rational map

hα0,α1,α2,α3,α4 : G2 99K Eg,φ

sending (F,Σ) ∈ G2 to (S,OS(α0F + α1E1 + α2E2 + α3E3 + α4(E4 + · · ·+ E10))), where
g := pa(α0F + α1E1 + α2E2 + α3E3 + α4(E4 + · · · + E10)) and φ := φ(α0F + α1E1 +
α2E2 + α3E3 + α4(E4 + · · ·+ E10)). Similarly we have a map

h′α0,α1,α2,α3,α4
: G2 99K Eg,φ

sending (F,Σ) ∈ G2 to (S,OS(α0F + α1E1 + α2E2 + α3E3 + α4(E4 + · · ·+ E10)) +KS).
Finally, let (F,F ′,Σ) ∈ G02 be a general point and consider E1, E2, E3, F, F

′ curves
in S. Then F + F ′ + E1 satisfies the conditions of Lemma 2.2(b). Since F · (E1 +
F + F ′) = Ei · (E1 + F + F ′) = 3, for i = 1, 2, 3, we obtain an isotropic 10-sequence
{E1, E2, E3, E4 := F,E5, . . . , E10} such that

3(E1 + F + F ′) ∼ E1 + · · ·+ E10.
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Note that each Ei for i > 5 is uniquely determined up to numerical equivalence class
and permutation of indices; in particular, E5 + · · ·+E10 ∼ 2E1 +2F +3F ′ −E2 −E3 is
a well-defined element of Pic(S). For any six nonnegative integers α0, . . . , α5 such that
at least one among α0, . . . , α4 is zero, we have a map

h0α0,α1,α2,α3,α4,α5
: G02 99K Eg,φ

sending (F,F ′,Σ) to (S,OS(α0F
′ + α1E1 + α2E2 + α3E3 + α4F + α5(E5 · · · + E10))),

where g := pa(α0F
′ + α1E1 + α2E2 + α3E3 + α4E4 + α5(E5 + · · · + E10)) and φ :=

φ(α0F
′ + α1E1 + α2E2 + α3E3 + α4E4 + α5(E5 + · · ·+E10)). Similarly we have a map

h0
′

α0,α1,α2,α3,α4,α5
: G02 99K Eg,φ

sending (F,F ′,Σ) to (S,OS(α0F
′ + α1E1 + α2E2 + α3E3 + α4F + α5(E5 + · · ·+ E10)) +KS).

Our main results, Theorem 1.1 and Theorem 1.2, are, respectively, immediate conse-
quences of the following two propositions.

Proposition 4.5. Let i ∈ {0, 1, 2} and α1, . . . , α4 ∈ N, at least two nonzero. The map

f i
α1,α2,α3,α4

(respectively, f i′
α1,α2,α3,α4

) is dominant onto the locus of pairs (S,H) ∈ Eg,φ
admitting the same simple decomposition type as α1E1 + α2E2 + α3E3 + α4F (resp.,
α1E1 + α2E2 + α3E3 + α4F +KS).

Let i ∈ {0, 1, 2} and α1, . . . , α5 ∈ N, at least two nonzero. The map f0i
α1,α2,α3,α4,α5

(respectively, f0i′
α1,α2,α3,α4,α5

) is dominant onto the locus of pairs (S,H) ∈ Eg,φ admitting

the same simple decomposition type as α1E1+α2E2+α3E3+α4F +α5F
′ (resp., α1E1+

α2E2 + α3E3 + α4F + α5F
′ +KS).

Proposition 4.6. Let α0, . . . , α4 ∈ N, with at least one among α0, . . . , α3 nonzero.
The map hα0,α1,α2,α3,α4 (respectively, h′α0,α1,α2,α3,α4

) is dominant onto the locus of pairs
(S,H) ∈ Eg,φ admitting the same simple decomposition type as α0F + α1E1 + α2E2 +
α3E3+α4(E4+ · · ·+E10) (resp., α0F +α1E1+α2E2+α3E3+α4(E4+ · · ·+E10)+KS).

Let α0, . . . , α5 ∈ N, with at least one among α0, . . . , α4 nonzero. The map h0α0,α1,α2,α3,α4,α5

(respectively, h0
′

α0,α1,α2,α3,α4,α5
) is dominant onto the locus of pairs (S,H) ∈ Eg,φ admit-

ting the same simple decomposition type as α0F
′+α1E1+α2E2+α3E3+α4F +α5(E5+

· · · + E10) (resp., α0F
′ + α1E1 + α2E2 + α3E3 + α4F + α5(E5 + · · ·+ E10) +KS).

The proofs of Propositions 4.5 and 4.6 require the results of Section 3 to make sure
we have enough isotropic divisors in the decompositions of H to map S to an Enriques
sextic in the appropriate way. For instance, if H ≡ α1E1 + α2E12, one writes H ≡
α1E1 +α2E12 +0E2 +0E3 so that E1 +E2 +E3 defines a mapping of S to an Enriques
sextic (following Notation 2.3 everywhere).

We use the following definition in the proofs of Propositions 4.5 and 4.6.

Definition 4.7. Given an isotropic 3-sequence I = {E1, E2, E3} on the Enriques surface

S, the set F̃i(I), for i = 0, 1, 2, will denote the set of all primitive, isotropic divisors F
on S satisfying

(F ·E1, F ·E2, F · E3) =





(1, 1, 1) if F ∈ F̃0(I),

(2, 1, 1) if F ∈ F̃1(I),

(2, 2, 1) if F ∈ F̃2(I)
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and the set F̃0i(I), for i = 0, 1, 2, will denote the set of all pairs (F,F ′) of primitive,

isotropic divisors F,F ′ on S such that F ∈ F̃0(I) and

• F ′ ∈ F̃0(I) and F · F ′ = 1, if i = 0,

• F ′ ∈ F̃1(I) and F · F ′ = 1, if i = 1,

• F ′ ∈ F̃1(I) and F · F ′ = 2, if i = 2.

Proof of Proposition 4.5. Let (S,H) be as in either of the statements of the proposition.
In particular, H admits a simple decomposition type of length n, with 2 6 n 6 5.
By Proposition 3.2, if n 6 4, we may write H ≡ α1E1 + α2E2 + α3E3 + α4F with

I = {E1, E2, E3} an isotropic 3-sequence and F ∈ F̃i(I), possibly allowing some of the
αis to be 0. If n = 5, we may write H ≡ α1E1 + α2E2 + α3E3 + α4F + α5F

′ with

(F,F ′) ∈ F̃0i(I). We may assume (S,H) to be general, in particular, S is unnodal.
Then by [4, Thm. 4.6.3 and 4.7.2] the complete linear system |E1 + E2 + E3| maps
S birationally onto an Enriques sextic in P

3, with double lines along the edges of the
tetrahedron T defined by the images of all Ei and E′

i := Ei +KS . Under this map, F
(respectively, (F,F ′)) is mapped to an element of Fi (resp., F0i), finishing the proof. �

Proof of Proposition 4.6. To prove the surjectivity of hα0,...,α4 , assume (S,H) admits
the given simple decomposition type as in the statement. We may assume that α4 > 0,
otherwise the result follows from Proposition 4.5. By Corollary 3.3, we may always write
H ∼ α0E1,2 + α1E1 + α2E2 + α3E3 + α4(E4 + · · · + E10), possibly allowing more than

one among α0, α1, α2, α3 to be zero. Since E1,2 ∈ F̃2(E1, E2, E3), the result follows as
in the proof of Proposition 4.5. The proof of the surjectivity of h′α0,...,α4

is identical.

To prove the surjectivity of h0α0,...,α5
, assume (S,H) admits the given simple decom-

position type as in the statement. We may again assume that α5 > 0. By Corollary 3.3,
we may always write H ∼ α0E1,4 + α1E1 + α2E2 + α3E3 + α4E4 + α5(E5 + · · ·+ E10),
possibly allowing more than one among α0, α1, α2, α3, α4 to be zero. Then (E4, E1,4) ∈

F̃02(E1, E2, E3) and the result follows as in the proof of Proposition 4.5. The proof of

the surjectivity of h0
′

α0,...,α5
is identical. �

Next we prove the:

Lemma 4.8. Let C be an irreducible component of Eg,φ, such that (S,H) and (S′,H ′)
both lie in C if and only if they admit the same simple decomposition type as in (4). If
some of the ais are odd, then in (4) one may always assume ε = 0, so that both pairs
(S,H) and (S,H +KS) lie in C.

If all the ais are even, then there is a different irreducible component C′ of Eg,φ such
that (S,H) lies in C′ if and only if it admits the simple decomposition type H ∼ a1E1 +
· · · + anEn + (1− ε)KS .

Proof. The first assertion is trivial. So assume that all the ais are even. Assume in (4)
one has ε = 0. This means that H is divisible by 2 in Pic(S). The pairs (S,H +KS)
do fill up an irreducible component C′ of Eg,φ, and we claim that it is different from C.
Indeed if C = C′, given a general Enriques surface S, we would have a relation of the
form H ∼ H ′ +KS , with H and H ′ divisible by 2 in Pic(S). This is impossible, since
KS is not divisible by 2 in Pic(S). The proof is similar if ε = 1. �

We finally give the proofs of the four corollaries in the introduction.
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Proof of Corollary 1.3. By Lemma 2.5, all cases with φ 6 4 admit simple decomposition
types of length n 6 4, except for the decomposition type g−7

4 E1 + E2 + E3 + E4 + E5.
The result thus follows from Theorem 1.1. �

Proof of Corollary 1.4. Since g 6 20, we have H2 6 38, whence φ 6 6 by (5), with
equality φ = 6 possible only for H2 = 36 by Proposition 2.4, in which case the simple
decomposition type has length 2. Thus the result follows from Theorem 1.1 in this case.

We have left to treat the cases where φ 6 5. By Lemma 2.5, all cases with φ 6 5 and
g 6 20 have decomposition types of length n 6 5, except for the type E1 + E2 + E3 +
E4 + E5 + E6 for (g, φ) = (16, 5), which is the only type occurring for these values of
g and φ. Hence E16,5 is irreducile and uniruled by Theorem 1.2. Again by Lemma 2.5,
all remaining cases with φ 6 5 and g 6 20 admit simple decomposition types of length
n 6 4 or of length 5 with all nonzero intersections occurring equal to one, except for the
type 2E1 + E2 + E3 + E4 + E1,5 for (g, φ) = (17, 5), which is the only type occurring
for these values of g and φ. Hence E17,5 is irreducile and uniruled and all irreducible
components of the remaining Eg,φ are unirational by Theorem 1.1. �

Proof of Corollary 1.5. When g = φ2

2 + 1, equivalently H2 = φ2, then Proposition 2.4,

Theorem 1.1 and Lemma 4.8 yield that, when φ
2 is even, i.e., φ ≡ 0 mod 4 (respectively,

when φ
2 is odd, i.e., φ ≡ 2 mod 4) then Eφ2

2
+1,φ

has two irreducible, unirational compo-

nents (resp. only one irreducible, unirational component), corresponding to the simple

decomposition types φ
2 (E1 + E1,2) and

φ
2 (E1 + E1,2) +KS (resp. φ

2 (E1 +E1,2)).

When g = φ(φ+1)
2 , Proposition 2.4 yields that there is a unique simple decomposition

type, of length 3, for each φ, except for φ = 6, where there are three possible types

2E1 + 3E1,2 + E2, 2(E1 + E2 + E1,2), 2(E1 + E2 + E1,2) +KS ,

The result follows from Theorem 1.1 and Lemma 4.8. �

Before proving Corollary 1.6, we need an example and an auxiliary result.

Example 4.9. Let S be an Enriques surface and H a line bundle with a simple isotropic
decomposition type of the form

H ≡ a0E1,2 + a1E1 + a3E3 + · · ·+ a10E10,

where a1 is an even nonnegative integer, and a0, a3, . . . , a10 are odd positive integers.
Then H is numerically 2-divisible, that is, its class in Num(S) is 2-divisible. Indeed, the
claim is equivalent to B := E1,2 + E3 + · · · + E10 being numerically 2-divisible. As

B ≡ 3(E1,2 + E1 + E2) + (E1 + E2 +E3 + · · ·+ E10)− 2E1,2 − 4E1 − 4E2

≡ 2(E1 + · · · +E10)− 2E1,2 − 4E1 − 4E2,

using Lemma 2.2(a), the claim follows.

Lemma 4.10. A line bundle H on an Enriques surface is numerically 2-divisible if and
only if either all coefficients in any simple isotropic decomposition in Num(S) are even
or H is as in Example 4.9.

Proof. The if part is clear. To prove the converse, assume that H is numerically 2-
divisible and

H ≡ a0E1,2 + a1E1 + a2E2 + a3E3 + · · · + a10E10,
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by Corollary 3.3, where the ais are nonnegative integers, at least one being zero. By
symmetry, we may consider the three cases a0 = 0, a2 = 0 and a10 = 0. We let Ei,j be
defined as in (6).

Assume a0 = 0. Since (Ei,j − Ei) · H = 2ai + aj , for i 6= j, and H is numerically
2-divisible, we must have all aj even, as desired.

Assume a10 = 0. For i = 1, 2, we have (Ei,10 − E10) · H = ai, hence a1 and a2 are
even. For i > 3, we have (Ei − E10) · H = −ai, hence also ai for i > 3 must be even.
Moreover E3 ·H = a0 + a1 + a2 + a4 + · · ·+ a9, and since a1, . . . , a9 are all even, also a0
is even, as desired.

Assume a2 = 0. Since (E2 − E1) · H = a1, we have that a1 is even. For i 6= j and
i, j > 3, we have (Ej −Ei) ·H = ai−aj. Hence ai+aj is even for all i, j > 3. For j > 3,
we have (E1,2 −E2,j) ·H = −a0 − aj + a1. Hence a0 + aj is even for all j > 3. It follows
that all a0, a3, . . . , a10 have the same parity. Thus, either all coefficients are even, or H
is as in Example 4.9, as claimed. �

Proof of Corollary 1.6. If [H] ∈ Num(S) is not 2-divisible or as in Example 4.9, then
some simple decomposition types of H and H+KS have not all even coefficients in front
of the isotropic, primitive summands. Hence, by substituting one Ei with odd coefficient
with Ei +KS , we see that H and H +KS admit the same simple decomposition type,
and thus belong to the same irreducible component of Eg,φ, by Theorems 1.1 or 1.2
and Lemma 4.8, by the assumption on the decomposition types. Hence ρ−1(ρ(C)) is
irreducible.

Conversely, assume [H] ∈ Num(S) is 2-divisible and not as in Example 4.9 and with
a simple decomposition type of length at most 5. By Corollary 3.3 there is an isotropic
10-sequence {E1, . . . , E10} so that

H ≡ a0E1,2 + a1E1 + a2E2 + a3E3 + a4E4 + a5E5,

where at least one of a0, . . . , a5 is zero. There may be more such sequences, but by
Lemma 4.10, for any such, all coefficients ai are even. Thus, by Lemma 4.8, H and
H + KS do not admit the same simple decomposition type and therefore do not lie
in the same irreducible component of Eg,φ, whence ρ−1(ρ(C)) consists of two disjoint
components.

The argument is the same if H admits a simple decomposition type that is 6–
symmetric. �
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Appendix: Irreducible components of Eg,φ and Eg,φ for g 6 30

Using Proposition 3.4 (and Notation 2.3) we list all irreducible components of the
moduli spaces Eg,φ for g 6 30, marking them with roman numbers, and describe the
properties of ρ−1 of these components obtained by Theorems 1.1 and 1.2 and Corollary
1.6. We thus obtain information about all irreducible components of the moduli spaces
Eg,φ, with few exceptions. The various decomposition types can be obtained from Lemma
2.5 and Proposition 2.4, and an ad hoc treatment as in the proof of Lemma 2.5 for the
cases φ = 6 and 7. The fact that all decomposition types below are truly different can
be checked by computing suitable intersections as in the proof of Lemma 2.5, and the
fact that they all do exist on any Enriques surface follows from Lemma 2.2(a).

g φ comp. dec. type ρ−1

2 1 E2,1 E1 + E2 irred. unirat.

3 1 E3,1 2E1 + E2 irred. unirat.

3 2 E3,2 E1 + E1,2 irred. rational [2]

4 1 E4,1 3E1 + E2 irred. unirat.

4 2 E4,2 E1 + E2 + E3 irred. rational, [5, §3]

5 1 E5,1 4E1 + E2 irred. unirat.

5 2 E
(I)
5,2 2E1 + E1,2 irred. unirat.

5 2 E
(II)
5,2 2(E1 + E2) two unirat. components

6 1 E6,1 5E1 + E2 irred. unirat.

6 2 E6,2 2E1 + E2 + E3 irred. unirat.

6 3 E6,3 E1 + E2 + E1,2 irred. unirat. [11]

7 1 E7,1 6E1 + E2 irred. unirat.

7 2 E
(I)
7,2 3E1 + E1,2 irred. unirat.

7 2 E
(II)
7,2 3E1 + 2E2 irred. unirat.

7 3 E7,3 E1 + E2 + E3 + E4 irred. unirat.

8 1 E8,1 7E1 + E2 irred. unirat.

8 2 E8,2 3E1 + E2 + E3 irred. unirat.

8 3 E8,3 2E1 + E2 + E1,3 irred. unirat.

9 1 E9,1 8E1 + E2 irred. unirat.

9 2 E
(I)
9,2 4E1 + E1,2 irred. unirat.

9 2 E
(II)
9,2 2(2E1 + E2) two unirat. components

9 3 E
(I)
9,3 2E1 + E2 + E1,2 irred. unirat.

9 3 E
(II)
9,3 2E1 + 2E2 + E3 irred. unirat.

9 4 E9,4 2(E1 + E1,2) two unirat. components

10 1 E10,1 9E1 + E2 irred. unirat.

10 2 E10,2 4E1 + E2 + E3 irred. unirat.

10 3 E
(I)
10,3 2E1 + E2 + E3 + E4 irred. unirat.

10 3 E
(II)
10,3 3(E1 + E2) irred. unirat.

10 4 E10,4 2E1,2 + E1 + E2 irred. unirat.

11 1 E11,1 10E1 + E2 irred. unirat.

11 2 E
(I)
11,2 5E1 + E1,2 irred. unirat.

11 2 E
(II)
11,2 5E1 + 2E2 irred. unirat.

11 3 E11,3 3E1 + E2 + E1,3 irred. unirat.

11 4 E11,4 E1 + E2 + E3 + E4 + E5 irred. unirat.
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g φ comp. dec. type ρ−1

12 1 E12,1 11E1 + E2 irred. unirat.

12 2 E12,2 5E1 + E2 + E3 irred. unirat.

12 3 E
(I)
12,3 3E1 + 2E2 + E3 irred. unirat.

12 3 E
(II)
12,3 3E1 + E2 + E1,2 irred. unirat.

12 4 E12,4 2E1 + E2 + E3 + E1,4 irred. unirat.

13 1 E13,1 12E1 + E2 irred. unirat.

13 2 E
(I)
13,2 6E1 + E1,2 irred. unirat.

13 2 E
(II)
13,2 2(3E1 + E2) two unirat. components

13 3 E
(I)
13,3 3E1 + E2 + E3 + E4 irred. unirat.

13 3 E
(II)
13,3 4E1 + 3E2 irred. unirat.

13 4 E
(I)
13,4 2E1 + 2E2 + E1,2 irred. unirat.

13 4 E
(II)
13,4 2(E1 + E2 + E3) two unirat. components

13 4 E
(III)
13,4 3E1 + 2E1,2 irred. unirat.

14 1 E14,1 13E1 + E2 irred. unirat.

14 2 E14,2 6E1 + E2 + E3 irred. unirat.

14 3 E14,3 4E1 + E2 + E1,3 irred. unirat.

14 4 E
(I)
14,4 2E1 + 2E2 + E3 + E4 irred. unirat.

14 4 E
(II)
14,4 3E1,2 + E1 + E2 irred. unirat.

15 1 E15,1 14E1 + E2 irred. unirat.

15 2 E
(I)
15,2 7E1 + E1,2 irred. unirat.

15 2 E
(II)
15,2 7E1 + 2E2 irred. unirat.

15 3 E
(I)
15,3 4E1 + 2E2 + E3 irred. unirat.

15 3 E
(II)
15,3 4E1 + E2 + E1,2 irred. unirat.

15 4 E
(I)
15,4 2E1 + E2 + E3 + E4 + E5 irred. unirat.

15 4 E
(II)
15,4 3E1 + 2E2 + E1,3 irred. unirat.

15 5 E15,5 2E1 + E2 + 2E1,2 irred. unirat.

16 1 E16,1 15E1 + E2 irred. unirat.

16 2 E16,2 7E1 + E2 + E3 irred. unirat.

16 3 E
(I)
16,3 4E1 + E2 + E3 + E4 irred. unirat.

16 3 E
(II)
16,3 5E1 + 3E2 irred. unirat.

16 4 E
(I)
16,4 3E1 + 3E2 + E3 irred. unirat.

16 4 E
(II)
16,4 3E1 + E2 + E3 + E1,4 irred. unirat.

16 5 E16,5 E1 + E2 + E3 + E4 + E5 + E6 irred. uniruled

17 1 E17,1 16E1 + E2 irred. unirat.

17 2 E
(I)
17,2 8E1 + E1,2 irred. unirat.

17 2 E
(II)
17,2 2(4E1 + E2) two unirat. components

17 3 E17,3 5E1 + E2 + E1,3 irred. unirat.

17 4 E
(I)
17,4 3E1 + 2E2 + 2E3 irred. unirat.

17 4 E
(II)
17,4 3E1 + 2E2 + E1,2 irred. unirat.

17 4 E
(III)
17,4 2(2E1 + E1,2) two unirat. components

17 4 E
(IV )
17,4 4(E1 + E2) two unirat. components

17 5 E17,5 2E1 + E2 + E3 + E4 + E1,5 irred. uniruled
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g φ comp. dec. type ρ−1

18 1 E18,1 17E1 + E2 irred. unirat.

18 2 E18,2 8E1 + E2 + E3 irred. unirat.

18 3 E
(I)
18,3 5E1 + 2E2 + E3 irred. unirat.

18 3 E
(II)
18,3 5E1 + E2 + E1,2 irred. unirat.

18 4 E
(I)
18,4 3E1 + 2E2 + E3 + E4 irred. unirat.

18 4 E
(II)
18,4 4E1,2 + E1 + E2 irred. unirat.

18 5 E
(I)
18,5 3E1 + E2 + 2E1,3 irred. unirat.

18 5 E
(II)
18,5 2E1 + 2E2 + E3 + E1,2 irred. unirat.

19 1 E19,1 18E1 + E2 irred. unirat.

19 2 E
(I)
19,2 9E1 + E1,2 irred. unirat.

19 2 E
(II)
19,2 9E1 + 2E2 irred. unirat.

19 3 E
(I)
19,3 5E1 + E2 + E3 + E4 irred. unirat.

19 3 E
(II)
19,3 3(2E1 + E2) irred. unirat.

19 4 E
(I)
19,4 3E1 + E2 + E3 + E4 + E5 irred. unirat.

19 4 E
(II)
19,4 4E1 + 2E2 + E1,3 irred. unirat.

19 5 E
(I)
19,5 2E1 + 2E2 + 2E3 + E4 irred. unirat.

19 5 E
(II)
19,5 3E1,2 + E1 + E2 + E3 irred. unirat.

19 6 E19,6 3(E1 + E1,2) irred. unirat.

20 1 E20,1 19E1 + E2 irred. unirat.

20 2 E20,2 9E1 + E2 + E3 irred. unirat.

20 3 E20,3 6E1 + E2 + E1,3 irred. unirat.

20 4 E
(I)
20,4 4E1 + 3E2 + E3 irred. unirat.

20 4 E
(II)
20,4 4E1 + E2 + E3 + E1,4 irred. unirat.

20 5 E
(I)
20,5 2E1 + 2E2 + E3 + E4 + E5 irred. unirat.

20 5 E
(II)
20,5 3E1 + E2 + 2E1,2 irred. unirat.

21 1 E21,1 20E1 + E2 irred. unirat.

21 2 E
(I)
21,2 10E1 + E1,2 irred. unirat.

21 2 E
(II)
21,2 10E1 + 2E2 two unirat. components

21 3 E
(I)
21,3 6E1 + E2 + E1,2 irred. unirat.

21 3 E
(II)
21,3 6E1 + 2E2 + E3 irred. unirat.

21 4 E
(I)
21,4 5E1 + 4E2 irred. unirat.

21 4 E
(II)
21,4 5E1 + 2E1,2 irred. unirat.

21 4 E
(III)
21,4 4E1 + 2E2 + 2E3 two unirat. components

21 4 E
(IV )
21,4 4E1 + 2E2 + E1,2 irred. unirat.

21 5 E
(I)
21,5 2E1 + E2 + E3 + E4 + E5 + E6 ??

21 5 E
(II)
21,5 3E1 + 2E2 + E3 + E1,4 irred. unirat.

21 6 E21,6 2(E1 + E2 + E1,2) two unirat. components

22 1 E22,1 21E1 + E2 irred. unirat.

22 2 E22,2 10E1 + E2 + E3 irred. unirat.

22 3 E
(I)
22,3 6E1 + E2 + E3 + E4 irred. unirat.

22 3 E
(II)
22,3 7E1 + 3E2 irred. unirat.

22 4 E
(I)
22,4 4E1 + 2E2 + E3 + E4 irred. unirat.

22 4 E
(II)
22,4 5E1,2 + E1 + E2 irred. unirat.

22 5 E
(I)
22,5 3E1 + E2 + E3 + E4 + E1,5 irred. uniruled

22 5 E
(II)
22,5 3E1 + 3E2 + E1,2 irred. unirat.

22 5 E
(III)
22,5 3E1 + 3E2 + 2E3 irred. unirat.

22 6 E22,6 E1 + E2 + E3 + E4 + E5 + E6 + E7 irred. unirat.
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g φ comp. dec. type ρ−1

23 1 E23,1 22E1 + E2 irred. unirat.

23 2 E
(I)
23,2 11E1 + E1,2 irred. unirat.

23 2 E
(II)
23,2 11E1 + 2E2 irred. unirat.

23 3 E23,3 7E1 + E2 + E1,3 irred. unirat.

23 4 E
(I)
23,4 5E1 + 2E2 + E1,3 irred. unirat.

23 4 E
(II)
23,4 4E1 + E2 + E3 + E4 + E5 irred. unirat.

23 5 E
(I)
23,5 4E1 + E2 + 2E1,3 irred. unirat.

23 5 E
(II)
23,5 3E1 + 2E2 + E3 + E1,2 irred. unirat.

23 5 E
(III)
23,5 3E1 + 3E2 + E3 + E4 irred. unirat.

23 6 E23,6 2E1 + E2 + E3 + E4 + E5 + E1,6 ??

24 1 E24,1 23E1 + E2 irred. unirat.

24 2 E24,2 11E1 + E2 + E3 irred. unirat.

24 3 E
(I)
24,3 7E1 + E2 + E1,2 irred. unirat.

24 3 E
(II)
24,3 7E1 + 2E2 + E3 irred. unirat.

24 4 E
(I)
24,4 5E1 + 3E2 + E3 irred. unirat.

24 4 E
(II)
24,4 5E1 + E2 + E3 + E1,4 irred. unirat.

24 5 E
(I)
24,5 3E1 + 2E2 + 2E3 + E4 irred. uniruled

24 5 E
(II)
24,5 4E1,2 + E1 + E2 + E3 irred. unirat.

24 5 E
(III)
24,5 4E1 + 3E2 + E1,3 irred. unirat.

24 6 E
(I)
24,6 3E1 + E2 + E3 + 2E1,4 irred. unirat.

24 6 E
(II)
24,6 2E1 + 2E2 + E3 + E4 + E1,2 irred. uniruled

25 1 E25,1 24E1 + E2 irred. unirat.

25 2 E
(I)
25,2 12E1 + E1,2 irred. unirat.

25 2 E
(II)
25,2 2(6E1 + E2) two unirat. components

25 3 E
(I)
25,3 7E1 + E2 + E3 + E4 irred. unirat.

25 3 E
(II)
25,3 8E1 + 3E2 irred. unirat.

25 4 E
(I)
25,4 2(3E1 + 2E2) two unirat. components

25 4 E
(II)
25,4 2(3E1 + E1,2) two unirat. components

25 4 E
(III)
25,4 5E1 + 2E2 + 2E3 irred. unirat.

25 4 E
(IV )
25,4 5E1 + 2E2 + E1,2 irred. unirat.

25 5 E
(I)
25,5 4E1 + E2 + 2E1,2 irred. unirat.

25 5 E
(II)
25,5 3E1 + 2E2 + E3 + E4 + E5 irred. unirat.

25 5 E
(III)
25,5 4E1 + 4E2 + E3 irred. unirat.

25 6 E
(I)
25,6 4E1 + 3E1,2 irred. unirat.

25 6 E
(II)
25,6 2(E1 + E2 + E3 + E4) two unirat. components

25 6 E
(III)
25,6 3E1,2 + E1 + E2 + E3 + E4 irred. uniruled
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g φ comp. dec. type ρ−1

26 1 E26,1 25E1 + E2 irred. unirat.

26 2 E26,2 12E1 + E2 + E3 irred. unirat.

26 3 E26,3 8E1 + E2 + E1,3 irred. unirat.

26 4 E
(I)
26,4 5E1 + 2E2 + E3 + E4 irred. unirat.

26 4 E
(II)
26,4 6E1,2 + E1 + E2 irred. unirat.

26 5 E
(I)
26,5 3E1 + E2 + E3 + E4 + E5 + E6 ??

26 5 E
(II)
26,5 4E1 + 2E2 + E3 + E1,4 irred. unirat.

26 5 E
(III)
26,5 5(E1 + E2) irred. unirat.

26 6 E
(I)
26,6 3E1 + E2 + E3 + 2E1,2 irred. unirat.

26 6 E
(II)
26,6 2E1 + 2E2 + 2E3 + E4 + E5 irred. unirat.

27 1 E27,1 26E1 + E2 irred. unirat.

27 2 E
(I)
27,2 13E1 + E1,2 irred. unirat.

27 2 E
(II)
27,2 13E1 + 2E2 irred. unirat.

27 3 E
(I)
27,3 8E1 + E2 + E1,2 irred. unirat.

27 3 E
(II)
27,3 8E1 + 2E2 + E3 irred. unirat.

27 4 E
(I)
27,4 6E1 + 2E2 + E1,3 irred. unirat.

27 4 E
(II)
27,4 5E1 + E2 + E3 + E4 + E5 irred. unirat.

27 5 E
(I)
27,5 4E1 + E2 + E3 + E4 + E1,5 irred. uniruled

27 5 E
(II)
27,5 4E1 + 3E2 + E1,2 irred. unirat.

27 5 E
(III)
27,5 4E1 + 3E2 + 2E3 irred. unirat.

27 6 E
(I)
27,6 3E1 + 2E2 + 2E1,2 irred. unirat.

27 6 E
(II)
27,6 3E1 + 2E2 + 2E3 + E1,4 irred. unirat.

27 6 E
(III)
27,6 2E1 + 2E2 + E3 + E4 + E5 + E6 ??

28 1 E28,1 27E1 + E2 irred. unirat.

28 2 E28,2 13E1 + E2 + E3 irred. unirat.

28 3 E
(I)
28,3 8E1 + E2 + E3 + E4 irred. unirat.

28 3 E
(II)
28,3 3(3E1 + E2) irred. unirat.

28 4 E
(I)
28,4 6E1 + 3E2 + E3 irred. unirat.

28 4 E
(II)
28,4 6E1 + E2 + E3 + E1,4 irred. unirat.

28 5 E
(I)
28,5 5E1 + E2 + 2E1,3 irred. unirat.

28 5 E
(II)
28,5 4E1 + 2E2 + E3 + E1,2 irred. unirat.

28 5 E
(III)
28,5 4E1 + 3E2 + E3 + E4 irred. unirat.

28 6 E
(I)
28,6 2E1 + E2 + E3 + E4 + E5 + E6 + E7 irred. uniruled

28 6 E
(II)
28,6 3(E1 + E2 + E3) irred. unirat.

28 6 E
(III)
28,6 3E1 + 2E2 + E3 + E4 + E1,5 irred. uniruled

28 7 E28,7 3E1 + E2 + 3E1,2 irred. unirat.
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g φ comp. dec. type ρ−1

29 1 E29,1 28E1 + E2 irred. unirat.

29 2 E
(I)
29,2 14E1 + E1,2 irred. unirat.

29 2 E
(II)
29,2 2(7E1 + E2) two unirat. components

29 3 E29,3 9E1 + E2 + E1,3 irred. unirat.

29 4 E
(I)
29,4 7E1 + 4E2 irred. unirat.

29 4 E
(II)
29,4 7E1 + 2E1,2 irred. unirat.

29 4 E
(III)
29,4 2(3E1 + E2 + E3) two unirat. components

29 4 E
(IV )
29,4 6E1 + 2E2 + E1,2 two unirat. components

29 5 E
(I)
29,5 4E1 + 2E2 + 2E3 + E4 irred. unirat.

29 5 E
(II)
29,5 5E1,2 + E1 + E2 + E3 irred. unirat.

29 5 E
(III)
29,5 5E1 + 3E2 + E1,3 irred. unirat.

29 6 E
(I)
29,6 3E1 + E2 + E3 + E4 + E5 + E1,6 ??

29 6 E
(II)
29,6 2(2E1 + E2 + E1,3) two unirat. components

29 6 E
(III)
29,6 3E1 + 3E2 + E3 + E1,2 irred. unirat.

30 1 E30,1 29E1 + E2 irred. unirat.

30 2 E30,2 14E1 + E2 + E3 irred. unirat.

30 3 E
(I)
30,3 9E1 + 2E2 + E3 irred. unirat.

30 3 E
(II)
30,3 9E1 + E2 + E1,2 irred. unirat.

30 4 E
(I)
30,4 6E1 + 2E2 + E3 + E4 irred. unirat.

30 4 E
(II)
30,4 7E1,2 + E1 + E2 irred. unirat.

30 5 E
(I)
30,5 5E1 + E2 + 2E1,2 irred. unirat.

30 5 E
(II)
30,5 4E1 + 2E2 + E3 + E4 + E5 irred. unirat.

30 5 E
(III)
30,5 5E1 + 4E2 + E3 irred. unirat.

30 6 E
(I)
30,6 4E1 + E2 + E3 + 2E1,4 irred. unirat.

30 6 E
(II)
30,6 3E1 + 2E2 + E3 + E4 + E1,2 irred. unirat.

30 6 E
(III)
30,6 3E1 + 3E2 + 2E3 + E4 irred. unirat.

30 6 E
(IV )
30,6 4E1,2 + E1 + E2 + 2E3 irred. unirat.

30 7 E
(I)
30,7 2E1 + E2 + E3 + E4 + E5 + E6 + E1,7 irred. unirat. (cf. Rem. 3.10)

30 7 E
(II)
30,7 2E1 + 4E2 + E3 + E4 + E5 irred. unirat.
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