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Direct Simulation Monte-Carlo predictions of coarse elastic particle
statistics in fully developed turbulent channel flows: Comparison with
deterministic discrete particle simulation results and moment closure
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ABSTRACT
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The paper presents numerical simulations of particle-laden fully developed turbulent channel flows per-
formed in a stochastic Lagrangian framework. The particle inertia is large in order to neglect the effect
of the turbulent gas motion on the particle dispersion. In contrast the inter-particle collisions are impor-
tant and accounted for by using Direct Simulation Monte-Carlo (DSMC) method. The comparison of the
Monte-Carlo results with those obtained by Discrete Particle Simulation (DPS) shows that the stochastic
collisions algorithm is able to predict accurately the particle statistics (number density, mean velocity,
second- and third-order velocity moments) in the core flow. More, the paper analyses the number sec-
tions needed for accurate predictions. In the very near-wall region, the Monte-Carlo simulation fails to
account for the wall shelter effect due to the wall-normal unbalanced inter-particle collisions influence
induced by the presence of the wall. Then, the paper shows that DSMC permits to assess the closure
approximations required in moment approach. In particular, the DSMC results are compared with the
corresponding moment closure assumptions for the third-order correlations of particle velocity, the cor-
relations between the drag force and the velocity and the inter-particle collision terms. It is shown that
at the opposite of the standard DSMC, the moment approach can predict the wall shelter effect. Finally,

a model for the mean transverse force is proposed for taking into account wall shelter effect in DSMC.

1. Introduction

Particle-laden flows are found in a large spectrum of practi-
cal applications ranging from geophysical flows (sediment trans-
port, pyroclastic flow, volcano ashes dispersion...) to industrial ap-
plications (solid or liquid fuel combustor, catalytic reactor, spray
tower, solid handling,...) and passing through medical applica-
tions (room disinfection, medicament aerosol inhalation,..). In
isothermal particle-laden flows, many complex phenomena take
place, such as turbulent dispersion, inter-particle collisions, particle
bouncing with smooth or rough walls, or turbulence modulation by
the particles who need to be accurately modelled.

Because of the discrete nature of the particles, the numeri-
cal simulation of the particle motion is widely performed in a
Lagrangian framework by Discrete Particle Simulation (DPS). That
approach can be either coupled with Direct Numerical Simula-
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tion (DPS/DNS), Large Eddy Simulation (DPS/LES) or Reynolds Av-
eraged Navier-Stokes approach (DPS/RANS) (Sommerfeld, 2001;
Riber et al., 2009; Balachandar and Eaton, 2010; Fox, 2012; Capece-
latro and Desjardins, 2013). When the collisions are treated in a
deterministic manner, DPS/DNS can be considered as full determin-
istic numerical simulation approach because no stochastic model
for both particle turbulent dispersion and inter-particle collisions
are needed. In contrast, for DPS/LES and DPS/RANS, a stochastic
dispersion model is needed to account for the subgrid (LES), or
the fluctuating (RANS), fluid velocity along the particle trajectories.
In practical applications, due to the huge number of real particles,
the computation of all individual particle trajectories is not possi-
ble but this difficulty can be overtaken in the frame of Lagrangian
statistical approaches leading to replace the real particles by a re-
duced number of parcels representing several real particles.
Stochastic Lagrangian algorithms were first derived for the col-
lisions of molecules in rarefied gases (Bird, 1969; Babovsky, 1986).
In the framework of DPS/RANS approach these algorithms were
used for taking into account the inter-particle collisions in gas-
particle turbulent flows (O'Rourke, 1981; Tanaka and Tsuji, 1991).



However, several studies have shown some problems related to the
effect of the turbulence on the colliding particles (Berlemont et al.,
1995; Sommerfeld, 2001; Berlemont et al., 2001; Wang et al., 2009;
Pawar et al., 2014; Fede et al., 2015; He et al., 2015; Tsirkunov and
Romanyuk, 2016).

In the present paper, Monte-Carlo algorithm is used to ac-
count for the inter-particle collisions in a vertical turbulent chan-
nel flows. Then the DSMC method is assessed by comparison with
statistics from DPS where the fluid flow is steady and imposed
(Sakiz and Simonin, 1998; 1999b; 1999a). In such a case, the par-
ticle inertia is sufficiently large so that the effect of the turbulence
on the particle motion can be neglected. More, the solid mass load-
ing is small in order to neglect the turbulence modulation by the
presence of the particles. Hence, the proposed simulation method
is developed in the frame of DPS/RANS approach where the fluid
velocity is known and predicted by the standard k — ¢ model. The
particles dynamic is controlled by the competition between the en-
trainment by the mean fluid flow and the inter-particle collisions.
In Section 4, the results given by the stochastic algorithm are as-
sessed by comparison with the deterministic DPS predictions. A
very good agreement is found between both simulation methods,
except in the very near-wall region where the deterministic simu-
lations exhibit a “wall shelter effect” that cannot be accounted for
by using the standard DSMC method.

Following Fede et al. (2015), DSMC methods are Lagrangian
stochastic methods developed for the numerical solution of the
Eulerian kinetic equation governing the particle velocity Probabil-
ity Density Function (Reeks, 1991) or the particle-fluid joint PDF
(Simonin, 1996). An other method to compute the particle statistics
consists in the numerical solution of governing equations derived
from the PDF kinetic equation for several low-order particle veloc-
ity moments (number density, mean velocity, fluctuant kinetic en-
ergy, ...) Such an approach, commonly called Eulerian approach or
moment method, leads to solve a set of Eulerian transport equa-
tions and needs to develop additional closure modelling assump-
tions for the gas-particle and particle-particle interaction terms
and for the high-order velocity moment representing the kinetic
dispersion (transport by the particle velocity fluctuations). In the
present study, DSMC results are used to analyse the closure mod-
els for the drag, the turbulent dispersion and the collisions derived
in the frame of second order moment methods.

After the introduction, the paper gives the configuration and
details the investigated cases. The third section is dedicated to the
statistical approaches for turbulent gas-solid flows. The focus is
made on the DSMC algorithm for taking into account the inter-
particle collisions. The DSMC results are analysed in the fourth sec-
tion by comparison with deterministic simulations. The analysis of
second order moment closures from DSMC results is given in the
fiftth section. A model for taking into account the “wall shelter ef-
fect” in DSMC is proposed. The paper ends by concluding remarks.

2. Configuration overview
2.1. Fluid flow

The flow configuration is a fully developed vertical gas—solid
turbulent channel flow (Sakiz and Simonin, 1998; 1999a; 1999b).
As shown by Fig. 1, the computational domain is a rectangular box
with periodic boundary conditions in the streamwise and spanwise
directions.

According to the large particle inertia and to the low solid mass
loading, the particle interaction with the fluid turbulence and the
modification of the mean fluid flow by the particles (two-way cou-
pling) were neglected. Therefore, in this work, the fluid velocity is
a given mean field taken from k — € model predictions of fully de-
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Fig. 1. Flow configuration with L, = 240 mm, L, = 40 mm, and L, = 32 mm.

Table 1

Particle material properties. The mean solid
volume volume fraction is computed as @, =
Npmd3/6/V with N, the total number of tracked
particles in DPS and V the volume of the compu-
tational domain.

dp pm  pplkg/m?] @ Ny
200 1038 5x 1074 31,000
406 1038 12x 1073 9000
406 1038 4x1073 29,600
406 1038 10-2 73,800
1500 1032 41x1073 600
1500 1032 14x102 2000
1500 1032 41x1072 6000

veloped turbulent channel single-phase flow. The material proper-
ties of the fluid are p; = 1.205kg/m> an vy = 1.515 x 107> m?/s.

2.2. Particle motion

The particles are assumed spherical with a diameter d, and
with a large particle-to-fluid density ratio (see Table 1). In such
a framework, only the drag force and the gravity are acting on the
particles motion. Introducing up, the particle translation velocity
and uye,, the fluid velocity seen by the particle, the particle ve-
locity momentum equation reads
dup Fd Up — Urgp

a m, 1, '8 ()
where F; is the instantaneous drag force acting on a single par-
ticle, g the gravity acceleration, and 7, the instantaneous particle
response time given by

3 pg Cp |vy]
In Eq. (2), vr = up — ufe, is the instantaneous gas-particle relative
velocity, p, the particle density. The drag coefficient, Cp, is given in
terms of particle Reynolds number (Schiller and Naumann, 1935),

24 0.687
G = E[l +0.15Re)%7] (3)
with Rep = dp|vr|/ve. As the gas turbulence and the two-way cou-
pling are both neglected, the instantaneous fluid velocity seen by
the particle is obtained by an interpolation of the given mean fluid
velocity field at the particle centre position: use, = Us(Xp).

2.3. Inter-particle and particle-wall collision

In the present study the particle volume fractions are suffi-
ciently low in order that only binary collisions are taken into ac-
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Fig. 2. Effect of the number of sections used for the DSMC for a fixed number of parcels (Nygr = 10, 000). The left column corresponds to the case where d, =200 pm &
@, = 5.0 x 10~* and the right column to the case where dp = 406 pm & @, = 10-2. Top: Mean particle density number an bottom: mean vertical particle velocity.

count. Considering a collision between a particle p and a parti-
cle g, the unit vector linking the centre of the p-particle to the
one of the g-particle is k and the inter-particle relative velocity is
W = uq — up. Neglecting the inter-particle friction, the velocities af-
ter a collision are given by

1+e
w—up+ *2' © w.k)k (4)
. 1+ec
ug=ug— 3 (w.k)k. (5)

where e is the inter-particle restitution coefficient. The particle-
wall interactions are considered fully elastic without friction.
Then the particle velocity after wall bouncing reads uj =up—
2(up.nyw)ny where ny is the unit vector normal to the wall.

3. Statistical modelling approaches
3.1. Statistical description

The statistical description of the dispersed phase, composed of
solid particles transported by a turbulent fluid flow, relies on the
analogy with the thermal motion of molecules as described by
the kinetic theory of rarefied gases (Chapman and Cowling, 1970;
Jenkins and Richman, 1985) and later extended for turbulent gas-
particle flows (Reeks, 1991; Simonin, 2000; Zaichik et al., 2004;
Reeks et al., 2016). In the statistical approach, the dispersed phase
is described by the particle Probability Density Function fp(cp,X;t)
defined such that fp(cp,x;t)dcpdx is the mean probable num-
ber of particles at time t with the centre of mass, xp, located
in the volume [x,x + dx], and the translation velocity, up, within
[cp, ¢p + dcp]. From the PDF definition the number density of par-
ticles writes

np(x,t) = f Fo(CpX: 1) €. (6)



1 1 1
0 0.01 0.02 0.03

0.04

0.1 T T T

0.05 - — sec = 30 ]
— sec = 40
1 1 1

0A040 0.01 0.02 0.03

0.04

0.17 T T T

%

0.16

0.12

ot ]

0 1 1 1 1
"o 0.01 0.02 0.03 0.04

0.0085 T T T

1
0.007 0 0.01 0.02 0.03 0.04
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the mean particle velocity,
1

Upi(x.t) = — [ Cpifp(Cp. x; ) dCp
p

the particle kinetic stress tensor Rp j; = (up, D, ])

1
Rpij = n_,, /[Cp,i =Upil x [cpj —Upjlfp(cp, x;t) dcp

and the correlation

/ / /
("p,i"p,j"p,k)'

third-order particle velocity

Spijk = = f[Cp. Up,il x [€p,j — Up,l

X[Cp,k — Upklfo(cp, x: t) dcp.

™)

(8)

pijk =

9)

The PDF of single particle velocity obeys the following
Boltzmann-like kinetic equation:

b b d 9
% E [Cp,ifp] + E [( up’ I p)fp = % (10)
1 Al col

where (.|cp) is the ensemble average conditioned by the par-
ticle velocity, up =cp. The third term on the left-hand side of
Eq. (10) represents the forces acting on the particles, enclosing the
turbulent particle-fluid coupling. As the effect of the turbulence on
the particle motion is neglected, this term is directly written as

d i~ Ups
%[( =4 p>fp - acm[(—c"',—p”+gf fo ()

where Uy ;(x,t) is the mean fluid velocity. In Eq. (10) the term on
the right-hand side represents the modification of the PDF by the
inter-particle collisions.
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3.2. Monte-Carlo algorithm

Stochastic particle methods, also called Monte-Carlo methods
or Direct Simulation Monte-Carlo (DSMC), were initially developed
for solving the Boltzmann equation for rarefied gas dynamics (Bird,
1969; Nanbu, 1983; Babovsky, 1986; Ivanov and Rogasinsky, 1988;
Sommerfeld, 2001; Arcen et al., 2006; Fede et al., 2015). Basically,
these methods approximate the PDF as:

Npa®) . .
folep,x6) = Y~ wipd[x—x,] x 8[c, —up] . (12)
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Fig. 6. Mean particle kinetic stress components for d, =406 pm (top) and
d, =1500 pm (bottom). The symbols are the DPS results from Sakiz and Si-
monin (1998) and the solid lines (. ) are the DSMC results.
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Such an approximation commonly introduces the idea that the par-
ticles are represented by “numerical particles” or “parcels” that are
a group of wi of real particles located around the same space
position, and g)aving the same velocity. An important feature of
stochastic particle methods is the use of a fractional time step al-
gorithm, which consists in splitting each time step in the two fol-
lowing substeps:

e a transport substep corresponding to the discretization of the
free flight of parcels, i.e. the non-collisional kinetic equation.
During this substep the position, velocity of each numerical
particle are updated by solving the particle motion equations.

¢ a collision substep which corresponds to the discretization of
the collision term. The mesh cells have to be small enough
for the exact PDF to be almost uniform over them so that
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Eq. (12) could be replaced by: assuming that the initial PDF can be approximated by (13). It is
1. (x) worth noticing that the expression of Q. in Eq. (14) relies on
) — 16(X) _ . . :

fo(cp, x:8) = Z Z w’l‘,v = (C,-)S[cp u’;,] (13) a closure assumption for the pair PDF which may be based on

G kelnd(G)

where C; denotes a given cell of the mesh My, 1, is the indica-
tor function of C; (top-hat distribution function), Ind(G) is the
list of parcels located in cell C; at the end of the transport step
and vol(G) is the volume of C;. From a physical point of view,
this new approximation of the PDF means that, during the col-
lision substep, all real particles represented by a given parcel
are supposed to be randomly distributed in the cell contain-
ing the parcel instead of being all located at the same point as
during the transport step. The collision substep then consists in
applying a Monte-Carlo algorithm for computing in each cell an
approximate solution of the spatially homogeneous Boltzmann
equation:

d
%(cp,x; t) = Qeouf fo} (Cp, X; 1), (14)

the molecular chaos assumption for very inertial particles with
respect to the turbulent time macroscale (Simonin et al., 2002;
Fede et al., 2015).

In DSMC method the wall boundary conditions for the particles
are the same than those used in DPS.

The domain is uniformly discretized in 10 to 40 Nse vertical
sections for the collision substep where local homogeneous ran-
dom particle distribution is assumed. While computation of the
particle statistics is carried out by averaging Lagrangian predic-
tions on a given number of sections (N, =40). The total num-
ber of parcels is the same for all cases and set to Npg = 10,000.
Figs. 2 and 3 show the effect of the section number Ny on the
predictions of the particle number density and of the first and
second-order velocity moments. Fig. 2 shows that particle num-
ber density and mean vertical velocity predictions are mesh inde-
pendent from a relatively low number of sections: Nsec = 10. In
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modelling using Eqs. (22) and (24).

contrast, Fig. 3 shows that the wall normal particle kinetic stress,
Rp, yy. and the collision timescale predictions are more dependent
on the number of sections. We can notice that for the smallest
number of sections, Nsec = 10, the wall normal kinetic stress is
slightly over-predicted for the small particles, dy = 200 pm, and
under-predicted for the large ones, d, = 406pm. Finally, the pre-
dictions are nearly independent of the mesh for N > 20, therefore
the specific value N = 30 is used for the predictions presented in
the paper.

3.3. Moment approach

From the PDF kinetic equation (Eq. (10)), it is possible to derive
the transport equation of each moment of the PDF (Simonin, 1996)
by multiplying Eq. (10) by a polynomial function of the velocity
components and integrating over all particle velocity expectations.
According to Sakiz and Simonin (1998), without particle deposi-
tion or resuspension, for sufficient long time, the periodic discrete
particle simulation in the vertical channel leads to a fully devel-

) are the DSMC results, the dashed lines (— — _) the moment method modelling using Eqs. (22) and (23) and the dotted lines (......__ ) the moment method

oped particle flow with velocity moments verifying: Upy =0 and
d/0t=0/0x=0/0z=0. The number density balance equation writes

0
W("pupy) =0. (15)
The mean particle velocity equations read

3Up)( _ 1 3 Fd,x ]

Uns _ _n_@(n,,:zwy)—y(m—p +aCin), (16)
aUpy _ 1 3 FdJ’ 1
% = —n—pw("ppry) +(m—p + n—pc(upy) . (17)

As the flow is fully developed, the time derivative in Eqs. (16) and
(17) is zero but it has been kept in order to clearly identify the
mean velocity component which obeys to the corresponding equa-
tion. The first term on the right-hand side is the kinetic dispersion,
the two following terms are the gravity and the drag force terms.
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using Egs. (22) and (24).

Finally, the last term represents the effect of the inter-particle col-
lisions.

The particle kinetic stress tensor component (or centered
second-order velocity moment) transport equations are written

Ry 10 U,
5 = —n—pw("pspxxy) — 2Ry 3y
Fd,X ' 1 o
+2 m—pu” +EC(UP.XUD.X)‘ (18)
dR 10
aptyy = —n—pa—y("pspyyy)
E 1
+2<n‘;—~;u;,y> + n—pcm;, JUhy)s (19)
ORp

19
il E@(npsp,m)

) are the DSMC results, the dashed lines (— — _) the moment method modelling using Eqs. (22) and (23) and the dotted lines (.__..___] ) the moment method modelling

E! ’ 1 ’ !/
+2(m_i”p,z> + n—pc(”n,z"pz)' (20)
Rpy _ 139 WUp.x
5 = —n—pw("psnm) —Royy 3y
Fd Fd, ’ 1 /
| () ) et 2

As the flow is steady, the time derivative in Eqs. (18)-(21) is zero
but it has been kept in order to clearly identify the kinetic stress
tensor component which obeys the corresponding equation. The
first term on the right-hand side of Egs. (18)-(21) is the kinetic
transport (see Section 5.1). The second term is the production by
the shear of the mean particle velocity. The third term represents
the effect of the drag force (see Section 5.2) and the last term rep-
resents the effect of the inter-particle collisions (see Section 5.3).
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proposed by Sakiz and Simonin (1998) including large drift effect (Eqgs. (28) and (29)).
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4. DSMC results and discussion

All Monte-Carlo simulations have been made with the same
number of sections Ngoc = 30 of constant size. The mesh for com-
puting the statistics is also uniform with Ny =40 sections from
dp/2 to Ly —dp/2. In all cases the number of parcel is the same
Npar = 10,000. After a transient phase of 5 s the statistics are com-
puted during 35 s.

Fig. 4 shows the mean gas and particle vertical velocities for
several mean particle volume fractions and particle material prop-
erties. First of all, it can be observed that the mean particle volume
fraction does not have a strong effect on the profiles of the mean
particle velocity. At the channel centre, the mean vertical parti-
cle velocity is found always smaller than the fluid velocity and,
as expected because of the gravity, the larger is the diameter the
lower is the particle velocity. Close to the walls the vertical velocity
of the particles with dp =1500 pm is always found smaller than
the mean vertical gas velocity. In contrast, for d, =200 pm and
dp =406 um, Fig. 4 shows that the mean vertical particle velocity
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) are the DSMC results, the dashed lines (— —_) the moment method modelling with

is larger than the fluid one. The equilibrium between these two re-
gions is controlled by the wall-normal kinetic dispersion leading to
a much flat profile for particle than for the gas.

As shown by Fig. 4, the DSMC predictions of the mean parti-
cle velocity are in very good agreement with the DPS results. Only
slight differences can be observed in the near-wall regions.

The DSMC prediction of the particles number density across
the channel is shown by Fig. 5. One can observed that the par-
ticle number density profiles exhibit a maximum at the channel
centre. When approaching the wall, the particle number density
decreases for reaching a minimum. Finally, for the smaller diam-
eters (dp =200 pm and dp =406 pm), the particle number den-
sity computed from the DSMC results increases up to the wall. For
dp = 1500 pm the profiles of np are found slightly flatter indicat-
ing a larger efficiency of the dispersion in wall-normal direction
as shown by the velocity profiles too. For the large particles with
dp = 1500 pm, Fig. 5 shows large discrepancies between the DSMC
and DPS particle number density predictions in the near-wall re-
gion. As a matter of fact, the DPS results show a strong increase of



LT

o ° ]
3F o WY ]
& 3 % Ky
L A Rp'zy i
4 L . . . 0 R T TR
0 0.01 0.02 0.03 0.04
y[m]

A T
0.01

y[m]

Fig. 14. A priori test of the collision term in transport equation of the second order particle velocity correlation for the case of d, = 406 pm. The symbols are the DPS

results from Sakiz and Simonin (1998), the solid lines (.

-2:— ! ]

Clupy)

3F ! ]

L 1
o 0.002

1 1
0.004 0.006 0.008

y[m]

Fig. 15. A priori test of collision term in U, , moment equation for the case
dp = 406 pm, @ = 1.2 x 102, The symbols are the DPS results from Sakiz and Si-
monin (1998), the solid lines (. ) the DSMC results and the dashed lines (— __)
the moment method modelling with Eq. (33). In such a case the number of sections
for computing the statistics is Ny = 100.

the particle number density when approaching the wall and this
peculiar behaviour is not captured by the DSMC method. Follow-
ing Sakiz and Simonin (1998), this effect comes from the fact that
the momentum transfer by inter-particle collision is unbalanced
for particles sheltered by the wall closeness. It results a mean ef-
fective force towards the wall leading to an increase of the parti-
cle number density. This effect, called here “wall shelter effect”, is
found to be effective only when the particle centre to wall distance
is smaller than 3/2d,.

The time-averaged components of the particle kinetic stress
tensor components (or second order velocity correlations) mea-
sured in DPS and predicted by the stochastic Lagrangian simula-
tions are shown by Fig. 6. It can be observed that the predictions

) are the DSMC results, the dashed lines (— _ _) the moment method predictions by Eq. (32) and (30).

of the DSMC method are in very good agreement with the DPS
results. Fig. 6 shows that the fluctuating motion of the particles
is anisotropic because of the production by the gradient of the
mean particle velocity and a weak redistribution effect from the
vertical velocity variance towards the horizontal ones. It can also
be observed that when the solid volume fraction is increasing the
anisotropy is decreasing (Fig. 7).

Fig. 8 shows a comparison between the DSMC and the DPS re-
sults of each term from the moment equations Eqs. (16)-(21).

5. Evaluation of closure assumptions for second-order moment
transport equation

5.1. Triple velocity correlation closure moment

As shown by Egs. (18)-(21), the second order moment approach
requires closure assumptions for the third order particle fluctuating
velocity correlations Sp, jj. Following Simonin (1996) and Sakiz and
Simonin (1999b), such a closure assumption can be obtained by
writing the transport equation of the third order correlation Sp ;i
for steady flow conditions. Several additional assumptions are nec-
essary as the effect of the turbulence and the production by the
gradients of the mean particle velocity are neglected. Then, the
fourth-order correlation, Q,, jjy, is approximated assuming a Gaus-
sian distribution leading to write the fourth-order correlation in
terms of the second-order correlations. Finally a Grad’s approxi-
mation (Grad, 1949) is used for writing the collision terms in the
equation of S jjy.

Hence, similarly to the model proposed (Hanjalic and Laun-
der, 1972) for single-phase turbulent flows, the third order correla-
tion can be written as:

oR,; R, ;i
Sp,iﬂt = _Kp,m T p,ik p.ij

—Kp,jn %, —Kpin %, (22)

where the particle dispersion coefficient reads
1
3 2¢&
Kpij = [a + 5?5 Ry (23)

and & = (14 ec)(49 — 33e.)/60 is a model constant depending on
the inter-particle collision restitution coefficient e.
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Figs. 9 and 10 show the third-order correlations, appearing in
the kinetic stress transport Eqs. (18)-(21), for the case with dp =
406 pm. As already shown, it can be denoted the remarkably ac-
cordance between the DPS and DSMC results. The moment closure
assumptions of Sp, ijk using Egs. (22) and (23) are also shown by
Figs. 9 and 10.

Figs. 9 and 10 show that the moment closure approach allows
to reproduce roughly the shape of triple velocity correlation radial
profiles given by DPS or DSMC and the agreement between mo-
ment closure approach and simulation results is increasing with
respect to the volume fraction. Therefore, the measured discrepan-
cies maybe interpreted as an overestimation of the dispersion coef-
ficient given by Eq. (23). According to Sakiz and Simonin (1999a),
this effect is due to the fact that inter-particle collision time 7.

) the standard DSMC results and the dotted lines (...._.._ ) the DSMC results with the “wall force” given by Eq. (34).

is not sufficiently small, compared to the particle relaxation time,
'r)fp, and to the mean particle transit time across the channel t{,‘

(X =Ly/ Rpyy. where L, is the width of the channel) to allow
the collision process to counterbalance non-equilibrium effects in-
duced by the interaction with the fluid and by the wall confine-
ment. Following Sakiz and Simonin (2001), a semi-empirical cor-
rection of the dispersion coefficient is proposed to account for the
non-equilibrium effect,

Rpij (24)
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We can notice that C is about 3 in the very dilute case (ap=
1.2 x 10~3) and is about unity in the less dilute case (ap = 10-2).
Figs. 9 and 10 show that the model proposed by Sakiz and Si-
monin (2001) improves significantly the moment method closure
assumption.

5.2. Gas-particle momentum transfer terms

In the present paper, the focus is made on the case where the
gas-particle interactions are driven only by the drag force. Except
for the Stokes's regime, for very small particulate Reynolds num-
bers, the drag force dependence on the gas-particle relative ve-
locity is nonlinear. In 1991, Simonin (1991) proposes to approx-
imate the drag force by intrgdl}lcing the mean particle response
time rpr, defined as ;;; = 18;{;1%[1 +0.15(Rep)®5%7] with (Rep) =

dp (Ivr|2)/vs. The mean relative velocity being given by  (|v,[2) =

VemVem + (l/,,mv;'m). Using this approximation, the drag terms in
momentum and particle kinetic stress transport equations read

Fyi Vii

)= —# (26)
mp rfp

Rai Faj , _ _ZRD,I'f

(Rt )+ ) - 7 @)

Later, Sakiz and Simonin (1998) proposed a model extension
based on a Taylor expansion of the drag force near the averaged
value (|v;|2), leading to the drag term models:

P

X (28)

E, : Vii
<n‘:'> =~ + Wem (V] )
) F X=(|vr[2)
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iu;j + ﬂu;“. =— :__”U
mp ™ mp Tfp

20
X X=(vr|?)

where the function ®(X) is given by the drag law ®(X) =
B
—18%[1 +(‘3—;) AXB2 _ Here for the Schiller and Nauman’s
P

+2Vim [Vr,i('/r,m'/r,j) +Vri{Vim "/ru)] ( (29)

(see Eq. (3)) correlation the model coefficients are A= 0.15 and
B =0.687.

Figs. 11 and 12 show the drag terms in momentum and particle
kinetic transport equations measured in case where dp = 406 pm
and solid volume fraction is @; =1.2x 10~ and @ =10"2. In
momentum equation one can observe that, in axial direction, all
model assumptions give nearly the same predictions. In the wall-
normal direction, Eq. (17), the standard approach leads to a zero
drag term in contradiction with DPS and DSMC results. In contrast,
the model extension proposed by Sakiz and Simonin (1998) and
computed with DPS data are in very good agreement with the nu-
merical simulations.

For the particle kinetic stress transport equations, Figs. 11 and
12 show that the standard model overpredicts the drag term in
the streamwise direction. Once again, the model extension taking
into account large gas-particle drift clearly exhibits a better pre-
dictions. The extended model is also in better agreement with DPS
and DSMC results for the shear component drag term. For the wall-
normal and spanwise directions no significant improvements are
found.

5.3. Inter-particle collision closure model

The analysis of inter-particle collision term effect starts with the
inter-particle collision time scale 7. which characterizes the colli-
sion effect on any moment. Fig. 13 shows the collision timescale
measured from DSMC. For the small values of the mean particle
volume fraction, one can observe that the collision timescale is
maximum (small collision frequency) at the centre of the chan-
nel and decreases towards the walls (large collision frequency). For
larger value of the mean particle volume fraction, the timescale is
found more uniform across the channel.



For a given particle diameter, the collision timescale depends
on two parameters: the local particle concentration and the local
particle agitation. As shown by Fig. 5 the particle density number
distribution across the channel exhibits a peak in the near-wall re-
gion and Fig. 6 shows large values of the agitation. Both effects
leads to increase the collision frequency. In contrast at the centre
of the channel, the solid volume fraction exhibits a peak but the
particle kinetic energy agitation is small. The large value of the col-
lision timescale in such a region means that the collision frequency
is mainly controlled by the particle agitation.

In the framework of the kinetic theory, it is possible to derive
an analytical expression for the inter-particle collision timescale,

/162 ,
nymd; - 3q,,. (30)

For deriving Eq. (30), it has been assumed that the flow is suffi-
ciently diluted («p <5%) and the particles are very inertial with re-
spect to fluid turbulence (Simonin et al., 2002) in order to consider
that the radial distribution function is equal to unity. Fig. 13 com-
pares the collision timescale measured from DSMC and the predic-
tion given by Eq. (30). For the particles with the largest inertia, the
moment closure modelling is in accordance with the DSMC results.
In contrast, for the small particle diameters, it is observed that the
model overestimates the collision frequency leading to a collision
timescale smaller than the one measured from DSMC.

Eq. (30)is obtained by assuming that the single particle PDF is
a Maxwellian distribution meaning that the fluctuating motion of
the particles is assumed isotropic. Pialat (2007) proposed to take
into account the anisotropy of the particle fluctuating motion by
using an anisotropic Gaussian, or Richman, distribution. Such an
approach leads to following expression of the inter-particle colli-
sion timescale,

. T
TC - 1 «/§ sinh’l (\/Sj) ’ (31)
e[S+ T

where S is the coefficient representing the anisotropy of the fluc-
tuating particle motion. Such a coefficient is given in terms of
eigenvalues of the particle kinetic stress tensor R, ;. Basically, S =
Ap/hq with Ay the eigenvalues of R, ; and Ap > Aq (note that the
derivation A4 is assumed to be a double eigenvalue). As shown by
Fig. 13 the Eq. (31) is in better accordance with DSMC results.

Following Grad (1949) and Jenkins and Richman (1985), in di-
lute particulate flows and using the molecular chaos assumption,
the collision terms in particle kinetic stress tensor writes

o 2
?Z (Rp.ij - §q1238ij> (32)

w1th oc= (1+e:)(3—ec)/5. Fig. 14 compares the particle kinetic
stress collision terms measured from DPS and DSMC with the mo-
ment closure model assumptions given by Eqs. (32) and (30) pre-
dictions. It can be observed that in the streamwise direction, Ryx,
the collision term is negative in contrast with the collision terms
in the wall-normal and spanwise directions. Such a behaviour
is well known and represents the driving mechanism towards a
Maxwellian distribution by inter-particle collision. Here the parti-
cle velocity variance in the x-direction is redistributed towards the
two others directions without energy dissipation. Fig. 14 exhibits a
very good agreement between the DPS and DSMC results and the
models given by Eq. (32).

From DPS of vertical particle-laden channel flows, Sakiz and Si-
monin (1998) measured an accumulation of particles at a wall dis-
tance of the order of a particle diameter. They showed, from the
wall-normal mean velocity equation balance Eq. (17), that this ac-
cumulation was due to the emergence of a collision term pushing
the particles towards the wall and resulting from a shelter effect

-e2 2,

C(up, pi) =~ 316 3900 —

by the wall. To account for such a mechanism, they performed the
theoretical computation of the collision term by considering a re-
duced space of integration accounting for the wall closeness and
they obtained the following equation,

1 1 + e
n—C(up,y) =— < pd2< qp) sin® (O)
P
1+e /27 3
-5 npd; ( 3 qp) (1= cos®(Om))
ad
[2om 105
np dy g3 dy
1+e 2 .
- <n dzﬁ[Rp,yy - §qf,] sin? ()
(143 cos?(6m)). (33)
In Eq. (33), O is the parameter defining the sheltered space. If the

wall is located at y =0, cos(0n) = max(—1,1/2 —y,/dp) with y,
the distance between the particle and the wall.

Fig. 15 shows that Eq. (33) predicts the non-zero value of
the inter-particle momentum transfer in the near-wall region
(¥p <dp/2). It can also be observed that the Monte-Carlo method
predicts a zero value because it assumes that the collision proba-
bility is not affected by the wall closeness. For taking into account
the wall shelter, effect we basically proposed to add a force in
the particle equation leading to Eq. (33) in the moment approach.
However, an estimation from DPS results of the three term on the
right hand side of Eq. (33) shows that the first one dominates the
others. Hence, introducing, n,,q; the wall-normal vector (oriented
toward the core flow) and y,,; the position of the walls, the addi-
tional “wall force” that appears near the wall is taken into account
in the Lagrangian framework as:

F 1+e
’;;all _ |y ywall| Cnpd2< qp) sin (Qm)nwall (34)
p

Figs. 16-18 show DSMC results with such a “wall force” for the
case of dp = 1500 pm where the it is expected to be significant.
It can be observed that the DSMC results are now in very good
agreement with the DPS results even in the very near-wall region.

The effect of the “wall force” on the vertical particle velocity
and on the mean particle kinetic stress tensor components are
shown by Figs. 17 and (18). Fortunately, the “wall force” has a weak
effect on those quantities and does not modify the good agree-
ments that were obtained with standard DSMC method.

6. Conclusions

Direct Simulation Monte-Carlo (DSMC) of particles transported
by a fully developed vertical turbulent channel flows are presented.
Several diameters and mean particle volume fractions are consid-
ered. The main results of the paper can be split in two parts.

First, the comparison of the DSMC results with Discrete Parti-
cle Simulation (DPS) results shows the ability of the Monte-Carlo
method to predict the particle-laden flow. The comparison be-
tween DSMC and DPS results is made for the particle number den-
sity, the mean vertical velocity and the second- and third-order ve-
locity correlations. A very good agreement is found except for the
particle number density in the very near-wall region. In such a re-
gion, the presence of the wall produces a wall shelter effect that
drives the particles towards the walls. However, the application of
an additional mean force, derived in the frame of the moment ap-
proach, allowed to reproduce accurately the increase of the particle
concentration in the very near-wall region.

Second, the DSMC results have been used for testing the sec-
ond order moment assumption for the third order velocity corre-
lation, for the drag term, and for the collision terms. It was shown
that, in the case of large fluid-particle mean slip velocity, the drag



term model proposed by Sakiz and Simonin (1998) is in very good
agreement with the DPS or DSMC results.

Finally, even is some additional validation studies are required,
the DSMC method can be straightforward extended for non-elastic
frictional particle-particle and particle-wall collisions.
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