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Abstract 

This paper presents a new methodology for generating doubly-curved shapes covered with planar facets. 

The proposed method, called marionette method relies mainly on descriptive geometry, and it is shown 

that specifying appropriate projections, e.g. plane view and elevations, defines uniquely a free-form 

shape. This methodology is highly intuitive and can be used in real-time, mainly because only linear 

systems of equations are solved. The design-space offered by the marionette method is extremely large, 

and easily parameterized. Some applications show the potential of this technique for the 

parameterization of a fabrication-aware design space for structural optimization.  

Keywords: Fabrication-aware design, structure, optimization, architectural geometry, PQ-mesh  

1. Introduction 

The design of thin shells often merges fabrication and structural preoccupations. Structural artists have 

been able to build structurally efficient and cost-effective shells by using shapes that are appropriate 

both for structural behavior and fabrication (Billington [3]). Felix Candela for example used ruled 

surfaces as primary vocabulary of his structural language. The use of straight elements simplified the 

construction of formworks, showing the concern of Candela for fabrication. Frei Otto and his team 

developed the compass method to cover free-form shapes with constant member length and rationalize 

fabrication (Hennicke [11]). Likewise Jörg Schlaich and Hans Schober used surfaces of translation or 

scale-trans surfaces to build elegant grid shells covered with planar facets (Glymph et al. [10], Schlaich 

and Schober [21]).  

Nowadays, the planarity constraint for facets is seen as one of the defining factors on the economy of 

free-form envelopes, especially for glazed structures. Several methods for optimization of façade layouts 

towards facet planarity have been proposed recently (Liu et al. [13], Mesnil et al. [14]). While some 

methods are computationally efficient and allow geometrical optimization in real-time (Deng et al. [8]), 

they generally give little insight to the designer (Bagneris et al. [2]). Geometrical rationalization 

methods are also generally envisioned with little concern to the structural behavior of the modelled 

shapes. On the other hand, shape optimization of shell structures is an active topic of research (Rahm et 

al. [20], Ohmori et al. [18]) and the problem of design-space parameterization for structural optimization 

is crucial. However, the community of structural engineers does not benefit from the most recent 

advances in the field of computational geometry.  

The aim of this paper is to introduce a new method for fabrication-aware design that offers another 

perspective on the use of numerical tools. Rather than proposing an approach of design by analysis 

where the computer provides results without building an understanding of the underlying geometry 

(Baker [3]), the proposed method constructs complex shapes from simple rules derived from descriptive 

geometry.  
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The main contribution of this paper is the investigation on the use of the marionette technique for the 

parameterization of shape optimization problems. The second section presents the methodology for 

shape generation, introduced by the authors in (Mesnil et al. [15]) and structural optimization. The third 

section shows some case studies that illustrate the potential of marionette meshes for structural 

optimization and a comparison with NURBS. The fourth section introduces a study on creased 

structures, which are tedious to model either with NURBS or pure node-based approaches. 

2. Methodology 

2.1. Descriptive geometry and the marionette quad 

Descriptive geometry is a tool that represents surfaces with planar projections. It was developed during 

the eighteenth century and the mathematician Gaspard Monge gathered all the existing theories at the 

end of the eighteenth century (Monge [16]). Among many problems treated by descriptive geometry, an 

exercise of particular interest for the modelling of free-form surfaces is the description of a planar 

quadrilateral from a planar projection and two elevations. 

Consider Figure 1: it turns out that a planar quad (A’B’C’D’) can be described with a planar view 

(ABCD) and two compatible elevations. In the drawing, the point C’ is uniquely defined once the points 

(A’B’C’) and its projection C is chosen. The point is found by doing the intersection of a plane and a 

vertical line, which has a unique solution. Figuratively, the solution of the problem requires to construct 

vertical lines, which recall the strings of a marionette. We propose to turn the solution of this problem 

of shape description into a shape-generation tool. Note that only a linear equation has to be solved for 

the lifting of a marionette quad. 

 

 

Figure 1: A planar 'marionette' quad and a representation from descriptive geometry (Mesnil et al. [15]) 

2.2. Marionette mesh 

Consider now a quadrangular mesh without singularity. Like in the marionette quad, we prescribe a 

plane view and two elevations of curves crossing the mesh. The lifting technique can be used for the 

quad at the intersection of the two curves (since three altitudes are prescribed), and the planar quad 

defines a unique altitude for the fourth point. The information can then be propagated along each strip, 

as shown in Figure 2. 

Prescribing a planar view and two elevations is thus sufficient for the definition of a quadrilateral meshes 

with planar facets. Other projections, e.g. on cylinders or tori can be used, which does not restrict this 

framework to height field (Mesnil et al. [15]). Likewise, different patterns or mesh topologies can be 

lifted, for example the Kagome or dual-Kagome patterns (Mesnil et al. [15]). We focus in the following 

on quadrilateral meshes constructed from a projection in the (XY) plane and vertical elevations.  
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Figure 2: Marionette mesh with a prescribed planar view and two elevations (Mesnil et al. [15]) 

The marionette technique can be used as a meshing tool, where the planar view is parameterized by the 

(XY) coordinates of each point. It can also be used in the manner of NURBS, if the planar view and the 

guide curves are controlled with NURBS and Bézier curves. These two approaches can be linked with 

the current approaches for shape parameterization in structural optimization problem. The two main 

strategies are node-based approaches, where every vertex position is taken as a variable (Firl et al. [9], 

Stavropoulou et al. [22]), and CAD based approaches, where the shapes are modelled with an underlying 

construction rule (often NURBS patches) (Bletzinger et al. [5, 6]). Node-based approaches often require 

regularization techniques, and the high number of variables makes it harder to make sensitivity analysis. 

For that reason, the following of the paper focuses on CAD-based approach with marionette meshes. 

2.2.1. Node-based approach 

Let us estimate the number of degrees of freedom offered by the marionette method. If we consider the 

method as a node-based approach, then for a grid with NM faces, we have 2(N+1)(M+1) degrees of 

freedom for the plane view and (N+M+1) degrees of freedom for the elevation curves. The size of the 

design space is then: 

 

    1112  MNMNSMarionette
 (1) 

This is less than the full model with no planarity constraints for the facets: 

   113  MNS nedunconstrai
 (2) 

The size of the design space compared to classical node-based approaches is reduced by 30%. This 

leaves a very large design space for typical gridshells, which have hundreds of facets. 

2.2.2. CAD-based approach 

If the method is considered as a CAD tool, then the plane view is controlled by a NURBS patch with 2n 

degrees of freedom, where n is the number of control points. Each guide curve can then be controlled 

by control points. We write 𝑁𝐶𝑃 the number of control points of the NURBS patch and 𝑁𝐶𝑢𝑟𝑣𝑒1, 𝑁𝐶𝑢𝑟𝑣𝑒2 

the number of control points for each curve. The number of parameters describing the design space 

follows: 

NNNS CPcurvecurveMarionette 221
                                                        (3) 
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Generally, this number represents 2/3 of the numbers of parameters offered by NURBS. The planarity 

constraints reduces the size of the design space, but still gives sufficient degrees of freedom. The 

differences between NURBS and Marionette approaches will be discussed in Section 3. 

2.3. Constraints and linear programming 

The marionette method deals only with linear equations. Mathematically, the set of solutions for the 

planarity constraint is a vector space: the admissible altitudes Z are indeed solution of a linear system: 

for a given planar view there is a matrix A, and a set of prescribed altitudes on the boundaries so that: 

ZAZ p              (4) 

The solutions belong thus to the image of the matrix A, which is a vector space, whose dimension is 

given by equation (1). It is then easy to introduce linear constraints. If the number of independent linear 

constraints nconstraints is inferior to the dimension of the space of solutions, then the dimension of the new 

design space is given by: 

sconstraMarionette nSd int                                (5) 

Note that equation (4) corresponds to the constraint of facet planarity. It is extremely simple to optimize 

quadratic functional under linear constraints. Examples of linear constraints include: node position, 

maximum altitude, encapsulated volume. Examples of quadratic functional include distance 

measurements for surface fitting or smoothness functions (Mesnil et al. [15]). All these remarks indicate 

that the proposed framework can be treated very efficiently with usual numerical tools of linear 

programming. 

2.4. Structural optimization   

The following of this paper considers application of the marionette method as a CAD-based tool for the 

parameterization of structural optimization problem. In order to show the pertinence of this technique, 

several optimization methods are compared. The nonlinear optimization library NLopt is used in this 

paper: this library uses derivative-free algorithms (Johnson [12]). We use the algorithms COBYLA 

(Constrained Optimization BY Linear Approximations), BOBYQA (BOund Optimization by Quadratic 

Approximation) algorithms. 

In the followings, we focus on shell design, as it is well-documented in shape optimization problems. 

Two objective functions usually studied in the literature on structural optimization were used. The first 

one is elastic energy with a first order calculation: optimal structures tend to minimize this energy. The 

second one is the linear buckling load: optimal structures tend to maximize this value. 

2.5. Computational set-up   

The marionette technique is implemented within the software Grasshopper, a plug-in of the CAD 

software Rhinoceros. The generation of meshes with hundreds of facets requires typically 1 millisecond: 

the user can manipulate fabrication-aware surfaces in real-time. The governing factor in the structural 

exploration of the design space proposed in this paper remains thus the computation related to the 

mechanical behavior: the planarity constraints is handled in a transparent manner by our framework. 

We use the Grasshopper plug-in Goat for the implementation of the NLopt library. 

The computations are done using the finite element method and the software Karamba (Presinger et al. 

[19]), which implements a shell element developed by (Argyris et al. [1]). A convergence study on mesh 

refinement was performed by the authors: the convergence at 95% for the elastic energy is reached for 

a mesh with 3,600 elements. This mesh density is used in our study, except for creased structures, where 

refinements were necessary. 
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3. Application for the shape optimization of shell structures 

3.1. Definition of the model 

The case study focuses on a shell supported on three corners. The geometry of the shell is illustrated by 

Figure 3. The geometry has six planes of symmetry and can be decomposed into six domains without 

singularity, where the marionette technique can be applied. Both NURBS and marionette meshes are 

generated. The NURBS models are built from patches of degree 2 with 9 control points. The planar view 

of the marionette meshes is built with the same kind of patch, whose control points are shown in Figure 

3. The orange area shows the admissible area for the supports of the structure (where z=0). The shapes 

are trimmed with a horizontal plane. 

 

Figure 3: Geometry of the shell supported on three corners 

The symmetry implies some constraints to the position of the control points. We recall the constraints 

in Table 1: 

Table 1: available degrees of freedom 

 A0 A1 A2 B0 B1 B2 C0 C1 C2 

Marionette Fixed x,y Fixed t x,y x Fixed x C2.x = B2.x 

NURBS Fixed x,y Fixed t,z x,y,z x,z z x,z C2.x = B2.x, C2.z = B2.Z 

 

The marionette and NURBS models have both 7 degrees of freedom in the horizontal plane. The 

elevations of the marionette mesh are controlled with polynomial curves of degree 3 drawn in Figure 4. 

In plane P2, we impose horizontal tangency at the crown, which leaves two degrees of freedom: the 

height of the crown h and the slope at A2. In plane P1, we do not impose restrictions on tangency, which 

leaves three degrees of freedom: the height of C0 and the slopes at C0 and C2. 

 

Figure 4: Parameterisation of the guide curves for the marionette mesh 
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In total, the marionette mesh  and NURBS model have 11 and 14 parameters. The size of the design 

space is thus similar. All the optimisations start from the same point: the curve in the plane P1 is a 

straight line and the rise-over-span ratio is of 30%. The shell has a span of 140 meters and a thickness 

set arbitrarily to 10cm and a Young modulus of 30GPa. It is subject to a vertical projected load of 

1kN/m², non-symmetrical load cases were alsko considered with similar results but are not shown for 

the sake of conciseness. The supports are fully restricted in translation, but allow rotations. 

3.2. Structural optimization  

Several optimization algorithms were tested for the full problem. Two objectives were considered: linear 

buckling load and elastic energy. The objective functions have different optima, and are non-convex. 

As a result, several local optima are found by the different optimization algorithms. Table 2 illustrates 

several results obtained with different algorithms, found in less than 3 minutes. All the found shapes are 

subject to compression dominant loads (no tensile axial force N1 or N2), and the bending energy 

represents less than 1 percent of the total elastic energy. Like expected, the optimization tends to produce 

different funicular shapes and the algorithms find different local optima for buckling or elastic energy. 

Table 2: Some results of the optimization, design with bolded figures belong to the Pareto front 

 Marionette Mesh NURBS 

COBYLA, Energy 

 
Eel=17.36kNm, pcr=1.61kPa 

 
Eel=31.29kNm, pcr=1.14kPa 

BOBYQA, Energy 

 
Eel=22.54kNm, pcr=0.49kPa 

 
Eel=33.32kNm, pcr=1.20kPa 

COBYLA, Buckling 

 
Eel=19.88kNm, pcr=6.79kPa 

 
Eel=42.63kNm, pcr=7.65kPa 

 

Some shapes recall the CNIT (energy minima with BOBYQA algorithm), others recall the aquarium of 

Valencia by Candela (optimized buckling with COBYLA algorithm). The optimized marionette mesh 

for elastic energy with the COBYLA algorithm has vanishing edge curvature like the highway service 
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area in Deitingen by Heinz Isler. These remarks show the mastery of these great engineers who came 

up with optimal designs without any computing power available, but they also show the richness of the 

proposed design space. Note that three designs are dominated both in terms of elastic energy and 

buckling by the others. Two of the Pareto optima are Marionette meshes. 

3.3. Local exploration of the design space 

This study show that the performance of optimization algorithms is similar for the marionette design 

space and the NURBS design space. It illustrates that sufficient design freedom is left to the architects 

and engineers, and that other exploration techniques of the design space can be used. 

As an example, we start from the structure minimizing elastic energy found by the COBYLA algorithm, 

which is shown in Figure 5. The top of the structure remains quite flat, and the edges have a vanishing 

curvature. Since the mesh is aligned with the free-edge, it is easy to introduce a curvature to the edge by 

manipulating just one parameter (the slope at the point C2 in the plane P1 in Figure 3). In this way, we 

mimic some of Heinz Isler’s shells (Billington [3]). The model with curved edges has an elastic energy 

superior by 30%, but its linear buckling strength is multiplied by 6 compared to the model with vanishing 

edge curvature. 

 

Figure 5: A local optimum of elastic energy with vanishing edge curvature (left), and a variation with curved edges (right) 

3.4 Dome 

Domes are objects of interest for structural engineers and can be described with marionette method. As 

an illustration, we show in Figure 6 two results of optimization on the elevation alone where the maximal 

height of the structure was constrained with the Marionette framework. In this way, the designer can 

study shallow or deep shells and focus on some designs easily. Like in the previous case-study, the 

pictured structures are under compression dominant loads. 

   

Figure 6: Results of optimisation of a dome structure, shallow (middle) and deep (right) structures. 

4. Comments and application to creased structures 

4.1. Comments 

The marionette mesh show good performance in the optimization problem. An interesting feature of this 

representation is that it separates the description of the vertical and horizontal components. Recall that 
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moving the z components of a shell does not change the horizontal equilibrium if the structure is only 

subject to vertical loads. This property was used in (Block & Ochsendorf [7]) for form-finding of 

funicular shells. The geometrical description of marionette meshes is derived from similar principles: 

the description of the elevations can be enriched independently from the planar projection, for example 

to add corrugation.  

We notice also that the definition of the parameters can be made meaningful with marionette meshes. 

The example of Section 3.3 shows that one parameter can control the curvature of the edge, whereas 

three parameters are required with NURBS modelling. This fact can explain why the optimization 

algorithms do not find the same optima for the two modelling framework. Like in many optimization 

problems, the know-how of the user is a key to the good convergence of the calculations: the problem 

presented here can easily be parameterized, but finding appropriate mesh topology for more complex 

configurations still remains a key to the efficient use of the proposed technique. 

4.2. Corrugation and non-smooth surfaces 

An interesting application of the separation of vertical and horizontal components is the introduction of 

creases. This technique was used by Nicolas Esquillan for the Marignane hangar and the CNIT, which 

remains the largest span for a concrete shell to this day (Motro & Maurin [17]). It is possible to add a 

crease perturbation defined by equation (6) to the equation of a guide curve. 

   NukNukf sin.,,       (6) 

The number N corresponds to the number of waves, and the number k is the wave amplitude. The crease 

is therefore easily parameterized with the marionette method, NURBS would require insertion of 

multiple knots. 

4.3. Case study: CNIT 

Consider now the previous model of the shell supported on three supports. In the manner of Esquillan, 

we add creases to the curve in the plane P1. We set the number of waves to 6 for each subdomain and 

study the influence of the crease amplitude. Table 3 shows the main results: the values on the x-axis 

represent the ratio k/h in both graphs. The introduction of creases can drastically improve the structural 

behavior, and especially the buckling capacity. The two objective have different optima (k=0.05 for the 

displacement, and k=0.08 for the buckling). 

Table 3: Displacement and buckling load with respect to the crease amplitude 

 

Figure 7 shows a smooth structure and a corresponding creased shell. The buckling capacity of the 

creased shell is 20 times the one of the smooth shape. The creased shell clearly recalls the work on 

Esquillan, and we noticed that none of the smooth shapes found by optimization reaches its critical 

buckling load. The creasing strategy is thus very efficient in the presented case and reveals Esquillan’s 

great intuition.  
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Figure 7: Smooth and creased structures 

The exploration of creased structures is much more demanding in computational power, as the mesh has 

to be refined in order to capture the variations of curvature. The convergence is reached with 

approximately 20 times more elements with creased shells, which makes the exploration of these 

solutions more difficult and demonstrates the pertinence of simple parameterization like the one 

proposed here.  

5. Comments and conclusion 

This paper proposed an innovative method for fabrication-aware shape parameterization for structural 

optimization. A case-study showed that this technique can be compared to NURBS in terms of richness 

of the design space. In particular, it is possible to separate the shape description of the horizontal and 

vertical components, which is meaningful for architectural shells.  

The optima found are funicular shapes in the two examples presented in this paper, which hints that the 

marionette technique could be combined with Thrust Network Analysis to find compression dominant 

structures covered with planar facets. Marionette technique and TNA share similar methods and could 

potentially be unified. The lifting technique shown in this paper can also be adapted to other patterns, 

like the Kagome pattern, which could yield new typologies for gridshells covered with planar facets.  

We believe that this framework can be applied to the structural optimization of shells and gridshells 

while taking into account fabrication constraints. More sophisticated tools for the exploration of the 

design space, like multi-objective optimization could be used to harness the full potential of Marionette 

Meshes. 
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