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Abstract
In this paper we propose a stochastic approximation algorithm to minimize functions for

which the gradient writes as the expectation of some integrable features. Considering the case
where computing feature moments or sampling from the underlying probability distribution
is not feasible we mix a Markov chain dynamic with the stochastic gradient descent dynamic,
thus combining optimization tools with statistics controls. This approach is motivated with
examples from Empirical Bayesian statistics. We assess the convergence as well as rates of
convergence for various objective functions.

1 Introduction
Computational Bayesian statistics often rely on complex probabilistic modeling which involves la-
tent variables and therefore the underlying a posteriori distribution of the parameters is expressed
as an untractable parameter-dependent integral. For example, some characteristics of the prior
distribution such as the mean or the variance are frequently unknown and are treated as hyperpa-
rameters which leads to consider hierarchical Bayesian models [42]. A first approach is to consider
the joint a posteriori probability distribution and perform inference for the parameters of interest
by marginalizing along the hyperparameters. This framework is referred to as a fully Bayesian set-
ting. However, solving this problem can be computationally prohibitive since it requires to sample
from the joint probability distribution. For instance this can be realized with a Gibbs sampling
strategy but the convergence of the associated Markov chain can be very slow in some situations.
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A second approach, which we consider in this paper, referred to as the Empirical Bayes (EB) set-
ting [7, 8, 40], consists in first finding a single-point estimate for the hyperparameters, similarly to
the Maximum A Posteriori (MAP) estimator, based on the conditional probability distribution of
the hyperparameters given the observations. Second, this estimate is plugged in the a posteriori
distribution of the parameters given the observations and the hyperparameters in order to make
inference. This methodology is theoretically founded: [37, 28, 45, 11] show that fully Bayesian and
EB approaches lead to similar inference conclusions when the sample size is large enough under
additional appropriate conditions. However, EB inference remains a challenging problem since it
relies on the optimization of a high-dimensional parameter-depending integral. When the parame-
ter space is small, numerical integration techniques can be considered, like the recently introduced
nested Laplace approximations [35, 46], however they might introduce some bias which can be
hard to quantify. If the dimension is large, the optimization can be achieved using a Robbins-
Monro scheme [41, 29, 20] which requires to be able to sample from the probability distribution
of the parameters given the observations and the hyperparameters. This former step is usually
tackled through Monte Carlo or Monte Carlo Markov Chain (MCMC) algorithms. EB inference
has found many applications in Bayesian inference problem [21, 6], large-scale inverse problem [50],
biostatistics [47, 26, 17].

In contrast to previous work, in this contribution we propose and analyze the use of inexact
MCMC algorithms to get approximate samples from the a posteriori distribution of the parameters
given the observations and the hyperparameters. While this method introduces some bias in the
estimation of the stochastic gradient used in the Robbins-Monro procedure, we show that it can be
controlled explicitly and does not affect the convergence of the hyperparameter recursion. The use
of inexact MCMC algorithms is justified because while existing results can be applied to stochastic
approximation based on exact MCMC schemes it requires strong conditions on the associated
Markov kernel (see e.g. [2, H6]). The basic condition of geometric ergodicity can be hard to check,
for example for the Metropolis Adjusted Langevin Algorithm [43] or Hamiltonian Monte Carlo [13].
On the other hand, inexact MCMC algorithms such that the Unadjusted Langevin-based Monte
Carlo methods are easier to analyze and can exhibit stronger convergence properties [5, 12, 9, 16].
In addition, they give in practice similar inference results than their exact counterparts at the
cost of a speed and accuracy trade-off. As a result, there have been increasingly popular in the
computational statistics and machine learning communities [49, 33, 18, 22, 36, 24].

The paper is organized as follows. In Section 2 we motivate and introduce our new method-
ology based on a Robbins-Monro procedure using inexact MCMC algorithms for Empirical Bayes
estimation. In Section 3 we summarize our main theoretical contributions and check that they
hold for Langevin-based methods. In particular, we show that under appropriate conditions the
complexity of the proposed methodology is linear in the dimension. Rigorous theoretical treatment
of the convergence of the algorithm is given in the appendix.

Notations and convention
Denote by B(Rd) the Borel σ-field of Rd, F(Rd) the set of all Borel measurable functions on Rd and
for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on (Rd,B(Rd)) and f ∈ F(Rd)
a µ-integrable function, denote by µ(f) the integral of f w.r.t. µ. For f ∈ F(Rd), the V -norm of
f is given by ‖f‖V = supx∈Rd |f(x)|/V (x). Let ξ be a finite signed measure on (Rd,B(Rd)). The
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V -total variation distance of ξ is defined as

‖ξ‖V = sup
f∈F(Rd),‖f‖V 61

∣∣∣∣∫
Rd
f(x)dξ(x)

∣∣∣∣ .
If V ≡ 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.

Let U an open set of Rd. We denote by Ck(U,Rp), respectively Ckc (U,Rp), the set of Rp-valued
k-differentiable functions, respectively the set of compactly supported Rp-valued k-differentiable
functions. Let f ∈ C1(U,R), we denote by ∇xf , the gradient of f . f is said to me m-convex with
m > 0 if for all x, y ∈ Rd

〈∇xf(x)−∇xf(y), x− y〉 > m‖x− y‖2 .

We recall that if f is twice differentiable at point a, its Laplacian is given by ∆xf(a) =
∑d
i=1

∂2f
∂x2
i
(a).

Let F ∈ C1(U × V,R) we denote by ∇x, the gradient of F along the first coordinate and ∇y the
gradient of F along the second coordinate. For any A ⊂ Rd, we denote by ∂A the boundary
of A. Let A ∈ B(Rd), we define Vol(A) = Leb(1A) where Leb is the Lebesgue measure over
(Rd,B(Rd)). Let B ⊂ Rd, we introduce its convex hull Conv(B), the intersection of all the con-
vex sets containing B. Let (Ω,F ,P) be a probability space. We denote by L2(Ω,F) = {X :
X is a random variable on Ω such E[X2] < +∞}. Denote by µ � ν if µ is absolutely continuous
w.r.t. ν and dµ/dν an associated density. Let µ, ν be two probability measures on (Rd,B(Rd)).
Define the Kullback-Leibler divergence of µ from ν by

KL (µ|ν) =
{∫

Rd
dµ
dν (x) log

(
dµ
dν (x)

)
dν(x) , if µ� ν

+∞ otherwise .

2 EB inference based on inexact MCMCmethods, the Stochas-
tic Optimization with Unadjusted Kernel (SOUK)

2.1 EB inference
Consider the hierarchical model based on the observations y in the subspace Y ⊂ Rdy specified by
the conditional density with respect to the Lebesgue measure (y, x, θ) 7→ p(y|x, θ), and prior distri-
butions (x, θ) 7→ p(x|θ) and θ 7→ p(θ) where x ∈ Rd is the parameter of interest and θ ∈ Θ ⊂ Rm is a
hyperparameter. Applying Bayes formula, we get that the a posteriori distribution is given for any
x ∈ Rd by p(x|y) ∝

∫
Θ p(y|x, θ)p(x|θ)p(θ)dθ. The problem of sampling from this distribution is the

subject of many works and remains a challenge. A common strategy relies on the Gibbs algorithm
which consists in sampling from p(θ|x, y) and p(x|y, θ) alternatively and performing inference using
the marginal distribution along the variable x. However, the two underlying problems are either
computationally very expensive or even impossible to solve. In this paper, we consider the EB
setting where the a posteriori distribution of x given y is approximated by p(y|x, θ∗)p(x|θ∗)p(θ∗)
up to a normalizing constant with

θ∗ ∈ arg max p(θ|y) with p(θ|y) ∝
∫
p(y|θ, x)p(x|θ)p(θ)dx =

∫
p(x|y, θ)dx . (1)
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In order to realize this task, the main difficulty is to estimate θ∗. To do so, we use a stochastic
approximation approach defining the recursion (θn)n∈N starting from θ0 ∈ Θ for any n ∈ N by

θn+1 = ΠΘ(θn − δn+1∆θn) , (2)

where ΠΘ is the projection onto Θ and, for any θ ∈ Θ, ∆θ is an estimator of ∇θ log p(θ|y), where
∇θ is the gradient with respect to the θ variable. This estimator can be written in the following
form

∇θ log p(θ|y) =
∫
∇θp(x, y, θ)
p(x, y, θ) πθ(x)dx , (3)

where for any θ ∈ Θ, πθ stands for the conditional distribution x 7→ p(x|y, θ). This methodology
was already studied and proposed in numerous papers [2, 1] in the case where ∆θ is unbiased,
directly sampling from πθ, or based on a Markov Chain Monte Carlo (MCMC) algorithm targeting
πθ. In this framework, for any n ∈ N

∆θn = ∇θp(θn)
p(θn) +m−1

n

mn∑
k=1

∇θp(Xk
n, y|θn)

p(Xn
k , y|θn) , (4)

where (mn)n∈N is a sequence of positive integers and for any n ∈ N, (Xn
k )k∈{0,...,mn} is either a

sequence either i.i.d. random variables with distribution πθn or a Markov Chain targeting this
distribution.

In this contribution, we propose to use inexact MCMC algorithms which do not target exactly πθ
but a close distribution in a sense which will precised below. Indeed, there have been recently several
major results on this family of methodologies showing that while they are biased, they benefit from
explicit convergence properties (and subsampling strategies can be applied in big-data setting)
contrary to most Metropolis-Hastings type algorithms [16, 12, 9]. These approximate MCMC
schemes are based on stochastic continuous dynamics (Y θt )t>0 for which the target distribution
πθ is invariant. Two fundamental examples are the Langevin dynamics solution of the following
Stochastic Differential Equation (SDE)

dY θt = ∇xUθ(Y θt )dt+
√

2dBt , (5)

or the kinetic Langevin dynamics solution of

dY θt = V θt , dV θt = ∇xUθ(Y θt )dt− V θt dt+
√

2dBt ,

where for any θ ∈ Θ, Uθ : x 7→ log πθ(x) and (Bt)t>0 is a standard d-dimensional Brownian
motion. Under mild assumptions on Uθ, these two SDEs admit strong solutions for which πθ and
π̃θ : (x, v) 7→ πθ(x) exp(−‖v‖2 /2)/(2π)d/2 are invariant probability measures. In addition, explicit
convergence of (Y θt )t>0 (respectively (Y θt , V θt )t>0) to πθ (respectively to π̃θ), in different metrics
have been obtained [44, 15, 14]. However, sampling path solutions of these dynamics is in general
not feasible. Therefore discretizations have to be used instead. In this paper we mainly focus on
the Euler-Maruyama discretizations [44] of (5)

Xk+1 = Xk − γ∇xUθ(Xk) +
√

2γZk+1 . (6)

where γ > 0 is a stepsize and (Zk)k∈N∗ is a sequence of i.i.d d-dimensional zero-mean Gaussian
random variables with covariance matrix identity. We have all the necessary tools to present our
new algorithm. Our new methodology can be also applied to a broad class of stochastic optimization
problems. Indeed, as mentioned previously, the EB estimation (1) can be casted in this framework,
see (2). Therefore, we present it in full generality in the next section.
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2.2 Stochastic Optimization with Unadjusted MCMC
The recursion (6) defines a Markov kernel Rγ,θ. Under appropriate conditions, for any γ ∈ (0, γ̄),
and θ ∈ Θ with γ̄ > 0, we can show that Rγ,θ admits an invariant distribution, see Lemma 16 in
the appendix. This observation motivates the following stochastic approximation scheme.

Let Θ be a convex closed set in Rm. Consider an objective function f : Θ→ R which we want
to minimize. We assume that f is continuously differentiable and that its gradient is given for any
θ ∈ Θ by

∇f(θ) =
∫
Rd
Hθ(x)πθ(dx) , (7)

where (θ, x) 7→ Hθ(x) ∈ C(Θ × Rd,R), for any θ ∈ Θ, Hθ is πθ-integrable and (πθ)θ∈Θ is a
family of probability distributions over (Rd,B(Rd)). Note that in the EB setting, we have from
(3) that Hθ(x) = ∇θp(x, y, θ)/p(x, y, θ). As emphasized in the previous section, we propose a
stochastic approximation scheme which relies on biased estimates of ∇f(θ) through a family of
Markov kernels {Kγ,θ, γ ∈ (0, γ̄) and θ ∈ Θ}, for γ̄ > 0, such that for any θ ∈ Θ and γ ∈ (0, γ̄),
Kγ,θ admits an invariant probability distribution πγ,θ on (Rd,B(Rd)). We assume in addition
that the bias associated to the use of this family of Markov kernels can be controlled w.r.t. to γ
uniformly in θ, i.e. for example there exists C > 0 such that for all γ ∈ (0, γ̄) with γ̄ > 0 and θ ∈ Θ,
‖πγ,θ − πθ‖TV 6 Cγα with α > 0. In our applications Kγ,θ stands for Rγ,θ for any γ ∈ (0, γ̄) with
γ̄ > 0 and θ ∈ Θ, where Rγ,θ is associated with (6).

Let now (δn)n∈N∗ ∈ (R∗+)N∗ , (mn)n∈N ∈ (N∗)N be sequences of stepsizes and batch sizes which
will be used to define the sequence relatively to the variable θ similarly to (2) and (4). Let (γn)n∈N ∈
(R∗+)N be a sequence of stepsizes which will be used to get approximate samples from πθn , similarly
to (6). Starting from X0

0 ∈ Rd and θ0 ∈ Θ we define on a probability space (Ω,F ,P), ({Xn
k : k ∈

{0, . . . ,mn}}, θn)n∈N by the following recursion for n ∈ N and k ∈ {0, . . . ,mn − 1}

Xn
k+1 is a Markov chain with kernel Kγn,θn and Xn

0 = Xn−1
mn−1

conditionally to Fn−1 if n > 1 ,(8)

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑
k=1

Hθn(Xn
k )
]
, (9)

where ΠΘ is the projection onto Θ and where Fn is defined as follows for all n ∈ N∗

Fn = σ
(
θ0, {(X`

k)k∈{0,...,m`} : ` ∈ {0, . . . , n}}
)
, (10)

where {(X`
k)k∈{0,...,m`} : ` ∈ {0, . . . , n}} is given by (8). Note that such a construction is always

possible by Kolmogorov extension theorem [27, Theorem 5.16] by (9), for any n ∈ N, θn+1 is Fn-
measurable. Then the sequence of approximate minimizers of f is given by (θ̂N )N∈N∗ where for
any N ∈ N∗

θ̂N =
{

N∑
n=1

δnθn

}/{
N∑
n=1

δn

}
. (11)

The pseudo-code associated with this method is given in Algorithm 1.
Under different sets of conditions on f,H, (δn)n∈N, (γn)n∈N and (mn)n∈N we obtain that (θN )N∈N∗

converges a.s. to an element of arg minΘ f . In particular we consider the case where f is assumed
to be convex, in Section 3. To summarize our results, we establish that if (γn)n∈N and (δn)n∈N
go to 0 sufficiently fast, E[f(θ̂N )] − minΘ f goes to 0 with a quantitative rate of convergence. In
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the case where (γn)n∈N is held fixed, i.e. for all n ∈ N, γn = γ, we show that while E[f(θ̂N )] does
not converge to 0, there exists C,α > 0 such that lim supN→+∞ E[f(θ̂N )]−minΘ f 6 Cγα. In the
case where f is non-convex we show that we can apply some results of stochastic approximation
which imply that the sequence (θn)n∈N converges a.s. to a stationary point of the projected ordi-
nary differential equation associated with ∇f and Θ. We postpone this result to the appendix, see
Appendix A, since it involves a theoretical background which we think is out of the scope of the
main document.

Algorithm 1 Stochastic optimization with unadjusted Markov kernel (SOUK)
1: function SOUK
2: Inputs:

{Kγ,θ : γ > 0, θ ∈ Θ}, (γn)n∈N, (δn)n∈N, (mn)n∈N, N
3: Initialize:

X0
0 ∈ Rd and θ0 ∈ Θ

4: for n ∈ {0, . . . , N − 1} do
5: if n > 1 then
6: Xn

0 = Xn−1
mn−1

7: end if
8: for k ∈ {0, . . . ,mn − 1} do
9: Xn

k+1 ∼ Kγn,θn(Xn
k , ·)

10: end for
11: θn+1 = ΠΘ

[
θn − δn+1

mn

∑mn
k=1Hθn(Xn

k )
]

12: end for
13: Outputs:

θ̂N =
{∑N

n=1 δnθn

}/{∑N
n=1 δn

}
14: end function

3 Stochastic Optimization with Unadjusted MCMC
3.1 Convex objective function
We consider the following assumptions on Θ and f , where Θ ⊂ Rm.

A1. Θ is a convex compact set and Θ ⊂ B(0,MΘ) with MΘ > 0.

A2. There exist an open set U ⊂ Rm and Lf > 0 such that Θ ⊂ U and f ∈ C1(U,R) is convex and
for any θ1, θ2 ∈ Θ

‖∇f(θ1)−∇f(θ2)‖ 6 Lf‖θ1 − θ2‖ .

Note that under A1 and A2, arg minΘ f is non-empty. The following assumption ensures that
the gradient of the objective function can be written as the expectation of some integrable function.

A3. For any θ ∈ Θ, there exist Hθ : Rd → Rm and a probability distribution πθ on (Rd,B(Rd))
satisfying that (θ, x) 7→ Hθ(x) is measurable, Hθ is πθ-integrable and (7).
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We impose some stability condition on the stochastic process {(Xn
k )k∈{0,...,mn} : n ∈ N} defined

by (8) and that for any γ ∈ (0, γ̄), with γ̄ > 0 and θ ∈ Θ the iterates of Kγ,θ are close enough to
πθ after a sufficiently large number of iterations.

H1. (i) There exists a measurable function V : Rd → [1,+∞) and A1 > 0 such that for any
n ∈ N

E
[
V (Xn

mn)
∣∣X0

0
]
6 A1V (X0

0 ) , E
[
V (X0

0 )
]
< +∞ . (12)

(ii) In addition, there exist γ̄ > 0, A2, A3 > 0, B : R∗+ → R+ such that for any γ ∈ (0, γ̄), θ ∈ Θ,
x ∈ Rd and n ∈ N∣∣∣∣∫

Rd
Kn
γ,θ(x, dy)Hθ(y)− πθ(Hθ)

∣∣∣∣ 6 A2ρ
nγV (x) +A3B(γ) . (13)

This assumption does not impose that the Markov kernel Kγ,θ, with γ ∈ (0, γ̄) where γ̄ > 0
and θ ∈ Θ is uniformly V -geometrically ergodic. However if an appropriate ergodicity condition
holds for the family of kernels {Kγ,θ, γ ∈ (0, γ̄), θ ∈ Θ}, as in H5 below, then (13) can be written
as ‖πγ,θ(Hθ)− πθ(Hθ)‖ 6 A3B(γ) for any γ ∈ (0, γ̄) with γ̄ > 0 and θ ∈ Θ, where πγ,θ is the
unique invariant probablity distribution of Kγ,θ. We show that this condition holds in the case of
the Langevin algorithm in Proposition 18.

Theorem 1. Assume A1, A2, A3. Let γ̄ > 0, (γn)n∈N, (δn)n∈N∗ be sequences of non-increasing
positive real numbers and (mn)n∈N be a sequence of positive integers satisfying supn∈N δn < 1/Lf ,
supn∈N γn < γ̄ and

+∞∑
n=0

δn+1 = +∞ ,

+∞∑
n=0

δn+1B(γn) < +∞ ,

+∞∑
n=0

δn+1/(mnγn) < +∞ . (14)

Let {(Xn
k )k∈{0,...,mn} : n ∈ N} be given by (8). Assume in addition that H 1 holds. Then the

following statements hold:

(a) (θn)n∈N defined by (9) converges a.s. to some θ∗ ∈ arg minΘ f ;

(b) furthermore, a.s. there exists C > 0 such that for any n ∈ N∗{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min

Θ
f 6 C

/(
n∑
k=1

δk

)
.

We start with the following technical lemma. Consider (ηn)n∈N the sequence defined for any
n ∈ N by

ηn = m−1
n

mn∑
k=1
{Hθn(Xn

k )− πθn(Hθn)} , (15)

Lemma 2. Under the hypotheses of Theorem 1 we have for any n ∈ N∗

E [‖ηn‖] 6 (A1 ∨ 1)A2
ρ−γ̄E

[
V (X0

0 )
]

log(1/ρ)γnmn
+A3B(γn) .
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Proof. Using the definition of (Fn)n∈N, see (10), the Markov property, Lemma 11 and H1-(ii) we
have for any n ∈ N

E [‖ηn+1‖|Fn ] 6 (1/mn+1)
mn+1∑
k=1
|Kk

γn+1,θn+1
Hθn+1(Xn

mn)− πθn+1

(
Hθn+1

)
|

6 m−1
n+1

mn+1∑
k=1

{
A2ρ

kγn+1V (Xn
mn) +A3B(γn+1)

}
6

A2ρ
−γ̄V (Xn

mn)
log(1/ρ)γn+1mn+1

+A3B(γn+1) ,

where for the last inequality we use that
∑+∞
k=1 ρ

γk 6 ρ−γ̄/[log(1/ρ)γ]. In a similar manner, we
have

E
[
‖η0‖

∣∣X0
0
]
6
A2ρ

−γ̄V (X0
0 )

log(1/ρ)γ0m0
+A3B(γ0) .

We conclude using (12) in H1-(i).

We now turn to the proof of Theorem 1.

Proof. The proof is an application of [2, Theorem 2, Theorem 3]

(a) To apply [2, Theorem 2], it is enough to show that the following series converge a.s.

+∞∑
n=0

δn+1〈ΠΘ(θn − δn+1∇f(θn)), ηn〉 ,
+∞∑
n=0

δn+1‖ηn‖ ,
+∞∑
n=0

δ2
n+1‖ηn‖2 .

where the sequence (ηn)n∈N is defined for any n ∈ N by (15). Since ΠΘ(θn − δn+1∇f(θn)) is
bounded, we are reduced to proving that a.s.

∑+∞
n=0 δn+1‖ηn‖ < +∞. As a result, using (14) and

Lemma 2 we obtain that
∑
n∈N δn+1E[‖ηn‖] < +∞, which implies the stated convergence applying

[2, Theorem 2].

(b) Combining [2, Theorem 3] with A1 we obtain that a.s. for any n ∈ N

n∑
k=1

δk

{
f(θk)−min

Θ
f
}

(16)

6
‖θ0 − θ∗‖2

2 −
n−1∑
k=0

δk+1〈ΠΘ(θk − δk+1∇f(θk))− θ∗, ηk〉+
n−1∑
k=0

δ2
k+1‖ηk‖2

6 2M2
Θ + 2MΘ

n−1∑
k=0

δk+1‖ηk‖+
n−1∑
k=0

δ2
k+1‖ηk‖2 . (17)

Since
∑
k∈N δk+1‖ηk‖ is finite a.s. so is

∑
k∈N δ

2
k+1‖ηk‖2. The proof is then completed upon dividing

(16) by
∑n
k=1 δk.
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In (8), Xn
0 = Xn−1

mn−1
for n ∈ N∗. This procedure is referred to as warm-start in the sequel. In

the proof of Theorem 1, Xn
0 could be a random variable independent from Fn−1 for any n ∈ N with

supn∈N∗ E [V (Xn
0 )] < +∞. This will not be the case in the fixed batch size case, see Theorem 4,

where the warm-start procedure is crucial for the convergence to occur.
We extend this theorem to non convex objective function see Theorem 9 in Appendix A. Under

the conditions of Theorem 1 with the additional assumption that ∂Θ is a smooth manifold we obtain
that (θn)n∈N converges a.s. to some point θ∗ such that ∇f(θ∗) + n = 0 with n = 0 if θ∗ ∈ int(Θ)
and n ∈ T (θ∗, ∂Θ)⊥ if θ∗ ∈ ∂Θ, where T (θ, ∂Θ) is the tangent space of ∂Θ at point θ ∈ ∂Θ, see [3,
Chapter 2].

In our applications B(γ) = γ1/2, see Theorem 5. Assume then that there exist a, b, c > 0 such
that for any n ∈ N∗, δn = n−a, γn = n−b and mn = nc then (14) is equivalent to

a < 1 , a+ b/2 > 1 , a− b+ c > 1 .

Suppose a ∈ [0, 1) is given, then the previous equation reads

b = 2(1− a) + ς1 , c = 3(1− a) + ς2 , ς2 > ς1 . (18)

Thus b and c are proportional to 1− a. This illustrates a trade-off between the intrinsic inaccuracy
of our algorithm through the family of Markov kernels (8) which do not exactly target πθ and the
minimization aim of our scheme. Note also that (δn)n∈N is allowed to be constant. This situation
yield γn = n−2−ς1 and mn = n3+ς2 with ς2 > ς1 > 0.

With the additional following assumption we establish quantitative bounds on E[f(θ̂n)−minΘ f ],
where (θ̂n)n∈N is given by (11).

H2. There exists A4 > 0 such that for any n ∈ N we have

E

(mn∑
k=1

Hθn(Xn
k )− πθn(Hθn)

)2
 6 A4D(γn,mn)E

[
V (X0

0 )
]
. (19)

Note that this assumption strengthens H1 and imposes a control on the mean square error
associated with the family of Markov kernels {Kγ,θ : γ ∈ (0, γ̄) , θ ∈ Θ} used to target (πθ)θ∈Θ and
the family of {x 7→ Hθ(x) : θ ∈ Θ}.

Theorem 3. Assume A1, A2, A3. Let (γn)n∈N, (δn)n∈N be sequences of non-increasing posi-
tive real numbers and (mn)n∈N be a sequence of positive integers satisfying supn∈N δn < 1/Lf ,
supn∈N γn < γ̄. Let {(Xn

k )k∈{0,...,mn} : n ∈ N} be given by (8). Assume in addition that H1 and
H2 hold. Then, there exists (En)n∈N such that

E

[{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min

Θ
f

]
6 En

/(
n∑
k=1

δk

)
,

with for any n ∈ N,

En = 2M2
Θ + 2MΘE

[
V (X0

0 )
] [ (A1 ∨ 1)A2

ργ̄ log(1/ρ)

n∑
k=0
{δk+1/(γkmk)}+A3

n∑
k=0

δk+1B(γk)
]

+A4E
[
V (X0

0 )
] n∑
k=0

δ2
k+1m

−2
k D(γk,mk) . (20)
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Proof. Taking the expectation in (16) we get that for every n ∈ N

E

[
n−1∑
k=0

δk+1

{
f(θk)−min

Θ
f
}]

6 2M2
Θ + 2MΘ

n−1∑
k=0

δk+1E [‖ηk‖] +
n−1∑
k=0

δ2
k+1E

[
‖ηk‖2

]
. (21)

Using (15) and (19) we obtain that for any n ∈ N

E
[
‖ηn‖2

]
6 A4m

−2
n D(γn,mn)E

[
V (X0

0 )
]
. (22)

Combining (21), Lemma 2 and (22) we conclude the proof.

In the case where Kγ,θ = Rγ,θ is the Markov kernel associated with the Langevin update (6) for
any θ ∈ Θ and γ ∈ (0, γ̄) with γ̄ > 0, B(γ) = γ1/2 and D(γ,m) = m2, see Theorem 5. Therefore
if (14) and

∑+∞
k=0 δ

2
k+1 < +∞ hold then (En)n∈N is bounded by E∞. Thus we obtain the L1

convergence of the sequence (f(θ̂n))n∈N to minΘ f with rate (
∑n
k=1 δk)−1 and explicit bound E∞.

In the case of the Langevin update (6), if there exist a, b, c > 0 such that for any n ∈ N∗, δn =
n−a, γn = n−b andmn = nc, (14) is equivalent to (18) and the accuracy, respectively the complexity,
of the algorithm are of orders (

∑n
k=1 δk)−1 = O(na−1), respectively

∑n
k=0mk = O(n3(1−a)+ς2+1)

for ς2 > 0. Thus for a fix target precision ε > 0 the complexity reads ε−3 (log(1/ε)/(1− a))1+ς2 . On
the other hand if we fix the complexity budget to N the accuracy is of order N−(3+(1+ς2)/(1−a))−1 .
These two considerations suggest to set a close to 0.

A case of interest is the fix stepsize setting, i.e. for all n ∈ N, γn = γ. In that case if (δn)n∈N
is non-increasing,

∑
n∈N∗ δn = +∞, limn→+∞mn = +∞ and limn→+∞D(γ0,mn)m−2

n 6 A0(γ0),
using [38, Problem 80] we obtain that

lim sup
n

E

[{
n∑
k=1

δkf(θk)
/

n∑
k=1

δk

}
−min f

]
6 E

[
V (X0

0 )
]

(MΘA3B(γ0) +A4δ0A0(γ0)) .

Similar bounds can be obtained if (mn)n∈N and (γn)n∈N are constant. However if (mn)n∈N is
constant the convergence cannot be obtained using Theorem 1. Indeed in (14), the condition∑
n∈N δn+1γ

−1
n < +∞ is in contradiction with the condition

∑
n∈N∗ δn = +∞.

3.2 Convex objective function – Fixed batch size
In this section, we consider the case where the batch size is fixed, i.e. mn = m0 for all n ∈ N.
For ease of exposition we only consider the case where m0 = 1. However the general case can be
adapted from the proof of the result stated below. For simplicity of notation we let X̃n+1 = Xn

1 for
any n ∈ N. More precisely the recursion (8) and (9) can be written for any n ∈ N as

X̃n+1 is a sample from Kγn,θ̃n
(X̃n, ·) conditionally to F̃n , (23)

θ̃n+1 = ΠΘ
[
θ̃n − δn+1Hθ̃n

(X̃n+1)
]
, (24)

starting from θ0 ∈ Rd, X̃0 a random variable and where F̃n is given by

F̃n = σ
(
θ̃0, (X̃`)`∈{0,...,n}

)
. (25)

We consider the following additional assumptions. We impose some Lipschitz-regularity over
(θ, x) 7→ Hθ(x).

10



A 4. There exists a measurable function V : Rd → [1,+∞) and MH , LH > 0 such that for any
x ∈ Rd and θ1, θ2 ∈ Θ we have the following inequalities

‖Hθ1(x)−Hθ2(x)‖ 6 LH‖θ1 − θ2‖V (x)1/2 , ‖Hθ1(x)‖ 6MHV
1/4(x) .

H3. There exists a measurable function V : Rd → [1,+∞) and A5 > 0 such that for any n ∈ N

E
[
V (X̃n)

∣∣X̃0
]
6 A5V (X̃0) , E

[
V (X̃0)

]
< +∞ .

We consider a similar property as A4 on the family of kernels {Kγ,θ, γ ∈ (0, γ̄), θ ∈ Θ}, with
γ̄ > 0, which weakens the assumption [2, H6].

H4. There exist A6 > 0, Λ1 :
(
R∗+
)2 → R+ and Λ2 :

(
R∗+
)2 → R+ such that for any γ1, γ2 ∈ (0, γ̄)

with γ̄ > 0, θ1, θ2 ∈ Θ, x ∈ Rd and a ∈ [1/4, 1/2]

‖δxKγ1,θ1 − δxKγ2,θ2‖V a 6 A6 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]V 2a(x) .

Finally, we suppose that each kernel Kγ,θ admits an invariant probability measure and converges
geometrically to this probability distribution in V -norm with constants not depending on γ and θ.
We show in [10] that this condition holds for the Langevin Monte Carlo algorithm.

H5. For all θ ∈ Θ and γ ∈ (0, γ̄) with γ̄ > 0, Kγ,θ is uniformly V -geometrically ergodic, i.e. there
exists a probability distribution πγ,θ on (Rd,B(Rd)), A7 > 0 and κ ∈ (0, 1) such that for any n ∈ N
and a ∈ [1/4, 1]

‖Kn
γ,θ − πγ,θ‖V a 6 A7κ

nγV a(x) .

The following theorem ensures convergence properties for the algorithm similar to Theorem 1.
The proof of this result is based on a generalization of [20, Lemma 4.2], which only holds in the
case of exact MCMC schemes.

Theorem 4. Assume A1, A2, A3 and A4. Let γ̄ > 0, (γn)n∈N and (δn)n∈N∗ be sequences of
non-increasing positive real numbers satisfying supn∈N δn < 1/Lf , supn∈N γn < γ̄, supn∈N |δn+1 −
δn|δ−2

n < +∞,
∑+∞
n=0 δn+1 = +∞ and

+∞∑
n=0

δn+1B(γn) < +∞ ,

+∞∑
n=0

δ2
n+1
γ2
n

< +∞ ,

+∞∑
n=0

δn+1

γn+1
[Λ1(γn, γn+1) + δn+1Λ2(γn, γn+1)] < +∞ .

(26)
Let (X̃n)n∈N be given by (23). Assume in addition that H1-(ii), H3, H4, H5 hold. Then the
following statements hold:

(a) (θ̃n)n∈N defined by (24) converges a.s. to some θ∗ ∈ arg minΘ f ;

(b) furthermore, a.s. there exists C > 0 such that for any n ∈ N∗{
n∑
k=1

δkf(θ̃k)
/

n∑
k=1

δk

}
−min

Θ
f 6 C

/(
n∑
k=1

δk

)
.

Proof. The proof of this theorem is postponed to Appendix B.1.
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In our case of application B(γ) = γ1/2, Λ1(γ1, γ2) = (γ−1
2 − γ−1

1 )1/2 + γ
−1/2
2 |γ1 − γ2| and

Λ2(γ1, γ2) = γ
1/2
2 . Thus we obtain that the following series should be convergent

+∞∑
n=0

δn+1γ
1/2
n < +∞ ,

+∞∑
n=0

δ2
n+1/γ

2
n < +∞ ,

+∞∑
n=0

δn+1(γ−1
n+1 − γ−1

n )1/2/γ2
n < +∞ .

A possible choice is given δn = n−1 and γn = log(n + 1)−4. In this setting it should be noted
that the sequence of (θ̃n)n∈N moves slowly compared to the sequence (X̃n)n∈N. In the limit case, if
we suppose that θ̃n is constant we obtain that averaging the sequence (X̃n)n∈N is an estimator of
∇f(θ̃n). This is coherent with the increasing batch size approach.

3.3 SOUL method
We consider the following assumption on the family of probability distributions (πθ)θ∈Θ.

L 1. For any θ ∈ Θ, there exists Uθ : Rd → R such that πθ admits a probability density function
w.r.t. to the Lebesgue measure proportional to x 7→ exp(−Uθ(x)). In addition (θ, x) 7→ Uθ(x) is
continuous, x 7→ Uθ(x) is differentiable for all θ ∈ Θ and there exists L > 0 such that for any
x, y ∈ Rd,

sup
θ∈Θ
‖∇xUθ(x)−∇xUθ(y)‖ 6 L ‖x− y‖ ,

and {‖∇xUθ(0)‖ : θ ∈ Θ} is bounded.

Under L1, the Langevin diffusion defined by (5) admits a unique strong solution for any θ ∈ Θ.
Therefore we consider the family of Markov kernels {Rγ,θ, γ ∈ (0, γ̄), θ ∈ Θ} with γ̄ > 0, induced by
the recursion (6). The recursion step in (8) can be rewritten for any n ∈ N and k ∈ {0, . . . ,mn−1}

Xn
k+1 = Xn

k − γn∇xUθn(Xn
k ) +

√
2γnZnk+1 , with Xn

0 = Xn−1
mn−1

if n > 1 , (27)

given a sequence of stepsizes (γn)n∈N, (mn)n∈N ∈ (N∗)N and (Znk )n∈N,k∈{1,...,mn} a family of i.i.d
d-dimensional zero-mean Gaussian random variables with covariance matrix identity. Consider one
of the following additional tail conditions on Uθ to ensure geometric ergodicity of Rγ,θ for any
γ ∈ (0, γ̄) and θ ∈ Θ, with γ̄ > 0 which will be specified below.

L2. There exist η > 0 and m, c,Mη > 0 such that for any θ ∈ Θ and x ∈ Rd,

〈∇xUθ(x), x〉 > η‖x‖1B(0,Mη)c(x) +m‖∇xUθ(x)‖2 − c .

L3. There exist η > 0 and c,Mη > 0 such that for any θ ∈ Θ and x ∈ Rd

〈∇xUθ(x), x〉 > η‖x‖21B(0,Mη)c(x)− c ,

The next theorem asserts the convergence of the scheme defined by (9) and (27) referred to as
the Stochastic Optimization with Unadjusted Langevin (SOUL) algorithm.

Theorem 5. Assume A1, A2, A3 and there exists MH > 0 such that for any θ ∈ Θ and x ∈ Rd,
‖Hθ(x)‖ 6 MHV

1/2(x). In addition, assume L1 and L2 or L3. There exists γ̄ > 0 such that for
all sequences of non-increasing positive real numbers (γn)n∈N, (δn)n∈N∗ and sequence of positive
integers (mn)n∈N, satisfying supn∈N γn < γ̄, H1 and H2 hold with B(γ) = γ1/2 and D(γ,m) = m2.

12



Proof. The proof is postponed to Appendix B.2.4.

Consider the following assumption for m > 0.

L4 (m). For any θ ∈ Θ, Uθ is m-convex, continuously differentiable and satisfies

sup
θ∈Θ

∫
Rd

exp(−Uθ(x))dx < +∞ .

In addition,
{
y ∈ Rd : there exists θ ∈ Θ, ∇xUθ(y) = 0

}
⊂ B(0,M∗) with M∗ > 0.

Note that
{
y ∈ Rd : there exists θ ∈ Θ, ∇xUθ(y) = 0

}
is the set of minimizers of the family of

functions (Uθ)θ∈Θ.

Proposition 6. Assume A1, L1 and L4(0). Then L2 holds.

Proof. The proof is postponed to Appendix B.3.

While Proposition 6 shows that L4(0) and additional assumptions implies L2, it does not give
an explicit expression for the constants appearing in this latter condition. In the case where L4(m)
with m > 0 holds, we get the following result which implies that the bound provided by Theorem 3
is linear in the dimension.

Corollary 7. Assume A1, A2, A3 and there exists MH > 0 such that for any θ ∈ Θ and x ∈ Rd,
‖Hθ(x)‖ 6 MHV

1/2(x). In addition assume L1 and L4(m), with m > 0. There exists γ̄ > 0 such
that for all sequences of non-increasing positive real numbers (γn)n∈N, (δn)n∈N∗ and sequence of
positive integers (mn)n∈N, satisfying supn∈N δn < 1/Lf , supn∈N γn < γ̄ and (14) with B(γ) = γ1/2,
and D(γ,m) = m2, the conclusions of Theorem 3 hold with (En)n∈N such that for any n ∈ N,
|En| 6 Cd, where C > 0 is a constant independent of the dimension d.

Proof. The proof is postponed to Appendix B.4.

L5. There exists LU > 0 such that for any x ∈ Rd and θ1, θ2 ∈ Θ

‖∇xUθ1(x)−∇xUθ2(x)‖ 6 LU‖θ1 − θ2‖V (x)1/2 .

Theorem 8. Assume A1, A2, A3 and A4. In addition assume L1, L5 and L2 or L3. There
exists γ̄ > 0 such that for all sequences of non-increasing positive real numbers (γn)n∈N, (δn)n∈N∗

and sequence of positive integers (mn)n∈N, satisfying supn∈N γn < γ̄, H4 and H5 hold with

Λ1(γ1, γ2) = (γ−1
2 − γ−1

1 )1/2 + γ
−1/2
2 |γ1 − γ2| , Λ2(γ1, γ2) 6 γ

1/2
2 ,

Proof. The proof is postponed to Appendix B.5.
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A Non-convex objective function
We now turn to the case where f is non-convex. We recall that the normal space of a sub-manifold
M⊂ Rm at point x is given by

N(x,M) =
{

T(x,M)⊥ if x ∈M ;
{0} otherwise ,

where T(x,M) is the tangent space of the sub-manifoldM at point x, see [3].

Theorem 9. Assume A1 and that ∂Θ is a Rm−1 connected manifold with continuously differentiable
outer normal. In addition, assume that f ∈ C1(Rp,R), A3. Let γ̄ > 0, (γn)n∈N, (δn)n∈N∗ be
sequences of non-increasing positive real numbers and (mn)n∈N be a sequence of positive integers
such that supn∈N δn < 1/Lf , supn∈N γn < γ̄ and (14) are satisfied. Let {(Xn

k )k∈{0,...,mn} : n ∈ N}
be given by (8). Assume in addition H1 holds. Then (θn)n∈N defined by (9) converges a.s. to some
θ∗ ∈ {θ ∈ Θ : ∇f(θ) + n = 0, n ∈ N(θ, ∂Θ)}, where N(θ, ∂Θ) is the normal space of ∂Θ at point
θ.

Theorem 10. Assume A1 and that ∂Θ is a Rm−1 connected manifold with continuously dif-
ferentiable outer normal. In addition, assume that f ∈ C1(Rp,R), A3 and A4. Let γ̄ > 0,
(γn)n∈N, (δn)n∈N∗ be sequences of non-increasing positive real numbers and (mn)n∈N be a sequence
of positive integers such that supn∈N δn < 1/Lf , supn∈N γn < γ̄, supn∈N |δn+1 − δn|δ−2

n < +∞,∑+∞
n=0 δn+1 = +∞ and (26) are satisfied. Let (X̃n)n∈N be given by (23). Assume in addition

that H 1-(ii), H 3, H 4 and H 5 hold. Then (θ̃n)n∈N defined by (24) converges a.s. to some
θ∗ ∈ {θ ∈ Θ : ∇f(θ) + n = 0, n ∈ N(θ, ∂Θ)}, where N(θ, ∂Θ) is the normal space of ∂Θ at
point θ.

Proof. The proof is a direct application of [29, Chapter 5, Theorem 2.3] using the decomposition
of the error term considered in the proof of Theorem 1 and Theorem 4. Indeed we decompose the
error term ηn defined by (15) as ηn = δMn +Bn, where δMn is a martingale increment. Then, we
only need to show that the following sums converge

n∑
k=0

δ2
k+1E

[
‖δMk‖2

]
,

n∑
k=0

δk+1E [‖Bk‖] .

This is exactly what we show in Theorem 1 with δMn = 0 and Bn = ηn and in Theorem 4 with
δMn = η̃an and Bn = ηbn + ηcn + ηdn where {η̃in : n ∈ N, i ∈ {a, b, c, d}} is defined by (34).

B Postponed proofs
B.1 Proof of Theorem 4
In all the proof we use the following lemma

Lemma 11. Let t ∈ (0, 1) and γ ∈ (0, γ̄) with γ̄ > 0 then
∑
n∈N t

nγ 6 t−γ̄ log−1(1/t)γ−1 and∑
n∈N nt

nγ 6 t−γ̄ log−2(1/t)γ−2.
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Proof. Let t ∈ (0, 1) and γ ∈ (0, γ̄) with γ̄ > 0. Using that eu − 1 6 ueu for all u > 0 we have∑
n∈N

tnγ = −(tγ − 1)−1 6 −γ−1 log−1(t) exp(− log(t)γ) 6 t−γ̄ log−1(1/t)γ−1 ,

and ∑
n∈N

ntnγ = tγ(tγ − 1)−2 6 tγ{γ−1 log−1(t) exp(− log(t)γ)}2 6 t−γ̄ log−2(1/t)γ−2 ,

which completes the proof.

Consider (X̃k, θ̃k)k∈N defined by (23) and (24) and define for any n ∈ N,

η̃n = Hθ̃n
(X̃n+1)−∇f(θ̃n) = Hθ̃n

(X̃n+1)− πθ̃n(Hθ̃n
) .

In order to apply [2, Theorem 2] we show that the following sums converge a.s.
n∑
k=0

δk+1〈ΠΘ
[
θ̃k − δk∇f(θ̃k)

]
, η̃k〉 ,

n∑
k=0

δk+1η̃k ,

n∑
k=0

δ2
k+1‖η̃k‖2 . (28)

Using ‖x+ y‖2 6 2(‖x‖2 +‖y‖2) for any x, y ∈ Rd, A1, A2, A3, H3 and A4, we get for any k ∈ N,
E[‖η̃k‖2] 6 2M2

HA6E[V (X̃0)] + 2 supθ∈Θ ‖∇f(θ)‖2 < +∞, which implies that for any n ∈ N,

E

[
n∑
k=0

δ2
k+1‖η̃k‖2

]
6 sup

k∈N
E
[
‖η̃k‖2

] n∑
k=1

δ2
k 6 sup

k∈N
E
[
‖η̃k‖2

] +∞∑
k=1

δ2
k < +∞ . (29)

By A4 and H5, for any θ ∈ Θ and γ ∈ (0, γ̄), there exists a function Ĥγ,θ : Rd → Rd solution of
the Poisson equation,

(Id−Kγ,θ)Ĥγ,θ = Hθ − πγ,θ(Hθ) (30)
defined for any x ∈ Rd by

Ĥγ,θ(x) =
∑
j∈N
{Kj

γ,θHθ(x)− πγ,θ(Hθ)} , (31)

which satisfies using for all x ∈ Rd

‖Ĥθ(x)‖ 6 CPV
1/4(x) , (32)

where CP = A7 log(1/κ)−1κ−γ̄γ−1 by Lemma 11. Using (30), we consider the following decompo-
sition: for any k ∈ N

η̃k = Ĥθ̃k
(X̃k+1)−Kγk,θ̃k

Ĥθ̃k
(X̃k+1) + πγk,θ̃k(Hθ̃k

)− πθ̃k(Hθ̃k
)

= η̃ak + η̃bk + η̃ck + η̃dk , (33)

where 
η̃ak = Ĥθ̃k

(X̃k+1)−Kγk,θ̃k
Ĥθ̃k

(X̃k) ;
η̃bk = Kγk,θ̃k

Ĥθ̃k
(X̃k)−Kγk+1,θ̃k+1

Ĥθ̃k+1
(X̃k+1) ;

η̃ck = Kγk+1,θ̃k+1
Ĥθ̃k+1

(X̃k+1)−Kγk,θ̃k
Ĥθ̃k

(X̃k+1) ;
η̃dk = πγk,θ̃k(Hθ̃k

)− πθ̃k(Hθ̃k
) .

(34)
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Note that if a.s. the following sums converge
n∑
k=0

δk+1〈ΠΘ
[
θ̃k − δk∇f(θ̃k)

]
, η̃ik〉 ,

n∑
k=0

δk+1η̃
i
k ,

where i ∈ {a, b, c, d}, then combining this result with (33) and (29) shows that (28) holds which
proves the theorem.

(a) By definition (23) and (34), we have that (η̃ak)k∈N is a martingale increment with respect to
(F̃j)j∈N defined by (25). Then, using (32), A4 and H3, we obtain for any n ∈ N

E

∥∥∥∥∥
n∑
k=0

δk+1η̃
a
k

∥∥∥∥∥
2
 =

n∑
k=0

δ2
k+1E

[
‖η̃ak‖2

]
6

n∑
k=0

δ2
k+1E

[
E
[
‖Ĥθ̃k

‖2(X̃k+1)
∣∣∣Fk ]] 6 Ca

n∑
k=0

δ2
k+1γ

−2
k ,

with Ca = CPA5E[V (X̃0)]. The martingale (
∑n
k=0 δk+1η̃

a
k)n∈N is then bounded in L2(Ω,P) and thus

a.s. converges. Similarly, the martingale (
∑n
k=0 δk+1〈ΠΘ

[
θ̃k − δk∇f(θ̃k)

]
, η̃ak〉)n∈N is also bounded

in L2(Ω,P) and converges a.s..

(b) Regarding (η̃bk)k∈N, using (34), and a discrete integration formula, we obtain for any n ∈ N,
n∑
k=0

δk+1η̃
b
k =

n∑
k=0

δk+1

(
Kγk,θ̃k

Ĥθ̃k
(X̃k)−Kγk+1,θ̃k+1

Ĥθ̃k+1
(X̃k+1)

)
=

n∑
k=1

(δk+1 − δk)Kγk,θ̃k
Ĥθ̃k

(X̃k)− δn+1Kγn+1,θ̃n+1
Ĥθ̃n+1

(X̃n+1) + δ1Kγ0,θ̃0
Ĥθ̃0

(X̃0) .

We have using (32), A4 and H3 for any n ∈ N
n∑
k=1
|δk+1 − δk|E

[
Kγk,θ̃k

‖Ĥθ̃k
‖(X̃k)

]
6 Cb

n∑
k=1
|δk+1 − δk|γ−1

k ,

where Cb = CPA5E[V (X̃0)]. Since by (26) and supk∈N γk < γ̄,
∑+∞
k=0 δ

2
k/γk < +∞, then the

condition supk∈N |δk+1 − δk|δ−2
k < +∞ implies

+∞∑
k=1
|δk+1 − δk|E

[
Kγk,θ̃k

‖Ĥθ̃k
‖(X̃k)

]
6 Cb sup

k∈N
{|δk+1 − δk| δ−2

k }
∑
k∈N∗

δ2
kγ
−1
k < +∞

Therefore,
∑
k∈N∗ (δk − δk+1)Kγk,θ̃k

Ĥθ̃k
(X̃k) is a.s. absolutely convergent. On the other hand, we

have that for any n ∈ N, Kγn+1,θ̃n+1
‖Ĥθ̃n+1

‖(X̃n+1) is bounded by γ−1
n+1MHKγn+1,θ̃n+1

V 1/2(X̃n+1).
It follows that for any ε > 0, using the Markov inequality and H3, we get∑

n∈N
P
(
δnγ
−1
n Kγn+1,θ̃n+1

‖Ĥθ̃n+1
‖(X̃n+1) > ε

)
6
∑
n∈N

P
(
δnγ
−1
n Kγn+1,θ̃n

V 1/2(X̃n+1) > ε
)

6 ε−2
∑
n∈N

δ2
nγ
−2
n MHA5E

[
V (X̃0)

]
< +∞ ,
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by (26). Using the Borel-Cantelli lemma we get that a.s. limn→+∞ δnKγn,θ̃n
Ĥθ̃n

(X̃n) = 0. This
completes the proof of the convergence of

∑
k∈N δk+1η̃

b
k.

We conclude similarly for the convergence of
∑
k∈N δk+1〈ΠΘ

[
θ̃k − δk+1∇f(θ̃k)

]
, η̃bk〉, upon veri-

fying that for any k ∈ N, ak+1 = δk+1ΠΘ [ϑk+1] where ϑk+1 = θ̃k − δk+1∇f(θ̃k) satisfies that there
exists A > 0 such that for any k ∈ N,

‖ak+1 − ak‖ 6 A{|δk+1 − δk|(1 + δk) + δ2
k} .

Indeed, using A1-A2 and that ΠΘ is non-expansive by A1 and [23, Proposition 4.8], we get for any
k ∈ N,

‖ak+1 − ak‖ 6 |δk+1 − δk| ‖ΠΘ(ϑk+1)‖+ δk
∥∥ΠΘ(ϑk+1)−ΠΘ(θ̃k)

∥∥
6MΘ |δk+1 − δk|+ δk

∥∥ϑk+1 − θ̃k
∥∥ 6MΘ |δk+1 − δk|+ δkδk+1 sup

Θ
‖∇f‖ .

(c) We now turn to (η̃ck)k∈N. We start by giving an upper-bound on ‖πγ1,θ1 − πγ2,θ2‖V 1/2 for
γ1, γ2 ∈ (0, γ̄) with γ1 > γ2 and, θ1, θ2 ∈ Θ. Let f : Rd → R be a measurable function satisfying
supx∈Rd{|f | /V 1/2} 6 1. Using H5, H4, H3 and Lemma 11, we get that for any γ1, γ2 ∈ (0, γ̄) with
γ1 > γ2, θ1, θ2 ∈ Θ, x ∈ Rd and ` ∈ N∗

∣∣K`
γ1,θ1

f(x)−K`
γ2,θ2

f(x)
∣∣ =

∣∣∣∣∣∣
∑̀
j=0

Kj
γ1,θ1

(Kγ1,θ1
−Kγ2,θ2

)
{
K

(`−j)
γ2,θ2

f(x)− πγ2,θ2(f)
}∣∣∣∣∣∣

6 A7
∑̀
j=0

κ(`−j)γ2
∣∣∣Kj

γ1,θ1
(Kγ1,θ1

−Kγ2,θ2
)V 1/2(x)

∣∣∣
6 A7A6

∑̀
j=0

κ(`−j)γ2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] sup
k∈N

Kk
γ1,θ1

V (x)

6 A7A6A5 log(1/κ)−1κ−γ̄γ−1
2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]V (x) .

Taking `→ +∞ and using H5, we obtain that for any θ1, θ2 ∈ Θ and γ1, γ2 ∈ (0, γ̄) with γ1 > γ2,

‖πγ1,θ1 − πγ2,θ2‖V 6 Cπγ
−1
2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] , (35)

with Cπ = A7A6A5 log(1/κ)−1κ−γ̄V (0). By (31), (32) and H 5, we have for any θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄) with γ1 > γ2 and x ∈ Rd,∥∥∥Kγ1,θ1Ĥγ,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)

∥∥∥
=

∥∥∥∥∥∑
`∈N∗

{
K`
γ1,θ1

Hθ1(x)− πγ1,θ1(Hθ1)
}
−
∑
`∈N∗

{
K`
γ2,θ2

Hθ2(x)− πγ2,θ2(Hθ2)
}∥∥∥∥∥

6
∑
`∈N∗

∥∥{K`
γ1,θ1

Hθ1(x)− πγ1,θ1(Hθ1)
}
−
{
K`
γ2,θ2

Hθ2(x)− πγ2,θ2(Hθ2)
}∥∥ .

We bound now each term of the sum in the right hand side. Note first that for any bounded
measurable functions f1, f2 from Rd to R, θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄) with γ1 > γ2, x ∈ Rd and
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` ∈ N∗, it holds that

K`
γ1,θ1

f1(x)−K`
γ2,θ2

f2(x) = K`
γ1,θ1

f1(x)−K`
γ2,θ2

f1(x) +K`
γ2,θ2

(f1(x)− f2(x))

=
`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

f1(x)− πγ2,θ2(f1)
}

+
`−1∑
j=0

πγ1,θ1

{
K`−1−j
γ2,θ2

f1(x)−K`−j
γ2,θ2

f1(x)
}

+K`
γ2,θ2

(f1(x)− f2(x))

=
`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

f1(x)− πγ2,θ2(f1)
}

− πγ1,θ1(K`
γ2,θ2

f1(x)− f1(x)) +K`
γ2,θ2

(f1(x)− f2(x)) .

Setting H̃θ1 = Hθ1 − πγ1,θ1(Hθ1) and H̃θ2 = Hθ2 − πγ2,θ2(Hθ2), we obtain that

K`
γ1,θ1

H̃θ1(x)−K`
γ2,θ2

H̃θ2(x)

=
`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

Hθ1(x)− πγ2,θ2(Hθ1)
}

+ Ξ , (36)

where

Ξ = −πγ1,θ1(K`
γ2,θ2

Hθ1(x)−Hθ1(x)) +K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)− πγ1,θ1(Hθ1)

]
= −πγ1,θ1K

`
γ2,θ2

Hθ1(x) +K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)

]
= (πγ2,θ2 − πγ1,θ1)(K`

γ2,θ2
Hθ1(x)− πγ2,θ2(Hθ1))− πγ2,θ2(Hθ1)

+K`
γ2,θ2

[
Hθ1(x)−Hθ2(x) + πγ2,θ2(Hθ2)

]
= (πγ2,θ2 − πγ1,θ1)(K`

γ2,θ2
Hθ1(x)− πγ2,θ2(Hθ1)) +K`

γ2,θ2
(Hθ1 −Hθ2)(x)− πγ2,θ2(Hθ1 −Hθ2) .

(37)

For the first term in the decomposition (36), using A4, H5 and H4, we obtain for any θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄) with γ1 > γ2, x ∈ Rd and ` ∈ N∗∥∥∥∥∥∥

`−1∑
j=0

{
Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)

{
K`−1−j
γ2,θ2

Hθ1(x)− πγ2,θ2(Hθ1)
}∥∥∥∥∥∥

6 A7MH

`−1∑
j=0

∣∣∣{Kj
γ1,θ1

− πγ1,θ1

}
(Kγ1,θ1 −Kγ2,θ2)V 1/4(x)

∣∣∣
6 A2

7A6MH [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖]
`−1∑
j=0

κjγκ(`−1−j)γ2V 1/2(x)

6 A2
7A6MH [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] `κ`γ2V 1/2(x) . (38)
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For the first term in (37), using A4, H5 and (35) we obtain for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄) with
γ1 > γ2, x ∈ Rd and ` ∈ N∗∥∥(πγ1,θ1 − πγ2,θ2)(K`

γ2,θ2
Hθ1(x)− πγ2,θ2(Hθ1))

∥∥ 6 A7MHκ
`γ2‖πγ1,θ1 − πγ2,θ2‖V 1/2

6 A7MHCπκ
`γ2γ−1

2 [Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖] .
(39)

For the second term in (37), using A4 and H5, we obtain for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄) with
γ1 > γ2, x ∈ Rd and ` ∈ N∗∥∥K`

γ2,θ2
(Hθ1 −Hθ2)(x)− πγ2,θ2(Hθ1 −Hθ2)

∥∥ 6 A7LHκ
`γ2‖θ1 − θ2‖V 1/2(x) . (40)

Combining (38), (39), (40), (37) in (36), and using Lemma 11, we obtain that for any θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄) with γ1 > γ2, x ∈ Rd that∥∥∥Kγ1,θ1Ĥγ1,θ1(x)−Kγ2,θ2Ĥγ2,θ2(x)

∥∥∥
6 Ccγ

−1
2
[
γ−1

2 {Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖}+ ‖θ1 − θ2‖
]
V 1/2(x) ,

with
Cc = A7(LH + CπMH) log(1/κ)−1κ−γ̄ +A2

7A6MH log(1/κ)−2κ−γ̄ .

Combining this result and that for any k ∈ N,
∥∥θ̃k+1 − θ̃k

∥∥ 6 δk+1MHV
1/2(X̃k+1) using (9), A4

and ΠΘ is non-expansive, we get that for any k ∈ N,∥∥∥Kγk,θ̃k
Ĥγk,θ̃k

(x)−Kγk+1,θ̃k+1
Ĥγk+1,θ̃k+1

(x)
∥∥∥

6 Cc(1 +MH)γ−1
k+1

[
γ−1
k+1 {Λ1(γk, γk+1) + Λ2(γk, γk+1)δk+1}+ δk+1

]
V (X̃k+1) .

Then since supn∈N E
[
V (X̃n)

]
< +∞ by H3, (34) and (26), we get∑

k∈N
δk+1E [‖η̃ck‖] < +∞ .

(d) By a straightforward application of H1-(ii), H5 and (26), we conclude that
∑
k∈N δk+1‖η̃dk‖

converges.

B.2 Proofs of Theorem 5
In this section, we give the proof of Theorem 5 by showing that H1 and H2 hold. However, first
of all, we establish stability results uniform in the parameter θ ∈ Θ for Langevin diffusion (5) and
the associated Euler-Maruyama discretization (6) based on Foster-Lyapunov drift condition with
constants independent of θ.

Under L 1, for any θ ∈ Θ, (5) defines a Markov semi-group (Pt,θ)t>0 for any x ∈ Rd and
A ∈ B(Rd) by Pt,θ(x,A) = P(Y θt ∈ A) where (Y θt )t>0 is the solution of (5) with Y θ0 = x. Consider
now the generator of (Pt,θ)t>0 for any θ ∈ Θ, defined for any f ∈ C2(Rd) by

Aθf = 〈∇xf,∇xUθ(x)〉+ ∆xf .
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We say that a Markov kernel R on Rd×B(Rd) satisfies a discrete Foster-Lyapunov drift condition
Dd(V, λ, b) if there exit λ ∈ (0, 1), b > 0 and a measurable V : Rd → [1,+∞) such that for all
x ∈ Rd

RV (x) 6 λV (x) + b .

We say that a Markov semi-group (Pt)t>0 on Rd × B(Rd) with extended infinitesimal gener-
ator (A,D(A)) (see e.g. [32] for the definition of (A,D(A))) satisfies a continuous drift condition
Dc(V, ζ, β) if there exist ζ > 0, β > 0 and a measurable function V : Rd → [1,+∞) with V ∈ D(A)
such that for all x ∈ Rd

AV (x) 6 −ζV (x) + β .

B.2.1 Foster-Lyapunov drift conditions uniform on θ

Proposition 12. Assume L2. Let γ̄ < min(1, 2m) and define V : Rd → [1,+∞) such that for all
x ∈ Rd, V (x) = exp(κ̃φ(x)/4) with φ(x) =

√
‖x‖2 + 1 and κ̃ = η/4. Then there exist λ ∈ (0, 1)

and b > 0 such that for all γ ∈ (0, γ̄) and θ ∈ Θ the Markov kernel Rγ,θ satisfies the discrete drift
condition Dd(V, λγ , bγ), i.e. for all x ∈ Rd

Rγ,θV (x) 6 λγV (x) + bγ ,

with

λ = e−2−4η2(21/2−1) , b = κ̃(d+ c+ 21/2κ̃) exp [κ̃ {(d+ c+ κ̃)γ̄ + φ(max(1, 2(d+ c)/η,Mη))}] .

Proof. Since φ is 1-Lipschitz, by the log-Sobolev inequality [4, Proposition 5.4.1] and the concavity
of x 7→ x1/2, we have for any x ∈ Rd

Rγ,θV (x) 6 eκ̃Rγ,θφ(x)+κ̃2γ 6 eκ̃
√
‖x−γ∇xUθ(x)‖2+2γd+1+κ̃2γ .

Using L2 and γ < 2m we obtain that for any x ∈ Rd,

‖x− γ∇xUθ(x)‖2 6 ‖x‖2 − 2γ〈x,∇xUθ(x)〉+ γ2‖∇xUθ(x)‖2

6 ‖x‖2 − 2ηγ‖x‖1‖x‖>Mη
+ γ(γ − 2m)‖∇xUθ(x)‖2 + 2γc

6 ‖x‖2 − 2ηγ‖x‖1‖x‖>Mη
+ 2γc .

Therefore, for any x ∈ Rd, ‖x‖ > max(1, 2(d + c)/η,Mη), using for any a > 0,
√

1 + a − 1 6 a/2,
we get for any θ ∈ Θ√

‖x− γ∇xUθ(x)‖2 + 2γd+ 1− φ(x)

6 φ(x)
{√

φ−2(x) (‖x‖2 + 1− 2ηγ‖x‖+ 2γ(d+ c))− 1
}

6 φ(x)
{√

1 + 2γφ−2(x)(d+ c− η‖x‖)− 1
}

6 γφ−1(x)(d+ c− η‖x‖) 6 −ηγφ−1(x)‖x‖/2 6 −2−3/2ηγ . (41)

This gives Rγ,θV (x) 6 e−2−4η2(21/2−1)γ = λγ . For all x ∈ Rd we obtain with the same arguments√
‖x− γ∇xUθ(x)‖2 + 2γd+ 1− φ(x) 6 γ(d+ c) , (42)
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and consequently, combining (42) and (41)

Rγ,θV (x) 6 λγV (x) +
(
eκ̃(d+c+κ̃)γ − λγ

)
eκ̃φ(max(1,2(d+c)/η,Mη))

1‖x‖6max(1,2(d+c)/η,Mη) .

Using et − 1 6 tet for t > 0 we obtain the result.

Proposition 13. Let γ̄ < min(1, η/L2) and define V : Rd → [1,+∞) such that for all x ∈
Rd, V (x) = 1 + ‖x‖2. Assume L1 and L3. Then there exist λ ∈ (0, 1) and b > 0 such that for all
γ ∈ (0, γ̄) and θ ∈ Θ the Markov kernel Rγ,θ satisfies the discrete drift condition Dd(V, λγ , bγ), i.e.
for all x ∈ Rd

Rγ,θV (x) 6 λγV (x) + bγ ,

with λ = exp(−2(η − γ̄L2)) and b = 2(c+ d+ η(M2
η + 1) + γ̄ sup

θ∈Θ
‖∇xUθ(0)‖2).

Proof. Set Z a standard Gaussian random variable over Rd we have using L1 and (a+b)2 6 2(a2+b2)

Rγ,θV (x) = 1 + E(‖x− γ∇xUθ(x) +
√

2γZ‖2)
6 1 + ‖x‖2 − 2γ〈x,∇xUθ(x)〉+ 2γd+ γ2‖∇xUθ(x)‖2

6 V (x) + 2γc− 2γη‖x‖21B(0,Mη)c(x) + 2γd+ 2γ2L2‖x‖2 + 2γ2sup
θ∈Θ
‖∇xUθ(0)‖2

6 (1− 2γ(η − γL2))V (x) + 2γ(c+ d+ η(M2
η + 1) + γ sup

θ∈Θ
‖∇xUθ(0)‖2) ,

where Z is a zero mean d-dimensional Gaussian random variable with covariance identity.

Proposition 14. Let γ̄ < min(1, η/L2) and define V : Rd → [1,+∞) such that for all x ∈
Rd, V (x) = 1 + ‖x‖4. Assume L1 and L3. Then there exist λ ∈ (0, 1) and b > 0 such that for all
γ ∈ (0, γ̄) and θ ∈ Θ the Markov kernel Rγ,θ satisfies the discrete drift condition Dd(V, λγ , bγ), i.e.
for all x ∈ Rd

Rγ,θV (x) 6 λγV (x) + bγ ,

Proof. Let a, b ∈ Rd. We have the following equality

‖a+ b‖2 = ‖a‖4 + ‖b‖4 + 4〈a, b〉2 + 2‖a‖2‖b‖2 + 4〈a, b〉‖a‖2 + 4〈a, b〉‖b‖2 . (43)

Let a = x and b = −γ∇xUθ(x) +
√

2γZ where Z is a zero mean d-dimensional Gaussian random
variable with covariance identity. Using (43) we get for any θ ∈ Θ and γ > 0

Rγ,θV (x) = 1 + ‖x‖4 + E
[
‖ − γ∇xUθ(x) +

√
2γZ‖4

]
+ 4E

[
〈x,−γ∇xUθ(x) +

√
2γZ〉2

]
+ 2‖x‖2E

[
‖ − γ∇xUθ(x) +

√
2γZ‖2

]
+ 4E

[
〈x,−γ∇xUθ(x) +

√
2γZ〉‖ − γ∇xUθ(x) +

√
2γZ‖2

]
+ 4E

[
〈x,−γ∇xUθ(x) +

√
2γZ〉‖x‖2

]
.

Let n(x) = ‖∇xUθ(x)‖ and r(x) = 〈∇xUθ(x), x〉. Using the Isserlis formula [25] we obtain that

Rγ,θV (x) = V (x) + γ4n4(x) + 4γ2d(d+ 2) + 4γ2n2(x) + 4γ2n2(x)d+ γ2r2(x) + 2γ‖x‖2 − 4γr(x)‖x‖2

− 4γ3n2(x)r(x)− 8γ2dr(x)− 16γ2r(x) + 2γ2‖x‖2n2(x) + 4γd‖x‖2 . (44)
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Let ‖x‖ > Mη then r(x) > ‖x‖2 − c, n(x) 6 L‖x‖ + supθ∈Θ ‖∇xUθ(0)‖ and using the Cauchy-
Schwarz inequality we have r(x) 6 L‖x‖2 + supθ∈Θ ‖∇xUθ(0)‖. Therefore, using (44), there exists
a polynomial P of order strictly less than 4 such that

Rγ,θV (x) 6 V (x) + γ(γ3L4 + 3γL2 − 4η)V (x) + γP(‖x‖) .

Since γ̄ = min(1, η/L2), for all γ ∈ (0, γ̄), θ ∈ Θ and ‖x‖ >Mη, we have that

Rγ,θV (x) 6 λ̃γV (x) + γP(V (x)1/4) ,

with λ̃ = exp(γ̄3L4 + 3γ̄L2 − 4η) ∈ (0, 1). Let 1 > λ > λ̃ and b1 defined by

b1 = sup
γ∈(0,γ̄)

sup
x∈Rd

γ−1(λ̃γ − λγ)V (x) + P(V (x)1/4) < +∞ .

We obtain that for any γ ∈ (0, γ̄), θ ∈ Θ and ‖x‖ >Mη we have

Rγ,θV (x) 6 λγV (x) + b1γ .

In addition there exists b2 > 0 such that for any γ ∈ (0, γ̄), θ ∈ Θ and ‖x‖ 6Mη we have

Rγ,θV (x) 6 b2γ .

Let b = max(b1, b2) we obtain that for any γ ∈ (0, γ̄), θ ∈ Θ and x ∈ Rd

Rγ,θV (x) 6 λγV (x) + bγ .

Proposition 15. The following properties hold

1. Assume L2 then there exist ζ > 0 and β > 0 such that for all θ ∈ Θ, (Pt,θ)t>0 satisfies the
continuous drift condition D(V, ζ, β) for V defined in Proposition 12.

2. Assume L1 and L3 then there exist ζ > 0 and β > 0 such that for all θ ∈ Θ, (Pt,θ)t>0 satisfies
the continuous drift condition D(V, ζ, β) for V defined in Proposition 13. In addition ζ and
β are defined by

ζ = 2η , β = 2(d+ c+ η(M2
η + 1)) .

3. Assume L1 and L3 then there exist ζ > 0 and β > 0 such that for all θ ∈ Θ, (Pt,θ)t>0 satisfies
the continuous drift condition D(V, ζ, β) for V defined in Proposition 14.

Proof. (a) Assuming L 2 the drift condition is a direct consequence of [12, Proposition 16] for
V (x) = exp(ηφ(x)/4) as in Proposition 12.

(b) Assuming L3 and setting V (x) = 1 + ‖x‖2 we get for any x ∈ Rd and θ ∈ Θ

−〈∇xUθ(x),∇V (x)〉+ ∆xV (x) = −2〈∇xUθ(x), x〉+ 2d
6 −2η1B(0,Mη)cV (x) + 2η + 2d+ 2c

6 −2ηV (x) + 2(d+ c+ η(M2
η + 1)) .
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(c) Assuming L3 and setting V (x) = 1 + ‖x‖4 there exists a polynom P of order stricly less than
4 such that for any x ∈ Rd and θ ∈ Θ

−〈∇xUθ(x),∇V (x)〉+ ∆xV (x) = −4‖x‖2〈∇xUθ(x), x〉+ 4‖x‖2
d∑
i=1

xi

6 −4η1B(0,Mη)cV (x) + 4‖x‖2
d∑
i=1

xi + 4c+ 4η‖x‖2

6 −4ηV (x) + P(V (x)1/4) .

Since P is of order stricly less than 4 there exists B > such that for all x ∈ Rd and θ ∈ Θ

− 〈∇xUθ(x),∇V (x)〉+ ∆xV (x) 6 −3ηV (x) +B .

B.2.2 Checking H1

Lemma 16. Let V : Rd → [1,+∞) satisfying lim‖x‖→+∞ V (x) = +∞ and V ∈ D(A).

(a) Assume there exist λ ∈ (0, 1), b > 0 and γ̄ > 0 such that for any θ ∈ Θ and γ ∈ (0, γ̄),
Rγ,θ satisifies Dd(V, λγ , bγ). Then for any θ ∈ Θ and γ ∈ (0, γ̄), Rγ,θ admits an invariant
probability measure πγ,θ on (Rd,B(Rd)) and there exists A0 > 0 such that for any x ∈ Rd and
k ∈ N

δxR
k
γ,θV 6 A0 + V (x) , πγ,θ(V ) 6 A0 , A0 = bλ−γ̄/ log(1/λ) .

In addition, for all θ ∈ Θ and x ∈ Rd, limk→+∞ ‖δxRkγ,θ − πγ,θ‖V = 0.

(b) Assume there exist ζ > 0 and β > 0 such that for any θ ∈ Θ, Aθ satisfies D(V, ζ, β). Then for
any θ ∈ Θ, the diffusion is non-explosive, Aθ admits πθ as an invariant probability measure
and

πθ(V ) 6 β/ζ .

In addition, for all θ ∈ Θ and x ∈ Rd, limt→+∞ ‖δxPθ,t − πθ‖V = 0.

Proof. (a) for any γ ∈ (0, γ̄) and θ ∈ Θ, Rγ,θ is irreducible with respect to the Lebesgue measure
on Rd, has the Feller property and satisfies Dd(V, λγ , bγ) then [30, Section 4.4] applies and Rγ,θ
admits an invariant probability measure πγ,θ. The discrete drift condition and [12, Lemma 1] give
that for any γ ∈ (0, γ̄) and θ ∈ Θ

Rkγ,θV (x) 6 V (x) + bλ−γ̄/ log(1/λ) , πγ,θ(V ) 6 bλ−γ̄/ log(1/λ) .

We obtain that for all θ ∈ Θ and x ∈ Rd, limk→+∞ ‖δxPt,θ−πγ,θ‖V = 0 using [31, Theorem 16.0.1].

(b) Using D(V, ζ, β) and [32, Theorem 2.1] we get that the diffusion process is non-explosive and
thus (Pt,θ)t>0 is defined for any θ ∈ Θ and t > 0. Using [48, Corollary 10.1.4] for any θ ∈ Θ,
(Pt,θ)t>0 is strongly Feller continuous, therefore any compact sets is petite for the Markov kernel
Ph,θ, for any h > 0 and θ ∈ Θ, by [31, Theorem 6.0.1]. Using [39, Chapter 7, Proposition 1.5], [19,
Chapter 4, Theorem 9.17], and the fact that πθ(Aθf) = 0 for any θ ∈ Θ and f ∈ C2

c(Rd), we obtain
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that for any θ ∈ Θ, πθ is an invariant measure for (Pt,θ)t>0. Using D(V, ζ, β) and [32, Theorem
4.5, Theorem 6.1] we get that for all θ ∈ Θ, πθ(V ) 6 β/ζ and the uniform V -geometric ergodicity
for (Pt,θ)t>0.

As an immediate corollary we obtain that under the conditions of Lemma 16 for any θ ∈ Θ,
γ ∈ (0, γ̄) and k ∈ N, πθRkγ,θV 6 β/ζ + bλ−γ̄/ log(1/λ).

Lemma 17. Let V : Rd → [1,+∞). Assume there exist λ ∈ (0, 1), b > 0 and γ̄ > 0 such
that for any θ ∈ Θ and γ ∈ (0, γ̄) Rγ,θ satisifies Dd(V, λγ , bγ) then there exists B1 > 0 such that
(Xn

k )n∈N,k∈{0,...,mn} given by (9) satisfies for all n ∈ N and k ∈ {0, . . . ,mn}

E
[
V (Xn

k )
∣∣X0

0
]
6 B1V (X0

0 ) , B1 = 1 + bλ−γ̄/ log(1/λ) .

Proof. Let n ∈ N and k ∈ {0, . . . ,mn+1}. By induction we obtain that

E
[
V (Xn+1

k )
∣∣Fn ] = Rkθn+1,γn+1

V (Xn+1
0 ) 6 λkγn+1V (Xn+1

0 ) + bγn+1

k∑
i=1

λγn+1(k−i) .

In the same manner we obtain for any k ∈ {0, . . . ,m0}

E
[
V (X0

k)
∣∣X0

0
]

= Rkθ0,γ0
V (X0

0 ) 6 λkγ0V (X0
0 ) + bγ0

k∑
i=1

λγ0(k−i) .

Let ϑn,k =
∑n−1
j=0 mj + k, ϑn = ϑn,0 and γ̃i =

∑+∞
j=0 γj1(ϑj ,ϑj+1](i). Let also Γp,q =

∑q
i=p γ̃i and

Γp = Γ1,p. By induction we get for any n ∈ N and k ∈ {0, . . . ,mn}

E
[
V (Xn

k )
∣∣X0

0
]
6 λΓϑn,kV (X0

0 ) + b

ϑn,k∑
i=1

γ̃iλ
Γi+1,ϑn,k .

Since (γ̃i)i∈N is nonincreasing and for all t > 0, 1 − λt > −tλt log(λ), we have for all n ∈ N and
k ∈ {0, . . . ,mn} that

n∑
i=1

γ̃iλ
Γi+1,n 6

n∑
i=1

γ̃i

n∏
j=i+1

(1 + λγ̃1 log(λ)γ̃j)

6 (−λγ̃1 log(λ))−1
n∑
i=1


n∏

j=i+1
(1 + λγ̃1 log(λ)γ̃j)−

n∏
j=i

(1 + λγ̃1 log(λ)γ̃j)


6 (−λγ̃1 log(λ))−1 .

Proposition 18. Let V : Rd → [1,+∞) and MV,2 > 0 such that for any x ∈ Rd, supx∈Rd(1 +
‖x‖)2/V (x) 6 MV,2. Assume L1 and there exist λ ∈ (0, 1), b > 0 and γ̄ > 0 such that for any
θ ∈ Θ and γ ∈ (0, γ̄) Rγ,θ satisifies Dd(V, λγ , bγ). Assume there exist ζ > 0 and β > 0 such that
for any θ ∈ Θ, Aθ satisfies D(V, ζ, β). We obtain that there exists B3 > 0 such that for any θ ∈ Θ
and γ ∈ (0, γ̄)

‖πγ,θ − πθ‖V 1/2 6 B3γ
1/2 .
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Proof. Since for all θ ∈ Θ and γ ∈ (0, γ̄) we have that Rγ,θ satisfies Dd(V, λ, γ) we also have that
Rγ,θ satisfies D(V 1/2, λ1/2, bλ−γ̄/2/2). Using Lemma 16 we obtain that for any x ∈ Rd and θ ∈ Θ

lim
k→+∞

‖πθRkγ,θ − πθPγk,θ‖V 1/2 = ‖πγ,θ − πθ‖V 1/2 .

Following the lines of [12, Theorem 10] we write k = qγmγ + rγ with mγ = d1/γe and qγ , rγ ∈ N
and 0 6 rγ < mγ . Using the uniform ergodicity in [10] and that πθ is invariant for Pt,θ with t > 0,
see Lemma 16, we obtain for all θ ∈ Θ, γ ∈ (0, γ̄) and k ∈ N

‖πθRkγ,θ − πθPγk,θ‖V 1/2 6
qγ−1∑
`=0
‖πθPγ(`+1)mγ ,θR

(qγ−(`+1))mγ+rγ
γ,θ − πθPγ`mγ ,θR

(qγ−`)mγ+rγ
γ,θ ‖V 1/2

+ ‖πθPγ(qγmγ+rγ),θ − πθPγqγmγ ,θR
rγ
γ,θ‖V 1/2

6
qγ−1∑
`=0

Cξγmγ(qγ−(`+1))‖πθPγ`mγθPmγγ,θ − πθPγ`mγ ,θR
mγ
γ,θ‖V 1/2

+ ‖πθPγ(qγmγ+rγ),θ − πθPγqγmγ ,θR
rγ
γ,θ‖V 1/2

6 ‖πθPmγγ,θ − πθR
mγ
γ,θ‖V 1/2

qγ∑
`=1

Cξ`γmγ + ‖πθPγrγ ,θ − πθR
rγ
γ,θ‖V 1/2 , (45)

where C > 0, ξ ∈ (0, 1) are the constants given by [10] with drift condition D(V 1/2, λ1/2, b/2).
Using L1 and (a+ b)2 6 2(a2 + b2), we obtain that for any x ∈ Rd and θ ∈ Θ

‖∇xUθ(x)‖2 6 2L2‖x‖2 + 2 sup
θ∈Θ
‖∇xUθ(0)‖2 6 2

[
L2MV,2 + sup

θ∈Θ
‖∇xUθ(0)‖2

]
V (x) . (46)

Since Aθ satisfies a D(V, ζ, β) and Rγ,θ satisfies Dd(V, λ, b) for any θ ∈ Θ, we obtain that for any
θ ∈ Θ and γ ∈ (0, γ̄)

πθPγmγ ,θ(V ) 6 Ã1 , πθR
mγ
γ,θ (V ) 6 Ã1 , Ã1 = β/ζ + bλ−γ̄ log(1/λ)−1 . (47)

Combining (46) and (47) we can apply [10] and we get for any θ ∈ Θ and γ ∈ (0, γ̄)

‖πθPγmγ ,θ − πθR
mγ
γ,θ‖V 1/2 6 B′3γ

1/2 , ‖πθPγrγ ,θ − πθR
rγ
γ,θ‖V 1/2 6 B′3γ

1/2 , (48)

with

B′3 = Ã
1/2
1 (1 + γ̄)1/2

{
d+ 2γ̄(L2 + sup

θ∈Θ
‖∇xUθ(0)‖)Ã1

}1/2
L .

Combining (45) and (48) we get for any k ∈ N, θ ∈ Θ and γ ∈ (0, γ̄)

‖πθRkγ,θ − πθPγk,θ‖V 1/2 6 CB′3

(
qγ∑
`=1

ξγmγ` + 1
)
γ1/2 6 CB′3 {1 + 1/(1− ξ)} γ1/2 ,

where we used that ξγmγ 6 ξ. We prove the result upon taking the limit in k.

28



B.2.3 Checking H2

Proposition 19. Assume L1 and there exist a measurable function V : Rd → (1,+∞), λ ∈ (0, 1),
b > 0 and γ̄ > 0 such that lim‖x‖→+∞ V (x) = +∞ and for any θ ∈ Θ and γ ∈ (0, γ̄), Rγ,θ satisfies
for any x ∈ Rd,

Rγ,θV (x) 6 λγV (x) + bγ .

Then for any p ∈ N∗, there exists B4,p > 0 such that for any f : Rd → R, with supRd
∣∣f/V 1/p

∣∣ 6 1,
θ ∈ Θ, γ ∈ (0, γ̄), x ∈ Rd and n ∈ N

n−p E

[∣∣∣∣∣
n∑
k=1

f(X̄k)− πθ(f)

∣∣∣∣∣
p]

6 B4,pV (x) ,

where (X̄k)k∈N is the Markov chain starting from x defined by (6). In addition, B4,p = CSb(b)Sλ(λ)
with C a universal constant and Sb, Sλ are polynomials such that

sup
b∈R

∣∣∣(1 + b)−(p+1)Sb(b)
∣∣∣ 6 1 , sup

[0,1)

∣∣(1− λ)p+1Sλ(λ)
∣∣ 6 1 .

Proof. Let p ∈ N∗ and f : Rd → R, with supRd
∣∣f/V 1/p

∣∣ 6 1, θ ∈ Θ and γ ∈ (0, γ̄). Using the
Hölder inequality, setting q = p/(p− 1), and the triangle inequality we get that∣∣∣∣∣

(
n∑
k=1

f(X̄k)− πθ(f)
)p∣∣∣∣∣ 6 np/q

n∑
k=1

∣∣f(X̄k)− πθ(f)
∣∣p 6 np/q

n∑
k=1
{|f | (X̄k) + |πθ(f)|}p

6 np/q
( p∑
j=0

(
p

j

)
πθ(|f |)p−j

n∑
k=1
|f |j(X̄k)

)
, (49)

Using Lemma 16 and supRd
∣∣f/V 1/p

∣∣ 6 1 we obtain that

πθ(|f |) 6 CA
1/p
0 , Ex

 n∑
j=1
|f |j(X̄k)

 6 nCA
j/p
0 V (x) , A0 6 (1 + b)(1 + λ−γ̄/ log(1/λ)) (50)

where C is a universal constant. Combining (49) and (50) we get that

sup
|f |

V 1/261
Ex

[
n−p

{
n∑
k=1

f(X̄k)− πγ,θ(f)
}p]

6 B4,pn
1+p/q−pV (x) 6 B4,pV (x) ,

where B4,p = CSb(b)Sλ(λ) with C a universal constant and Sb, Sλ are polynomials such that

sup
b∈R

∣∣(1 + |b|)−1Sb(b)
∣∣ 6 1 , sup

λ∈[0,1)
|(1− λ)Sλ(λ)| 6 1 .
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B.2.4 Proof of Theorem 5

L 1 and L 2 or L 3 ensure a uniform drift condition on Rγ,θ, see Proposition 12 and Proposi-
tion 13. Note that the Lyapunov functions V defined by Proposition 12 and Proposition 13 satisfy
supx∈Rd(1 + ‖x‖2)/V (x) < +∞. Assumption H1 is then implied combining Lemma 17, Proposi-
tion 18, the result of uniform geometric ergodicity with constants independent from θ ∈ Θ in [10]
and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ 6 MHV

1/2(x). Note that we have the following
equalities in H1

A1 = B1 , A2 = B2MH , A3 = B3MH ,

where B2 is given in [10] and depends only on b and λ if L4 holds. Using [10] we show that B3
depends only on b, λ, ζ, β and d and satisfies supd∈RB3(1 + |d|)−1/2 < +∞.

We conclude that H2 holds using Proposition 19 for p = 2 and that for any θ ∈ Θ and x ∈ Rd,
‖Hθ(x)‖ 6MHV (x)1/2. We obtain that A4 = B4,2M

2
H .

B.3 Proof of Proposition 6
Proof. The proof is divided in two parts. First we show there exist η > 0 and R > 0 such that for
any θ ∈ Θ and x ∈ Rd, ‖x‖ > R,

Uθ(x)− Uθ(0) > η‖x‖ . (51)

Let M defined by
M = sup

θ∈Θ
Uθ(0) + sup

θ∈Θ, x∈B(0,1)
Uθ(x) .

Note that by L1 and since Θ is compact we have that M < +∞. By contradiction, we show that
there exists R > 0 such that for any θ ∈ Θ {x, Uθ(x) 6M+1} ⊂ B(0, R). Assume that for any R >
0, there exist θR ∈ Θ, xR ∈ {x, UθR(x) 6 M + 1} and ‖xR‖ > R. Then Vol(Conv[B(0, 1) ∪ {xR}])
grows at least linearly in R independently from θ. On the other hand by definition of M and xR
and since L4(0) holds, we have for any R > 0

Vol(Conv[B(0, 1) ∪ {xR}]) 6 eM+1
∫
{UθR (x)≤M+1}

e−UθR (y)dy 6 eM+1 sup
θ∈Θ

∫
Rd

e−Uθ(y)dy .

As a consequence, we conclude that there exists R > 0, such that for any θ ∈ Θ, {x, Uθ(x) 6
M + 1} ⊂ B(0, R). Set x ∈ B(0, R)c and y = Rx/‖x‖. By L4(0) we get for any θ ∈ Θ

M + 1 6 Uθ(y) 6 RUθ(x)/‖x‖+ (1−R/‖x‖)Uθ(0) ,

which gives (51) with η = {M + 1− supθ∈Θ Uθ(0)} /R > 0 by definition of M . From (51) and L1,
for any θ ∈ Θ there exists x∗θ minimizer of Uθ. Thus we get for any x ∈ B(0, R)c

Uθ(x)− Uθ(x∗θ) > Uθ(x)− Uθ(0) > η‖x‖ .

Furthermore we have for any x ∈ Rd we have Uθ(x)−Uθ(x∗θ) > 0. From these results, [34, Theorem
2.1.5, Equation (2.1.7)], L1, L4(0) and (51) we obtain that for any θ ∈ Θ and x ∈ Rd

〈∇xUθ(x), x− x∗θ〉 > (2L)−1‖∇xUθ(x)‖2 + η‖x‖1B(0,R)c(x) . (52)
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Furthermore, using ab 6 2−1(εa2 + (b2/ε)), the Cauchy-Schwarz inequality and L4(0) we get for
any θ ∈ Θ, x ∈ Rd and ε > 0

|〈∇xUθ(x), x∗θ〉| 6 ‖∇xUθ(x)‖‖x∗θ‖ 6 ε‖∇xUθ(x)‖2/2 +M∗
2/2ε . (53)

Combining (52) and (53), we obtain for any θ ∈ Θ and x ∈ Rd that

〈∇xUθ(x), x〉 = 〈∇xUθ(x), x− x∗θ〉+ 〈∇xUθ(x), x∗θ〉
> 〈∇xUθ(x), x− x∗θ〉 − |〈∇xUθ(x), x∗θ〉|
> (1/2)(L−1 − ε)‖∇xUθ(x)‖2 + η‖x‖1B(0,R)c(x)−M2

∗/2ε ,

which concludes the proof upon taking ε = (2L)−1.

B.4 Proof of Corollary 7
Proof. Note that applying Proposition 13 and Proposition 15 with Ṽ (x) = (‖x‖+ 1)2/d we obtain
that b, λ, ζ and β do not depend on the dimension d. Theorem 5 still holds for this Lyapunov function
upon noticing that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ 6 d1/2MH Ṽ (x). Let M ′H = MHd

1/2

Theorem 3 holds using Theorem 5. We recall that the sequence (En)n∈N is given by for any
n ∈ N by

En = 2M2
Θ + 2MΘE

[
V (X0

0 )
] [ (A1 ∨ 1)A2

ξγ̄ log(1/ξ)

n∑
k=0
{δk+1/(γkmk)}+A3

n∑
k=0

δk+1B(γk)
]

+A4E
[
V (X0

0 )
] n∑
k=0

δ2
k+1m

−2
k D(γk,mk) . (54)

Using that A1 = B1, A2 = B2M
′
H , A3 = B3M

′
H and A4 = B4,2M

′2
H we have

En = 2M2
Θ + 2d1/2MΘMHE

[
V (X0

0 )
] [ (B1 ∨ 1)B2

ξγ̄ log(1/ξ)

n∑
k=0
{δk+1/(γkmk)}+B3

n∑
k=0

δk+1B(γk)
]

+ dB4,2M
2
HE

[
V (X0

0 )
] n∑
k=0

δ2
k+1m

−2
k D(γk,mk) . (55)

Since b, λ, ζ and β do not depend on the dimension d, B1, B2, B4,2 do not depend on the dimension
as well. We have B3 6 Cd1/2, where C is a constant independent of the dimension. Finally we
obtain that En is bounded by Cd where C is a constant independent of the dimension.

B.5 Proof of Theorem 8
We preface the proof by a technical lemma.

Lemma 20. Let V : Rd → [1,+∞) and MV,4 > 0 such that supx∈Rd(1 + ‖x‖4)/V (x) 6 MV,4. Let
M > 0 such that for any θ ∈ Θ, γ ∈ (0, γ̄), with γ̄ > 0 and x ∈ Rd, Rγ,θV (x) 6 MV (x). Assume
L1 and L5, then we have for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄) with γ1 > γ2, a ∈ [1/4, 1/2] and x ∈ Rd

‖δxRγ1,θ1 − δxRγ2,θ2‖V a 6 B6

[
(γ−1

2 − γ−1
1 )1/2 + γ

−1/2
2 |γ1 − γ2|+ γ

1/2
2 ‖θ1 − θ2‖

]
V (x)2a ,
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where {Rγ,θ, γ ∈ (0, γ̄) , θ ∈ Θ} is the sequence of Markov kernels associated with the recursion (6)
and

B6 = max
(

2M1/2
[
d/4 + sup

θ∈Θ
‖∇xUθ(0)‖2 + L2M

1/2
4,V

]1/2
, (2M)1/2LU

)
.

Proof. Using [12, Lemma 24] we have that for any θ1, θ2 ∈ Θ and γ1, γ2 ∈ (0, γ̄)

‖δxRγ1,θ1 − δxRγ2,θ2‖V a 6
√

2
(
Rγ1,θ1V

2a(x) +Rγ2,θ2V
2a(x)

)1/2 KL (δxRγ1,θ1 |δxRγ2,θ2)1/2

6 2MaV a(x)KL (δxRγ1,θ1 |δxRγ2,θ2)1/2 (56)

Denote for any z ∈ Rd and σ2 > 0, γz,σ2 the d-dimensional Gaussian distribution with mean z and
covariance matrix σ2 Id. Using that for any z1, z2 ∈ Rd and σ1, σ2 > 0,

KL
(
γz,σ2 |γz,σ2

)
= ln(σ2

2/σ
2
1) + dσ−2

2 {1− σ2
2/σ

2
1}/2 + σ−2

2 ‖µ1 − µ2‖2/2 ,
we obtain that for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄) and x ∈ Rd,

KL (δxRγ1,θ1 |δxRγ2,θ2) = ln(γ2/γ1) + dγ−1
2 (1− γ2/γ1)/4 + γ−1

2 Ξ/4 , (57)
where Ξ satisfies the following inequalities

Ξ = ‖γ1∇xUθ1(x)− γ2∇xUθ2(x)‖2

= ‖γ1∇xUθ1(x)− γ2∇xUθ1(x) + γ2∇xUθ1(x)− γ2∇xUθ2(x)‖2

6 2‖γ1∇xUθ1(x)− γ2∇xUθ1(x)‖2 + 2‖γ2∇xUθ1(x)− γ2∇xUθ2(x)‖2

6 2(γ1 − γ2)2‖∇xUθ1(x)‖2 + 2γ2
2‖∇xUθ1(x)−∇xUθ2(x)‖2

6 2(γ1 − γ2)2‖∇xUθ1(x)‖2 + 2γ2
2L

2
U‖θ1 − θ2‖2V 2a(x) , (58)

where we used L5 in the last line. Using L5 again, supθ∈Θ ‖∇xUθ(0)‖ < +∞ by L1, we obtain that
for any θ ∈ Θ, x ∈ Rd and a ∈ [1/4, 1/2] we have

‖∇xUθ(x)‖2 6 2(‖∇xUθ(x)−∇xUθ(0)‖2 + sup
θ∈Θ
‖∇xUθ(0)‖2) 6 CΘV

2a(x) ,

with CΘ = 2‖ supθ∈Θ ‖∇xUθ(0)‖2 + 2L2M
1/2
4,V . Combining this result and (58) in (57), we have that

for any θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄) with γ1 > γ2 and x ∈ Rd

KL (δxRγ1,θ1 |δxRγ2,θ2)
6 dγ−1

2 (1− γ2/γ1)/4 + γ−1
2 (γ1 − γ2)2‖∇xU(θ1, x)‖2/2 + γ2L

2
U‖θ1 − θ2‖2V 2a(x)/2

6
[
dγ−1

2 (1− γ2/γ1)/4 + γ−1
2 (γ1 − γ2)2CΘ/2 + γ2L

2
U‖θ1 − θ2‖2/2

]
V 2a(x)

This result substituted in (56) completes the proof with the inequality for any a, b ∈ R+, (a+b)1/2 6
a1/2 + b1/2.

Proof of Theorem 8. L1 and L2 or L3 ensure a uniform drift condition on Rγ,θ, see Proposition 12
and Proposition 14. Note that the Lyapunov functions V defined by Proposition 12 and Propo-
sition 14 satisfy supx∈Rd(1 + ‖x‖4)/V (x) < +∞. Assumption H3 is obtained using Lemma 17, .
Combining H3, the result of uniform geometric ergodicity with constants independent from θ ∈ Θ in
[10] and that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ 6MHV

1/2(x) we obtain H5. Using Proposition 18
and H5 we obtain H1-(ii). H4 is a direct consequence of Lemma 20
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