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The paper presents numerical simulations of particle-laden fully developed turbulent channel flows performed in a stochastic Lagrangian framework. The particle inertia is large in order to neglect the effect of the turbulent gas motion on the particle dispersion. In contrast the inter-particle collisions are important and accounted for by using Direct Simulation Monte-Carlo (DSMC) method. The comparison of the Monte-Carlo results with those obtained by Discrete Particle Simulation (DPS) shows that the stochastic collisions algorithm is able to predict accurately the particle statistics (number density, mean velocity, secondand third-order velocity moments) in the core flow. More, the paper analyses the number sections needed for accurate predictions. In the very near-wall region, the Monte-Carlo simulation fails to account for the wall shelter effect due to the wall-normal unbalanced inter-particle collisions influence induced by the presence of the wall. Then, the paper shows that DSMC permits to assess the closure approximations required in moment approach. In particular, the DSMC results are compared with the corresponding moment closure assumptions for the third-order correlations of particle velocity, the correlations between the drag force and the velocity and the inter-particle collision terms. It is shown that at the opposite of the standard DSMC, the moment approach can predict the wall shelter effect. Finally, a model for the mean transverse force is proposed for taking into account wall shelter effect in DSMC.

Introduction

Particle-laden flows are found in a large spectrum of practical applications ranging from geophysical flows (sediment transport, pyroclastic flow, volcano ashes dispersion...) to industrial applications (solid or liquid fuel combustor, catalytic reactor, spray tower, solid handling,...) and passing through medical applications (room disinfection, medicament aerosol inhalation,...). In isothermal particle-laden flows, many complex phenomena take place, such as turbulent dispersion, inter-particle collisions, particle bouncing with smooth or rough walls, or turbulence modulation by the particles who need to be accurately modelled.

Because of the discrete nature of the particles, the numerical simulation of the particle motion is widely performed in a Lagrangian framework by Discrete Particle Simulation (DPS). That approach can be either coupled with Direct Numerical Simula-tion (DPS/DNS), Large Eddy Simulation (DPS/LES) or Reynolds Averaged Navier-Stokes approach (DPS/RANS) [START_REF] Sommerfeld | Validation of a stochastic lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence[END_REF][START_REF] Riber | Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows[END_REF][START_REF] Balachandar | Turbulent dispersed multiphase flow[END_REF][START_REF] Fox | Large-eddy-simulation tools for multiphase flows[END_REF][START_REF] Capecelatro | An Euler-Lagrange strategy for simulating particle-laden flows[END_REF]. When the collisions are treated in a deterministic manner, DPS/DNS can be considered as full deterministic numerical simulation approach because no stochastic model for both particle turbulent dispersion and inter-particle collisions are needed. In contrast, for DPS/LES and DPS/RANS, a stochastic dispersion model is needed to account for the subgrid (LES), or the fluctuating (RANS), fluid velocity along the particle trajectories. In practical applications, due to the huge number of real particles, the computation of all individual particle trajectories is not possible but this difficulty can be overtaken in the frame of Lagrangian statistical approaches leading to replace the real particles by a reduced number of parcels representing several real particles.

Stochastic Lagrangian algorithms were first derived for the collisions of molecules in rarefied gases [START_REF] Bird | Direct numerical and the Boltzmann equation[END_REF][START_REF] Babovsky | On a simulation scheme for the Boltzmann equation[END_REF]. In the framework of DPS/RANS approach these algorithms were used for taking into account the inter-particle collisions in gasparticle turbulent flows [START_REF] O'rourke | Lagrangian modelling of dilute granular flow -modified stochastic {DSMC} versus deterministic {DPM}[END_REF][START_REF] Tanaka | Numerical simulation of gas-solid two-phase flow in a vertical pipe on the effects of interparticle collision[END_REF].

However, several studies have shown some problems related to the effect of the turbulence on the colliding particles [START_REF] Berlemont | Validation of inter-particle collision models based on large eddy simulation[END_REF][START_REF] Sommerfeld | Validation of a stochastic lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence[END_REF][START_REF] Berlemont | Lagrangian approaches for particle collisions: the colliding particle velocity correlation in the multiple particles tracking method and in the stochastic approach[END_REF][START_REF] Wang | DSMC prediction of granular temperatures of clusters and dispersed particles in a riser[END_REF][START_REF] O'rourke | Lagrangian modelling of dilute granular flow -modified stochastic {DSMC} versus deterministic {DPM}[END_REF][START_REF] Fede | Monte-Carlo simulation of colliding particles or coalescing droplets transported by a turbulent flow in the framework of a joint fluid-particle pdf approach[END_REF][START_REF] He | Differentially weighted direct simulation Monte Carlo method for particle collision in gas-solid flows[END_REF][START_REF] Tsirkunov | Computational Fluid Dynamics / Monte Carlo Simulation of Dusty Gas Flow in a Rotor-stator Set of Airfoil Cascades[END_REF].

In the present paper, Monte-Carlo algorithm is used to account for the inter-particle collisions in a vertical turbulent channel flows. Then the DSMC method is assessed by comparison with statistics from DPS where the fluid flow is steady and imposed [START_REF] Sakiz | Continuum modelling and Lagrangian simulation of the turbulent transport of particle kinetic stresses in a vertical gas-solid channel flow[END_REF]1999b;1999a ). In such a case, the particle inertia is sufficiently large so that the effect of the turbulence on the particle motion can be neglected. More, the solid mass loading is small in order to neglect the turbulence modulation by the presence of the particles. Hence, the proposed simulation method is developed in the frame of DPS/RANS approach where the fluid velocity is known and predicted by the standard k -ε model. The particles dynamic is controlled by the competition between the entrainment by the mean fluid flow and the inter-particle collisions. In Section 4 , the results given by the stochastic algorithm are assessed by comparison with the deterministic DPS predictions. A very good agreement is found between both simulation methods, except in the very near-wall region where the deterministic simulations exhibit a "wall shelter effect" that cannot be accounted for by using the standard DSMC method.

Following [START_REF] Fede | Monte-Carlo simulation of colliding particles or coalescing droplets transported by a turbulent flow in the framework of a joint fluid-particle pdf approach[END_REF] , DSMC methods are Lagrangian stochastic methods developed for the numerical solution of the Eulerian kinetic equation governing the particle velocity Probability Density Function [START_REF] Reeks | On a kinetic equation for the transport of particles in turbulent flows[END_REF] or the particle-fluid joint PDF [START_REF] Simonin | Combustion and Turbulence in Two-phase Flows[END_REF]. An other method to compute the particle statistics consists in the numerical solution of governing equations derived from the PDF kinetic equation for several low-order particle velocity moments (number density, mean velocity, fluctuant kinetic energy, ...) Such an approach, commonly called Eulerian approach or moment method, leads to solve a set of Eulerian transport equations and needs to develop additional closure modelling assumptions for the gas-particle and particle-particle interaction terms and for the high-order velocity moment representing the kinetic dispersion (transport by the particle velocity fluctuations). In the present study, DSMC results are used to analyse the closure models for the drag, the turbulent dispersion and the collisions derived in the frame of second order moment methods.

After the introduction, the paper gives the configuration and details the investigated cases. The third section is dedicated to the statistical approaches for turbulent gas-solid flows. The focus is made on the DSMC algorithm for taking into account the interparticle collisions. The DSMC results are analysed in the fourth section by comparison with deterministic simulations. The analysis of second order moment closures from DSMC results is given in the fifth section. A model for taking into account the "wall shelter effect" in DSMC is proposed. The paper ends by concluding remarks.

Configuration overview

Fluid flow

The flow configuration is a fully developed vertical gas-solid turbulent channel flow [START_REF] Sakiz | Continuum modelling and Lagrangian simulation of the turbulent transport of particle kinetic stresses in a vertical gas-solid channel flow[END_REF]1999a;1999b ). As shown by Fig. 1 , the computational domain is a rectangular box with periodic boundary conditions in the streamwise and spanwise directions.

According to the large particle inertia and to the low solid mass loading, the particle interaction with the fluid turbulence and the modification of the mean fluid flow by the particles (two-way coupling) were neglected. Therefore, in this work, the fluid velocity is a given mean field taken from kmodel predictions of fully de- veloped turbulent channel single-phase flow. The material properties of the fluid are ρ f = 1 . 205 kg / m 3 an ν f = 1 . 515 × 10 -5 m 2 / s .

Particle motion

The particles are assumed spherical with a diameter d p and with a large particle-to-fluid density ratio (see Table 1 ). In such a framework, only the drag force and the gravity are acting on the particles motion. Introducing u p , the particle translation velocity and u f @ p , the fluid velocity seen by the particle, the particle velocity momentum equation reads

d u p dt = F d m p = - u p -u f @ p τ p + g (1) 
where F d is the instantaneous drag force acting on a single particle, g the gravity acceleration, and τ p the instantaneous particle response time given by

τ p = 4 3 ρ p ρ g d p C D 1 | v r | . ( 2 
)
In Eq. ( 2) , v r = u pu f @ p is the instantaneous gas-particle relative velocity, ρ p the particle density. The drag coefficient, C D , is given in terms of particle Reynolds number [START_REF] Schiller | A drag coefficient correlation[END_REF],

C D = 24 Re p 1 + 0 . 15 Re 0 . 687 p ( 3 
)
with Re p = d p | v r | /ν g . As the gas turbulence and the two-way coupling are both neglected, the instantaneous fluid velocity seen by the particle is obtained by an interpolation of the given mean fluid velocity field at the particle centre position: u f @ p = U f ( x p ) .

Inter-particle and particle-wall collision

In the present study the particle volume fractions are sufficiently low in order that only binary collisions are taken into ac-For a given particle diameter, the collision timescale depends on two parameters: the local particle concentration and the local particle agitation. As shown by Fig. 5 the particle density number distribution across the channel exhibits a peak in the near-wall region and Fig. 6 shows large values of the agitation. Both effects leads to increase the collision frequency. In contrast at the centre of the channel, the solid volume fraction exhibits a peak but the particle kinetic energy agitation is small. The large value of the collision timescale in such a region means that the collision frequency is mainly controlled by the particle agitation.

In the framework of the kinetic theory, it is possible to derive an analytical expression for the inter-particle collision timescale, 1

τ c = n p π d 2 p 16 π 2 3 q 2 p . ( 30 
)
For deriving Eq. ( 30) , it has been assumed that the flow is sufficiently diluted ( α p < 5%) and the particles are very inertial with respect to fluid turbulence [START_REF] Simonin | On the spatial distribution of heavy particle velocities in turbulent flow: from continuous field to particulate chaos[END_REF] in order to consider that the radial distribution function is equal to unity. Fig. 13 compares the collision timescale measured from DSMC and the prediction given by Eq. ( 30) . For the particles with the largest inertia, the moment closure modelling is in accordance with the DSMC results.

In contrast, for the small particle diameters, it is observed that the model overestimates the collision frequency leading to a collision timescale smaller than the one measured from DSMC. Eq. ( 30) is obtained by assuming that the single particle PDF is a Maxwellian distribution meaning that the fluctuating motion of the particles is assumed isotropic. [START_REF] Pialat | Développement Dune Méthode hybride Eulérienne-Lagrangienne Pour la Modélisation Numérique de la Phase Particulaire Dans les Écoulements Turbulents Gaz-particules[END_REF] proposed to take into account the anisotropy of the particle fluctuating motion by using an anisotropic Gaussian, or Richman, distribution. Such an approach leads to following expression of the inter-particle collision timescale, ˜

τ c = τ c 1 2 √ S+2 3 √ S + sinh -1 ( √ S-1 ) √ S-1 . ( 31 
)
where S is the coefficient representing the anisotropy of the fluctuating particle motion. Such a coefficient is given in terms of eigenvalues of the particle kinetic stress tensor R p, ij . Basically, S = λ p /λ q with λ k the eigenvalues of R p, ij and λ p > λ q (note that the derivation λ q is assumed to be a double eigenvalue). As shown by Fig. 13 the Eq. ( 31) is in better accordance with DSMC results. Following [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF] and [START_REF] Jenkins | Grad's 13-moments system for dense gas of inelastic spheres[END_REF] , in dilute particulate flows and using the molecular chaos assumption, the collision terms in particle kinetic stress tensor writes

1 n p C(u p,i u p,i ) = - 1 -e 2 c 3 τ c 2 3 q 2 p δ i j - σ c τ c R p,i j - 2 3 q 2 p δ i j ( 32 
)
with σ c = (1 + e c )(3e c ) / 5 . Fig. 14 compares the particle kinetic stress collision terms measured from DPS and DSMC with the moment closure model assumptions given by Eqs. ( 32) and ( 30) predictions. It can be observed that in the streamwise direction, R xx , the collision term is negative in contrast with the collision terms in the wall-normal and spanwise directions. Such a behaviour is well known and represents the driving mechanism towards a Maxwellian distribution by inter-particle collision. Here the particle velocity variance in the x -direction is redistributed towards the two others directions without energy dissipation. Fig. 14 exhibits a very good agreement between the DPS and DSMC results and the models given by Eq. ( 32) . From DPS of vertical particle-laden channel flows, Sakiz and Simonin (1998) measured an accumulation of particles at a wall distance of the order of a particle diameter. They showed, from the wall-normal mean velocity equation balance Eq. ( 17) , that this accumulation was due to the emergence of a collision term pushing the particles towards the wall and resulting from a shelter effect by the wall. To account for such a mechanism, they performed the theoretical computation of the collision term by considering a reduced space of integration accounting for the wall closeness and they obtained the following equation,

1 n p C(u p,y ) = - 1 + e c 2 n p d 2 p 2 π 3 q 2 p sin 2 (θ m ) - 1 + e c 6 n p d 3 p 2 π 3 q 2 p 1 -cos 3 (θ m ) × 2 n p ∂n p ∂y + 1 q 2 p ∂q 2 p ∂y - 1 + e c 8 n p d 2 p √ π R p,yy - 2 3 q 2 p sin 2 (θ m ) 1 + 3 cos 2 (θ m ) . ( 33 
)
In Eq. ( 33) , θ m is the parameter defining the sheltered space. If the wall is located at y = 0 , cos (θ m ) = max (-1 , 1 / 2y p /d p ) with y p the distance between the particle and the wall. Fig. 15 shows that Eq. ( 33) predicts the non-zero value of the inter-particle momentum transfer in the near-wall region ( y p < d p /2). It can also be observed that the Monte-Carlo method predicts a zero value because it assumes that the collision probability is not affected by the wall closeness. For taking into account the wall shelter, effect we basically proposed to add a force in the particle equation leading to Eq. ( 33) in the moment approach. However, an estimation from DPS results of the three term on the right hand side of Eq. ( 33) shows that the first one dominates the others. Hence, introducing, n wall the wall-normal vector (oriented toward the core flow) and y wall the position of the walls, the additional "wall force" that appears near the wall is taken into account in the Lagrangian framework as:

F wall m p = -| y -y wall | 1 + e c 2 n p d 2 p 2 π 3 q 2 p sin 2 (θ m ) n wall . (34) 
Figs. 16-18 show DSMC results with such a "wall force" for the case of d p = 1500 μm where the it is expected to be significant. It can be observed that the DSMC results are now in very good agreement with the DPS results even in the very near-wall region.

The effect of the "wall force" on the vertical particle velocity and on the mean particle kinetic stress tensor components are shown by Figs. 17 and (18) . Fortunately, the "wall force" has a weak effect on those quantities and does not modify the good agreements that were obtained with standard DSMC method.

Conclusions

Direct Simulation Monte-Carlo (DSMC) of particles transported by a fully developed vertical turbulent channel flows are presented. Several diameters and mean particle volume fractions are considered. The main results of the paper can be split in two parts.

First, the comparison of the DSMC results with Discrete Particle Simulation (DPS) results shows the ability of the Monte-Carlo method to predict the particle-laden flow. The comparison between DSMC and DPS results is made for the particle number density, the mean vertical velocity and the second-and third-order velocity correlations. A very good agreement is found except for the particle number density in the very near-wall region. In such a region, the presence of the wall produces a wall shelter effect that drives the particles towards the walls. However, the application of an additional mean force, derived in the frame of the moment approach, allowed to reproduce accurately the increase of the particle concentration in the very near-wall region.

Second, the DSMC results have been used for testing the second order moment assumption for the third order velocity correlation, for the drag term, and for the collision terms. It was shown that, in the case of large fluid-particle mean slip velocity, the drag term model proposed by [START_REF] Sakiz | Continuum modelling and Lagrangian simulation of the turbulent transport of particle kinetic stresses in a vertical gas-solid channel flow[END_REF] is in very good agreement with the DPS or DSMC results.

Finally, even is some additional validation studies are required, the DSMC method can be straightforward extended for non-elastic frictional particle-particle and particle-wall collisions.

Fig. 1 .

 1 Fig. 1. Flow configuration with L x = 240 mm, L y = 40 mm, and L z = 32 mm.

Table 1

 1 Particle material properties. The mean solid volume volume fraction is computed as αp = N p πd 3 p / 6 /V with N p the total number of tracked particles in DPS and V the volume of the computational domain.

	d p μm	ρp [kg/m 3 ]	αp	N p
	200	1038	5 × 10 -4	31,0 0 0
	406	1038	1 . 2 × 10 -3	90 0 0
	406	1038	4 × 10 -3	29,600
	406	1038	10 -2	73,800
	1500	1032	4 . 1 × 10 -3	600
	1500	1032	1 . 4 × 10 -2	20 0 0
	1500	1032	4 . 1 × 10 -2	60 0 0

Acknowledgements

The authors would like to thank Dr. Philippe Villedieu from ON-ERA for fruitful discussions and help in the development of Monte-Carlo algorithm.

The authors would also like to thank Dr. Marc Sakiz for theoretical derivations and DPS statistics.