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ABSTRACT 

Objective: To identify common temporal evolution profiles in biological data and 

propose a semi-automated method to these patterns in a clinical data warehouse 

(CDW).  

mailto:bastien.rance@aphp.fr


Materials and Methods: We leveraged the CDW of the European Hospital Georges 

Pompidou and tracked the evolution of 192 biological parameters over a period of 17 

years (for 445,000+ patients, and 131 million laboratory test results). 

Results: We identified three common profiles of evolution: discretization, breakpoints, 

and trends. We developed computational and statistical methods to identify these 

profiles in the CDW. Overall, of the 192 observed biological parameters (87,814,136 

values), 135 presented at least one evolution. We identified breakpoints in 30 distinct 

parameters, discretizations in 32, and trends in 79. 

Discussion and conclusion: our method allowed the identification of several temporal 

events in the data. Considering the distribution over time of these events, we identified 

probable causes for the observed profiles: instruments or software upgrades and 

changes in computation formulas. We evaluated the potential impact for data reuse. 

Finally, we formulated recommendations to enable safe use and sharing of biological 

data collection to limit the impact of data evolution in retrospective and federated 

studies (e.g. the annotation of laboratory parameters presenting breakpoints or trends). 

1 INTRODUCTION 

1.1 Background 

In the era of secondary use of healthcare data, big data and machine learning, data 

quality is a crucial element to build trust in the results of the analyses based on this type 

of data[1,2]. Among the vast quantity of biological and clinical data used, laboratory test 

results are probably the most ubiquitous. Laboratory test results are used in a wide 

variety of studies from classical epidemiology to modern data mining. Moreover, with 

the development of clinical data warehouses (CDWs) in the late 90’s and 2000’s, 

laboratory data represented a straightforward dataset to integrate. 

Laboratory data as stored in CDWs are often leveraged in longitudinal retrospective 

studies. However, over long periods of time, different types of events may happen and 

impact the data: new equipment can be added to the pipeline of analysis, an automaton 

might be replaced, new scientific knowledge might lead to evolution of formulas, new 

legacy terminologies may be adopted and so forth. Such events could have 

consequences on individual patient results but more generally on the distribution of the 

laboratory test values (e.g., with sudden changes of all the values measured by the new 

instrument). In most data warehouses, the only elements of context provided for 

biological data are related to normal ranges. For example, in i2b2[3,4] the observation 

table has one optional attribute (the valueflag_cd column) designed to provide an 

annotation associated to the value (e.g. normal, high or low). In the OHDSI[5,6] system, 

the OMOP Common Data Model (OMOP CDM) proposes two optional attributes in the 



measurement table: range_low and range_high. Both of these approaches strongly rely 

on the notion of normal values to provide context about the data itself. The definition of 

normal values was discussed early on[7], and continues to be explored in particular with 

the rise of stratified medicine[8,9]. The metadata currently provided in data warehouses 

contain little information regarding the context of generation and could prove to be 

insufficient to enable proper interpretation of the results in longitudinal studies 

(especially over long periods of time). 

1.2 Related Works 

Several aspects of data quality have been explored in medicine and biology. In their 

editorial of 2000, Brennan and Stead[10] discussed the notion of data quality of clinical 

records in terms of concordance, correctness and completeness. Weiskopf and 

Weng[11] identified two additional dimensions in their review of methods and dimension 

for data quality: plausibility and currency. In their recent survey of the vocabulary used 

in data quality, Kahn et al.[12] unified the data quality terminology in three main 

dimensions: conformance, completeness and plausibility. Other approaches exist like 

the data quality assessment organization proposed by Sáez et al. [13]. The notion of 

data quality has been largely explored in biology and medicine[14,15] and beyond in 

almost every realm of science. An international norm for data quality was proposed in 

2002, and had its first component approved in 2008[16]. Hauser et al.[17] proposed a 

LOINC-based approach to standardize the results of laboratory tests in multicenter 

CDW. Nevertheless, they observed that “a process that standardizes the laboratory 

results in the CDW will necessitate frequent updates to stay current.” The notion of 

temporal quality was explored by Sáez et al.[18] on a Spanish public health mortality 

registry using methods based on information theory and geometry. 

Outside of medicine, the computer science community has developed a large body of 

research on the topic of quality: for example, for data streaming[19–22], data 

outliers[23–25] or data cleaning process[26–28]. In addition to the intrinsic dimensions 

of data quality, data sharing and analysis through large federated networks of data 

warehouses emphasize characteristics required to make data reusable, like the 

presence of provenance information and shared vocabularies[29]. The FAIR 

principles[30] can be viewed as guidelines to help address this issue. For example, the 

same data object should be persistent and sufficiently well described to be findable and 

re-usable, thus with emphasis on their metadata. 

1.3 Scope and Objectives 

Despite this large body of work, there is still a need for reproducible methods to assess 

the quality of biological data in CDWs. To the best of our knowledge, there is no study 

describing, at a large scale, the potential evolution of laboratory test results in CDWs. 



This study takes place in the context of data profiling[31]. We are interested in the 

longitudinal dimension of the data and in the impact of events external to the 

measurement process itself. We adopt Kahn et al.[12] definition of plausibility as 

“features that describe the believability or truthfulness of data values”. The temporal 

plausibility considers the quality with regard to a reference. In this study, we are not 

interested in the quality of individual values at a given moment (correctness), or their 

presence when expected (completeness), but in the plausibility of a value over time with 

respect to the history of the distribution (serving as a reference). In this study, we are 

interested in bulk analysis (i.e. the evaluation of the quality at the level of the entire set 

of laboratory test results) and not at the level of individual patients. In the remaining of 

this article, we describe how we manually reviewed the data and identified common 

profiles of temporal evolution. We propose a semi-automated method to systematically 

track these profiles, and apply it to the CDW of the Georges Pompidou European 

Hospital (HEGP).  

2 MATERIALS 

2.1 The HEGP Clinical Data Warehouse and the LIMS 

The European Hospital Georges Pompidou (HEGP) is a 700 beds public hospital 

located in Paris, France. The HEGP is specialized in oncology, cardiovascular diseases 

and emergency medicine. The Biology Department installed a laboratory information 

management system (LIMS) at the opening of the hospital in the year 2000[32]. The 

data are collected in majority directly at the analysis automaton or are entered manually 

by biologists and laboratory technicians. The hospital developed in 2008 a CDW 

integrating all the data produced in the hospital, including laboratory tests[33]. As of July 

2017, the CDW contained more than 131 million laboratory test results for more than 

445,000 patients and more than 11,000 distinct biological parameters. In this study, the 

data integrated ranged from the opening of the hospital in the year 2000 to July 2017. 

The laboratory data analyzed in this study are anonymized and timestamped results. 

2.2 Inclusion criteria  

We focused on laboratory data from the biochemistry and hematology departments from 

our hospital (located in a single site). All biological data were considered regardless of 

the type of encounter (e.g. inpatient, outpatient). We included biological parameters 

having at least 10,000 data points and formatted as numerical results. Periods of time 

with fewer than 100 values over a two-month period were excluded from the datasets. 

2.3 Dataset of interest 

We considered every laboratory result recorded in the CDW of the HEGP meeting the 

inclusion criteria. In the end, we obtained 192 “time series” comprised of pairs of 

timestamps and biological values. Each dataset represents a time series of the daily 



distribution of results for a given biological parameter. In Figure 1, a single point 

represents the value for one patient at a given time. The overall scatter plot represents 

the evolution of the distribution of a single biological parameter over time. 

2.4 Ethical Statement 

This study uses only aggregated anonymous data from the HEGP CDW. In accordance 

with the French regulation on data privacy, the HEGP Institutional Review Board (HEGP 

IRB registration #00001072) has waived the requirement to obtain informed consent or 

specific approval for such studies[34]. 

3 METHODS 
We developed a three-step approach to study elements of temporal data quality on 

HEGP biological data. In a nutshell: (step 1) we performed an expert review of the data 

set, and selected profiles of evolution of interest, (Step 2) we designed computational 

and statistical methods to detect and describe precisely the profiles defined during the 

step 1, (Step 3) we applied the methods developed in step 2 to detect the profiles of 

interest in the entire dataset of 192 biological parameters. 

3.1 Identifying profiles of interest 

 

 



 

Figure 1: Examples of laboratory parameters impacted by temporal evolution (Discretization in orange plain 

lines, trends in green line, Breakpoint in plain blue line). 

Medical informatics specialists (ABu, BR and VL), computer scientists (ABo, LK) and 

biologists (BV, JLP, and MAL) reviewed the graphical visualizations of the distribution of 

the 192 biological parameters. We identified and selected three profiles of particular 

interest that (a) could potentially have consequences in case of secondary use of the 

data and (b) are frequent in the dataset, and optionally (c) could probably be explained 

by prior knowledge of the hospital information system. We detailed the profiles as 

follows: 



1. Discretization. Sudden change in the distribution of the data (including 

discretization): at a given point in time, the distribution is discretized; inversely, 

the distribution goes from discrete to continuous data (Figure 1A). 

2. Trends. There is a continuous progressive evolution of the distribution of the data 

over time (i.e. identical standard deviation but evolving average) (Figure 1B). 

3. Breakpoints. One or more breakpoints can be detected in the data. At a specific 

time, a clear modification of the mean of the distribution can be observed (Figure 

1C). 

 

Note that a distribution can exhibit several profiles, either simultaneously or sequentially 

(as can be seen in the additional discretization after 2015 in Figure 1C). 

3.2 Detecting automatically evolution profiles 

In this section, we detailed our methodology to detect quantitatively and extensively the 

three profiles identified above. 

Detecting discretization. Our approach consisted in comparing the observed distribution 

of the data over time. We leveraged the generalization of the Benford’s law to identify 

bias in the distribution. For a random distribution, we expect a similar ratio of each digit 

at the last position (namely 10%). If a bias occurs, for example caused by the rounding 

of a number, one number will be overrepresented. For example, if a uniform distribution 

of numbers between 0 and 100 is rounded to the nearest decade, we will observe a 

higher ratio of 0 than expected under the uniform hypothesis. 

We defined classes based either on the number of decimals (for floating numbers), or 

on the number of digits (for integers). We then computed the number of occurrence of 

the last decimal (resp. digit) within the class, and the ratio of each digit by class 

weighted by the frequency of the class itself. A vector is constructed for each every 

window of 60 days 

We computed the cosine similarity of consecutive vectors (i.e. at time t and t+1) of the 

ratio of last digits within classes weighted by their frequency. If no evolution is detected, 

a distance close to zero is observed. By opposite, for large change in distribution 

(including discretization), we observe a plunge in the values of the similarity. Figure 2 

shows an example, with a change in distribution occurring on the 1000th day. 

The output of the algorithm provides the dates of detected distribution alterations. 



 

Figure 2: Representation of the evolution of the cosine similarity leveraging the Benford's law to capture 
changes in distribution (discretizations). The top graph represents the distribution of the data, the bottom 

one shows the value of the cosine similarity. 

Detecting trends. We performed median regressions using the method developed by  

Koenker and d'Orey[35]. We select a random sample of 100,000 data points per type of 

laboratory parameter. We performed a sensibility analysis on 10 distributions to ensure 

that the sampling size did not alter the results. The unit of time considered for 

regression was the day. If prior breakpoints were detected, we performed the median 

regressions by intervals (to avoid trends explained by the breakpoint). We detected 

trends if the p-value of the Wald-test was lower than 0.05/192 using the Bonferroni 

correction for multiple testing. 

We computed the total estimated relative change as the total estimated difference 

between the minimum and the maximum values over the inclusionperiod divided by the 

median. 

Detecting breakpoints. For each of the 192 datasets we standardized the data by 

computing a z-score. The z-score is the distance between the raw score (raw lab 

values) and the population mean (for a given biological parameter) divided by the 

standard deviation of the population. We computed a moving daily median with a 

window of 60 days to limit the impact of outliers and random noise. In summary, for 

each day d, a median is computed using all the biological values collected between 30 

days prior d, and 30 days after d. Eventually, we obtained time series with a single 

value of moving median for each day. 



A breakpoint is defined as a sudden increase or decrease of the entire distribution for a 

given parameter (for example in Figure 1C, the increase occurs in 2014). We applied 

the Pruned Exact Linear Time (PELT) segmentation to detect breakpoints on the 

standardized moving median time series[36]. The outcomes of this algorithm are the 

dates for which breakpoints were detected.  

3.3 Defining a threshold for the discretization detection method 

The discretization detection method is based on the cosine similarity. This approach 

requires a threshold to build a decision rule. If the cosine similarity is lower than the 

threshold, a discretization is detected. Simulations were performed to help define a 

threshold. We simulated time series of values following a uniform law U(0,100), and 

identified the optimal threshold of 0.7 (in terms of optimization of precision and recall). 

The simulation program and associated codes are provided as supplementary material.  

3.4 Implementation.  

All analyses were performed using the R statistical software. We leveraged the R 

packages changepoint[37] and quantreg[35] for the detection. We provide an algorithm 

to simulate realistic distributions presenting one or a combination of evolution profiles. 

Data integration, analytical scripts, and the simulation algorithms of datasets are 

available in supplementary materials and at the URL: 

http://github.com/equipe22/BioQuality. 

4 RESULTS 

4.1 Global results 

Overall, we assessed the longitudinal quality of 192 biological parameters. The number 

of biological test values covered by these 192 parameters was 87,814,136. The global 

profiling is presented in Table 1. 

Table 1 - Summary of the profiles observed in the data. * Note that a laboratory distribution can fit into 
multiple categories 

Category* 
# of 

biological 
parameters 

Example of 
laboratory 
parameter 
impacted 

Example 

Discretization 32 (16.7%) Erythrocytes Figure 1A 
Breakpoints 30 (15.6%) Mean platelet 

volume 
Figure 1B 

Trends 79 (41.1%) HDL Cholesterol Figure 1C 

Evolution over time. Of the 192 observed biological parameters, 135 (with a total of 

57,750,902 values) presented at least one profile among breakpoints, trends and 

discretization.  

http://github.com/equipe22/BioQuality


We plotted the number of events detected over time for each category (breakpoints, 

discretization) (see Figure 3). We did not represent events associated with trends, 

because no specific date can be assigned to the evolution. 

4.2 Detailed results  

We detected a total of 39 discretizations in 32 unique biological parameters, and 49 

breakpoint events in 30 unique parameters. Figure 1 represents some typical profiles 

detected.  

 

Figure 3 Aggregated count of evolution profiles detected per period of time 

 

Trends. We detected 126 trends for 79 distinct biological parameters presenting a 

significant trend over the entire period of study or on parts of it (sub periods are split on 

breakpoints, see Figure 4). The repartition of the total estimated relative changes is 

described in Table 2 and Figure 4. 

Table 2 - Distribution of the total estimated relative change of over the 79 biological parameters. Intervals 
correspond to quantiles of the variation distribution (min, max, median, and quartile). 

Total estimated 
relative change 

# of detected 
trends 

Lower than -2% 42 (21.9%) 
Between -2% and 0% 28 (14.6%) 
Between 0 and 5.2% 11 (5.7%) 
Larger than 5.2% 45 (23.4%) 

 



 

 

 

Figure 4 Distribution of the total relative change of the trends detected over time 

5 DISCUSSION 

5.1 Discussion of the results 

Overall, 70% of the parameters presented at least one detectable evolution. The 

observation of the number of transformations over time reveals several noticeable 

peaks of breakpoints over the study period. 

We did not attempt to identify the exact cause of each of the events detected, but 

looked for causes affecting a large number of laboratory measurement. Through 

discussions with the biology teams and considering the history of the information 

system, five major events emerged as probable causes of the observed profiles: (1) the 

early upload of historic values in 2000-2001. The HEGP hospital replaced three former 

hospitals, and a portion of the patients was transferred from these locations to the 

HEGP. A large volume of retrospective results was uploaded on a single day and share 

the same timestamp. The import may be the cause of several discretizations detected: 

the data imported were originated from different laboratories with different sets of 

normal ranges. In consequence, the distribution of results is noticeably different from 

the surrounding period, similarly breakpoints are detected for the same reason. (2) The 

replacement of an automaton in 2005 has been connected to several breakpoints 



detected. (3) An accreditation visit of the laboratory in 2013 led to evolution of the 

formula used to compute the anion gap, and caused a breakpoint. (4) The replacement 

of the LIMS in 2015 caused a surge of discretizations. Another peak of breakpoints can 

be observed in 2010-2011, and is currently under investigation. 

Trends. We observed a large number of trends. However, the effect of the evolution is 

often limited (with 50% of the trends between -2 and 5%). Regarding explanations, 

trends are more difficult to explain. In our running example, we hypothesize that the 

trend observed for HDL-Cholesterol could be explained by the quality improvement in 

healthcare.  

5.2  A dashboard to explore single biological parameters over time 

The output of our algorithms provided us with a classification for each dataset (impacted 

or not impacted). The breakpoint, distribution alteration detection algorithms also 

provides the dates of the occurrence of the phenomenon. We designed a dashboard 

with visualizations (Figure 5) of the evolution profile of each of the parameters to help 

the interpretation and contextualize the events detected. 

 

Figure 5. Visualization of the evolution profile of the mean platelet volume over time. This visualization 
provides a context to the distribution shown in Figure 1C 

5.3 Consequences of the observed profiles 

Statistical consequences. In this section we evaluated the potential statistical impact of 

the different profiles of evolution observed in the data. 

1. Breakpoint: Breakpoints shift the mean and could have an effect on linear 

regression and statistical tests based on the mean. Moreover, a shift causes 

heteroscedasticity that violates the hypothesis of numerous regression models. 



In addition to erroneous models and statistical test interpretation, breakpoints 

render the use of threshold-selection erroneous (e.g. all patients with a mean 

platelet volume superior to 12 does not have the same meaning over time). 

2. Trends: Trends reflect a more profound change, often linked to larger 

epidemiological reasons. Trends seem to reflect either population evolution in the 

hospital (e.g. occurring with the opening of a new department), or even in the 

population (e.g. the progressive but moderate increase of HDL Cholesterol level). 

Most of the trends observed remained, however, moderate and would have no 

impact on statistical tests in subpopulation studies. 

3. Discretization: The discretization could have an impact for patients at the edge of 

a threshold (in a gray zone). We evaluated the impact of discretizations (by 

rounding values) on variance-based statistical tests. Rounding values at 10𝑝 

decreases asymptotically the variance of 
(10𝑝)2

12
 in the hypothesis of a uniform 

distribution of decimals and independence between integer part and decimal 

part. In this same hypothesis, rounding values has asymptotically a little effect on 

the mean. In consequence, the impact on tests or regressions is negligible if 𝑝 is 

small. Note that there is a quadratic decrease of the variance for larger 𝑝 (i.e. 

important discretization) that could disable the availability of variance-based 

statistical tests. In practice, the observed discretizations do not shift the 

distribution and keep the values within the range of error of the measures. In 

those conditions, the impact of the discretization is smaller than the impact of the 

random noise. 

Clinical impact. Our study focuses on the impact of evolution of distribution for 

secondary use of care data. None of the alteration of the distributions could have had 

any impact on the patient care. Breakpoints were accompanied with new normal 

ranges, discretized measures are interpreted with regards to the overall state of the 

patient. Finally, trends may reflect epidemiological evolution, or the evolution of the 

population of the hospital. We were able to find explanations for every phenomenon 

observed, and ensured the absence of consequence during the everyday care. 

5.4 Limitation 

Size of time windows. In the preprocessing step we chose a window size of 60 days. 

We experimented with periods of 15 and 30 days, the balance between the volume of 

results and rate of events of interest was maximized with 60 days. However, the setting 

of this window size remains arbitrary. 

Discretization detection. In our simulation scenario, the optimal threshold for cosine 

similarity was equal to 0.7. The combination of rounded and non-rounded distribution 

influence the optimum threshold (from 0.7 to 0.85 in our simulations).In this study, we 

decided to limit the detection to case with clear discretizations (i.e. 100% of the values 



were rounded after the discretization event). In real data, we performed sensitivity 

analysis. A threshold of 0.5, returns 20 biological parameters presenting at least one 

discretization time and a threshold of 0.85 returns 59 biological parameters. Graphically, 

we observed a point of inflection at 0.7. The threshold remains a parameter of the 

algorithm; we did not find theoretical reasons to fix a unique threshold.  

Trends detection. Our approach for trend detection is influenced by 3 factors: the p-

value, the effect size and the quality of the linear model.  Despite the Bonferroni 

correction, a large number of biological parameters still present trends. However, as 

stated by Tatonetti et al.[38], the p-value is not an optimal criteria for detection of 

phenomenon in the big data paradigm (large datasets increase the power and tend to 

detect small and meaningless effects with statistical significance), for this reason, we 

included in our results the total relative change. The quality of the models was not 

assessed and trends could detect evolution that would be better explained by non-linear 

models. 

Other profiles. In this study, we used a pragmatic approach to define a limited number 

of evolution profiles. Numerous other profiles could be considered: evolution of 

variances, presence of multimodal distributions, missing data and so forth. Our method 

could be easily adapted to capture some of these profiles (e.g. using moving variance 

instead of median). However, a careful evaluation of the performance would be needed. 

Other evolution profiles could be derived from the data themselves using unsupervised 

clustering, for example.   

Additionally, our study did not consider categorical results. Further methodological 

development will be needed to explore all the facets of biological data.  

Other dimensions of data quality. We limited our analysis to the observation of temporal 

plausibility. Most of the other dimensions of data quality have been extensively explored 

(e.g. for completeness[39,40], for outlier detection[41]). The added context provided by 

the longitudinal aspect of the data could help reveal new issues.  

Guideline-based quality evaluation. Similarly to what was proposed for DQ of EHRs in 

[42], a standardization of the process of control of biological data in CDW would be 

beneficial to address potential issues during secondary use. 

5.5 Proposed actions 

We propose a series of actions to limit the impact of the evolution of the distributions 

over time in studies re-using retrospective routine data: 

● Automatic annotation of altered distributions. In the data warehouse, we suggest 

to mark the concepts presenting an alteration of the distribution over time using a 

data quality flag. We could store the nature of the transformation using the three 



categories described before. In a separate table, we suggest storing the 

identified date of occurrence of breakpoints and discretization. Trends and 

discretizations could be recorded as separate alterations. This approach is 

simple and can be applied to other types of alterations. 

● Correction of altered distribution. We propose to normalize values of distribution 

in which breakpoint were observed. One problem might be the normalization at 

the edges of transition periods if not precisely identified. This solution is less 

trivial to put in place and can be applied only when the precise date of 

occurrence can be identified and explained, and for which a meaningful 

standardization exists. 

● Education of data warehouse users and specialists. In addition to the automated 

annotation of the distributions in the warehouse, dedicated training sessions 

should be proposed to the CDW users. 

● Creation of metadata required for biological parameter reuse: metadata related to 

the exams should be stored: identification of the automaton, normal and 

outbound values, date of installation and retirement of automaton. We also 

recommend adding information regarding the protocols in which the biological 

parameters were included, and the history of their evolution. 

6 CONCLUSION 
In this study, we proposed a semi-automatic method for the data profiling of longitudinal 

laboratory data. We placed our analyses in the context of temporal plausibility and 

search for three types of events influencing the quality of the data over time: 

breakpoints, discretization and trends. 

We observed potential data quality issues in 135 out of 192 biological parameters 

studied that need to be acknowledged and addressed for secondary use. We proposed 

actions to limit the impact of the evolution in retrospective and federated studies. 
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