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Abstract—Cloud Radio Access Network is foreseen as one of
the key features of the future 5G mobile communication standard.
In this context, all the baseband processing is intended to be
performed on CPUs in order to keep a high level of flexibility. The
challenge is then to propose efficient software implementations
of baseband processing algorithms that guarantee a sufficient
throughput, while limiting the energy consumption. In this paper,
as an alternative to general purpose processors, we propose
an implementation of an Application Specific Instruction set
Processor customized for the Successive Cancellation decoding of
polar codes. The resulting software decoder achieves throughputs
similar to state-of-the-art ARM processor implementations, while
reducing the energy consumption by a factor 10.

I. INTRODUCTION

Polar codes [1] have been selected as the error correction
code for the control channels in the fifth generation of mobile
networks (5G). Meanwhile, in the context of the 5G standard,
Cloud Radio Access Network (Cloud-RAN) is foreseen as
one potential disruptive technology in which the physical
(PHY) layer is completely virtualized as it is executed on
large scale programmable processor arrays. Actually, Cloud-
RAN would allow dynamic balancing of the computational
effort across the network, as well as inter-cell cooperation
[2]. In this context, processing resources must keep a high
degree of flexibility, while guaranteeing a sufficient through-
put and reducing the energy consumption. Within the PHY
layer baseband processing, error correction decoding is one
of the most computationnally intensive tasks [3], [4]. As
a consequence, future networks based on Cloud-RAN will
require efficient software implementations of polar decoders.
Recently, optimized software decoders have been proposed on
high-end general purpose processors (GPPs) [5], [6]. In [7],
[8], embedded ARM processors have shown to be especially
energy-efficient for this kind of algorithms. Finally, graphical
processing unit (GPU) implementations of polar decoders [9]
can reach high throughput, at the expense of a high latency and
energy consumption compared to x86 and ARM processors.

In order to address a large set of domains, general purpose
processors (x86, ARM, ...) usually include various hardware
resources that may not be used in some applications. For
instance, in the case of channel decoding, all the floating
point units are unused because processing is usually performed
on a fixed-point data representation. These unused hardware
resources consume expendable leakage power. When profiling
optimized software polar decoders, one rapidly observes that
most of the time is spent executing a small set of elementary

functions. Moreover a significant number of clock cycles are
used for loading/storing data in registers. These observations
push towards the use of programmable processors that i)
only include application relevant hardware to limit power
and energy consumption and ii) integrate some dedicated
processing resources to increase the throughput. This kind of
custom processors is usually called an Application Specific
Instruction-set Processor (ASIP).

In this paper, the use of ASIPs as potential candidates
for efficient software decoding of polar codes is investigated.
More specifically, the architecture of a Cadence Xtensa LX7
processor [10] is customized in such a way that it achieves
a throughput similar to ARM processors, while reducing the
energy consumption by more than one order of magnitude.

As a first investigation of the potential of ASIPs for polar
code decoding, we focus on the Successive Cancellation
(SC) decoding algorithm. A natural extension of this work
is to address the more complex Successive Cancellation List
(SCL) decoding algorithm. It would benefit from the already
implemented optimizations, but it would also require some
further works especially for the list sorting and management.
The polar codes used for benchmarks are the ones recently
defined in the 3GPP meetings for the upcoming 5G [11].

After a brief overview of polar coding/decoding in section
II, section III describes the base architecture of the Cadence
Xtensa LX7 and the different architectural modifications that
were performed to improve the SC decoding throughput. In
section IV, some throughput, latency and energy estimations
are provided in order to compare with ARM and x86 imple-
mentations. Some conclusions and future works suggestions
are provided in Section V.

II. POLAR CODING

A. Polar Encoding

Polar codes are linear block codes with a recursive structure
similar to Reed-Muller codes. The encoding of a (N,K) polar
code can be seen as an N -dimension linear transformation
applied to an N -bit vector u : x = uF⊗n, where x is the
generated codeword and F⊗n the n-th Kronecker product of
[ 1 0
1 1 ] . The u vector includes K information bits and N −K

frozen bits. The linear transformation is described by the N -
by-N matrix F⊗n where N = 2n and n ≥ 0. Within the vector
u, the location of information bits is defined by a set A ⊂
{0, ..., N − 1}, while the complementary subset Ac contains
the location of frozen bits.



Fig. 1. Successive Cancellation Decoding.

B. Successive Cancellation Decoding

As shown in Figure 1, SC decoding can be seen as a pre-
order binary tree traversal of depth n in which each node
consists of 2n−d LLRs, which are real values, and 2n−d partial
sums, which are binary values, d is the depth of the considered
node. The functions that are to be applied to these values are
listed in (1).


f(La, Lb) = sign(La × Lb)×min(|La|, |Lb|)
g(La, Lb, s) = (1− 2s)La + Lb

h(sa, sb) = (sa ⊕ sb, sb)

HD(La) =

{
0 if La > 0
1 else

(1)

Figure 1 represents SC decoding for n = 2. One can observe
that multiple functions can be applied simultaneously between
the two upper layers of the tree. The number of such possibly
parallel operations on a node at depth d is equal to half the
number of L values stored at this node i.e. 2n−d. This possible
parallelism is denoted as intra-frame parallelism. The decoded
codeword û is equal to the partial sums held in the root node
of the tree when the decoding process is complete.

C. Simplified SC decoding

As proposed in [12] and later improved in [13], it is
possible to reduce the computational complexity of the SC
decoding algorithm. Depending on the frozen bits subset, some
subtrees can be replaced by a single node. The traversal of
these subtrees becomes a specialized function dedicated to
the decoding of these nodes. For instance, Rate-0 (R0) and
Rate-1 (R1) nodes, respectively correspond to nodes holding
only frozen bits or only information bits. Specialized nodes
called repetition (REP) and single parity check nodes (SPC)
correspond to subtrees. They represent repetition codes and
single parity check codes. This tree pruning method drastically
reduces the number of operations involved to decode the tree,
with a negligible impact on the decoding performance.

D. Parallelism

State-of-the art software polar decoders executing on gen-
eral purpose processors [5]–[9] extensively exploit Single In-
struction Multiple Data (SIMD) units to speedup the process-
ing. As first formalized in [6], two parallelization techniques
can be applied. The intra-frame method consists in using
SIMD units to perform several operations (e.g. functions from

Eq. (1) in the SC decoding tree). The alternative inter-frame
method consists in decoding multiple frames in parallel. In
comparison with the intra-frame method, the throughput of the
inter-frame method is higher, because SIMD units are always
fully used. However the time spent loading the data in the
decoder increases the latency of the decoder. In this paper, the
intra-frame parallelization strategy is preferred, because of its
lower memory footprint. It causes lower power consumption
and smaller memory cache allocation in the custom processor.
Finally intra-frame parallelization features a lower latency,
which is a very important criterion in 5G.

III. PROCESSOR DESIGN

The selected base processor is the Cadence XTensa LX7
that was chosen for its genericity and extensibility. The
philosophy of the XTensa processor is to propose a RISC-
oriented base architecture intended to be simple and energy
efficient, but very extensible. Then, by designing custom
parallel instructions, the energy consumption and cycle counts
of a given application execution can be drastically reduced.
The proposed custom processor was designed by following this
methodology. Figure 2 shows the architectural model that is
composed of three parts: the data cache memory, the hardware
resources for the core instructions, and the hardware resources
for the custom instructions.

A. Base Architecture

The XTensa instruction set architecture (ISA) has been
designed for configurability and extensibility. The latter is the
possibility to add designer-defined custom instructions and
the associated custom hardware units, which are described
in section III-C. Configurability is the possibility to select
pre-designed functionalities for a given application to cus-
tomize the base architecture. One can for example add pre-
designed hardware accelerators (multipliers, mac, or floating
point units), enable interrupt and exception handling, or use
memory protection and local memory. In the proposed custom
processor, no pre-designed accelerator is used, but necessary
features consuming the least hardware are activated by default.
Indeed, in polar decoding, the role of the core instructions
is mainly to handle pointers and variables used to access
the data and feed them to the custom SIMD units. While
no heavy arithmetic is used, a very long instruction word
(VLIW) structure called FLIX3 is chosen. It enables a pre-
configured 3-way pipeline. With this configuration, a 64-bit
complex instruction that includes 3 Xtensa base instructions,
each operating on distinct 32-bit data, can be simultaneously
executed. The execution of three instructions in parallel helps
reducing the cycle counts in multiple parts of the decoding
algorithm. The last relevant configuration was to choose to
increase the number of general purpose registers from 32 to
64, which also improved performance.

B. Memory of the Architecture

1) Data quantization: It is demonstrated in [14] that 6-bit
LLR values enable matching the BER performance of non-
quantized decoders. As it is more convenient for a software



<

<

<

<

<

<

<

<

<

<

<<

Fig. 2. Processor structure and data path

implementation, 8-bit integers are selected to store the LLRs
in the memory. As first reported in [15], LLR storage requires
2n−d LLRs to be stored at depth d layer. Consequently,
the overall LLR memory size is 2n+1 − 1 bytes. Although
partial sums are actually binary values, they are stored as 8-
bit integers and their memory footprint is 2n. It would be
possible to compress this part of the memory at the cost of
extra masking operations and more irregularity in the data
access.

2) Cache Memory Configuration: As the goal of our design
is to decrease the decoding time by increasing parallelism,
the maximum available register size is assigned, which is 512
bits. Therefore, in order to load and store data from and to
the cache memory in one clock cycle, the cache memory line
size is also 512 bits. The size and associativity of the data
and instruction memories are customizable. Experiments were
performed to select these configurations. In all the tested cases,
4-way associativity offers the best performance. The cache size
can be any power of two between 2 and 128 KB. Even if the
smallest number of cache misses is reached for the largest
memory, a memory of 8 KB for both instruction and data
cache is enough to reach a number of cache misses that is
less than 5 percents higher than the minimum one.

C. Custom Instructions and SIMD Units

Acceleration of the decoding algorithm relies heavily on
the vectorization of the elementary functions of Eq. (1).
To this end, custom instructions were defined together with
SIMD hardware units that are necessary to execute them.
For instance, Figure 4 shows how the f function can be
called in the source code. Figure 3 describes the architecture
of the corresponding SIMD hardware unit. For clarity, in
Figure 3, a parallelism of P = 4 is shown, while in the
real implementation, we actually have P = 64. The other
elementary functions of Eq. (1) and the specialized functions
derived from the Fast-SSC algorithm [13] are implemented the
same way.

With custom instructions, a significant amount of time is
dedicated to the loading and storing of the LLRs and partial
sums from and to the data cache. In order to reduce the
amount of time spent during this data handling, in register

1 0 1 0 1 0 1 0

Fig. 3. f function SIMD hardware unit

1 inline void f_64(signed char* la,
2 signed char* lb,
3 signed char* lc)
4 {
5 p512_a = (VR512*) la; // cast char* to simd ptr
6 p512_b = (VR512*) lb; // cast char* to simd ptr
7 p512_c = (VR512*) lc; // cast char* to simd ptr
8
9 v512_a = *p512_a; // fill simd register

10 v512_b = *p512_b; // fill simd register
11
12 // execute custom instruction
13 v512_c = custom_f_64(v512_a, v512_b);
14
15 *p512_c = v512_c; // store result in cache
16 }

Fig. 4. C++ SIMD implementation of the f functions.

custom instructions have been developed. The principle is that
a complete subtree of the decoding tree is loaded in a single
512-bit register. It is thus possible to work only with the same
unique register, without having to perform additional stores
and loads. As shown in section IV, this technique enables
significant performance gains especially on short polar codes.

D. Software Description

A Pseudo-Unrolled technique, inspired from the unrolling
technique in [16], is applied for the software description.
All the recursive aspects of the code and therefore a sig-
nificant number of context switches, are removed. Instead,
all the elementary functions to be applied are stored in a
function pointer array before the decoding process. The input
of the functions, e.g. the pointers to the data memory, are
precomputed. These pre-computations being done only once,
decoding only consists in executing each function stored in the
array. The number of clock cycles required for the decoding
process is then approximately reduced by a factor of two.

IV. RESULTS AND DISCUSSION

Results reported in this section were obtained with polar
codes constructed as specified in the draft modulation and
coding scheme of the 5G standardization group [11]. The
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academic version of the XTensa design tools does not enable
the logic synthesis of the processor. Only estimates of the
frequency, power consumption and design area are available
[17]. By using the TSMC HPM 28 nm technology parameters,
the estimated power of the proposed ASIP is 111 mW, and the
estimated area is 0.475 mm2. The estimated frequency is 835
MHz, but it does not take into account the custom instructions
datapath. As a consequence, a more pessimistic scenario with
a running frequency of 400MHz is considered.

A. Comparison with an ARM processor

The AFF3CT software [18] allows running an optimized
software SC decoder on the A57 processor. The reported
data used for the ARM implementation were provided by
the authors of [8]. The software decoder is not generated but
dynamic, as it is the case for the ASIP implementation. The
intra-frame method is used and 8-bit words are chosen to store
the LLRs. The NEON instructions being 128-bit wide, the
parallelism level is 16. The maximum running frequency of
the Juno board is exploited [8]. In the reported results, the
RAM power consumption is not taken into account.

Figure 6 shows the average number of clock cycles to
decode one frame for both processors. The use of customized
SIMD units reduces the number of clock cycles. This is
especially true for the decoding of short polar codes in which
in-register custom instructions are prevalent. However this
lower number of clock cycles is counterbalanced by a lower
clock frequency as shown in Table I (R = 1/2). Nevertheless,
even for the less favorable scenario (f = 400 MHz), the
ASIP architecture achieves throughputs similar to the ARM
processor. The most remarkable benefit is the energy per
decoded bit, which is more than 10 times lower for the ASIP.

B. Comparison with an x86 processor

The throughput, latency and power consumption of the
same software decoder have also been measured on a Intel
i7-4712HQ processor. The power of the core is evaluated
with the powerstat tool, reporting only the core power.
This time, the parallelism level can be fixed to 32 using the
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TABLE I
COMPARISON OF THE LATENCY, THROUGHPUT AND POWER

CONSUMPTION

Target N
Latency

[µs]
Throughput

[Mb/s]
Eb

[nJ]

A57-1.1GHz

1024 13 38 21
512 6.7 38 21
256 3.6 35 22
128 2.1 30 27

i7-3.3GHz

1024 2.3 222 47
512 1.4 182 57
256 0.8 155 68
128 0.5 124 85

ASIP-835MHz

1024 7.2 71 1.6
512 3.9 66 1.7
256 1.9 65 1.7
128 1.0 62 1.8

ASIP-400MHz

1024 15 34 1.4
512 8.2 31 1.6
256 4.1 31 1.6
128 2.1 30 1.7

256-bit wide AVX2 SIMD instructions. The CPU was run
at the maximum turbo frequency of 3.3 GHz. The results
show that the throughput and the latency of the decoder is
far better than the other implementations but that the energy
efficiency is worse. An inter-frame implementation would
increase the efficiency at the cost of increased latency and
memory footprint as shown in [8].

V. CONCLUSION

Cloud-RAN is foreseen to be an important feature of the
5G standard. It enables the network to be more flexible and
adaptable. In this paper, ASIP processors customized for polar
decoding have been studied in the context of network virtu-
alization. The proposed custom processor is 10 times more
energy efficient than state-of-the-art software implementations
of SC polar decoders on embedded processors, while achieving
the same throughput. Relevant future works includes the logic
synthesis of the ASIP architecture and the adaptation of the
ASIP architecture to the SCL algorithm.
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