
HAL Id: hal-01978775
https://hal.science/hal-01978775

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Gain Observer Design for a Class of Hyperbolic
Systems ofBalance Laws

Constantinos Kitsos, Gildas Besancon, Christophe Prieur

To cite this version:
Constantinos Kitsos, Gildas Besancon, Christophe Prieur. High-Gain Observer Design for a Class of
Hyperbolic Systems ofBalance Laws. CDC 2018 - 57th IEEE Conference on Decision and Control,
Dec 2018, Miami, FL, United States. �hal-01978775�

https://hal.science/hal-01978775
https://hal.archives-ouvertes.fr


High-Gain Observer Design for a Class of Hyperbolic Systems of
Balance Laws

Constantinos Kitsos, Gildas Besançon, and Christophe Prieur

Abstract— Considering a class of hyperbolic systems of
balance laws with distributed measurements, and possibly
distributed effects of known inputs, a structure suitable for
uniform observability is first emphasized. Sufficient conditions
for an explicit high-gain observer design are then derived
for special cases of such systems. The stability of the related
observer estimation error is fully established by means of
Lyapunov-based techniques, and a numerical example finally
illustrates the results.

Keywords: high-gain observers, nonlinear hyperbolic systems,
uniform observability.

I. INTRODUCTION

Among the various approaches developed towards state es-
timation and observer design for finite-dimensional nonlinear
continuous-time systems, the so-called high-gain observer
[8] remains the most popular one, and has motivated many
contributions in the literature. It relies on the idea of choosing
appropriately large observer gain, such that it can dominate
the effect of the nonlinearities on the observer error. This
design can be implemented for a class of nonlinear systems
in an observable canonical form, typical of uniform observ-
ability for systems with inputs [7].

Beyond the control theory approaches for finite-
dimensional systems, infinite-dimensional ones, and more
specifically hyperbolic systems of balance laws, have gained
significant attention, focusing on stability analysis and con-
trollability. A large number of distributed physical systems
are indeed described by hyperbolic equations (see e.g. [1],
Chap. 1). The stability analysis of such systems has been
extensively explored via Lyapunov techniques (see again [1],
Chap. 4, 6). A few observer techniques have also been inves-
tigated, but mostly for cases with boundary measurements,
via space discretization and high-gain design, as in [2], or
direct infinite-dimension-based Lyapunov techniques, as in
[4] (see also [3]), backstepping approach [11], or optimiza-
tion [12] to cite a few. For distributed measurements, some
semigroup-based methods have been investigated (see e.g. [5]
and references therein). But to the best of our knowledge, the
extension of high-gain observer design to hyperbolic systems
of balance laws with distributed measurements has not yet
been explored.

Our main contribution here, compared to the existing
literature, is to construct a high-gain observer for a class
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of nonlinear hyperbolic systems of balance laws with dis-
tributed measurements, by exploiting its full dynamics and
avoiding discretization techniques. In this way, we extend
the fundamental high-gain observers for finite-dimensional
systems to the infinite-dimensional case and prove analogous
results. Particularly, we provide a method at designing a
high-gain observer so as to approach (arbitrarily fast) the
states of the system described by hyperbolic laws, by ex-
ploiting the knowledge of the input and output functions and
the input/output map of the boundary conditions. First, we
introduce an appropriate observable form for that, aiming at
extending the approaches of [7] and [8] to infinite dimen-
sions. The methodology we follow for the observer design
then relies on conventional methods for proving stability for
the estimation error via Lyapunov functionals (see [1], Chap.
4 and 6 for extensive presentation of many stabilization
methods in various norms for nonlinear hyperbolic systems).
We establish well-posedeness of the observer system and
then we prove asymptotic stability of the estimation error in
appropriate norms for sufficiently large high-gain constants.

The paper is organized as follows: In Section II, we
introduce an observable form, on which possible observer
designs can rely. In Section III we then examine the high-
gain observer design for a subclass of the aforementioned
form that has specific structural properties. Conditions under
which the observer system is well-posed are presented
in parallel to the observer convergence in the C0-norm
(Theorem 3.1). Finally, we illustrate the results of Section III
with an example of a two-dimensional nonlinear hyperbolic
system, by performing simulations.

Notation: For a given x ∈ Rn, |x| denotes its usual
Euclidean norm. For a given constant matrix A ∈ Rm×n,
AT denotes its transpose and |A| := sup {|Ax| , |x| = 1}
is its induced norm. By eigmin(A), eigmax(A) we denote
the minimum and maximum eigenvalue, respectively, of
a square matrix A. By B(r) we denote the ball in Rn
with center at zero and radius r. For a continuous map
[0,+∞) × [0, 1] 3 (t, x) → ξ(t, x) ∈ Rn we adopt the
notation ‖ξ(t, ·)‖0 := ‖ξ‖0 := sup{|ξ(t, x)| , x ∈ [0, 1]}.

II. A STRUCTURE FOR ”HIGH-GAIN OBSERVABILITY”

The famous high-gain observer design available for finite-
dimensional nonlinear systems is related to a strong observ-
ability property, corresponding to the notion of ”uniform
observability” for systems with inputs.

Our point here is to extend this notion to a class of
hyperbolic systems of balance laws, which is described as



follows:

ξt +D(ξ)ξx + u1E(ξ)ξx = Aξ + f(ξ) + u2g(ξ),

∀t ∈ [0,+∞),∀x ∈ [0, 1] (2.1a)

with distributed measurement

y = Cξ (2.1b)

where ξ = (ξ1, . . . , ξn)
T

: [0,+∞) × [0, 1] → Rn is the
vector of state variables, y : [0,+∞) × [0, 1] → R is the
output, u1, u2 : [0,+∞) × [0, 1] → R are input functions,
and the system satisfies some ”triangular” form as follows:

A =


0 1 0 · · · 0

. . . . . .
...

... 1
0 · · · 0

, C =
[
1 0 · · · 0

]
,

f(ξ) =
[
f1(ξ1) f2(ξ1, ξ2) · · · fn(ξ1, . . . , ξn)

]T
,

g(ξ) =
[
g1(ξ1) g2(ξ1, ξ2) · · · gn(ξ1, . . . , ξn)

]T
,

D(ξ) =



d11 0 · · · 0
d21 d22 0 · · · 0

...
. . .

dn−1,1 · · · dn−1,n−1 0
dn1 dn2 · · · dnn


,

E(ξ) =



e11 0 · · · 0
e21 e22 0 · · · 0

...
. . .

en−1,1 · · · en−1,n−1 0
en1 en2 · · · enn


,

with dij = dij(ξ1, . . . , ξi), eij = eij(ξ1, . . . , ξi), i, j =
1, . . . , n. We further consider initial and boundary conditions
of the following form:

ξ(0, x) = ξ0(x) (2.2a)

B(t, ξ(t, 0), ξ(t, 1)) = 0 (2.2b)

with ξ0 : [0, 1]→ Rn,B : R≥0 × Rn × Rn → Rn.
For well-posedeness purposes of the Cauchy problem

described by (2.1a), (2.2), we assume that D(ξ)+u1E(ξ) 6=
0,∀ξ ∈ Rn, t ∈ [0,+∞), x ∈ [0, 1], with D, E, f , g, ξ0,B
and inputs u1, u2 sufficiently smooth in their arguments.
More precise well-posedeness conditions for such nonlinear
inhomogeneous systems of conservation laws with source
terms are investigated for instance in [9] and [14].

Let us now show that the form (2.1) is an observable one,
canonical in some sense, analogously to the case of finite-
dimensional systems. To that end, let us consider a more
general hyperbolic system of the form

ξ̄t + D̄(ξ̄)ξ̄x + u1Ē(ξ̄)ξ̄x = f̄(ξ̄) + u2ḡ(ξ̄) = 0,

∀t ∈ [0,+∞),∀x ∈ [0, 1] (2.3a)

under distributed measurements throughout the domain given
by

y = h(ξ̄) (2.3b)

where h : Rn → R. We also consider initial and boundary
conditions of the form

ξ̄(0, x) = ξ̄0(x) (2.4a)

B̄(t, ξ̄(t, 0), ξ̄(t, 1)) = 0 (2.4b)

where ξ̄0 : [0, 1] → Rn, B̄ : R≥0 × Rn × Rn → Rn. We
assume, similarly to the case of system (2.1), that system
(2.3) with boundary and initial conditions (2.4) possesses
regularity properties that allow it (along with other properties
described in [9]) to be well-posed, i.e., D̄, Ē, f̄ , ḡ, h, ξ̄0 and
B̄ are sufficiently smooth in their arguments and it holds
D̄(ξ̄) + u1Ē(ξ̄) 6= 0,∀ξ̄ ∈ Rn, t ∈ [0,+∞), x ∈ [0, 1].
By extension of the notion available for finite-dimensional
nonlinear systems, we can now provide a definition for
uniform observability of system (2.3)-(2.4) as follows:

Definition 2.1: Given T > 0, system (2.3)-(2.4) is said to
be uniformly observable on [0, T ] if for any pair of different
initial states ξ0 and ξ̃0 and any pair of inputs u1, u2 defined
on [0, T ]× [0, 1] for which solutions ξ, ξ̃ exist, there exists
t in [0, T ] and x ∈ [0, 1] such that: h(ξ(t, x)) 6= h(ξ̃(t, x)).
The system is uniformly observable if the above holds for
any T .

We can then state the following result:
Proposition 2.1: Consider a system of described by (2.3)-

(2.4) with h(ξ̄) = Cξ̄, f̄ = Aξ̄ + f and D̄ of the form D
for A, C, f, D as in (2.1). Then the system is uniformly
observable if and only if Ē and ḡ satisfy the same triangular
structures as E and g in (2.1).

Proof: Let us denote eij(ξ) := eij(ξ1, . . . , ξi), gi(ξ) :=
gi(ξ1, . . . , ξi). To prove the sufficiency part, let us consider
two initial conditions ξ0, ξ̃0 such that ∀i = 1, . . . , i0 :
ξ0
i (x) = ξ̃0

i (x),∀x ∈ [0, 1], where i0 < n and also
ξ0
i0+1(x) 6= ξ̃0

i0+1(x) for some x ∈ [0, 1]. From the canonical
form (2.1), we have for all x ∈ [0, 1], gj(ξ0(x)) = gj(ξ̃

0(x))
and ejk(ξ0(x)) = ejk(ξ̃0(x)) for j, k = 1, . . . , i0. For any
u1, u2 we obtain from (2.1): ∂tξi0(t, x) − ∂tξ̃i0(t, x) =
ξi0+1(t, x) − ξ̃i0+1(t, x), thus, by integrating, ξi0(t, x) −
ξ̃i0(t, x) = ξ0

i0(x)− ξ̃0
i0(x)+

∫ t
0
(ξi0+1(s, x)− ξ̃i0+1(s, x))ds.

Consequently, there exists sufficiently small time T such
that ξi0(t, x) 6= ξ̃i0(t, x),∀t ∈ [0, T ], for some x ∈ [0, 1].
The iteration of this approach leads to the conclusion that
the same applies for ξ1 and ξ̃1. We conclude that for any
u1, u2, different initial conditions produce different outputs
(the initial conditions are distinguished by any set u1, u2)
and, therefore, system (1.1) is uniformly observable.

Necessity is proved by contradiction: assume that ḡ or Ē
do not satisfy the appropriate triangular form, then we can
show that uniform observability is not satisfied. Consider for
instance the first case when ḡ does not satisfy the form of
g (the other case is omitted since it can be treated in the
same way). This means that there exists i0 < n, such that
ḡi0 = ḡi0(ξ1, . . . , ξi0 , ξj0) for some j0 > i0. One can then



select initial conditions ξ0 and ξ̃0 such that ξ0
k(x) = ξ̃0

k(x)
for k ≤ i0 and ξ0

j0(x) 6= ξ̃0
j0(x) for any x ∈ [0, 1]. Then, one

can set u1 := 0 and define u2 as:

u2(t, x) = −ξi
0+1(t, x)

∆gi0(t, x)
, t ≥ 0, x ∈ [0, 1] (2.5)

where ∆gi0(t, x) := ḡi0(ξ1(t, x), . . . , ξj0(t, x)) −
ḡi0(ξ̃1(t, x), . . . , ξ̃j0(t, x)). Since we have
ḡi0(ξ0

1(x), . . . , ξ0
j0(x)) 6= ḡi0(ξ̃0

1(x), . . . , ξ̃0
j0(x)), there

is a sufficiently small time T such that u2 is well-defined on
[0, T ]× [0, 1]. Under the previous hypothesis and with these
inputs, we see that for t ∈ [0, T ], ∂t(ξi(t, x)− ξ̃i(t, x)) = 0
and ξ0

i (x) − ξ̃0
i (x) = 0,∀x ∈ [0, 1] for i = 1, . . . , i0.

Therefore, ξ1(t, x) = ξ̃1(t, x), ∀(t, x) ∈ [0, T ] × [0, 1]. The
system is not uniformly observable, since for the set of the
previous inputs (u1, u2) defined on [0, T ] × [0, 1], different
initial conditions provide the same outputs.

III. A RESULT ON HIGH-GAIN OBSERVER DESIGN

Although system (2.1) is in appropriate form for uniform
observability, designing an observer for it remains a tricky
problem. In the present section, we propose a solution for
the special case where matrices D, E take the form of
diagonal matrices of identical entries only depending on Cξ.
In addition, just in order to simplify the presentation (and
with no restriction on the methodology) we propose to omit
terms D(ξ)ξx and f(ξ) in the system description. This means
that we consider systems of the following form:

ξt + u1Λ(ξ1)ξx = Aξ + u2f(ξ),∀t ∈ [0,+∞),∀x ∈ [0, 1]
(3.1a)

with distributed measurement

y = Cξ (3.1b)

where Λ satisfies:

Λ(ξ1) = λ(ξ1)In×n (3.1c)

for some function λ(·), and ξ : [0,+∞) × [0, 1] → Rn
is the state, y : [0,+∞) × [0, 1] → R is the output,
u1, u2 : [0,+∞) × [0, 1] → R are the inputs, while
matrices A and C are as in (2.1). Also, f is of the
form f(ξ) =

[
f1(ξ1) f2(ξ1, ξ2) · · · fn(ξ1, . . . , ξn)

]T
.

We consider boundary conditions of the form

ξ(t, 0) = H (t, ξ(t, 1)) (3.2)

where H : R≥0 × Rn → Rn. We denote by ξ0(x) :=
ξ(0, x), x ∈ [0, 1] the unknown initial condition. Primarily,
we make an assumption on the well-posedeness of the
system under consideration (3.1), i.e., the existence of unique
classical solutions for all times t ≥ 0 for certain initial
conditions ξ0.
A1. There exist initial conditions ξ0 ∈ C1([0, 1];Rn) satis-
fying zero-order and one-order compatibility conditions, for
which the Cauchy problem (3.1a)-(3.2) has a unique classical
solution in [0,+∞)× [0, 1].

To proceed to the observer design, we need to make the
following crucial assumptions, the first two of which guar-
antee the well-posedeness property of the observer system

(along with Assumption A1), while the last one is crucial in
the Lyapunov analysis.
A2. Functions u1 and u2 are continuous, u1 and u2 are C1

in x, λ is C1 in its argument, and f and H are of class C1

in their arguments.
A3. We have the following bounds: λ(y) > 0, ∀y ∈ R and
u1(t, x) > 0, ∀(t, x) ∈ [0,+∞) × [0, 1]. Also, ∇ξf(·) is
bounded on Rn by Lf , ∇ξH(·, ·) is bounded on R×Rn by
LH and u2(·, ·) is bounded on [0,+∞) × [0, 1], i.e., there
exists ū2 > 0, such that |u2(t, x)| ≤ ū2,∀t ∈ [0,+∞), x ∈
[0, 1].
A4. For initial conditions for which A1 holds, ξ1(·, ·) and
∂xξ1(·, ·) are bounded on [0,+∞) × [0, 1]. Namely, there
exist constants ȳ, ȳ′ > 0, such that |ξ1| ≤ ȳ, |∂xξ1(t, x)| ≤
ȳ′,∀t ∈ [0,+∞), x ∈ [0, 1]. Furthermore, there exist
constants u1, ū1, ū

′
1 > 0, such that ∀t ∈ [0,+∞), x ∈

[0, 1], u1 ≤ u1(t, x) ≤ ū1 and |∂xu1(t, x)| ≤ ū′1.
The assumed strict positiveness of both λ and u1 in

Assumption A2 can be alternated randomly, so to guarantee
strict positiveness or negativeness of the product λu1. The
results of the present section remain unchanged for any
of these cases. Furthermore, by virtue of Assumptions A2,
A3 and A4 (continuity of λ and of its derivative λ′ and
boundedness of y), there exist constants λ, λ̄, λ̄′ > 0, such
that ∀y ∈ B(ȳ), λ ≤ λ(y) ≤ λ̄, |λ′(y)| ≤ λ̄′.

We now state our main result, concerning the high-gain
observer design problem.

Theorem 3.1: Consider system (3.1)-(3.2) with initial con-
ditions as in Assumption A1 and suppose that Assumptions
A2-A4 hold. Let also P be a positive definite symmetric
matrix and K =

[
k1 . . . kn

]T
, ki ∈ R, i = 1, . . . , n

satisfying1

(A+KC)TP + P (A+KC) = −In×n (3.3)

Then, the system

ξ̂t+u1Λ(y)ξ̂x = Aξ̂+u2f(ξ̂)−ΘK(y−Cξ̂), t ≥ 0, x ∈ [0, 1]
(3.4)

with Θ = diag
{
θi, i = 1, . . . , n

}
, θ > 1, boundary condi-

tions
ξ̂(t, 0) = H

(
t, ξ̂(t, 1)

)
(3.5)

and initial condition ξ̂0 ∈ C1([0, 1];Rn), with ξ̂(0, x) =
ξ̂0(x), satisfying zero-order and one-order compatibility con-
ditions, is a well-posed high-gain observer, in the sense that
it admits a unique classical solution in [0,+∞) × [0, 1] on
one hand, providing an estimate for the state of (3.1a) for
θ large enough on the other hand. More precisely, there
exists a constant θ0 ≥ 1, such that for every θ > θ0, there
exist constants l, κ > 0, such that: ‖ξ(t, ·) − ξ̂(t, ·)‖0 ≤
le−κt‖ξ0(·) − ξ̂0(·)‖0. The observer convergence rate κ is
adjustable by the choice of the high-gain constant θ and can
become arbitrarily large.

Proof: We first note that from Assumption A1 there
exist unique solutions in [0,+∞) × [0, 1] for system (3.1a)

1This is always possible since (A,C) is observable.



with initial condition ξ0(x) = ξ0(0, x) (satisfying zero-order
and one-order compatibility conditions) and with bound-
ary conditions satisfying (3.2). To show the existence and
uniqueness of global classical solutions of the observer
system, we invoke Theorem 2.1 in [10]. The observer system
(3.4) under boundary conditions (3.5) and for any initial
condition ξ̂0 ∈ C1([0, 1];Rn) satisfying zero-order and
one-order compatibility conditions, with ξ̂0(x) := ξ̂(0, x),
belongs to the same class of systems described in [10]
and under Assumptions A2 and A3 we apply Theorem 2.1
therein, which states that there exists a unique classical C1

solution ξ̂ in [0,+∞)× [0, 1].
We now define the linearly transformed observation error

by
ε = Θ−1(ξ̂ − ξ) (3.6)

where Θ = diag
{
θi, i = 1, . . . , n

}
, θ > 1. The observer

error satisfies the equation

εt + u1Λ(y)εx = θ(A+KC)ε+ u2δf (3.7)

where δf := Θ−1(f(ξ̂) − f(ξ)). Further, the following
equation is satisfied on the boundaries, as a consequence
of (3.2) and (3.5):

ε(t, 0) = Θ−1
(
H(t, ξ̂(t, 1))−H(t, ξ(t, 1))

)
(3.8)

We now derive exponential stability of the estimation error
in the C0-norm. For all continuously differentiable functions
ε : [0, 1] → Rn, let us consider the non-negative functional
for p ∈ N:

Wp[ε] :=

(∫ 1

0

q(x)(eµxεTPε)pdx
)1/p

(3.9)

for given positive definite symmetric non-diagonal matrix P ,
q(·) given by

q(x) :=

(
λ̄ū1

λu1

− 1

)
x+ 1, x ∈ [0, 1] (3.10)

and µ ∈ R given by

µ = (2n− 2) ln θ + 2 lnLH + ln
eigmax(P )

eigmin(P )
(3.11)

The choice of the above-mentioned functional is inspired by
[6], Theorem 3.3, where an analogous p-functional is chosen
and then by letting p→ +∞, C0 stability is proven.

Calculating the time derivative Ẇp along the classical C1

solutions of (3.7), (3.8) yields the following:

Ẇp =
1

p
W 1−p
p

∫ 1

0

pq(x)eµx(eµxεTPε)p−1

× (εT
tPε+ εTPεt)dx

=
1

p
W 1−p
p

∫ 1

0

(−q(x)epµxλ(y)u1∂x(εTPε)p

+pq(x)eµx(eµxεTPε)p−1θεT((A+KC)TP +P (A+KC))ε

+ 2pu2q(x)eµx(eµxεTPε)p−1εTPδf)dx (3.12)

Then, using integration by parts, Ẇp is written as follows:

Ẇp = W 1−p
p

(
1

p
T1,p +

1

p
T2,p + T3,p

)
(3.13)

where

T1,p := −q(1)λ(y(t, 1))u1(t, 1)(eµε(t, 1)TPε(t, 1))p

+ q(0)λ(y(t, 0))u1(t, 0)(ε(t, 0)TPε(t, 0))p (3.14a)

T2,p :=

∫ 1

0

∂x(q(x)epµxλ(y)u1)(εTPε)pdx (3.14b)

T3,p :=

∫ 1

0

(−θq(x)epµx(εTPε)p−1|ε|2

+ 2u2q(x)eµx(eµxεTPε)p−1εTPδf)dx (3.14c)

In (3.14c), (3.3) has been used. By virtue of (3.8), (3.10)
and Assumptions A2, A3 and A4 (in particular Lipschitzness
of H), we obtain the following:

T1,p ≤ −q(1)λu1(eµε(t, 1)TPε(t, 1))p + q(0)λ̄ū1

× (δHTΘ−1PΘ−1δH)p ≤ −q(1)λu1(eµε(t, 1)TPε(t, 1))p

+ q(0)λ̄ū1(|ε(t, 1)|2|Θ|2|Θ−1|2L2
Heigmax(P ))p

≤ λ̄ū1|ε(t, 1)|2p(−(eµeigmin(P ))p

+ (θ2n−2L2
Heigmax(P ))p) (3.15)

where δH := H(t, ξ̂(t, 1))−H(t, ξ(t, 1)). Using (3.11), we
easily get

T1,p ≤ 0 (3.16)

The term T2,p is written as follows:

T2,p =

∫ 1

0

((q(1)− 1)λ(y)u1 + pµq(x)λ(y)u1

+ q(x)λ′(y)yxu1 + q(x)λ(y)∂xu1)(eµxεTPε)pdx (3.17)

Exploiting the fact that q(x) ≥ 1,∀x ∈ [0, 1], (3.17) yields
the following:

T2,p ≤ ((q(1)− 1)λ̄ū1 + λ̄′ȳ′ū1 + λ̄ū′1)

×
∫ 1

0

(q(x)(eµxεTPε)pdx

+ p|µ|λ̄ū1

∫ 1

0

q(x)(eµxεTPε)pdx

= ((q(1)− 1)λ̄ū1 + λ̄′ȳ′ū1 + λ̄ū′1 + p|µ|λ̄ū1)W p
p (3.18)

By exploiting the Lipschitzness of f , T3,p is bounded above
as follows:

T3,p ≤ −θ
∫ 1

0

q(x)(eµxεTPε)p
1

eigmax(P )
dx

+ 2ū2

√
nLf

eigmax(P )

eigmin(P )

∫ 1

0

q(x)(eµxεTPε)pdx

≤ (− θ

eigmax(P )
+ b)W p

p (3.19)



where
b := 2ū2

√
nLf

eigmax(P )

eigmin(P )
(3.20)

Invoking (3.13) in conjunction with (3.16), (3.18), (3.19) and
the fact that p ≥ 1, Ẇp is bounded above as follows:

Ẇp ≤ (− θ

eigmax(P )
+ a+ b)Wp,∀t ≥ 0 (3.21)

where

a := (q(1)− 1)λ̄ū1 + λ̄′ȳ′ū1 + λ̄ū′1 + |µ|λ̄ū1 (3.22)

As a direct consequence of the comparison lemma, (3.21)
implies that

Wp(t) ≤ e−( θ
eigmax(P )

−a−b)t
Wp(0),∀t ≥ 0 (3.23)

Taking into account that for all x ∈ [0, 1], 1 ≤ q(x) ≤ λ̄ū
λ u ,

we get that

lim
p→∞

Wp = lim
p→∞

‖q(x)
1
p eµxεTPε‖p

= ‖eµxεTPε‖0 (3.24)

We now define the Lyapunov functional for ε : [0, 1]→ Rn:

V [ε] := ‖eµxεTPε‖0 (3.25)

Equation (3.24) in conjunction with (3.23) implies that

V (t) ≤ e−( θ
eigmax(P )

−a−b)t
V (0),∀t ≥ 0 (3.26)

From (3.26) and by using the inequality
e−

µ+|µ|
2 eigmin(P )‖ε‖20 ≤ V ≤ e−

µ−|µ|
2 eigmax(P )‖ε‖20,

we obtain

‖ε‖0 ≤ e|µ|/2
√

eigmax(P )

eigmin(P )
e
− 1

2 ( θ
eigmax(P )

−a−b)t‖ε0‖0
(3.27)

where ε0(x) := ε(0, x). Next, we select the high-gain
constant to satisfy the following:

θ > max {1, eigmax(P )(a+ b)} := θ0 (3.28)

We note that b is independent of θ but, according to (3.11),
a is dependent on ln θ. An inequality of the form (3.28) is
feasible for sufficiently large θ. From (3.28), there exists
κ > 0, such that θ

eigmax(P ) − a − b ≥ 2κ. This renders
the transformed error ε exponentially stable in the C0-norm
with convergence rate κ, which can be arbitrarily large,
depending on the selection of high-gain θ. Simultaneously,
the observation error ξ− ξ̂ is also exponentially stable in the
C0-norm satisfying the following:

‖ξ − ξ̂‖0 = ‖Θε‖0 ≤ θne|µ|/2
√

eigmax(P )

eigmin(P )

× e−
1
2 ( θ

eigmax(P )
−a−b)t‖ε0‖0

≤ θn−1e|µ|/2

√
eigmax(P )

eigmin(P )
e
− 1

2 ( θ
eigmax(P )

−a−b)t‖ξ0 − ξ̂0‖0

≤ θn−1e|µ|/2

√
eigmax(P )

eigmin(P )
e−κt‖ξ0 − ξ̂0‖0, t ≥ 0 (3.29)

We conclude that we achieve to construct an exponential
high-gain observer of adjustable convergence rate κ, depen-
dent on the selection of θ. The higher the values θ attains,
the faster the observation error converges to zero.

Remark 3.1: We have chosen P in (3.3) and (3.9) to be
non-diagonal, so as to make (3.3) feasible. In constrast to
this, in the existing literature on stability approaches (see for
instance [1], Chap. 4 and [6]) a diagonal positive definite
Lyapunov matrix P is used. Our particular diagonal form of
Λ allows commutativity of Λ and P , which is essential in
the integration by parts, while calculating the time-derivative
of Wp. An assumption of such commutativity property for
non-diagonal Lyapunov matrix is made in Prop. 2.1 of [13].

To conclude the section, let us present an application of
Theorem 3.1 to a numerical example.

Example 3.1: Consider system

∂tξ1 + 0.1(2 + cos(ξ1))∂xξ1 = ξ2 + 10 sin(ξ1), (3.30a)

∂tξ2 + 0.1(2 + cos(ξ1))∂xξ2 = − sin(ξ1 − ξ2), (3.30b)

∀t ∈ [0,+∞),∀x ∈ [0, 1], with distributed measurement

y = ξ1 (3.30c)

and boundary conditions of the form

ξ1(t, 0) = −1

7
ξ1(t, 1)− ξ2(t, 1) (3.30d)

ξ2(t, 0) = ξ2(t, 1) (3.30e)

Consider initial conditions ξ0
1(x) = π(1 − x), ξ0

2(x) =
−π. System (3.30) is of the form (3.1) with boundary
conditions described by (3.2). All Assumptions A1-A4 that
we have assumed for system (3.1) are satisfied. The high-
gain observer for system (3.30) is of the form given by
(3.4), (3.5). After calculating all the essential constants that
are used in Theorem 3.1, we can proceed to the observer
design. We appropriately choose θ being equal to 5. With
K = (−1,−2)T, the high-gain observer is given by the
following equations:

∂tξ̂1+0.1(2+cos(y))∂xξ̂1 = ξ̂2+10 sin(ξ̂1)+5(y−ξ̂1),
(3.31a)

∂tξ̂2 + 0.1(2 + cos(y))∂xξ̂2 = − sin(ξ̂1 − ξ̂2) + 50(y − ξ̂1),
(3.31b)

∀t ∈ [0,+∞),∀x ∈ [0, 1],

ξ̂1(t, 0) = −1

7
ξ̂1(t, 1)− ξ̂2(t, 1), ξ̂2(t, 0) = ξ̂2(t, 1) (3.31c)

We choose observer initial conditions (in accordance with the
compatibility conditions) ξ̂0

1(x) = 2π(1− x), ξ̂0
2(x) = −2π.

In Figure 1 the solution ξ1 is shown and in Figures 2 and
3 we illustrate the estimation error functions for both states,
which exhibit exponential convergence to zero, as predicted
by Theorem 3.1.
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IV. CONCLUSION AND PERSPECTIVES

We introduce an observable canonical form for a class of
nonlinear hyperbolic systems with distributed measurements.
Sufficient conditions for the construction of a well-posed
high-gain observer system for a particular class of hyperbolic
systems in the canonical form are derived. Exponential
stability of the estimation error is proven by means of an
appropriately chosen Lyapunov functional and for observer
gain sufficiently large. We illustrate our results via a sim-
ulation. Further exploration of the distributed observability
and canonical form properties will be part of future studies.
Extending the above-described observer design results to
more general classes of nonlinear hyperbolic systems in a
canonical form and weakening of some of our assumptions
will also be considered in future developments.
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