
HAL Id: hal-01978949
https://hal.science/hal-01978949v1

Submitted on 12 Jan 2019 (v1), last revised 5 Nov 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supplementary conservative law for non-linear systems
of PDEs with non-conservative terms: application to the

modelling and analysis of complex fluid flows using
computer algebra

Pierre Cordesse, Marc Massot

To cite this version:
Pierre Cordesse, Marc Massot. Supplementary conservative law for non-linear systems of PDEs with
non-conservative terms: application to the modelling and analysis of complex fluid flows using com-
puter algebra. Communications in Mathematical Sciences, In press. �hal-01978949v1�

https://hal.science/hal-01978949v1
https://hal.archives-ouvertes.fr


Supplementary conservative law for non-linear systems of PDEs with

non-conservative terms: application to the modelling and analysis of

complex fluid flows using computer algebra

P. CORDESSE∗

ONERA, DMPE, 8 Chemin de la Hunière, 91120 Palaiseau, France

and CMAP, Ecole polytechnique, Route de Saclay 91128 Palaiseau Cedex, France

pierre.cordesse@polytechnique.edu

M. MASSOT

CMAP, Ecole polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France

marc.massot@polytechnique.edu

In the present contribution, we investigate first-order nonlinear systems of partial differ-

ential equations which are constituted of two parts: a system of conservation laws and
non-conservative first order terms. Whereas the theory of first-order systems of conser-

vation laws is well established and the conditions for the existence of a supplementary

conservation law for smooth solutions, well known, there exists so far no general ex-
tension when non-conservative terms are present. We propose a framework in order to

extend the existing theory and show that the presence of non-conservative terms some-

what complexifies the problem since numerous combinations of the conservative and
non-conservative terms can lead to a supplementary conservation law. We then identify

a restricted framework in order to design and analyze physical models of complex fluid
flows by means of computer algebra and thus obtain the entire ensemble of possible

combination of conservative and non-conservative terms to obtain a supplementary con-

servation law. The theory as well as developed computer algebra tool are then applied
to a Baer-Nunziato two-phase flow model and to a multicomponent plasma fluid model.

The first one is a first-order fluid model, with non-conservative terms impacting on the

linearly degenerate field and requires a closure since there is no way to derive interfacial
quantities from averaging principles and we need guidance in order to close the pressure

and velocity of the interface and the thermodynamics of the mixture. The second one

involves first order terms for the heavy species coupled to second order terms for the elec-
trons, the non-conservative terms impact the genuinely nonlinear fields and the model

can be rigorously derived from kinetic theory. We show how the theory allows to recover

the whole spectrum of closures obtained so far in the literature for the two-phase flow
system as well as conditions when one aims at extending the thermodynamics and also

applies to the plasma case, where we recover the usual entropy supplementary equation,
thus assessing the effectiveness and scope of the proposed theory.

Keywords: Nonlinear PDEs with non-conservative terms, supplementary conservation
law, entropy, computer algebra, two-phase flow, Baer-Nunziato model, multicomponent
plasma fluid model
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1. Introduction

First-order nonlinear systems of partial differential equations and more specifically

systems of conservation laws have been the subject of a vast literature since the
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second half of the twentieth century because they are ubiquitous in mathematical

modeling of fluid flows and are used extensively for numerical simulation in applica-

tions and industrial context [1, 2]. Such systems of equation can either be rigorously

derived from kinetic theory of gases through various expansion techniques [3, 4], or

can be derived using rational thermodynamics and fluid mechanics [5, 6]. As far as

Euler or Navier-Stokes equations are concerned for a gaseous flow field, the outcome

of both approaches are similar and the mathematical properties of these systems

have been thoroughly investigated for the past decades. In particular, these systems

admit a supplementary conservative equation for smooth solution [7, 8], called also

entropy equation, they are hyperbolic at any point where a locally convex entropy

function exists [9], and when they are equipped with a strictly convex entropy, they

can be symmetrized [8] [10] and thus are hyperbolic. These properties have been

at the heart of the mathematical theory of existence and uniqueness of smooth

solutions [11] [12], but they are also a corner stone for the study of weak solu-

tions for which the work of [13] proves the well-posedness of Cauchy problem for

one-dimensional systems.

Nonetheless, for a number of applications, where reduced-order fluid models

have to be used for tractable mathematical modelling and numerical simulations,

be it in the industry or in other disciplines, micro-macro kinetic-theory-like ap-

proaches as well as rational thermodynamics approaches often lead to system of

conservation laws with the addition of non-conservative terms. Among the large

spectrum of applications, we focus on two types of models, which exemplify the two

approaches: 1- two phase flows models which rely on an hierarchy of diffuse interface

models among which stands the Baer-Nunziato [14] model used when full disequilib-

rium of the phases must be taken into account. Since this model is derived through

rational thermodynamics, the macroscopic set of equations can not be derived from

physics at small scale of interface dynamics and thus require closure of interfacial

pressure and velocity, 2- multicomponent fluid modelling of plasmas flows out of

thermal equilibrium, where the equations can be derived rigorously from kinetic

theory using a multi-scale Chapman-Enskog expansion mixing a hyperbolic scaling

for the heavy species and a parabolic scaling for the electrons [15]. Concerning the

thermodynamics, whereas for the first model it has to be postulated and requires

assumptions, it can be obtained from kinetic theory in the second model. In both

case, the models involve non-conservative terms, but these terms do not act on

the same fields; linearly degenerate field is impacted for the two-phase flow model,

whereas it acts on the genuinely nonlinear fields in the second [16]. Whereas hyper-

bolicity depends on the closure and is not guaranteed for the first class of models

[17], the second is naturally hyperbolic [15] and also involves second-order terms

and eventually source terms [18].

Thus, the presence of nonconservative terms encompasses several situations and

requires a general theoretical framework. Nevertheless a unifying theory extending

the standard approach for systems of conservations laws (supplementary entropy
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conservation law, entropic symmetrization, Godunov-Mock theorem, hyperbolicity)

is still missing for such systems even if some key advances exist. The system has

been shown to be symmetrizable by [19] far from the resonance condition for which

hyperbolicity degenerates. In [20], the model is proved to be partially symmetrizable

in the sense of Godunov-Mock.

The present paper first proposes an extension of the theory for system of con-

servation laws to first-order nonlinear systems of partial differential equations which

are constituted of two parts: a system of conservation laws and non-conservative first

order terms. We emphasize how the presence of non-conservative terms somewhat

complexifies the problem since numerous combinations of the conservative and non-

conservative terms can lead to a supplementary conservation law. We then identify

a restricted framework in order to design and analyze physical models of complex

fluid flows by means of computer algebra and thus obtain the entire ensemble of

possible combination of conservative and non-conservative terms to obtain a sup-

plementary conservation law. The proposed theoretical approach is then applied to

the two systems identified so far for their diversity of behaviour. For the two-phase

flow model, assuming a thermodynamics of non-miscible phases, we derive condi-

tions to obtain a supplementary conservative equation together with a compatible

thermodynamics and closures for the non-conservative terms. Interestingly enough,

all the closures proposed so far in the literature are recovered [14, 21, 22, 23, 24].

The strength of the formalism lays also in the capacity to derive such conditions for

some level of mixing of the phases. By introducing a mixing term in the definition

of the entropy to allow mixing of the phases, the new theory brings out constraints

on the form of the added term. We recover not only the closure proposed to account

for a configuration energy as in the context of deflagration-to-detonation [14] or in

[25], but we also rigorously find new closures leading to a conservative system of

equationsa. We also prove that the theory encompasses the plasma case, where we

recover the usual entropy supplementary equation assessing the effectiveness and

scope of the proposed theory.

The paper is organized as follows. The extension of the theory for system of

conservation laws to first-order nonlinear systems of partial differential equations

including non-conservative terms, as well as the framework to apply the theory

by means of computer algebra are introduced in Section 2. These results are then

applied first to the Baer-Nunziato model in Section 3 and then to the plasma model

in Section 4.

Notations: Let a ∈ Rp, b ∈ Rp, B ∈ Rp×p, C ∈ Rp×p, D ∈ Rp×p×p be a

p-component line first-order tensor, a p-component column first-order tensor, two

p-square second-order tensor and a third-order tensor respectively. We introduce

the following notations:

aSuch closure is similar to the one used in [26, 27] which led to a controversy [22, 28, 29]
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• aB is a line first-order tensor in Rp whose i component are defined by

(aB)i =
∑
j=1,p

ajBj,i, (1.1)

• Bb is a column first-order tensor in Rp whose i component is defined by

(Bb)i =
∑
j=1,p

Bi,jbj , (1.2)

• B × C is p-square second-order tensor whose (i, j) component is defined by

(B × C)i,j =
∑
k=1,p

B(i,k)C(k,j), (1.3)

• a ⊗ D is a p-square second-order tensor whose (i, j) component is defined

by

(a⊗D)(i,j) =
∑
k

ak × Dk,i,j . (1.4)

Hereafter, we will name zero- first- and second-order tensors by scalar, vector and

matrix respectively and for convenience we will use vector and matrix representa-

tions of functions. Moreover, given a scalar function S, the partial differentiation of

S by a column vector a, ∂aS is a line vector in Rp. Finally, · denotes the Euclidean

scalar product in Rp.

2. Supplementary conservation law

First we recall the theory of the existence of a supplementary conservative equa-

tion for first-order nonlinear systems of conservation laws. Second, this notion is

extended to systems containing first order non-conservative terms. Third, we intro-

duce a framework to apply this new theory to design and analyze physical models

using computer algebra.

2.1. First-order nonlinear conservative systems

The homogeneous form of a first-order nonlinear system of p conservative laws writes

∂tu + ∂xf(u) = 0, (2.1)

where u ∈ Ω ⊂ Rp denotes the conservative variables with Ω an open convex of Rp
and f : u ∈ Ω 7→ Rp the conservative fluxes. Focusing on smooth solution of the

system (2.1), its quasi-linear form is given by

∂tu + ∂uf(u) ∂xu = 0. (2.2)
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Theorem 2.1. Let H : u ∈ Ω 7→ R be a scalar function, not necessarily convex.

The following statements are equivalent:

(C1) System (2.1) admits a supplementary conservative equation

∂tH(u) + ∂xG(u) = 0, (2.3)

where u ∈ Rp is a smooth solution of System (2.1) and G : u ∈ Ω 7→ R is a

scalar function.

(C2) There exists a scalar function G : u ∈ Ω 7→ R such that

∂uH(u) ∂uf(u) = ∂uG(u). (2.4)

(C3) ∂uuH(u)× ∂uf(u) is a p-square symmetric matrix.

Proof. The proofs of the theorem can be found in the literature. We would like

to recall how the last statement is obtained. Assuming (C2), differentiating Equa-

tion (2.4) leads to

∂uuH(u)× ∂uf(u) + ∂uH(u)⊗ ∂uuf(u) = ∂uuG(u), (2.5)

where ∂uH(u)⊗∂uuf(u) is a p-square matrix defined as
∑
i ∂uiH(u) ∂uuf i(u) which

is a linear combination of Hessian matrices and hence symmetric. Moreover, the RHS

of Equation (2.5) ∂uuG(u) is symmetric. Therefore ∂uuH(u)×∂uf(u) is symmetric.

Remark 2.1. Other formulations of Theorem 2.1 can be found in the literature

[10, 30, 31].

We can then define the notions of entropy and entropic variables in the follow-

ing two definitions.

Definition 2.1. H : u ∈ Ω 7→ R is said to be an entropy of the system (2.1) if

H(u) is a convex scalar function of the variables u which fulfills Theorem 2.1. The

supplementary conservative equation (2.3) is then named the entropy equation and

G : u ∈ Ω 7→ R is the associated entropy flux.

Definition 2.2. Let H : u ∈ Ω 7→ R be a scalar function, not necessarily convex.

Given a first-order nonlinear conservative system (2.7), let us define the entropic

variables v : u ∈ Ω 7→ Rp such that

v(u) = (∂uH(u))
t
. (2.6)

The entropic variables have been studied in [12] in order to obtain symmetric

and normal forms of the system of equation and used in the framework of gaseous

mixtures, where the mathematical entropy H is usually defined as the opposite of a

physical entropy density per unit volume of the system [12].
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2.2. Extension to systems of non-conservative equations

Let us now consider the homogeneous form of a first-order nonlinear system of

partial differential equations constituted of two parts: conservations laws and first-

order non-conservative terms. Its quasi-linear form can be written as

∂tu + [∂uf(u) + N (u)] ∂xu = 0, (2.7)

where u ∈ Ω ⊂ Rp is a smooth solution with Ω an open convex of Rp, f : u ∈ Ω 7→ Rp
the conservative fluxes, N : u ∈ Ω 7→ Rp×p the p-square matrix containing the first-

order non-conservative terms.

In the following we extend the theory introduced in Section 2.1 to system (2.7).

Given a scalar function H : u ∈ Ω 7→ R, multiplying system (2.7) by the line vector

∂uH(u) yields

∂tH + ∂uH(u) [∂uf(u) + N (u)] ∂xu = 0. (2.8)

Compared to Equation (2.3), the presence of the non-conservative terms in Equa-

tion (2.8) complexifies the question of the existence of a supplementary conservative

equation. Therefore we propose to decompose in a specific way the conservative and

non-conservative terms in Definition 2.3.

Definition 2.3. Given a scalar function H : u ∈ Ω 7→ R and a first-order nonlin-

ear non-conservative system (2.7), let us define the four p-square matrices, C1(u),

Z1(u), C2(u) and Z2(u) in Rp×p such that

∂uf(u) = C1(u) + Z1(u), (2.9)

N (u) = C2(u) + Z2(u), (2.10)

with the condition

∂uH(u) [Z1(u) + Z2(u)] = 0. (2.11)

In light of Definition 2.3, Theorem 2.1 can be extended as follows:

Theorem 2.2. Let H : u ∈ Ω 7→ R be a scalar function, not necessarily convex.

Given a first-order nonlinear system of non-conservation laws (2.7), if we introduce

the decomposition as in Definition 2.3, then the following statements are equivalent:

(C1) System (2.7) admits a supplementary conservative equation

∂tH(u) + ∂xG(u) = 0, (2.12)

where u ∈ Rp is a smooth solution of System (2.7) and G : u ∈ Ω 7→ R is a

scalar function.

(C2) There exists a scalar function G : u ∈ Ω 7→ R such that

∂uH(u) [C1(u) + C2(u)] = ∂uG(u). (2.13)
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(C3) ∂uuH(u) × [C1(u) + C2(u)] + ∂uH(u) ⊗ ∂u [C1(u) + C2(u)] is a p-square

symmetric matrix.

Proof. Rewriting Equation (2.8) using the decomposition of the conservative and

non-conservative terms as

∂tH(u) + ∂uH(u) [C1(u) + C2(u)] ∂xu = −∂uH(u) [Z1(u) + Z2(u)] ∂xu (2.14)

outlines the result.

Remark 2.2. In Definition 2.3, the condition (2.11) implies that the conservative

and non-conservative terms depend only on the variables u, and not on their gradi-

ent. Some authors have allowed the matrices Zk to depend also on the gradients of

the variables u, then a more general condition for the decomposition can be written

∂uH(u) [Z1(u, ∂xu) + Z2(u, ∂xu)] ∂xu ≤ 0. (2.15)

In Section 3, we will see that such a condition has been chosen to close the Baer-

Nunziato model [24]. However, since it changes the mathematical nature of the PDE

under investigation, we will not include it in our study.

From a modelling perspective, System (2.7) under consideration is not neces-

sary closed. Therefore, the following corollary yields conditions on the model to

obtain a supplementary conservative equation once we have postulated the thermo-

dynamics.

Corollary 2.1. Let H : u ∈ Ω 7→ R be a scalar function, not necessarily con-

vex. Given a first-order nonlinear system of non-conservation laws (2.7) where

f : u ∈ Ω 7→ Rp and N : u ∈ Ω 7→ Rp×p are unknown functions to be modelled.

If we introduce the decomposition as in Definition 2.3, then System (2.7) admits a

supplementary conservative equation

∂tH(u) + ∂xG(u) = 0, (2.16)

where u ∈ Ω ⊂ Rp is a smooth solution of System (2.7) and G : u ∈ Ω 7→ R a scalar

function, if and only if the following conditions hold

(C1) ∂uuH(u) × [C1(u) + C2(u)] + ∂uH(u) ⊗ ∂u [C1(u) + C2(u)] is a p-square

symmetric matrix.

(C2) ∂uH(u) [Z1(u) + Z2(u)] = 0.

2.3. Design or analysis of physical models using computer algebra

We would like to apply the theory on first-order nonlinear non-conservative systems

introduced in Section 2.2 to physical models such as the Baer-Nunziato model and
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the plasma model in order to design and analyze them. However, the difficulty is

manifold:

− The combination of the non-conservative terms and conservative terms pro-

posed in Definition 2.3 to build a supplementary conservative equations is

not unique and thus many degrees of freedom exist in defining the matrices

Ck and Zk.

− When the model is derived trough rational thermodynamics, terms in the

system of equations might need closure and the thermodynamics has to

be postulated. Therefore, the matrices Ck and Zk can contain unknowns

related to the system and the definition of H.

− The calculations needed to derive a supplementary conservative equation

are heavy and choice-based. Any change of Ck and Zk that respects Defi-

nition 2.3, or any new postulated thermodynamics would require to derive

again all the equations, and eventually a very limited range of possibilities

would be examined.

These difficulties to apply the theory and examine all the possibilities makes com-

puter algebra very appealing since it allows symbolic operations to be implemented

and thus can derive equations systematically and quasi-instantaneously for any com-

binations of conservative and non-conservative terms as well as model closure and H

definition. Still, the generic level handled by computer algebra is not unlimited and

therefore Definition 2.3 requires further assumptions to circumscribe the number of

degrees of freedom that can be accounted for.

Definition 2.4. Given a scalar function H : u ∈ Ω 7→ R, a first-order nonlinear

non-conservative system (2.7), and the four p-square matrices C1(u), Z1(u), C2(u)

and Z2(u) in Rp×p defined in Definition 2.3, we introduce the unknown line vector

t : u ∈ Ω 7→ Rp such that

∂uH(u) [C1(u) + C2(u)] = ∂uH(u) ∂uf(u) + t(u), (2.17)

∂uH(u) [Z1(u) + Z2(u)] = ∂uH(u)N (u)− t(u). (2.18)

The condition of Equation (2.11) rewrites into

∂uH(u)N (u)− t(u) = 0. (2.19)

Remark 2.3. Since Definition 2.4 is a projection of the matrix equations of Def-

inition 2.3 on the vector ∂uH(u), it may be interesting to introduce an unknown

matrix T (u) ∈ Rp×p associated to the unknown line vector t(u) such that

t(u) = ∂uH(u)T (u). (2.20)
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Thus, Definition 2.4 can be formulated as follows

C1(u) + C2(u) = ∂uf(u) + T (u), (2.21)

Z1(u) + Z2(u) = N (u)− T (u), (2.22)

with the condition

∂uH(u) [N (u)− T (u)] = 0. (2.23)

The unknown functional line vector t(u) ∈ R7 represents the transfer of non-

conservative terms to the conservative terms. In the degenerate case where t =

0, Ck receives all the conservative terms and Zk all the non-conservative terms.

Condition (2.19) forces all the non-conservative terms to vanish and System (2.7)

is fully conservative, hence the theory of conservative system can be applied.

Definition 2.4 being more restrictive than Definition 2.3, computer algebra is

now applicable to analyse the properties of a first-order nonlinear non-conservative

systems leading to a reformulation of Theorem 2.2.

Theorem 2.3. Let H : u ∈ Ω 7→ R be a scalar function, not necessarily convex.

Consider a first-order nonlinear system of non-conservation laws (2.7). If we in-

troduce the decomposition as in Definition 2.4, then the following statements are

equivalent:

(C1) System (2.7) admits a supplementary conservative equation

∂tH(u) + ∂xG(u) = 0, (2.24)

where u ∈ Rp is a smooth solution of System (2.7) and G : u ∈ Ω 7→ R is a

scalar function.

(C2) There exists a scalar function G : u ∈ Ω 7→ R such that

∂uH(u) ∂uf(u) + t(u) = ∂uG(u). (2.25)

(C3) ∂uuH(u)× ∂uf(u) + ∂ut(u) is a p-square symmetric matrix.

Proof. Injecting Definition 2.4 into Theorem 2.2 leads to these results.

Theorem 2.3 provides equations that relate the thermodynamics of the model

through H, the model itself with possible terms to be closed in f(u) and N (u),

and the unknown line vector t(u). Combined with the Definition 2.4, Theorem 2.3

brings out conditions on the model to obtain a supplementary conservative equation

given a postulated thermodynamics and it leads to the following corollary.

Corollary 2.2. Consider a first-order nonlinear system of non-conservation laws

(2.7) where u ∈ Ω ⊂ Rp is a smooth solution with Ω an open convex of Rp but
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f : u ∈ Ω 7→ Rp and N : u ∈ Ω 7→ Rp×p are unknown functions to be modelled.

Let H : u ∈ Ω 7→ R be a scalar function, not necessarily convex, and if we introduce

the decomposition as in Definition 2.4, then System (2.7) admits a supplementary

conservative equation

∂tH(u) + ∂xG(u) = 0, (2.26)

where G : u ∈ Ω 7→ R is a scalar function if and only if the following conditions

hold

(C1) ∂uuH(u)× ∂uf(u) + ∂ut(u) is symmetric.

(C2) ∂uH(u)N (u)− t(u) = 0.

2.4. Methodology

Corollary 2.2 draws the methodology we have implemented in the MapleTM com-

puter algebra softwareb. Our methodology is the following:

(Step 1) We define the thermodynamics by postulating - if need be - an entropy

function H : u ∈ Ω 7→ R.

(Step 2) We then use Condition (C1) and (C2) of Corollary 2.2 to ensure the exis-

tence of an entropy flux G : u ∈ Ω 7→ R and solve{
∂uuH(u)× ∂uf(u) + ∂ut(u) symmetric,

∂uH(u)N (u)− t(u) = 0.
(2.27)

In System (2.27), t(u) is systematically an unknown, f(u), N (u) as well

as H(u) can include unknown terms for which the variable dependency

is specified. MapleTM generates then an exhaustive solution for t(u) and

constraints on all the other unknown terms.

(Step 3) From that, the software derives the admissible entropy flux G : u ∈ Ω 7→ R
which gives then the supplementary conservative equation.

3. Application to the Baer-Nunziato model

3.1. Context and presentation of the model

The Baer-Nunziato model has been derived through rational thermodynamics in

[14] and describes a two-phase flow out of equilibrium. Extended by the work of

bMaple is a trademark of Waterloo Maple Inc.
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[32] thanks to the introduction of interfacial quantities, the homogeneous form of

the Baer-Nunziato model is

∂tu + [∂uf(u) + N (u)] ∂xu = 0,

∂uf(u) =

0 0 0

0 ∂u2
f2(u2) 0

0 0 ∂u1
f1(u1)

 , N (u) =

vI 0 0

n2 0 0

n1 0 0

 ,

(3.1)

where the column vector u ∈ R7 is defined by uT =
(
α2, uT2 , uT1

)
, uTk = (αkρk,

αkρkvk, αkρkEk). The conservative flux f : u ∈ Ω 7→ R7 reads f(u)T =

(0, f2(u2)T , f1(u1)T ) with fk(uk)T = (αkρkvk, αk(ρkv
2
k + pk), αk(ρkEk + pk)vk).

N : u ∈ Ω 7→ R7×7 is the matrix containing the non-conservative terms with

n2(u)T = −n1(u)T = (0, −pI , −pIvI). Then, αk is the volume fraction of phase

k ∈ [1, 2], ρk the partial density, vk the phase velocity, pk the phase pressure,

Ek = εk + 1/2v2k the total energy per unit of mass, εk the internal energy, vI the

interfacial velocity and pI the interfacial pressure.

Two levels of ingredients are still missing for this model. First, the macroscopic

set of equations includes the interface dynamics through the interfacial terms vI and

pI and thus needs closure on these terms. Second the thermodynamics has to be

postulated.

The mathematical properties of the model have been studied by [17, 25, 28, 33]

among others and many closure have been proposed for the interfacial terms based

on wave-type considerations and the entropy inequality.

Regarding the thermodynamics, for non-miscible phases, the entropy H(u) is

commonly defined by Equation (3.2) as in [23, 25],

H = −
∑
k=1,2

αkρksk, (3.2)

with sk = sk(ρk, pk) the phase entropy which takes for the Ideal Gas equation of

state the form

sk = cv,kln

(
pk
ργkk

)
, (3.3)

with cv,k the heat capacity, pk the pressure, ρk the density and γk the isentropic

coefficient of phase k.

If we were to account for partial miscibility between the two phases, we would

have to add a mixing term to the definition of the non-miscible entropy. The mixing

term could take the form proposed in [17], so that the entropy rewrites

H = −
∑
k=1,2

αkρk [sk(ρk, pk)− ψk(αk)] , (3.4)
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with ψk, k = [1, 2], two strictly convex nonlinear arbitrary functions depending on

the volume fraction. Nevertheless, so far in the literature, no explicit expressions

of these functions have been proposed. In [17], in order to obtain a supplementary

conservative equation using the entropy defined in Equation (3.4), the authors show

that the following condition has to be fulfilled

ψk(αk) = ψk′(αk′). (3.5)

In this section, we apply to the Baer-Nunziato model the framework introduced

in Section 2 by means of computer algebra. We will firstly assume the phases are

non-miscible and derive a supplementary conservative equation along with condi-

tions on the interfacial terms. All the closures proposed in the literature will be

recovered. Secondly, we will also apply the methodology in the case of a thermody-

namics with partial miscibility and derive a supplementary conservative equation

together with conditions on both the interfacial terms and the mixing terms of the

entropy. Not only all the closures proposed in the literature are recovered but also

new ones and we also propose explicit formulations of the mixing terms and show

that depending on their expression, the condition expressed in [17] is not necessary.

3.2. Methodology and decomposition

We start without any condition on (vI , pI). We need initially to fix a decompo-

sition of ∂uf(u) and N (u) including a certain degree of freedom as explained in

Section 2.3.

Given an entropy H : u ∈ Ω 7→ R of System (3.1), by expressing the entropic

variables as v(u)T =
(
vα,v

T
2 ,v

T
1

)
, we use the decomposition proposed in Defi-

nition (2.4). Since we do not want to generate other non-conservative terms, we

choose to define the line vector t : u ∈ Ω 7→ Rp by t(u) = (tα(u),0,0) where

tα : u ∈ Ω 7→ R is the unknown scalar function a priori of all the variables u. We

obtain the following decompositions

(∂uH [C1 + C2])
T

=

 tα(u)

v2 · ∂u2
f2(u2)

v1 · ∂u1f1(u1)

 , (3.6a)

(∂uH [Z1 + Z2])
T

=

−tα(u) + vαvI +
∑

k=1, 2

vk · nk

0

0

 . (3.6b)

tα allows fractions of the non-conservative terms to feed the matrix Ck.

Given this decomposition, we use the methodology proposed in Section 2.4.

(Step 2) will be split here into two sub-steps.
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(Step 2.a) Condition (C1) on the symmetry of the matrix ∂uuH(u)× ∂uf(u) + ∂ut(u)

ensures the existence of an entropy flux G(u). It will determine t(u).

(Step 2.b) Knowing t(u), Condition (C2), ∂uH(u)N (u) − t(u) = 0, will return an

equation linking (vI , pI) and also ψk when miscibility is accounted for.

3.3. Non-miscible phases entropy

Thus, we start applying our method (Step 1) by postulating H as in Equation (3.2).

The thermodynamics is entirely known and we use the Ideal Gas EOS. The entropic

variables v are then

v =

vα
v2

v1

 with vα =
p1
T1
− p2
T2

and vk =
1

Tk

gk − 1/2v2k
vk
−1

 , (3.7)

with gk the Gibbs free energy, gk = εk+pk/ρk−Tksk. We now apply the conditions

to determine tα(u) and derives the equation that links the interfacial quantities vI
and pI .

Theorem 3.1. Consider System (3.1). If the mixture entropy is defined as H =

−
∑
k=1,2 αkρksk then with the decomposition proposed in Equations (3.6)

∂uuH(u)× ∂uf(u) + ∂ut(u) symmetric ⇔ tα(u) = F (α2) +
p1
T1
u1 −

p2
T2
u2, (3.8)

with F a strictly convex arbitrary function depending on the volume fraction α2. As

a consequence the condition on ∂uH(u) [Z1(u) + Z2(u)] gives

∂uH(u) [Z1(u) + Z2(u)]= 0

⇔ −F (α2) +
∑
k=1,2

(−1)k

Tk
(pI − pk)(vk − vI)= 0.

(3.9)

Proof. The function tα is found relying on symbolic computation and it holds as

a proof.

As explained in (Step 2.a), Equation (3.8) guaranties the existence of an en-

tropy flux G associated with the mixture entropy H chosen as in Equation (3.2) by

defining the unknown function tα(u).

Then as described in (Step 2.b), Equation (3.9) relates the interfacial terms

(vI , pI). By choosing F (α2) = 0, the condition on ∂uH× [Z1 + Z2] writes∑
k=1,2

1

Tk
(pk − pI) (vI − vk) = 0. (3.10)
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So now, to obtain a closed model along with a supplementary conservative equation,

we can postulate an interfacial velocity vI and derive the corresponding pI . We

will limit ourselves to defining vI such that the field associated to vI is linearly

degenerate. In that case, the only admissible interfacial velocities are vI = βu1 +

(1 − β)u2 with β ∈ [0, 1, α1ρ1/ρ] [25]. We will focus on the particular case where

F (α2) = 0. We obtain the following results:

− If vI = vk, then Equation (3.10) returns pI = pk′ . (vk, pk′) is the closure

proposed first by [14], [21] [22], in the context of deflagration-to-detonation.

− If vI = βu1 + (1 − β)u2 with β = α1ρ1/ρ, then Equation (3.10) returns

pI = µp1 + (1 − µ)p2 with µ (β) = (1 − β)T2/(βT1 + (1 − β)T2). It is the

closure found in [23] among others.

We see that first these closures are a specific case where F (α2) is chosen to be zero

in Equation (3.9). Second, one could have chosen another interfacial velocity vI and

it would have led to another interfacial pressure pI compatible with an entropy pair.

Remark 3.1. If we had used the extended condition expressed in Equation (2.15),

then the condition on ∂uH [Z1 + Z2] would be∑
k=1,2

1

Tk
[pk − pI (u, ∂xu)] [vI (u, ∂xu)− vk] ∂xαk ≤ 0 (3.11)

⇔ −
∑
k=1,2

1

Tk

Zk
(Z1 + Z2)2

[pk′ − pk + sgn (∂xα1) (uk′ − vk)Zk′ ]
2 ≤ 0, (3.12)

where Zk is defined by Zk = ρkak with the phase sound speed a2k = ∂pk/∂ρk|sk .

From Equation (3.11), one sees that the dependency on ∂xu reduces to ∂xα2 other-

wise some terms would not be signable. Then closures such as the one found through

Discrete Element Method (DEM) [24] are obtained

vI =
Z1u1 + Z2u2
Z1 + Z2

+ sgn (∂xα1)
p2 − p1
Z1 + Z2

, (3.13)

pI =
Z2p1 + Z1p2
Z1 + Z2

+ sgn (∂xα1)
Z1Z2

Z1 + Z2
(u2 − u1) . (3.14)

3.4. Partially miscible phases entropy

Now, let us add a degree of freedom in the thermodynamics by introducing mixing

terms in the definition of the entropy H as in Equation (3.4) to account for partial

miscibility of the phases. The added terms, ψk, functions of the volume fraction αk
only, are to be determined.
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The entropic variables v are

v =


∑

k=1, 2

(−1)k+1 pk
Tk

[
1− αk

rk
ψ′k(αk)

]
v2

v1

 with vk =
1

Tk

gk − 1/2v2k
vk
−1

 (3.15)

Theorem 3.2. Consider System (3.1). If the mixture entropy is defined as H =

−
∑
k=1,2 αkρk [sk − ψk(αk)] with ψk, k = [1, 2], two strictly convex arbitrary func-

tions depending on the volume fraction, then with the decomposition proposed in

Equations (3.6), we have

∂uuH× ∂uf + ∂ut symmetric

⇔ tα(u) = F (α2) +
p1
T1
u1

[
1− α1

r1
ψ′1(α1)

]
− p2
T2
u2

[
1− α2

r2
ψ′2(α2)

]
(3.16)

with F a strictly convex arbitrary function depending on the volume fraction. As a

consequence the condition on ∂uH [Z1 + Z2] gives

0= ∂uH(u) [Z1(u) + Z2(u)]

⇔ 0= −F (α2) +
∑
k=1,2

(−1)k+1αkρkψ
′
k(αk)(uk − vI)

+
∑
k=1,2

(−1)k

Tk
(pI − pk)(vk − vI)

(3.17)

Again, Equation (3.16) guaranties the existence of an entropy flux G(u) condi-

tioning the function tα(u) (Step 2.a). The interfacial quantities (vI , pI) and ψk are

linked by Equation (3.17) (Step 2.b).

The difference with the previous case for immiscible phases is that there are

two supplementary unknowns ψk, k = 1, 2. We thus are free to either postulate first

an interfacial velocity vI and then derive the corresponding pI and ψk or postulate

first the functions ψk and see what choices we have for the interfacial terms. In the

following we investigate the two approaches.

3.4.1. Interfacial closures impacting thermodynamics

Let us postulate vI and limit ourselves to the case F (α2) = 0. We will again seek a

linearly degenerate field for vI . In such case, the results in Table 1 are obtained.

In Case 1 of Table 1, ψk can be interpreted as a configuration energy of phase k

as in [14], [21] [22], in the context of deflagration-to-detonation. It is a term defining

an interaction of one phase with itself only. More importantly, Equation (3.17) shows

that it is not possible to include a configuration energy for each phase when choosing

the closure (vI , pI) = (vk, pk′).
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Table 1: Admissible thermodynamics and model closures obtained by postulating vI

vI pI (ψk, ψk′)

Case 1 vk pk′ (ψk, 0)

Case 2
βu1 + (1− β)u2

β = α1ρ1/ρ

µp1 + (1− µ)p2

µ (β) = (1−β)T2

βT1+(1−β)T2

ψk(αk) = ψk′(αk′)

In Case 2 of Table 1, the condition on the mixing term introduced in Equa-

tion (3.5) by [17] is recovered and the closures are the one stated in [25]. However,

the condition on the mixing terms imposes a constraint on the volume fraction and

thus on the flow topology. Since mixing of the phases should be able to occur dis-

regarding the flow topology, these terms fail to introduce free mixing among the

phases.

3.4.2. Thermodynamics impacting interfacial term closures

Since Case 1 and Case 2 of Table 1 do not allow the phases to mix, let us choose

first the thermodynamics of the system and induce the admissible interfacial terms.

It has been shown that the mixing entropy of an ideal compressible binary

mixture is of the form
∑
k=1,2 αkln(αk). Therefore, we choose to define the functions

ψk by ψk(αk) = rkln(αk). In this case, the entropy writes

H = −
∑
k=1,2

αkρk [sk − rkln(αk)] , (3.18)

we now account for quasi-miscibility between the phases.

The condition on tα degenerates, tα = F (α2) and the condition on

∂uH [Z1 + Z2] is now

−F (α2) + pI

(
u1 − vI
T1

− u2 − vI
T2

)
= 0. (3.19)

It is no more possible to obtain the classic definition on vI and pI . In the case

F (α2) = 0 two choices are possible to verify Equation (3.19) and summarized in

Table 2.

Case 3 of Table 2 proposes a temperature-based averaged velocity for vI , which

does not seem to be physically reasonable. In Case 4, the interfacial pressure must

vanish for the system to admit a supplementary conservation equation and the Baer-

Nunziato model becomes a conservative system if one assumes the field associated to

vI to be linearly degenerate. One knows how much it simplifies the problem in terms

of numerical implementation. This result can be interpreted as an incompatibility
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Table 2: Admissible thermodynamics and model closures obtained by postulating ψk

vI pI

Case 3 βu1 + (1− β)u2 with β = T2/(T2 − T1) no constraint

Case 4 no constraint 0

between the existence of a mixing process in the thermodynamics of the mixture

and an interfacial pressure, that stays meaningful as long as there is an interface

between the two phases.

3.4.3. Link with dispersed phase flow

When the thermodynamics accounts for mixing (Case 4 Table 2), the existence of a

supplementary conservation equation is incompatible with the interfacial pressure,

and thus the nozzling terms pI∂xαk vanish.

In separated two-phase flows, these terms are known to be necessary to preserve

uniformity in velocity and pressure of the flow during its temporal evolution [29]

and are usually compared to the terms obtained in a single gas with a variable

section [34]. Whereas these arguments seem valid for separated two-phase flows,

one may question the role these terms play in a dispersed phase flows.

Taking the particular case pI = 0 and p2 = 0 in the Baer-Nunziato model

seems to lead to a system of equations similar to one that would describe a flow of

incompressible suspended particles, where 1 would denote the carrier phase and 2

the dispersed phase. Doing so, one recovers not only the Marble model [35], which

proposes a pressureless gas dynamic equations for the particle phase, valid in the

limit where α2 < 10−3, but also the model obtained by Sainsaulieu [36] in the

asymptotic limit where the volume fraction of the particles α2 → 0.

Nevertheless, even if the partial differential equations are alike, the thermody-

namics associated to Marble and Sainsaulieu models differ from the one we propose

for the Baer-Nunziato model. The latter accounts for compressibility of the two

phases and partial miscibility whereas the thermodynamics of the Marble model as-

sumes incompressibility of the particles and non-miscibility between the two phases.

To conclude, if one aims at unifying the description of both separated phases

and dispersed flow through a unique model, the thermodynamics must be treated

together with the system modelling.
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4. Application to the plasma model

The multicomponent fluid modeling of plasmas flows out of thermal equilibrium has

been derived rigorously from kinetic theory using a multi-scale Chapman-Enskog

expansion mixing a hyperbolic scaling for the heavy species with a parabolic scaling

for the electrons [15]. The system takes the form

∂tu + [∂uf(u) + N (u)] ∂xu = ∂x (D(u)∂xu) , (4.1)

with

∂uf(u) =


0 1 0 0 0

(κ/2− 1)v2 (2− κ)v κ 0 0

(κ/2v2 − htot

ρh
)v htot

ρh
− κv2 (1 + κ)v 0 0

− ρe
ρh
v ρe

ρh
0 v 0

−ρeεeρh
v ρeεe

ρh
0 0 v

 , (4.2)

N (u) =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−ρeεeρh
κv ρeεe

ρh
κ 0 0 0

 , (4.3)

D(u) =


0 0 0 0 0

0 0 0 0 0

0 0 0 −λκεeρe
λκεe
ρe

+ γD

0 0 0 0 Dκ
Te

0 0 0 −λκεeρe
λκεe
ρe

+ γD

 , (4.4)

where the column vector u ∈ R5 is defined by uT = (ρh, ρhv,E, ρe, ρeεe) with ρh is

the density of the heavy particles, v the hydrodynamic velocity, E the total energy

defined by E = 1/2ρhv
2 +ρhεh+ρeεe, εh the internal energy of the heavy particles,

ρe the density of the electrons, εe the internal energy of the electrons, htot the

total enthalpy defind by htot = E + p with p = ph + pe, Te the temperature of the

electrons, the constant κ defined by κ = γ − 1 with γ the isentropic coefficient,

ph is the pressure of the heavy particles and pe is the pressure of the electrons. In

the diffusive terms, λ is the electron thermal conductivity, D the electron diffusion

coefficient.

Concerning the thermodynamics, it can be obtained from kinetic theory. The

electrons and the heavy particles thermodynamics are defined by a ideal gas equa-

tion of state, and they share both the same isentropic coefficient: ph = κρhεh,

pe = κρeεe where ph is the pressure of the heavy particles and pe is the pressure

of the electrons, r is the constant of the gas r = cvκ with cv the calorific heat at

constant volume, the model being adimensionalized r = cv(γ − 1) = 1.
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The model is naturally hyperbolic [15] and also involves second-order terms

and eventually source terms [18]. Here we considered the homogeneous form.

In this section, we would like to derive the usual supplementary conservative

equation found by [15] and show that it is unique, to attest the effectiveness of the

theory.

4.1. Decomposition

We need to proceed to the decomposition of the conservative and non conservative

terms of System (4.1). We restrict ourselves again to the decomposition proposed

in Definition (2.4) and we add a degree of liberty to each non-null non-conservative

components by defining t : u ∈ Ω 7→ R5 as t(u)T = (t1(u), t2(u), 0, 0, 0) such that

the following decompositions are obtained

(∂uH(u) [C1(u) + C2(u)])
T

= v(u) · ∂uf(u) +


t1(u)

t2(u)

0

0

0

 , (4.5)

(∂uH(u) [Z1(u) + Z2(u)])
T

=


−t1(u)− ρe

ρh

(
1− Te

Th

)
v

−t2(u) + ρe
ρh

(
1− Te

Th

)
0

0

0

 . (4.6)

The unknown scalar functions tk(u) give the possibility to fractions of the non-

conservative terms to be given to the matrix Ck.

4.2. Ideal Gas entropy

The entropy H : u ∈ Ω 7→ R for two perfect gas is defined as

H = −ρhsh − ρese, (4.7)

with the partial entropies defined by

sh = cv ln

(
ph
κρth

)
, se = cv ln

(
pe
κρte

)
. (4.8)

This entropy includes mixing between the electrons and the heavy particles. Thus,

we start applying our method (Step 1) by postulating H as in Equation (4.7). The
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entropic variables v are then

v =



1

Th

(
gh − 1/2v2

)
1

Th
v

− 1

Th
1

Te
ge

1

Th
− 1

Te


, (4.9)

with gk the Gibbs free energy, gk = εk + pk/ρk − Tksk.

Remark 4.1. In the fourth component of the entropic variable, the kinetic energy

of the electrons has vanished. This is due to the Low Mach assumption made for

the electrons.

We now apply the conditions to determine tk(u).

Theorem 4.1. Consider System (4.1). If the mixture entropy is defined as H =

−ρhsh − ρese, then with the decomposition proposed in Equations (4.5)

∂uuH(u)× ∂uf(u) + ∂ut(u) symmetric

⇔ t1(u) =
ρe
ρh

(
1− Te

Th

)
v and t2(u) = − ρe

ρh

(
1− Te

Th

)
, (4.10)

and the condition on ∂uH(u) [Z1(u) + Z2(u)] is

∂uH(u) [Z1(u) + Z2(u)] = (0, 0, 0, 0, 0) (4.11)

Proof. Using MapleTM, we find

∂uuH(u)× ∂uf(u) + ∂ut(u) symmetric

⇔t1(u) =
ρe
ρh

(
1− Te

Th

)
v +

∫
[−v∂vF1(ρh, v) + ρh∂ρhF1(ρh, v)] dv + F2(ρh)

and t2(u) = − ρe
ρh

(
1− Te

Th

)
+ F1(ρh, v)

with F1, F2 two arbitrary functions and the condition on ∂uH(u) [Z1(u) + Z2(u)]

is

(∂uH(u) [Z1(u) + Z2(u)])
T

=


−
∫

[−v∂vF1(ρh, v) + ρh∂ρhF1(ρh, v)] dv − F2(ρh)

−F1(ρh, v)

0

0

0


= 0.
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One sees that the last equation imposes first F1 = 0 and thus F2 = 0. Reinjecting

these terms into the first equation gives the result.

As explained in (Step 2.a), the Equation (4.10) guaranties the existence of an

entropy flux G : u ∈ Ω 7→ R associated with the entropy H defined in Equation (4.7)

by solving the unknown functions t1(u) and t2(u).

Therefore, for the entropy H defined in Equation (4.7), there is a unique de-

composition which ensures the existence of a supplementary conservative equation

which is given by

(∂uH [C1 + C2])
T

= vT · ∂uf(u) +



ρe
ρh

(
1− Te

Th

)
v

ρe
ρh

(
1− Te

Th

)
0

0

0

 , (4.12)

∂uH [Z1 + Z2] = 0. (4.13)

It leads to the following entropy flux couple

H = −ρhsh − ρese, (4.14)

G = − (ρhsh + ρese) v. (4.15)

The theory recovers the supplementary conservative equation already found in the

literature from the kinetic theory [15].

5. Conclusion

In the present contribution, we have extended the theory on the existence of a

supplementary conservative equation to first-order nonlinear system of partial dif-

ferential equation including non-conservative terms.

Given a reasonable choice in the combination of the conservative and non-

conservative terms, we have been able to show how to use the theory to design or

analyze systems by means of computer algebra on two applications chosen for their

numerous differences in terms of model and thermodynamics closure as well as the

nature of the waves impacted by the non-conservative terms.

Firstly, applied to the Baer-Nunziato two-phase flow model derived from ra-

tional thermodynamics, the theory has brought about supplementary conservative

equations together with constraints on the interfacial quantities and the definition

of the thermodynamics for non-miscible fluids and also when accounting for some

level of mixing of the two phases. A new closure for the interfacial quantities has
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been proposed and leads to a conservative system. Secondly, for a plasma model ob-

tained rigorously from the kinetic theory of gases, where the thermodynamics is also

provided, the approach allows to recover as unique the supplementary conservation

equation related to the kinetic entropy and is thus assessed.

A strongly connected question for such systems is the ability to derive an

entropic symmetrization in the sense of Godunov-Mock and the related constraints

on the decomposition, as well as the study of the spectrum and hyperbolicity. The

proposed framework introduced in this paper allows to shed some light on these

questions and the two systems, we have applied the theory to, are especially suited

for such a purpose. This is the subject of our current research.
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[17] Gallouët, T., Hérard, J.-M., and Seguin, N., Numerical modeling of two-phase

flows using the two-fluid two-pressure approach. Math. Models Methods Appl.

Sci. (2004) 14:05:663–700.

[18] Magin, T., Graille, B., and Massot, M., Thermo-chemical dynamics and chem-

ical quasi-equilibrium of plasmas in thermal non-equilibrium. Ann. Research

Briefs, Center for Turbulence Research, Stanford University (2009):71–82.

[19] Coquel, F., Hérard, J.-M., Saleh, K., and Seguin, N., Two properties of two-

velocity two-pressure models for two-phase flows. Commun. Math. Sci. (2014)

12:593–600.

[20] Forestier, A. and Gavrilyuk, S., Criterion of hyperbolicity for non-conservative

quasilinear systems admitting a partially convex conservation law. Mathemat-

ical Methods in the Applied Sciences (2011) 34:2148–2158.

[21] Kapila, A. K., Son, S. F., Bdzil, J. B., Menikoff, R., and Stewart, D. S., Two-

phase modeling of DDT: Structure of the velocity-relaxation zone. Physics of

Fluids (1997) 9:12:3885–3897.

[22] Bdzil, J. B., Menikoff, R., Son, S. F., Kapila, A. K., and Stewart, D. S., Two-

phase modeling of deflagration-to-detonation transition in granular materials:

A critical examination of modeling issues. Phys. Fluids (1999) 11:2:378–402.



24 REFERENCES

[23] Lochon, H. “Modélisation et simulation d’écoulements transitoires eau-vapeur
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