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Stability and Reachability analysis for a controlled
heterogeneous population of cells. ∗

Cécile Carrère and Hasnaa Zidani

January 10, 2019

Abstract

This paper is devoted to the study of a controlled population of cells. The modelling of
the problem leads to a mathematical formulation of stability and reachability properties of
some controlled systems under uncertainties. We use the Hamilton-Jacobi (HJ) approach
to address theses problems and to design a numerical method that we analyse on several
numerical simulations.

1 Introduction
The treatment of cancers with cytotoxic chemotherapies often encounters two major pitfalls:
the side toxicity of the drugs on healthy cells and organs, and the emergence of resistance
to the treatment. This resistance can occur because of an initial genomic heterogeneity
of the tumour: in its early stages, it contains several distinct populations of cells, that
differ from one another because of successive mutations [17]. If one of these lineages is
resistant to the first line of treatment, then using strong doses of drug, as it is done in
many classical protocols, kills all sensitive cells, and lets this resistant lineage grow without
control. It is thus important to take into account cancer heterogeneity before starting a
treatment. Mathematical modelling can, in this framework, give guidelines on how to treat
such tumours.

For example, [6, 7] study the growth and treatment of heterogeneous tumours, and de-
termine optimal dosages of drugs for fixed time injections. The treatment protocol is there
considered as instantaneous injections of drugs. We will work here in a framework of conti-
nous treatment. In [25], an ODE model of heterogeneous tumour growth is studied under
continuous treatment. The optimal control theory is used to give necessary conditions on
optimal protocols, in order to reduce the tumour volume while preserving its heterogeneity.
We refer the reader to [18, 25, 31, 30] for different models of tumour growth, presented and
studied in the framework of optimal control theory.

In this paper, we will consider a model for heterogeneous tumour growth, with interac-
tions between two cancerous cells populations: s which is sensitive to the treatment, and r
which is resistant to it. The biological model is an in vitro experiment, with both ligneages
developping in a Petri dish, so that no other cells intervene in their evolution. It has been
already considered in [12], where an optimal treatment is characterized to treat heteroge-
neous tumours. This objective is satisfactory for experiments on in vitro tumors, but might
not be adequate for medical applications with longer time objectives.

∗This work is partially supported by a public grant overseen by the French National Research Agency (ANR)
through the "iCODE Institute project" funded by the IDEX Paris-Saclay ANR-11-IDEX-0003-02, and by the
DGA under grant 0660037
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The main goal of the present work is to maintain permanently the tumour size under a
certain threshold, defined by medical considerations, under which the tumour is considered
benign. When this objective cannot be satisfied (for instance, if the initial tumour is already
bigger than the designed threshold), we would like to find a good strategy to lower the tumour
volume, in such a way that we will then be able to maintain it under the size threshold.
These problems will be referred as stability or reachability problems. We will formulate
these objectives as control problems that we will solve in the framework of Hamilton-Jacobi
(HJ) equations.

An important problem arising from biological applications is the influence of uncertain-
ties. For example, since several cytotoxic drugs target cells during their dividing phase, the
drug efficiency may greatly differ depending on the tumour composition at the time of injec-
tion. The Hamilton-Jacobi framework is suitable to consider uncertainties as an opponent
player, thus adjusting the optimal strategies to varying parameters.

Hamilton-Jacobi theory has been investigated, for stability and reachability problems, in
many works. We refer to [28, 23, 27, 26, 24, 13, 9, 2] and the references therein. In particular,
let us also mention the works [16] where Hamilton-Jacobi framework is considered to take
into account uncertainties in the case of collision avoidance for unmanned vehicles. In that
paper, the uncertainty is the trajectory of another vehicle.

Recall that Hamilton-Jacobi equations characterise the value function associated to the
control problem. Once this value function is computed numerically, a reconstruction algo-
rithm can be used to get the optimal strategies for stability or for reachability. In this paper,
we consider a reconstruction algorithm for control problems in presence of state constraints.
We prove the convergence of this algorithm and we show with several numerical simulaitons
the relevance of our approach.

This article is organized as follows. Section 2 presents the different models, objectives and
constraints that will be considered in this paper. Section 3 is devoted to the mathematical
analysis. In this section, a Hamilton-Jacobi approach is introduced to characterize some
reachability sets. In section 4, we analyse some trajectory reconstruction algorithms. Finally,
section 5 presents and analyses some numerical simulations.

2 Mathematical formulation of the problem
We present here some notations that will be used throughout this paper. We will denote by
| · | the Euclidean norm and by 〈·, ·〉 the Euclidean inner product on RN (for any N ≥ 1).
The notation B stands for the unit open ball {x ∈ RN : |x| < 1} and B(x, r) := x+ rB for
any x ∈ RN and r > 0.

For every set M ⊆ RN ,
◦
M, M and ∂M denote its interior, closure and boundary,

respectively. The distance function toM is dist(x,M) = inf{|x− y| : y ∈M}.
For any M > 0, the set L1(0,+∞; e−Mtdt) is the set of functions f : [0,+∞) →

R such that
∫ +∞

0 |f(t)|e−Mtdt is finite: |f | is integrable for the measure e−Mtdt. The
set W 1,1(0,+∞; e−Mtdt) is the set of functions f ∈ L1(0,+∞; e−Mtdt) such that their
derivative is also in L1(0,+∞; e−Mtdt).

We consider the following controlled differential system :

ẏ(t) = f0(y(t), α(t)) + f1(y(t), α(t))u(t), (1)

where u is the control, y the vector of state variables (y(t) ∈ Rn, with n = 2 or 3 depending
on the problem we consider), and α(t) a vector of m parameters that can change over time t,
representing the uncertainties. We consider only measurable controls taking value between
0 and Umax ; in other words,

u ∈ U := {u : R+ → R is measurable, u(t) ∈ [0, Umax] a.e.}.
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We also consider that the uncertainties are measurable functions taking values in a given
compact subset A of Rm (with (m ≥ 1)):

α ∈ A := {α : R+ → R is measurable, α(t) ∈ A a.e.}

In all the sequel, we will consider models where the vector fields f0 : Rn×Rm → Rn and
f1 : Rn × Rm → Rn satisfy the following assumption:

(Hf ) f0 and f1 are continuous fonctions, and Lipschitz continuous with respect to the
first variable uniformly with respect to the second variable: there exists a constant M0 > 0
such that:

|f0(x, α)− f0(x′, α)|+ |f1(x, α)− f1(x′, α)| ≤M0|x− x′| ∀x, x′ ∈ Rn and ∀α ∈ A. (2)

Under this assumption the functions f0 and f1 satisfy a linear growth: there exists a
constant M1 > 0 such that:

|f0(x, α)| ≤M1(1 + |x|) and |f1(x, α)| ≤M1(1 + |x|) ∀x ∈ Rn and α ∈ A. (3)

We will also use a function f that is defined as:

f(x, α, u) = f0(x, α) + f1(x, α)u for x ∈ Rn, α ∈ A, u ∈ [0, Umax].

Let x ∈ Rn, u ∈ U be an admissible control and α ∈ A a perturbation. By a solution to
(1) we mean an absolutely continuous function y(·) that satisfies

y(t) = x+
∫ t

0
[f0(y(s), α(s)) + f1(y(s), α(s))u(s)]ds for all t ≥ 0.

By the Lipschitz continuity of f0, f1 and by their linear growth, the solution of (1) is
uniquely determined by the control input u ∈ U , the initial condition y(0) = x ∈ Rn and
the uncertainties α ∈ A and will be denoted by yα,ux . Furthermore, the maximal solution is
defined for all times. Note, that by the Gronwall Lemma, we have:

|yα,ux (t)| ≤ (1 + |x|)eM1t t ≥ 0,
|yα,ux (t)− x| ≤ (1 + |x|)(eM1t − 1) t ≥ 0,
|ẏα,ux (t)| ≤M1(1 + |x|)eM1t a.e. t > 0.

Moreover, for any R > 0, there exists MR > 0 such that:

|yα,ux (t)− yα,ux′ (t)| ≤MR|x− x′|eM0t ∀x, x′ ∈ B(0, R).

For any x ∈ Rn, we denote by S(x) the set of all solutions yα,ux , on [0,+∞[, of equation
(1) associated to α ∈ A and u ∈ U and with the initial condition x:

S(x) = {yα,ux ∈W 1,1(0,+∞, e−M0t), α ∈ A, u ∈ U}.

In the control problems that we will consider, the control input u will have to adapt
to uncertainties α. In this context, we consider a differential game with two players, one
can act by choosing the control α and the other one can respond by chosing the function
u. Following the work of [19], we use the notion of strategies u : α 7→ u[α], and since we
cannot predict the fluctuations of the parameters we consider the set of all non-anticipative
strategies Υ given as:

Υ :=
{
u : A → U / ∀(α, α′) ∈ A and ∀t ≤ 0,(

α(τ) = α′(τ)∀τ ∈ [0, t]
)

=⇒
(
u[α](τ) = u[α′](τ)∀τ ∈ [0, t]

)}
.
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2.1 Two models for heterogeneous tumour growth
The first model that will be considered in this paper, has been presented and studied in
[12]. It represents the growth of two populations of cells in a Petri dish in competition for
nutrients: s is the population sensitive to the treatment u, and r the population resistant
to it. They are fairly similar, so their division rate for small populations ρ is identical.
They compete for food and space with a logistic growth rate, which is represented by the
total remaining space K − s(t) −mr(t), K being the size of the Petri dish and m the size
ratio between sensitive and resistant cells. Moreover, interspecies competition is stronger on
resistant than on sensitive cells, which is represented by a supplementary competition term
βs(t)r(t). We suppose that no mutations occur during the time of our study. Finally, the
treatment only has an influence on the sensitive population.{

ds
dt

(t) = ρs(t)(1− s(t)+mr(t)
K

)− γ(t)s(t)u(t),
dr
dt

(t) = ρr(t)(1− s(t)+mr(t)
K

)− β(t)s(t)r(t).
(M1)

This model includes some uncertainties α(t) = (γ(t), β(t)) on the drug efficiency and on the
interspecies competition. We suppose throughout the paper that these uncertainties take
values in a set A that has the following form

α(t) ∈ A := [γmin, γmax]× [βmin, βmax],

where the parameters γmin ≤ γmax and βmin ≤ βmax are given. The values that will be used
in the numerical simulations are summed up in section 5, Table 1.

One can show easily that the set K := {(s, r) ∈ R2/s ≥ 0, r ≥ 0 and s + mr ≤ K}
is invariant under the action of system (M1), whichever α ∈ A and u ∈ U are. This is
consistent with the fact that K represents the total space in the Petri dish, thus it is a
bound on the size of the in vitro tumour.
Remark 1. Note that the dynamics function doesn’t satisfy the Lipschitz continuity of
assumption (Hf ). However, since we are interested in system (M1) in K, we can modify f0
and f1 outside of K such that for a certain R > max(K,K/m), |y| > R implies f0(α, y) =
f1(α, y) = 0 for any α and f0 and f1 are Lipschitz continuous on R2 × R2.

In our simulations, we will consider the case where γminUmax > ρ, meaning that we have
access to relatively large doses of treatment.

Limiting the drug dosage to a maximal value umax is important, but the cumulated dose
of treatment over a period of time should also be kept under a certain threshold. Otherwise,
cumulated effects on the patient global health can be very harmful [14]. A first solution to
take this toxicity into account is to set the following condition: for any t ≥ 0, we impose
that: ∫ t+τ

t

u(s)ds ≤ Dmax (4)

where τ is a typical time of treatment, and Dmax the maximal quantity, or dose, of treatment
to be delivered during time τ . This condition gives rise to a delayed system of equations.
This proves very difficult to control, both theoretically and numerically, for the problems we
are about to define. But since the necessity of (4) comes from a biological interpretation,
one can transform this condition by adding a virtual global health indicator, which will keep
track of the toxicity. We thus propose the following model:

ds
dt

(t) = ρs(t)(1− s(t)+mr(t)
K

)− γ(t)s(t)u(t)
dr
dt

(t) = ρr(t)(1− s(t)+mr(t)
K

)− β(t)s(t)r(t)
dw
dt

(t) = ρw − µw(t)− νw(t) max(0, u(t)− utox).
(M2)

This model is inspired by [4], in which the state variable w is a white blood cells count.
The new state variable w represents a virtual global health indicator, that is renewed at a
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constant rate ρw, evacuated from the system at rate µw, and destroyed by drug doses larger
than the threshold utox > 0. The set

K′ := {(s, r, w) ∈ R3/s ≥ 0, r ≥ 0, w ≥ 0, s+mr ≤ K and w ≤ ρw/µ}

is invariant under action of system (M2). As mentioned in remark1, the dynamics can be
changed in adequate way outside of K′ such that it fits assumption (Hf ).

Note that in (M2), the indicator w does not interact with sensitive or resistant cancerous
cells. Indeed, we are still considering cancerous cells cultivated in vitro without any other
population: the state variable w only serves as as way to limit drug usage, by imposing for
example w(t) ≥ wmin for any t ≥ 0.

In Section 5, we will present numerical simulations of the problem ; the values chosen
for the different parameters are listed in Table 1.

2.2 Objective functions and state constraints
From now on, we will consider two control problems. Both problems involve the tumour
size, that we define as:

φ : y = (s, r) 7→ s+mr.

For the simplicity of notations, even when we consider the model (M2) where the state
variable is y = (s, r, w) ∈ R3, we will still denote φ(y) = s+mr.

Now, we can state the two problems that will be considered in this paper. The first one
is a stability problem.

Problem 1 (Stability). Let Q > 0 be such that Q < K. Given x0 ∈ Rn, does there exist a
strategy u ∈ Υ such that for any perturbation α ∈ A,

∀t ≥ 0, φ(yα,u[α]
x0 (t)) ≤ Q.

In other words, given a threshold in tumour size Q, can we find a control strategy such
that the tumour size never exceeds this threshold?

The second problem that will be analysed in this paper is a reachability problem.
Problem 2 (Reachability). Let Q > 0 be such that Q ≤ K, and let T > 0. For x0 ∈ Rn,
does there exists a strategy u ∈ Υ and a minimal time T ∈ [0, T ] such that, for any
perturbation α ∈ A,

∀t ≥ T , φ(yα,u[α]
x0 (t)) ≤ Q.

In other words, given a certain time of treatment T , minimize the time T at which the
tumour size is stabilized under the threshold Q, without this time exceeding T .

The above two problems will be considered for models (M1) and (M2).

State constraints (Global health indicator). In both models (M1) and (M2), the functions
s(·) and r(·) should take values respectively in [0,K] and [0,K/m].

Furthermore, in the model (M2), the global health indicator system w(t) should remain
above a certain threshold wmin, at any time t:

∀t ≥ 0, w(t) ≥ wmin, (5)
where wmin is a given constant that satisfies ρw

µ
> wmin. One can also check from the

dynamics of w that if w(0) ≤ ρw
µ
, then:

∀t ≥ 0, w(t) ≤ ρw
µ
.
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3 Stability and reachability
We now describe the mathematical formulations that will be used to address Problems 1
and 2.

3.1 Definition of the stability kernel
Let T be a subset of Rn. We will call the stability kernel of T under the dynamics (2.1) the
set NT ⊂ Rn defined by:

NT := {x ∈ Rn / ∃u ∈ Υ, ∀α ∈ A, ∀t > 0, yα,u[α]
x (t) ∈ T}.

It is the set of starting points for which there exists a strategy u ∈ Υ that keeps the solution
in T for any time t ≥ 0 and for any perturbation α ∈ A.

Let us point out that the above definition of stability is identical to the notion of descrim-
inating kernel analyzed in [11]. It is also related to the notion of viability under set-valued
dynamics in the monograph [3]. Here, we prefer to call the set NT a stability set because
it will represent in our application the initial sizes of the tumours that can be kept forever
under a certain threshold.

In our context as described in the previous section, and in order to answer the stability
problem (Problem 1), we are lead to the question of determining the stability kernel for a
set TQ that is defined, for a given threshold value Q ∈ (0,K) of the tumour size, as follows:

- In case of model (M1),

TQ := {(s, r) ∈ R2/s ≥ 0, r ≥ 0 and s+mr ≤ Q}

- In case of model (M2),

TQ := {(s, r, w) ∈ R3/s ≥ 0, r ≥ 0, s+mr ≤ Q, and w ∈ [wmin,
ρw
µ

]}.

Proposition 1. For Model (M1), if Q > K(1− γmin
γmax

1
1+ρ/Kβmin

), then NTQ has a non empty
interior. If Q ≤ K

1+Kβmin/ρ
then NTQ = [0, Q]× {0}.

Proof. The two assertions of this proposition come from phase plane analysis of System
(M1).

Assume that Q > K(1 − γmin
γmax

1
1+ρ/Kβmin

). In this case, consider the constant control
u(t) ≡ u0 = 1

γmax
Kβmin

1+Kβmin/ρ
. For any fixed β ∈ [βmin, βmax], and any fixed γ ∈ [γmin, γmax],

one can check that the point (K(1 − γ
ρ
u0), 0) is stable and locally attractive in R+2 since

K(1− γ
ρ
u0) > K

1+Kβmin/ρ
. Thus the segment [K(1− γmax

ρ
u0),K(1− γmin

ρ
u0)]×{0} is locally

attractive in R+2 for any perturbation α(t). Thus there exists a neighbourhood of this
segment embedded in NTQ , since K(1− γmin

ρ
u0) ≤ Q.

Now, consider the case Q ≤ K
1+Kβmin/ρ .

Under constant control u(t) ≡ ρ
γmax

(1 − Q
K

), for any s ∈ (0, Q] and any perturbation
α ∈ A, we have yα,u(s,0)(t) ∈ (0, Q] for all t ≥ 0. Moreover, (0, 0) is stable under any treatment,
thus [0, Q]× {0} ⊂ NTQ . However, suppose that β(t) ≡ βmin ; for any (s, r) ∈ TQ such that
r > 0, we have dr

dt
(t) ≥ rβmin( K

1+Kβmin/ρ
− s) > 0. Thus any trajectory starting in TQ will

leave it in a finite time.

With similar arguments as in the above proof, it is possible to check that the statement
of proposition 1 is still true for system (M2) as long as utox >

ρ
γmin

(1− 1
1+Kβmin/ρ

).
As we are interested in controlling heterogeneous tumours (i.e. with r > 0), we will

consider in the sequel that Q > 1
1+Kβmin/ρ

.
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3.2 Level-set approach for stability problem
To characterize the stability kernel, we use a level-set approach and define a control problem
and its value function whose 0-sub-level set coincides exactly with the stability kernel (see
[9, 16] and the references therein).

For this, we fix Q > 1
1+Kβmax/ρ

and define a bounded Lipschitz continuous function
gQ : Rn → R+ such that

x ∈ TQ ⇐⇒ gQ(x) = 0.
A particular choice of gQ could be:

gQ(x) = max(1, dist(x,TQ)).

Now, consider the following control problem parametrized by the initial position x ∈ Rn:

(Px) min
u∈Υ

max
α∈A

∫ +∞

0
e−λtgQ(yα,u[α]

x (t))dt,

where λ > 0 is a constant that will be chosen later. We consider also the value function
(called also cost-to-go function) defined by:

VQ(x) = min(Px), ∀x ∈ Rn.

Before studying this control problem, let us first point out some straightforward remarks on
the value function
Remark 2. First, gQ being bounded, the integral

∫ +∞
0 e−λtgQ(yα,ux (t))dt is well-defined

for any α ∈ A and any u ∈ U . Also, because the function gQ is bounded, the value function
VQ is also bounded.

Furthermore, it is not difficult to check that the stability kernel NTQ can be characterized
as the 0-sub-level set of the function VQ:

NTQ = {x ∈ Rn | VQ(x) = 0}.

In the sequel, we shall study the properties of the value function VQ and show a way to
get an efficient approximation on K by solving an appropriate partial differential equation.
Proposition 2. The value function VQ is Lipschitz continuous on Rn if λ is large enough.
Morevover, it satisfies the following dynamic programming principle:

∀x ∈ Rn, ∀h > 0, VQ(x) = min
u∈Υ

max
α∈A

(∫ h

0
e−λtgQ(yα,ux (t))dt+ e−λhVQ(yα,ux (h))

)
. (6)

Proof. Because f is Lipschitz continuous on Rn for problems (M1) and (M2), according to
the Gronwall lemma, for any x, x′ ∈ Rn, any t ≥ 0, any α ∈ A and any u ∈ U ,

|yα,ux (t)− yα,ux′ (t)| ≤ eM0t|x− x′|.

Furthermore, function gQ is 1-Lipschitz continuous, thus for x, x′ ∈ Rn, we have:

|VQ(x)− VQ(x′)| =
∣∣∣∣ inf
u∈Υ

max
α∈A

∫ +∞

0
e−λtgQ(yα,u[α]

x (t))dt− inf
u∈Υ

max
α∈A

∫ +∞

0
e−λtgQ(yα,u[α]

x′ (t))dt
∣∣∣∣

≤ sup
u∈Υ

max
α∈A

∫ +∞

0
e−λt|gQ(yα,u[α]

x (t))− gQ(yα,u[α]
x′ (t))|dt

≤
∫ +∞

0
e−λteM0t|x− x′|dt.

If we choose λ > M0, then the function VQ is Lipschitz continuous.
The proof of the dynamical programming principle comes from classical arguments (see

[5] for example).
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From (6), one can show that VQ satisfies a Hamilton-Jacobi equation:
Theorem 1. For any λ > M0, the value function VQ is the unique viscosity solution of the
Hamilton-Jacobi equation:

λVQ +H(x,DxVQ)− gQ(x) = 0, x ∈ Rd, (7)

where DxVQ represents the derivative of VQ (in the viscosity sense), and the Hamiltonian
H : Rn × Rn → R is defined by:

H(x, p) := min
α∈A

max
u∈[0,Umax]

〈−f(x, α, u), p〉.

This theorem can be obtained by using classical arguments in viscosity theory [20, 5].
We note that the expression of the hamiltonian H can be given in a more explicit form

for the different models we are considering in this paper:

For model (M1), the hamiltonian is:

H((s, r), p) =− p1ρs(1−
s+mr

K
)− p2ρr(1−

s+mr

K
) + min(p2βminsr, p2βmaxsr)

+ max(0, γminsumaxp1).

For model (M2), the hamiltonian is:

H((s, r, w), p) =− p1ρs(1−
s+mr

K
)− p2ρr(1−

s+mr

K
)− p3(ρw − µw)

+ min(p2βminsr, p2βmaxsr)
+ max(0, γminsutoxp1, γminsUmaxp1 + µw(Umax − utox)p3).

These expressions will be useful for the numerical implementation purposes in the ap-
proximation of the HJ equation.

3.3 Minimum time function - Reachability problem
We now move to the problem of reachability (Problem 2). Here, we assume that NTQ is
known (or an approximation of NTQ is given). Then, we are interested in the set of initial
positions from where there exists an admissible trajectory that can reach NTQ in a finite
time horizon T > 0 while remaining in a given domain; D := [0,K] × [0,K/m] for model
(M1), and D := [0,K]× [0,K/m]× [wmin, ρw

µ
] for model (M2). Therefore, the reachable set

is defined as:

R(T ) := {x ∈ Rn | ∃u ∈ Υ,∀α ∈ A, yα,u[α]
x (T ) ∈ NTQ and yα,u[α]

x (s) ∈ D ∀s ∈ [0, T ]}.

An illustration of NTQ and some trajectories reaching it are presented in 1. In this figure,
the blue region represents the set viab. Starting from the points A or B, it is possible to
find admissible trajectories that can reach NTQ in a finite horizon T . So both points A and
B are in the reachable set (represented in the figure as the set surrounded by the red dashed
line).

Notice that for some x ∈ Rn, it may not be possible to get to the stability set NTQ in a
finite time. For example, if x = (0,K/m), then for any t ≥ 0, any u ∈ U and any α ∈ A, we
have yα,ux (t) = (0,K/m). Thus, if Q < K, whatever control is chosen, the trajectory will
never enter NTQ . Moreover, for a certain fixed realization of α and a starting admissible
point x, there can be a control u and a time t < T such that yα,ux (t) ∈ NTQ . This trajectory
will stay in NTQ for ever because NTQ is the stable set.

Here, again we will follow some ideas investigated by [29, 32, 22, 9] and use a level-set
approach to define the reachable set R(T ) at time T .
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Figure 1: Illustration of the sets NTQ
(blue region) and R(T ) (set surrounded by the red dashed

line).

First, we introduce the function g : Rn → R that is the oriented distance to the set D:

gw(x) :=
{

dist(x, ∂D) if x ∈ Rn \ D,
−dist(x, ∂D) if x ∈ D.

Now consider the control problem and its value function W defined, for every x ∈ Rn
and t ∈ [0, T ], by:

W (x, t) := min
u∈Υ

max
α∈A

{
max

(
max

0≤τ≤t
gw(yα,u[α]

x (τ)), VQ(yα,u[α]
x (t))

)}
.

According to [9], for T > 0, the reachable set is given by:

R(T ) = {x ∈ Rn |W (x, T ) ≤ 0}.

Moreover, the minimum time, T (x), for a starting position x ∈ Rn to reach the target NTQ

(before time T ) is given by:

T (x) = min{t ∈ [0, T ]/W (x, t) ≤ 0}.

Besides, as it has been shown in [9], the value function W satisfies the following dynamical
programming principle (for every x ∈ Rn, for every t ∈ [0, T ] and h ∈ [0, T − t]:

W (x, t+ h) = min
u∈Υ

max
α∈A

(
max

(
max

0≤τ≤h
gw(yα,u[α]

x (τ)),W (yα,u[α]
x (h), t)

))
,

and W is the unique viscosity solution to the following Hamilton-Jacobi-Bellman equation:

min
(
∂tW (x, t) +H(x,∇Dx(x, t)),W (x, t)− gw(x)

)
= 0 for x ∈ Rn, t ∈]0, T ],(8a)

W (x, 0) = VQ(x) for x ∈ Rn, (8b)

where ∂tW (x, t) and DxW (x, t) are respectively the time derivative and the space derivative
(in the sense of viscosity notion, see [5] ).

4 Trajectories reconstruction
Once the value functions are constructed up to some error on a grid of calculations, we want
to deduce optimal controls for a starting position x0.

9



4.1 A trajectory staying in NTQ

Let fh be a family of numerical approximation of f . We make the following assumption:
(HA1) for any R > 0, there exists κR > 0 independant of h such that:

|f(x, α, u)− fh(x, α, u)| ≤ κRh ∀|x| < R,α ∈ A, u ∈ U

We will use an approximation scheme for the differential equation using fh: an approx-
imation of yα,ux (t) with α and u constant will be

ỹ = x+ hfh(x, α, u).

For example, the case of an Euler forward scheme corresponds to the choice fh = f .
Now, for any h ∈ (0, 1) consider an approximation of VQ, noted V hQ . We make the

following assumption:
(HA2) For every h ∈ (0, 1), there exists an approximation V hQ of VQ, which satisfies:

Eh := max
x
|VQ(x)− V hQ (x)|, Eh

h
−→
h→0

0.

The function V hQ could be a numerical approximation obtained by solving a discretized
form of the HJB equation.

Let h ∈ (0, 1) be a time step, and Nh ∈ N a number of steps. The actual realization of
the uncertainties ᾱ is known ; we will denote αk = ᾱ(kh) for simplicity. For any y ∈ R2, we
define the following trajectory reconstruction algorithm up to time Th = Nhh:

Algorithm 1: Stability
• The starting point y and the uncertainties realization ᾱ = (ᾱk)k are known.
• Initialization Set yh0 = y.
• Recursive definition of yhk Suppose (yh` ) is known for ` = 0...k − 1. To

determine yhk , we define an optimal control uhk such that:

uhn ∈ argminu∈U V
h
Q (yhk−1 + hfh(yhk−1, ᾱk, u))e−λh + λhgQ(yhk−1).

The new position is then defined by:

yhk = yhk−1 + hfh(yhk−1, ᾱk, u
h
k).

• Complete trajectory We associate to the sequence of controls (uhk)k the piece-
wise constant function uh(t) = uhk for t ∈ [kh, (k + 1)h), and an approximate
trajectory yh defined on [0,+∞) by:

ẏh(t) = fh(yhk , ᾱk, uhk) for t ∈ (kh, (k + 1)h)
yh(kh) = yhk ∀k ∈ N, k ≤ Nh
ẏh(t) = f(y(t), ᾱ, 0) ∀t > Th

Note that in general, yᾱ,uh

y0 6= yh. We shall show that any accumulation point ȳ of (yh)h
is a trajectory realyzing better than a minimum for the cost function VQ: since ᾱ is an
actual realization of the uncertainties, it might be "better than the worst".
Theorem 2. Let y ∈ Rn and let (yhk ) be the sequence defined by Algorithm 1, under
hypothesis (Hf ) and assumptions (HA1) - (HA2). Suppose furthermore the following limits
to hold true:

Nhh −→
h→0

+∞, Nhh
2 −→
h→0

0, NhEh −→
h→0

0. (9)
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Then the functions (yh) form a better than minimizing sequence in the following sense:

VQ(y) ≥ lim sup
h→0

∫ +∞

0
e−λtgQ(yh(t))dt (10)

Furthermore, the family (yh) has an accumulation point y in W 1,1([0,+∞), e−M0t), and if
VQ(y) = 0 then it is a viable trajectory, in the sense that:

∀t ≥ 0, y(t) ∈ NTQ .

Proof. Let y ∈ R2 and let (yhk ) and (uhk) be the corresponding sequences constructed by
Algorithm 1. One can show that there exists R > 0 such that for any h > 0 and any
n ≤ Nh, |yhk | ≤ R. Thus taking into account (3), there exists MR such that

∀h > 0, ∀k ≤ Nh, ∀u ∈ U, |f(yhk , αk, u)| ≤MR.

The proof of Theorem 2 is carried out in three steps.

Step 1 Let us show that there exists κ > 0 such that:

VQ(yh0 ) ≥ VQ(yh0 + hfh(yh0 , α0, u
h
0 ))e−λh + λhgQ(yh0 )− κh2 − 2Eh. (11)

For simplicity, we will note here yh0 = y0, and uh0 = u0. Recall that the dynamical
programming principle for VQ writes as:

VQ(y0) = min
u∈Υ

max
α∈A

[
VQ(yα,u[α]

y0 (h))e−λh +
∫ h

0
gQ(yα,u[α]

y0 (t))e−λtdt
]
. (12)

Let ū0 ∈ Υ be the minimizing strategy for this problem. Let α∗ be an approximation
of the uncertainties, satisfying α∗(t) = αk for any t ∈ [kh, (k + 1)h). Then the following
inequality holds:

VQ(y0) ≥ VQ(yα
∗,ū0[α∗]

y0 (h))e−λh +
∫ h

0
gQ(yα

∗,ū0[α∗]
y0 (t))e−λtdt. (13)

We denote ū0[α∗] = u0 ∈ U .
Let us consider the first term of the right-hand member of inequation (13). By convexity

of f(x, α,U) for any x ∈ Rn and α ∈ A, there exists u∗0 ∈ U such that

y0 +
∫ h

0
f(y0, α0,u0(t))dt = y0 + hf(y0, α0, u

∗
0).

Then, yα∗,u0
y0 the trajectory starting at y0 for t = 0 and following uncertainties α∗ and

control u0 satisfies |yα∗,u0
y0 (h)− y0| ≤MRh. Moreover:

|yα0,u0
y0 (h)− y0 − hf(y0, α0, u

∗
0)| ≤

∫ h

0
|f(yα0,u0

y0 (t), α0,u0(t))− f(y0, α0,u0(t))|dt

≤
∫ h

0
M0|yα0,u0

y0 (t)− y0|dt ≤M0MRh
2,

where M0 is the Lipschitz coefficient of f .
Moreover, using fh the approximation of f :

|yα0,u0
y0 (h)− y0 − hfh(y0, α0, u

∗
0)| ≤M0MRh

2 + κRh
2.
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From 2 we know that VQ is a Lipschitz continuous function on R2 ; thus by denoting LV
its Lipschitz coefficient:

|VQ(yα0,u0
y0 (h))− VQ(y0 + hfh(y0, α0, u

∗
0))| ≤ LV |yα0,u0

y0 (h)− y0 − hfh(y0, α0, u
∗
0)|,

which leads to:

VQ(yα0,u0
y0 (h)) ≥ VQ(y0 + hfh(y0, α0, u

∗
0))− LV (M0MR + κR)h2,

≥ V hQ (y0 + hfh(y0, α0, u
∗
0))− LV ((M0MR + κR)h2 − Eh,

≥ V hQ (y0 + hfh(y0, α0, u0))− LV ((M0MR + κR)h2 − Eh, (by definition of u0)
≥ VQ(y0 + hfh(y0, α0, C0))− LV ((M0MR + κR)h2 − 2Eh.

We now deal with the second term of (13). Since the function gQ is 1-Lipschitz, we get
that for any t ∈ [0, h]:

|gQ(yα
∗,u0

y0 (t))− gQ(y0)| ≤
∫ t

0
|f(yα0,u0

y0 (s), α0,u0(s))|ds ≤ κRt,

which leads to:∫ h

0
gQ(yα

∗,u0
y0 (t))e−λtdt ≥

∫ h

0
gQ(y0)e−λtdt−

∫ h

0
κRte

−λtdt ≥ λhgQ(y0)− κR
h2

2 .

Going back to (13), we get that:

VQ(y0) ≥ VQ(y0 + hfh(y0, α0, u0))e−λh − LV (LMR + κR)h2 − 2Eh + λhgQ(y0)− LgκR
h2

2
which concludes the demonstration of (11) by setting κ = LV (LMR + κR) + LgκR/2.

Step 2 We can generalize (11) to any k < Nh:

VQ(yk) ≥ VQ(yk + hfh(yk, αk, uk))e−λh + λhgQ(yk)− 2Eh− κh2.

Moreover,

VQ(y0) ≥ VQ(y1)e−λh + λhgQ(y0)− 2Eh− κh2

≥ VQ(y2)e−2λh + λh(gQ(y0) + e−λhgQ(y1))− 4Eh − 2κh2.

By induction we deduce that:

VQ(y0) ≥ VQ(yNh )e−λNhh + λh

Nh−1∑
k=0

e−λkhgQ(yk)− 2NhEh − κNhh2

Step 3 Now consider the complete integral
∫ Th

0 e−λtgQ(yh(t))dt. We have that:∫ Th

0
e−λtgQ(yh(t))dt =

Nh−1∑
k=0

∫ (k+1)h

kh

e−λtgQ(yh(t))dt =
Nh−1∑
k=0

e−kh
∫ h

0
e−λtgQ(yh(t+ kh))dt

≤
Nh−1∑
k=0

e−kh
∫ h

0
e−λt(gQ(yk) + tCR)dt ≤

Nh−1∑
k=0

e−kh
(
λhgQ(yk) + h2

2 CR

)
.

Moreover, ∫ +∞

Th

e−λtgQ(yh(t))dt ≤ ‖gQ‖∞e−λTh .
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Thus,

VQ(y0) ≥
∫ +∞

0
e−λtgQ(yh(t))dt− h2Nh(CR2 + κ)− 2NhEh − ‖gQ‖∞e−λNhh. (14)

This concludes the proof of (10), since using the assumptions (9), we get;

VQ(y0) ≥ lim sup
h→0

∫ +∞

0
e−λtgQ(yh(t))dt. (15)

Finally, the functions (yh) are equicontinuous in W 1,1([0,+∞), e−M0t), so they have an
accumulation point y ∈W 1,1([0,+∞), e−M0t). Using (15), we have:

0 = VQ(y0) ≥
∫ +∞

0
e−λtgQ(y(t))dt.

Therefore, the trajectory is viable, which concludes the proof of Theorem 2.

Remark 3. It is possible that for a fixed h > 0 the constructed trajectory †h is not viable
on [0, Th]. However, because of (15), for h small enough the trajectory stays close to NTQ .

Moreover, it is possible that for an initial point y0 that satisfies gQ(y0) = 0 but VQ(y0) >
0, for certain realizations of the uncertainties ᾱ, the trajectory y constructed by Algorithm
1 is viable.

4.2 Minimal entry time
We now study how to construct optimal trajectories, knowing an approximation of W ,
entering NTQ in a minimal time. We focus on system (M1), an extension to (M2) can be
obtained with results from [9].

The first algorithm we present is a direct application of the value function W . Suppose
an approximation Wh of W has been constructed. Choose a starting point x0 such that
Wh(x0, T ) < 0. Given a fixed perturbation ᾱ ∈ A, and maximal number of time steps N
(the fixed time step being h = T/N), we define the trajectory reconstruction by the following
algorithm:

Algorithm 2
• The starting point x0 and the uncertainties realization ᾱ := (ᾱk)k are known.
• Initialization Set yh0 = x0.
• Recursive definition of yh` Suppose (yh` ) is known for ` = 0...k − 1 < N . To

determine yhk , we define an optimal control uhk such that:

uhk ∈ argminu∈U W
h(yhk−1 + hfh(yhk−1, ᾱk, u), kh)

The new position is then defined by:

yhk = yhk−1 + hfh(yhk−1, αk, u
h
k).

• Complete trajectory We associate to the sequence of controls (uhk)0≤k≤N−1
the piecewise constant function uh(t) = uhk for t ∈]kh, (k + 1)h], and an ap-
proximate trajectory yh defined on [0, T ] by:{

yh(kh) = yhk ∀n ∈ N, n ≤ N
ẏh(t) = fh(yhk , αk, uhk) for t ∈ (kh, (k + 1)h], k < N.
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We suppose that there exists Eh > 0 such that Eh/h −→ 0 when h→ 0 and:

∀t > 0, ||W (·, t)−Wh(·, t)||∞ ≤ Eh.

Then the following convergence theorem holds:
Theorem 3. Let y ∈ R2 and let (yhk ) be the sequence defined by Algorithm 2. We suppose
true the assumptions (Hf ) and (HA1)-(HA2). Then the functions (yh) form a better than
minimizing sequence in the following sense:

∀t ∈ [0, T ], W (x, t) ≤ lim sup
h→0

dQ(yh(t))

Moreover, the family of functions yh admits cluster points as h→ 0. Any such cluster ȳ is
a trajectory of system (M1) with uncertainties α.

This theorem can be proven similarly as in 4.1.
By using this algorithm, note that we have to keep in memory the whole mapping

W . Instead, we can use the mimunal time of entry function mapping T , which is of one
dimension less than W , to reconstruct optimal trajectories. Suppose an approximation T h
of T is constructed. The algorithm now becomes, for a starting point x0 ∈ K:

Algorithm 3
• The starting point x0 and the uncertainties realization ᾱ are known.
• Initialization Set yh0 = x0.
• Recursive definition of yh` Suppose (yh` ) is known for ` = 0...k − 1 < N . To

determine yhk , we define an optimal control uhk such that:

uhk ∈ argminu∈U T
h(yhk−1 + hfh(yhk−1, ᾱk, u))

The new position is then defined by:

yhk = yhk−1 + hfh(yhk−1, ᾱk, u
h
k).

• Complete trajectory We associate to the sequence of controls (uhk)0≤k≤N−1
the piecewise constant function uh(t) = uhk for t ∈]kh, (k + 1)h], and an ap-
proximate trajectory yh defined on [0, T ] by:{

yh(kh) = yhk ∀k ∈ N, k ≤ N
ẏh(t) = fh(yhk , αk, uhk) for t ∈ (kh, (k + 1)h], k < N.

Remark 4. Since the function T is not a priori Lipschitz, we cannot prove similarly that
this algorithm converges. However, an interesting numerical proposition can be highlighted.
If A is reduced to a single point {α0}, i.e. if there are in fact no uncertainties, this con-
struction depends only on the point x and not on time t. Thus, for any time step h we can
construct a complete mapping of:

uheff : Rn → U

x 7→ uheff (x) ∈ argminu∈U T
h(x+ hfh(x, α0, u)).

This mapping highlights zones of Rn where one should not use treatment, or zones where
the maximal treatment umax should be applied.
Remark 5. As there might be several controls such that the trajectory is optimal, the
control found by Algorithms 2 and 3 might present lots of variations depending on the
implementation of the argmin function. Moreover, recall that u represents a dosage of
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drug to give to a patient (or to put on a Petri dish as a first biological model). Thus,
shattering controls are really not interesting for a medical application. Gratefully, as shown
in Section 5, the controls found by the different algorithms are rarely shattering, so their
actual implementation would be feasible.

5 Numerical Simulations
We present in this section numerical simulations solving the viability and reachability prob-
lems. The simulations were performed with the software ROC-HJ. The values of the different
parameters are listed in table 1. These parameters were chosen arbitrarily to show some
general numerical results.

Parameter Symbol Value for numerical simulations
Growth rate ρ 1.0
Capacity K 3.0

Metabolism difference m 2.0
Size threshold Q 1.3 (Q=0.8 in Test 1)

Maximal time of treatment T 2, 5 or 10
Ghobal health indicator renewal ρw 1.0

Global health indicator evacuation µ 1
Drug effect on the global health ν 1.0

Drug threshold for the global health utox 6.0
Maximal drug dosage Umax 10.0

Minimal/Maximal drug efficiency γmin, γmax 0.1± δ
Minimal/Maximal competition force βmin, βmax 2/3± δ

Range of uncertainties δ 0.0% (Tests without uncertainties),
2.0%, 5.0%, 7.5%, or 10.0%

Table 1: List of parameters and their values for numerical simulations

To solve the viability and reachability problems formulated in the previous sections, we
proceed by solving the corresponding Hamilton Jacobi equations. We first start with some
simulations for model (M1) when there is no uncertainties in the model, in other words when
the set A is reduced to a singleton.

5.1 Numerical approximation of the value functions VQ and W

Following Theorem 1, we know that the value function VQ, corresponding to the viability
problem, is the unique solution of a steady HJ equation in the following form:

λVQ +H(x,∇VQ)− gQ(x) = 0, x ∈ Rn,

where λ > M0 and the Hamiltonian H is defined in Theorem 1. An approximation of VQ
can be obtained by a numerical discretization of this HJ equation. Note that numerical
approximations of HJ equations have been studied extensively in the literature. One can
cite for instance the Semi-Lagrangian methods [21, 33, 8], or the class of finite differences
methods. It is known that a Semi-Lagrangian scheme would require a discretization of the
set of the control variables. Since we have an explicit formula of H, we prefer to use a scheme
that will exploit this structure of the Hamiltonian and hence avoid the discretization of the
control variables. For this reason, in all our simulations we will use a scheme based on finite
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difference approximations. Let ∆y = (∆yk)1≤k≤n be a spatial discretization step (with
∆yk > 0). Consider a uniform grid on Rn as follows:

G :=
{
yi = i∆y ≡ (ik∆yk)1≤k≤n, i = (i1, . . . , in) ∈ Zn

}
. (16)

Denote {ek}k=1,...,n the canonical basis of Rn. For a function V : G → R, the terms D±k V (x)
are given by:

D±k V (x) := ±V (x±∆ykek)− V (x)
∆yk

. (17)

The vectors D±V (x) are defined by: D±V (x) := (D±1 V (x), · · · , D±n V (x)). An approxima-
tion of VQ can be obtained by solving the following approximated scheme:

V h(x) = (1− λh)V h −H∆(x,D+V h(x), D−V h(x)) + g(x) for x ∈ G, (18)

where the numerical Hamiltonian H∆ is an approximation of the Hamiltonian function H.
The numerical approximation V h : Rn → R is a bilinear interpolation of {V h(x), x ∈ G}.

Following [15, 9], if the numerical Hamiltonian H∆ is Lipschitz continuous on all its argu-
ments, consistent withH (i.e., H∆(y, p, p) = H(y, p)) and monotone (i.e ∂H∆

∂p−
k

(y, p−, p+) ≥ 0,
∂H∆

∂p+
k

(y, p−, p+) ≤ 0) together with the following Courant-Friedrich-Levy (CFL) condition

h

n∑
k=1

1
∆yk

{∣∣∣∣∂H∆

∂p−k
(y, p−, p+)

∣∣∣∣+
∣∣∣∣∂H∆

∂p+
k

(y, p−, p+)
∣∣∣∣} ≤ 1,

then, as h goes to 0, the numerical solution V h converges uniformly, on every compact set,
towards the desired solution VQ.

In this paper, a simple Lax-Friedrich scheme has been used:

H∆(x, p−, p+) := H(y, p
− + p+

2 )−
n∑
k=1

ck
2 (p+

k − p
−
k ),

with constants ck ≥ | ∂H∂pk
|, and a fictious time step h such that:

h

n∑
k=1

ck
∆yk

≤ 1. (19)

Although (18) is a nonlinear equation, the use of a fictuous time h such that hλ < 1
guarantees that the following fixed-point algorithm converges towards a unique solution
that happens to be V h (see [5, 21, 8]):

• For k = 0, consider V h,0 a given function on the domain of computation D
• For k ≥ 0, compute V h,k+1 by:

V h,k+1(x) = (1−λh)V h,k−H∆(x,D+V h,k(x), D−V h,k(x))+g(x) for x ∈ G.
(20)

In practice, the above fixed-point algorithm stops at a stopping criteria:

‖V h,k+1 − V h,k‖∞ ≤ ε,

where ε is a given tolerance. In all our simulations, this tolerance will be set to ε = 1e− 8.
Remark 6. Instead of a fixed-point algorithm described here above, one can use a policy
iterations method (or Howard algorithm), see [10, 1]. In the rest of the paper, we prefer to
focus on the analysis of the obtained results and not on the performances of the numerical
schemes. We simply use the Lax-Friederich scheme coupled with a fixed-point algorithm.
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Let N a given integer, denote ∆t the time discretization step such that T/N = dt. Set
t` := `∆t, and denote by w`i an approximation of the solution W (t`, yi). By using again the
Lax-Friedrich scheme, we consider the explicit scheme, as in [9]:

w`i = max
(
w`+1
i −∆tH∆ (yi, D−w`+1

i , D+w`+1
i

)
, w`i − gw(yi)

)
, (21a)

` ∈ {1 · · · , N} yi ∈ G
w0
i = VQ(yi) for yi ∈ G. (21b)

Remark 7. Under the CFL condition:

∆t
n∑
k=1

ck
∆yk

≤ 1,

the scheme (21) produces a numerical approximation that converges to the desired solution
W , as ∆t and ∆y go to 0 (see [9] for more details).

Next, we will present different simulations and discuss the results on the two models
(M1) and (M2). Here below a table gathering all the parameters used in our simulations.

Domain of computation for model (M1) D := [−0.1, 3.1]× [−0.1, 1.6]
# grid points 320× 170

Domain of computation for model (M2) D := [−0.1, 3.1]× [−0.1, 1.6]× [0, 1.2]
# grid points 320× 170××120

Fictuous time h in (18) 2.6e-4
Time step in (21) 2.6e-4

Stopping threshold ε in (20) ε := 1e− 8

Table 2: Parameters used in numerical reconstructions of functions V and W .

5.2 Model without toxicity and without uncertainties
Test 1 As stated in proposition 1, if Q < K

1+Kβmin/ρ
, then the set NTQ is reduced to the

segment {(s, 0), s ∈ [0, Q]}.
Our numerical resolution is robust enough to retrieve this result, as shown on figure 2a.

Furthermore, for T large enough, one can check that the set of initial tumours that can
be brought to NTQ is then reduced to {(s, 0), s ∈ [0,K]}, which we can also numerically
observe in figure 2b, for T = 10. If we chose a size threshold too small, the only tumours
that can satisfy the objectives are the ones without any resistant cells. We do not represent
trajectories corresponding to this problem here, as they are all part of the {(s, 0), s ∈ [0,K]}
segment. Of course, this case is trivial, and the aim of this simulation is just to show that
the methodology works even when the reachable set has an empty interior.

Test 2 In this test, we consider the model (M1) with Q = 1.3. We first compute the
stability kernel NTQ which is displayed in figure 3. In this figure, some viable trajectories
and the corresponding control functions are represented.

More precisely, in Figure 3a, the computed stability set is represented in cyan and is
limited by a dash line in red. Three viable trajectories are represented (by blue, red and black
lines) inside the viable set. On Figure 3b are displayed the control functions corresponding
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(a) Stability set (in green) (b) Reachability set (in blue)

Figure 2: Test 1 - Model (M1) with Q = 0.8.

to the three trajectories. The time horizon chosen for this display is t = 20. In Figure 3c
and 3d, we show the two components of the stable trajectories. In this figure and all the
following, for every displayed trajectory, we use a different color that is the same also used
for the corresponding control function.

(a) Stability kernel (b) Control laws

(c) Sensitive cells (d) Resistant cells

Figure 3: Test 2 - Model (M1) with Q = 0.13, stability kernel NTQ
and some viable trajectories

One can notice that the controls for each trajectory, after a certain amount of time
without treatment, do not reach the maximal control value Umax, but reach an intermediate
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value. Moreover, the trajectories seem to be attracted to a region on the {(s, 0), s ∈ [0, Q]}
segment. Recall from proposition 1 that this segment contains points that are stable and
locally attractive for certain constant values of the control u: the stability problem is thus
numerically solved, here, by reaching their basin of attraction and setting the control value
to the corresponding fixed control.

Moreover, in this case, setting the control law u(·) to a high value near Umax, even for
a short time, could make the system escape NTQ . Indeed, the trajectory under control
Umax starting from any point in NTQ is rapidly shifted to the left (corresponding to a fast
elimination of sensitive cells s), thus if the treatment is not stopped early enough, the system
would exit NTQ by its left-side border.

Test 3 Here, we still consider the case of Model (M1) with Q = 1.3. Now, we consider
the reachability problem where we want to steer the trajectories to the stability kernel NTQ

computed in Test 2.

(a) Reachability set for T = 2 (b) Reachability set for T = 10

Figure 4: Test 3 - Model (M1) with Q = 1.3, different capture basins

Figure 4 shows the capture basin R(T ) (the blue region) corresponding to the positions
from where there exist trajectories that can reach the stability kernel NTQ in a time less
than T = 2 (figure 4a) and in a time less than T = 10 (figure 4b). In the same figures, some
trajectories are represented. These trajectories correspond to the optimal paths starting
from some initial positions outside the stability kernel and that reach the stability kernel
in a minimum time less than T . The same trajectories along with the associated control
functions are also displayed in figure 5.

The trajectories shown here all exhibit the same behaviour: two phases of control can be
observed, a first one with no treatment, and a second one with a maximal line of treatment, as
pictured on figure 5c. During the first phase, the sensitive cells population usually increases
as seen on figure 5a, while the resistant cells population globally decreases, as seen on
figure 5b. During the second phase, we see a decrease in the sensitive cells population, and
a stabilization of the resistant cells population.

This can be expressed through the following biological interpretation. Since the control
only acts on sensitive cells s, and that resistant cells are repressed only through competition
with sensitive cells, a tumour can be treated only if sensitive cells already have a numerical
advantage over resistant cells. Thus, if a tumour is initially too resistant, it is more inter-
esting to wait for it to be "resensitized" than to treat it immediately. Then, once sensitive
cells are sufficiently present, the control is set to its maximal value in order to minimize the
time of entry into NTQ . This maximal dose period would then correspond to the loading
charge treatment used in classical chemotherapies.
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(a) Sensitive cells (b) Resistent cells

(c) Control laws

Figure 5: Test 3 - Model (M1) with Q = 1.3. Some trajectories in R(T ), for T = 10.

Using maximal doses on actual patients can be very harmful for their sane cells, because
of the general toxicity of the drugs used. This is why system (M2) takes into account the
effect of high doses of treatment on a quantity representing the global health of the patient.
We expect that this should change the behaviour of the system for the reachability problem,
but not for the stability problem.

5.3 Model with toxicity and without uncertainties
Here, we consider the model (M2). Likewise in the simulations performed with model (M1),
we first compute the stability kernel and then we compute the set of positions from where
it is possible to find admissible trajectories that can reach this stability kernel in a time less
than T = 10.

The stability kernel is a 3-dimensionnal object, we represent a section of NTQ for a
fixed value of the indicator w(0) = ρw

µ
. The trajectories represented on the phase planes are

projections of the 3-dimensional trajectories on the 2-dimensional plane. For the reachability
problem, we also represent only the section of R(T ) for w = ρw

µ
, but bear in mind that the

trajectories might be entering NTQ at a different value of w.

Test 4 Figure 6a displays the set NTQ for a fixed initial indicator w(0) = ρw
µ
. This

corresponds to a patient initially healthy.
As expected, the stability kernel pictured on figure 6a, looks quite similar to the stability

kernel for model (M1). This is because of our choice of parameters Q and utox.
Indeed, we chose Q such that the control u ≡ uQ = ρ

γ
(1 − Q

K
), for which the point
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(a) Section of NTQ at w = ρw
µ (b) Control laws

(c) Some trajectories in the stability kernel.

Figure 6: Test 4 - Model (M2). approximation of the stability kernel.

(Q, 0, w0) is stable and attractive, is small enough so that w0 = ρw
µ+ν(uQ−utox) is greater than

wmin. Thus some values of u smaller than utox, which do not affect the evolution of w, can
be sufficient to remain in NTQ .

However, models (M1) and (M2) do not produce the same trajectories nor the same
control laws. Figure 6c shows three trajectories, starting from three different positions y0
in NTQ and that stay forever in the stability kernel. The corresponding control inputs are
given in figure 6b. As can be noticed in this figure, the control laws present periods of drug
holiday (periods without drug application), which correspond on figure 6c to an increase
of the global health indicator. The controls are constant by parts, which is interesting for
further medical applications.

Test 5 We now run simulations for the reachability problem for model (M2), We gather
the resulting trajectories into three groups of similar structure.

Figure 7 presents a set of trajectories where the initial tumour is mostly sensitive to the
treatment. The treatments begin with a maximal dosage, but since this is very toxic for
the patient, the controls switch quickly to an intermediary value, as seen on figure 7b. This
intermediary value maintains the indicator w at its minimal value wmin, as seen on figure 7c.
This delays the time of entrance into NTQ , when compared with figure 5 from model (M1).

The set of trajectories gathered on figure 8 represents tumours initially large and hetero-
geneous. As in model (M1), the control starts with an initial phase at u = 0, then switches
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(a) Capture set (section at w = ρw
µ
) and projected

trajectories (b) Controls

(c) Trajectories: sensitive cells population, resistant cells population, global health indicator.

Figure 7: Test 5- Reachability analysis for model (M2). A set of trajectories corresponding to
large sensitive initial tumours.
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(a) Capture set (section at w = ρw
µ
) and projected

trajectories (b) Controls

(c) Trajectories: sensitive cells population, resistant cells population, global health indicator.

Figure 8: Test 5- Reachability analysis for model (M2). A set of trajectories corresponding to
large heterogeneous initial tumours.

to higher values, as pictured on figure 8b. Because of the toxicity constraint, except for short
periods of time the control does not maintain u = Umax. Instead, an intermediary value is
selected, which maintains the indicator w at its minimal value, as pictured in figure 8c.

Finally, figure 9 represents tumours that are initially very resistant to the chemotherapy.
The controls gathered on figure 9b are very shattered, but present a global behaviour similar
to previous results: a first phase without treatment to resensitize the tumour, then an
increase in dose. The control finally mainly selects a value maintaining the indicator w at
its minimal value.

We note that the model still favours the use of maximal treatment doses for the reach-
ability problem, but for shorter periods of time, as it immediately augments the toxicity.
Then, intermediary doses of treatment are preferred. During the intermediary doses arcs,
we notice that the condition w(t) ≥ wmin is saturated: the global health indicator is at the
lowest level the patient can endure.

5.4 Model with toxicity and with uncertainties
In this section, we consider again the model (M2), this time we assume that the treatment
efficiency γ(·) and the competition force β(·) are unknown functions (i.e. there are uncer-
tainties on some parameters of the model). In our simulations, we will consider the range
of uncertainties for these functions are ±0%, ±5%, ±7.5%, or ±10%.
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(a) Capture set (section at w = ρw
µ
) and projected

trajectories (b) Controls

(c) Trajectories: sensitive cells population, resistant cells population, global health indicator.

Figure 9: Test 5- Reachability analysis for model (M2). A set of trajectories corresponding
almost resistant initial tumours.
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Test 6 Figure 10 presents sections of the stability kernel NTQ and the reachability set
R(T ) at time T = 5. In all these sections, the health indicator is fixed to the value w = ρw

µ
.

As it can be seen on Figure 10, as the range of uncertainties increases, the stable set NTQ

shrinks in size, and for a fixed time T , the reachability setR(T ) also appears smaller. Indeed,
as the expected uncertainty on the parameters is bigger, the model is more pessimistic.
Especially, with a range of uncertainties of ±10%, both the sets are almost reduced to a
segment, as seen on Figure 10d. With a medical application in mind, this tells us that if
uncertainties on the parameters are too high, our method or the model might not be adapted
to the objective.

(a) Range of uncertainties=±0% (b) Range of uncertainties=±5%

(c) Range of uncertainties=±7.5% (d) Range of uncertainties=±10%

Figure 10: Test 6. Stability kernel (in cyan) and Reachability set (in blue) at time T = 5 for model (M2)
in presence of uncertainties

Let us stress on that the reachable sets represented in figure 10 corresponds to the set of
initial positions from where it is always possible, for any uncertainty (within the prescribed
range), to find a control law u(·) such that the corresponding trajectory reaches the stability
kernel and then stays there for ever.

In Figure 11, we represent the trajectories corresponding to four different functions αi :=
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Figure 11: Admissible trajectories corresponding to different uncertainties

(γi, βi) (for i = 1, · · · , 4) within a range of uncertainties of δ = 7.5% (here, γ̄ = 0.1, β̄ = 2/3):

γ1(t) =


γ̄(1 + δ) for t ∈ [0, 1],
γ̄ for t ∈]1, 2],
γ̄(1− δ) for t > 2,

β1(t) =


β̄(1− δ) for t ∈ [0, 1],
β̄ for t ∈]1, 2],
β̄(1 + δ) for t > 2,

γ2(t) =


γ̄ for t ∈ [0, 1],
γ̄(1 + δ) for t ∈]1, 2],
γ̄(1− δ) for t > 2,

β2(t) =


β̄ for t ∈ [0, 1],
β̄(1 + δ) for t ∈]1, 2],
β̄(1− δ) for t > 2,

γ3(t) ≡ γ̄(1− δ), β3(t) ≡ β̄(1− δ),
γ4(t) ≡ γ̄, β4(t) ≡ β̄.

We observe that the time of entry in NTQ depends on the outcome of the uncertainties
αi, but the overall trajectories are quite similar.
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