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This paper is devoted to the study of a controlled population of cells. The modelling
of the problem leads to a mathematical formulation of stability and reachability prop-
erties of some controlled systems under uncertainties. We use the Hamilton-Jacobi
(HJ) approach to address these problems and to design a numerical method that we
analyse on several numerical simulations.
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1 INTRODUCTION

The treatment of cancers with cytotoxic chemotherapies often encounters two major pitfalls: the side toxicity of the drugs on
healthy cells and organs, and the emergence of resistance to the treatment. This resistance can occur because of an initial genomic
heterogeneity of the tumour: in its early stages, it contains several distinct populations of cells, that differ from one another
because of successive mutations1. If one of these lineages is resistant to the first line of treatment, then using strong doses of
drug, as it is done in many classical protocols, kills all sensitive cells, and lets this resistant lineage grow without control. It
is thus important to take into account cancer heterogeneity before starting a treatment. Mathematical modelling can, in this
framework, give guidelines on how to treat such tumours.
For example,2,3 study the growth and treatment of heterogeneous tumours, and determine optimal dosages of drugs for fixed

time injections. The treatment protocol is there considered as instantaneous injections of drugs.Wewill work here in a framework
of continous treatment. In4, an ODEmodel of heterogeneous tumour growth is studied under continuous treatment. The optimal
control theory is used to give necessary conditions on optimal protocols, in order to reduce the tumour volume while preserving
its heterogeneity. We refer the reader to5,4,6,7 for different models of tumour growth, presented and studied in the framework of
optimal control theory.
In this paper, we will consider a model for heterogeneous tumour growth, with interactions between two cancerous cells

populations: s which is sensitive to the treatment, and r which is resistant to it. The biological model is an in vitro experiment,
with both ligneages developping in a Petri dish, so that no other cells intervene in their evolution. It has been already considered
in8, where an optimal treatment is characterized to treat heterogeneous tumours. This objective is satisfactory for experiments
on in vitro tumors, but might not be adequate for medical applications with longer time objectives.
The main goal of the present work is to maintain permanently the tumour size under a certain threshold, defined by medical

considerations, under which the tumour is considered benign. When this objective cannot be satisfied (for instance, if the initial
tumour is already bigger than the designed threshold), we would like to find a good strategy to lower the tumour volume, in such
a way that we will then be able to maintain it under the size threshold. These problems will be referred as stability or reachability
problems. We will formulate these objectives as control problems that we will solve in the framework of Hamilton-Jacobi (HJ)
equations.
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An important problem arising from biological applications is the influence of uncertainties. For example, since several cyto-
toxic drugs target cells during their dividing phase, the drug efficiencymay greatly differ depending on the tumour composition at
the time of injection. The Hamilton-Jacobi framework is suitable to consider uncertainties as an opponent player, thus adjusting
the optimal strategies to varying parameters.
Hamilton-Jacobi theory has been investigated, for stability and reachability problems, in many works. We refer

to9,10,11,12,13,14,15,16 and the references therein. In particular, let us also mention the works17 where Hamilton-Jacobi framework
is considered to take into account uncertainties in the case of collision avoidance for unmanned vehicles. In that paper, the
uncertainty is the trajectory of another vehicle.
Recall that Hamilton-Jacobi equations characterise the value function associated to the control problem. Once this value

function is computed numerically, a reconstruction algorithm can be used to get the optimal strategies for stability or for reach-
ability. In this paper, we consider a reconstruction algorithm for control problems in presence of state constraints. We prove the
convergence of this algorithm and we show with several numerical simulaitons the relevance of our approach.
This article is organized as follows. Section 2 presents the different models, objectives and constraints that will be considered

in this paper. Section 3 is devoted to the mathematical analysis. In this section, a Hamilton-Jacobi approach is introduced to
characterize some reachability sets. In section 4, we analyse some trajectory reconstruction algorithms. Finally, section 5 presents
and analyses some numerical simulations.

2 MATHEMATICAL FORMULATION OF THE PROBLEM

We present here some notations that will be used throughout this paper. We will denote by | ⋅ | the Euclidean norm and by ⟨⋅, ⋅⟩
the Euclidean inner product on ℝN (for any N ≥ 1). The notation B stands for the unit open ball {x ∈ ℝN ∶ |x| < 1} and
B(x, r) ∶= x + rB for any x ∈ ℝN and r > 0.
For every set  ⊆ ℝN ,

◦
,  and ) denote its interior, closure and boundary, respectively. The distance function to 

is dist(x,) = inf{|x − y| ∶ y ∈}.
For anyM > 0, the set L1(0,+∞; e−Mtdt) is the set of functions f ∶ [0,+∞)→ ℝ such that ∫ +∞

0 |f (t)|e−Mtdt is finite: |f |
is integrable for the measure e−Mtdt. The set W 1,1(0,+∞; e−Mtdt) is the set of functions f ∈ L1(0,+∞; e−Mtdt) such that
their derivative is also in L1(0,+∞; e−Mtdt).

We consider the following controlled differential system :

ẏ(t) = f0(y(t), �(t)) + f1(y(t), �(t))u(t), (1)

where u is the control, y the vector of state variables (y(t) ∈ ℝn, with n = 2 or 3 depending on the problem we consider), and
�(t) a vector of m parameters that can change over time t, representing the uncertainties. We consider only measurable controls
taking value between 0 and a certain Umax > 0 ; in other words,

u ∈  ∶= {u ∶ ℝ+ → ℝ is measurable, u(t) ∈ [0, Umax] a.e.}.

We also consider that the uncertainties are measurable functions taking values in a given compact subsetA ofℝm (with (m ≥ 1)):

� ∈  ∶= {� ∶ ℝ+ → ℝm is measurable, �(t) ∈ A a.e.}

In all the sequel, we will consider models where the vector fields f0 ∶ ℝn × ℝm → ℝn and f1 ∶ ℝn × ℝm → ℝn satisfy the
following assumption:
(Hf ) f0 and f1 are continuous fonctions, and Lipschitz continuous with respect to the first variable uniformly with respect to

the second variable: there exists a constantM0 > 0 such that:

|f0(x, �) − f0(x′, �)| + |f1(x, �) − f1(x′, �)| ≤M0|x − x′| ∀x, x′ ∈ ℝn and ∀� ∈ A. (2)

Under this assumption the functions f0 and f1 satisfy a linear growth: there exists a constantM1 > 0 such that:

|f0(x, �)| ≤M1(1 + |x|) and |f1(x, �)| ≤M1(1 + |x|) ∀x ∈ ℝn and � ∈ A. (3)

We will also use a function f that is defined as:

f (x, �, u) = f0(x, �) + f1(x, �)u for x ∈ ℝn, � ∈ A, u ∈ [0, Umax].
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Let x ∈ ℝn, u ∈  be an admissible control and � ∈  a perturbation. By a solution to (1) we mean an absolutely continuous
function y(⋅) that satisfies

y(t) = x +

t

∫
0

[f0(y(s), �(s)) + f1(y(s), �(s))u(s)]ds for all t ≥ 0.

By the Lipschitz continuity of f0, f1 and by their linear growth, the solution of (1) is uniquely determined by the control input
u ∈  , the initial condition y(0) = x ∈ ℝn and the uncertainties � ∈  and will be denoted by y�,ux . Furthermore, the maximal
solution is defined for all times. Note, that by the Gronwall Lemma, we have:

|y�,ux (t)| ≤ (1 + |x|)eM1t t ≥ 0,
|y�,ux (t) − x| ≤ (1 + |x|)(eM1t − 1) t ≥ 0,
|ẏ�,ux (t)| ≤M1(1 + |x|)eM1t a.e. t > 0.

Moreover, for any R > 0, there existsMR > 0 such that:

|y�,ux (t) − y
�,u
x′ (t)| ≤MR|x − x′|eM0t ∀x, x′ ∈ B(0, R).

For any x ∈ ℝn, we denote by S(x) the set of all solutions y�,ux , on [0,+∞[, of equation (1) associated to � ∈  and u ∈ 
and with the initial condition x:

S(x) = {y�,ux ∈ W 1,1(0,+∞, e−M0t), � ∈ , u ∈  }.

In the control problems that we will consider, the control input u will have to adapt to uncertainties �. In this context, we
consider a differential game with two players, one can act by choosing the control � and the other one can respond by chosing the
function u. Following the work of18, we use the notion of strategies u ∶ � → u[�], and since we cannot predict the fluctuations
of the parameters we consider the set of all non-anticipative strategies Υ given as:

Υ ∶=
{

u ∶  →  ∕ ∀(�, �′) ∈  and ∀t ≥ 0,
(

�(�) = �′(�) ∀� ∈ [0, t]
)

⇐⇒
(

u[�](�) = u[�′](�) ∀� ∈ [0, t]
)}

.

2.1 Two models for heterogeneous tumour growth
The first model that will be considered in this paper, has been presented and studied in8. It represents the growth of two popu-
lations of cells in a Petri dish in competition for nutrients: s is the population sensitive to the treatment u, and r the population
resistant to it. They are fairly similar, so their division rate for small populations � is identical. They compete for food and space
with a logistic growth rate, which is represented by the total remaining spaceK − s(t) −mr(t),K being the size of the Petri dish
and m the size ratio between sensitive and resistant cells. Moreover, interspecies competition is stronger on resistant than on
sensitive cells, which is represented by a supplementary competition term �s(t)r(t). We suppose that no mutations occur during
the time of our study. Finally, the treatment only has an influence on the sensitive population.

{

ds
dt
(t) = �s(t)(1 − s(t)+mr(t)

K
) − 
(t)s(t)u(t),

dr
dt
(t) = �r(t)(1 − s(t)+mr(t)

K
) − �(t)s(t)r(t).

(M1)

This model includes some uncertainties �(t) = (
(t), �(t)) on the drug efficiency and on the interspecies competition.We suppose
throughout the paper that these uncertainties take values in a set A that has the following form

�(t) ∈ A ∶= [
min, 
max] × [�min, �max],

where the parameters 
max ≥ 
min > 0 and �max ≥ �min > 0 are given. The values that will be used in the numerical simulations
are summed up in section 5, Table 1.
One can show easily that the set  ∶= {(s, r) ∈ ℝ2∕s ≥ 0, r ≥ 0 and s + mr ≤ K} is invariant under the action of system

(M1), whichever � ∈  and u ∈  are. This is consistent with the fact that K represents the total space in the Petri dish, thus
it is a bound on the size of the in vitro tumour.

Remark 1. Note that the dynamics function doesn’t satisfy the Lipschitz continuity of assumption (Hf ). However, since we are
interested in system (M1) in , we can modify f0 and f1 outside of  such that for a certain R > max(K,K∕m), |y| > R
implies f0(�, y) = f1(�, y) = 0 for any �, then f0 and f1 are Lipschitz continuous on ℝ2 ×ℝ2.
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In our simulations, we will consider the case where 
minUmax > �, meaning that we have access to relatively large doses of
treatment.
Limiting the drug dosage to a maximal value Umax is important, but the cumulated dose of treatment over a period of time

should also be kept under a certain threshold. Otherwise, cumulated effects on the patient global health can be very harmful19.
A first solution to take this toxicity into account is to set the following condition: for any t ≥ 0, we impose that:

t+�

∫
t

u(s)ds ≤ Dmax (4)

where � is a typical time of treatment, and Dmax the maximal quantity, or dose, of treatment to be delivered during time �. This
condition gives rise to a delayed system of equations. This proves very difficult to control, both theoretically and numerically,
for the problems we are about to define. But since the necessity of (4) comes from a biological interpretation, one can transform
this condition by adding a virtual global health indicator, which will keep track of the toxicity. We thus propose the following
model:

⎧

⎪

⎨

⎪

⎩

ds
dt
(t) = �s(t)(1 − s(t)+mr(t)

K
) − 
(t)s(t)u(t)

dr
dt
(t) = �r(t)(1 − s(t)+mr(t)

K
) − �(t)s(t)r(t)

dw
dt
(t) = �w − �w(t) − �w(t) max(0, u(t) − utox).

(M2)

This model is inspired by20, in which the state variable w is a white blood cells count. The new state variable w represents a
virtual global health indicator, that is renewed at a constant rate �w, evacuated from the system at rate �w, and destroyed by
drug doses larger than the threshold utox > 0. The set

′ ∶= {(s, r, w) ∈ ℝ3∕s ≥ 0, r ≥ 0, w ≥ 0, s + mr ≤ K and w ≤ �w∕�}

is invariant under action of system (M2). As mentioned in Remark 1, the dynamics can be changed in adequate way outside of
′ such that it fits assumption (Hf ).
Note that in (M2), the indicatorw does not interact with sensitive or resistant cancerous cells. Indeed, we are still considering

cancerous cells cultivated in vitro without any other population: the state variable w only serves as as way to limit drug usage,
by imposing for example w(t) ≥ wmin for any t ≥ 0.
In Section 5, we will present numerical simulations of the problem ; the values chosen for the different parameters are listed

in Table 1.

2.2 Objective functions and state constraints
From now on, we will consider two control problems. Both problems involve the tumour size, that we define as:

� ∶ y = (s, r) → s + mr.

For the simplicity of notations, even when we consider the model (M2) where the state variable is y = (s, r, w) ∈ ℝ3, we will
still denote �(y) = s + mr.
Now, we can state the two problems that will be considered in this paper. The first one is a stability problem.

Problem 1 (Stability). Let Q > 0 be such that Q < K . Given x0 ∈ ℝn, does there exist a strategy u ∈ Υ such that for any
perturbation � ∈ ,

∀t ≥ 0, �(y�,u[�]x0
(t)) ≤ Q.

In other words, given a threshold in tumour sizeQ, can we find a control strategy such that the tumour size never exceeds this
threshold?

The second problem that will be analysed in this paper is a reachability problem.

Problem 2 (Reachability). Let Q > 0 be such that Q ≤ K , and let T > 0. For x0 ∈ ℝn, does there exist a strategy u ∈ Υ and a
minimal time  ∈ [0, T ] such that, for any perturbation � ∈ ,

∀t ≥  , �(y�,u[�]x0
(t)) ≤ Q.
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In other words, given a certain time of treatment T , minimize the time  at which the tumour size is stabilized under the
threshold Q, without this time exceeding T .

The above two problems will be considered for models (M1) and (M2).

State constraints (Global health indicator). In both models (M1) and (M2), the functions s(⋅) and r(⋅) should take values
respectively in [0, K] and [0, K∕m].
Furthermore, in the model (M2), the global health indicator systemw(t) should remain above a certain thresholdwmin, at any

time t:

∀t ≥ 0, w(t) ≥ wmin, (5)
where wmin is a given constant that satisfies �w

�
> wmin. One can also check from the dynamics of w that if w(0) ≤ �w

�
, then:

∀t ≥ 0, w(t) ≤
�w
�
.

3 STABILITY AND REACHABILITY

We now describe the mathematical formulations that will be used to address Problems 1 and 2.

3.1 Definition of the stability kernel
Let T be a subset of ℝn. We will call the stability kernel of T under the dynamics (2.1) the set T ⊂ ℝn defined by:

T ∶= {x ∈ ℝn ∕ ∃u ∈ Υ, ∀� ∈ , ∀t > 0, y�,u[�]x (t) ∈ T}.

It is the set of starting points for which there exists a strategy u ∈ Υ that keeps the solution in T for any time t ≥ 0 and for any
perturbation � ∈ .
Let us point out that the above definition of stability is identical to the notion of descriminating kernel analyzed in21. It is also

related to the notion of viability under set-valued dynamics in the monograph22. Here, we prefer to call the set  a stability
set because it will represent in our application the initial composition of the tumours that can be kept forever under a certain
size threshold.
In our context as described in the previous section, and in order to answer the stability problem (Problem 1), we are lead to

the question of determining the stability kernel for a set TQ that is defined, for a given threshold valueQ ∈ (0, K) of the tumour
size, as follows:
- In case of model (M1),

TQ ∶= {(s, r) ∈ ℝ2∕s ≥ 0, r ≥ 0 and s + mr ≤ Q}
- In case of model (M2),

TQ ∶= {(s, r, w) ∈ ℝ3∕s ≥ 0, r ≥ 0, s + mr ≤ Q, and w ∈ [wmin,
�w
�
]}.

Proposition 1. For Model (M1), if Q > K(1 − 
min

max

1
1+�∕K�min

), then TQ has a non empty interior. If Q ≤ K
1+K�min∕�

then
TQ = [0, Q] × {0}.

Proof. The two assertions of this proposition come from phase plane analysis of System (M1).
Assume that Q > K(1 − 
min


max
1

1+�∕K�min
). In this case, consider the constant control u(t) ≡ u0 = 1


max

K�min
1+K�min∕�

. For any fixed
� ∈ [�min, �max], and any fixed 
 ∈ [
min, 
max], one can check that the point (K(1 − 


�
u0), 0) is stable and locally attractive in

ℝ+2 since K(1 − 

�
u0) > K

1+K�min∕�
. Thus the segment [K(1 − 
max

�
u0), K(1 − 
min

�
u0)] × {0} is locally attractive in ℝ+2 for any

perturbation �(t). Thus there exists a neighbourhood of this segment embedded inTQ , since K(1 −

min
�
u0) ≤ Q.

Now, consider the case Q ≤ K
1+K�min∕�

.
Under constant control u(t) ≡ �


max
(1 − Q

K
), for any s ∈ (0, Q] and any perturbation � ∈ , we have y�,u(s,0)(t) ∈ (0, Q] for all

t ≥ 0. Moreover, (0, 0) is stable under any treatment, thus [0, Q] × {0} ⊂ TQ . However, suppose that �(t) ≡ �min ; for any
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(s, r) ∈ TQ such that r > 0, we have dr
dt
(t) ≥ r�min(

K
1+K�min∕�

− s) > 0. Thus any trajectory starting in TQ will leave it in a finite
time.

With similar arguments as in the above proof, it is possible to check that the statement of proposition 1 is still true for system
(M2) as long as utox >

�

min
(1 − 1

1+K�min∕�
).

As we are interested in controlling heterogeneous tumours (i.e. with r > 0), we will consider in the sequel thatQ > 1
1+K�min∕�

.

3.2 Level-set approach for stability problem
To characterize the stability kernel, we use a level-set approach and define a control problem and its value function whose
0-sub-level set coincides exactly with the stability kernel (see15,17 and the references therein).
For this, we fix Q > 1

1+K�max∕�
and define a bounded Lipschitz continuous function gQ ∶ ℝn → ℝ+ such that

x ∈ TQ ⇐⇒ gQ(x) = 0.

A particular choice of gQ could be:
gQ(x) = min(1, dist(x, TQ)).

Now, consider the following control problem parametrized by the initial position x ∈ ℝn:

(x) min
u∈Υ

max
�∈

+∞

∫
0

e−�tgQ(y�,u[�]x (t))dt,

where � > 0 is a constant that will be chosen later. We consider also the value function (called also cost-to-go function) defined
by:

VQ(x) = min(x), ∀x ∈ ℝn.
Before studying this control problem, let us first point out some straightforward remarks on the value function.

Remark 2. First, gQ being bounded, the integral ∫ +∞
0 e−�tgQ(y�,ux (t))dt is well-defined for any � ∈  and any u ∈  . Also,

because the function gQ is bounded, the value function VQ is also bounded.
Furthermore, it is not difficult to check that the stability kernelTQ can be characterized as the 0-sub-level set of the function

VQ:
TQ = {x ∈ ℝn ∣ VQ(x) = 0}.

In the sequel, we shall study the properties of the value function VQ and show a way to get an efficient approximation on 
by solving an appropriate partial differential equation.

Proposition 2. The value function VQ is Lipschitz continuous on ℝn if � is large enough. Morevover, it satisfies the following
dynamic programming principle:

∀x ∈ ℝn, ∀ℎ > 0, VQ(x) = minu∈Υ
max
�∈

⎛

⎜

⎜

⎝

ℎ

∫
0

e−�tgQ(y�,ux (t))dt + e
−�ℎVQ(y�,ux (ℎ))

⎞

⎟

⎟

⎠

. (6)

Proof. Because f is Lipschitz continuous on ℝn for problems (M1) and (M2), according to the Gronwall lemma, for any x,
x′ ∈ ℝn, any t ≥ 0, any � ∈  and any u ∈  ,

|y�,ux (t) − y
�,u
x′ (t)| ≤ eM0t

|x − x′|.



7

Furthermore, function gQ is 1-Lipschitz continuous, thus for x, x′ ∈ ℝn, we have:

|VQ(x) − VQ(x′)| =
|

|

|

|

|

|

|

inf
u∈Υ

max
�∈

+∞

∫
0

e−�tgQ(y�,u[�]x (t))dt − inf
u∈Υ

max
�∈

+∞

∫
0

e−�tgQ(y
�,u[�]
x′ (t))dt

|

|

|

|

|

|

|

≤ sup
u∈Υ

max
�∈

+∞

∫
0

e−�t|gQ(y�,u[�]x (t)) − gQ(y
�,u[�]
x′ (t))|dt

≤

+∞

∫
0

e−�teM0t
|x − x′|dt.

If we choose � > M0, then the function VQ is Lipschitz continuous.
The proof of the dynamical programming principle comes from classical arguments (see23 for example).

From (6), one can show that VQ satisfies a Hamilton-Jacobi equation:

Theorem 1. For any � > M0, the value function VQ is the unique viscosity solution of the Hamilton-Jacobi equation:

�VQ +H(x,DxVQ) − gQ(x) = 0, x ∈ ℝd , (7)

where DxVQ represents the derivative of VQ (in the viscosity sense), and the HamiltonianH ∶ ℝn ×ℝn → ℝ is defined by:

H(x, p) ∶= min
�∈A

max
u∈[0,Umax]

⟨−f (x, �, u), p⟩.

This theorem can be obtained by using classical arguments in viscosity theory24,23.
We note that the expression of the hamiltonian H can be given in a more explicit form for the different models we are

considering in this paper:

For model (M1),
the hamiltonian is:

H((s, r), p) = − p1�s(1 −
s + mr
K

) − p2�r(1 −
s + mr
K

) + min(p2�minsr, p2�maxsr)

+ max(0, 
minsumaxp1).

For model (M2),
the hamiltonian is:

H((s, r, w), p) = − p1�s(1 −
s + mr
K

) − p2�r(1 −
s + mr
K

) − p3(�w − �w)

+ min(p2�minsr, p2�maxsr)
+ max(0, 
minsutoxp1, 
minsUmaxp1 + �w(Umax − utox)p3).

These expressions will be useful for the numerical implementation purposes in the approximation of the HJ equation.

3.3 Minimum time function - Reachability problem
We now move to the problem of reachability (Problem 2). Here, we assume that TQ is known (or an approximation of TQ
is given). Then, we are interested in the set of initial positions from where there exists an admissible trajectory that can reach
TQ in a finite time horizon T > 0 while remaining in a given domain;  ∶= [0, K] × [0, K∕m] for model (M1), and  ∶=
[0, K] × [0, K∕m] × [wmin,

�w
�
] for model (M2). Therefore, the capture basin is defined as:

(T ) ∶= {x ∈ ℝn ∣ ∃u ∈ Υ,∀� ∈ , y�,u[�]x (T ) ∈TQ and y�,u[�]x (s) ∈  ∀s ∈ [0, T ]}.

An illustration of TQ and some trajectories reaching it are presented in Figure 1. In this figure, the filled region represents
the set TQ . Starting from the points A or B, it is possible to find admissible trajectories that can reach TQ in a finite horizon
T . So both points A and B are in the capture basin (represented in the figure as the set surrounded by the dashed line).
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FIGURE 1 Illustration of the setsTQ (filled region) and (T ) (set surrounded by the dashed line).

Notice that for some x ∈ ℝn, it may not be possible to get to the stability kernel TQ in a finite time. For example, if
x = (0, K∕m), then for any t ≥ 0, any u ∈  and any � ∈ , we have y�,ux (t) = (0, K∕m). Thus, if Q < K , whatever control is
chosen, the trajectory will never enterTQ .
Here again, we will follow some ideas investigated by25,26,27,15 and use a level-set approach to define the capture basin(T )

at time T .
First, we introduce the function g ∶ ℝn → ℝ that is the oriented distance to the set :

gw(x) ∶=

{

dist(x, )) if x ∈ ℝn ⧵,
−dist(x, )) if x ∈ .

Now consider the control problem and its value functionW defined, for every x ∈ ℝn and t ∈ [0, T ], by:

W (x, t) ∶= min
u∈Υ

max
�∈

{

max
(

max
0≤�≤t

gw(y�,u[�]x (�)), VQ(y�,u[�]x (t))
)}

.

According to15, for T > 0, the capture basin is given by:

(T ) = {x ∈ ℝn ∣ W (x, T ) ≤ 0}.

Moreover, the minimum time,  (x), for a starting position x ∈ ℝn to reach the targetTQ (before time T ) is given by:

 (x) = min{t ∈ [0, T ]∕W (x, t) ≤ 0}. (8)

Besides, as it has been shown in15, the value function W satisfies the following dynamical programming principle for every
x ∈ ℝn, for every t ∈ [0, T ] and ℎ ∈ [0, T − t]:

W (x, t + ℎ) = min
u∈Υ

max
�∈

(

max
(

max
0≤�≤ℎ

gw(y�,u[�]x (�)),W (y�,u[�]x (ℎ), t)
)

)

,

andW is the unique viscosity solution to the following Hamilton-Jacobi-Bellman equation:

min
(

)tW (x, t) +H(x,∇Dx(x, t)),W (x, t) − gw(x)
)

= 0 for x ∈ ℝn, t ∈ (0, T ], (9a)
W (x, 0) = VQ(x) for x ∈ ℝn, (9b)

where )tW (x, t) and DxW (x, t) are respectively the time derivative and the space derivative (in the sense of viscosity notion,
see23).

4 TRAJECTORIES RECONSTRUCTION

Once the value functions are constructed up to some error on a grid of calculations, we want to deduce optimal controls for a
starting position x0.
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4.1 A trajectory staying inTQ

Let fℎ be a family of numerical approximations of f . We make the following assumption:
(HA1) for any R > 0, there exists �R > 0 independant of ℎ such that:

|f (x, �, u) − fℎ(x, �, u)| ≤ �Rℎ ∀|x| < R, � ∈ A, u ∈ U

We will use an approximation scheme for the differential equation using fℎ: an approximation of y�,ux (t) with constant � and
u will be

ỹ = x + ℎfℎ(x, �, u).
For example, the case of an Euler forward scheme corresponds to the choice fℎ = f .
Now, for any ℎ ∈ (0, 1) consider an approximation of VQ, noted V ℎ

Q . We make the following assumption:
(HA2) For every ℎ ∈ (0, 1), there exists an approximation V ℎ

Q of VQ, which satisfies:

Eℎ ∶= maxx |VQ(x) − V ℎ
Q (x)|,

Eℎ
ℎ

←→
ℎ→0

0.

Remark 3. The theory of approximation of viscosity solutions states that for a given time step size �, an approximation VQ,� of
VQ can be computed with an error of order

√

�. This error is guaranteed under some stability assumptions linking the time and
space mesh sizes (the so-called CFL condition). So to comply with the assumption (HA2), one can consider the approximation
V ℎ
Q = VQ,�(ℎ) where �(ℎ) = ℎ

k with k > 2. In this case,

E(ℎ)
ℎ

= O

(
√

ℎk

ℎ

)

= O
(

ℎ
k−2
2

)

←→
ℎ→0

0,

and assumption (HA2) is satisfied.

Let ℎ ∈ (0, 1) be a time step, and Nℎ ∈ ℕ a number of steps. The actual realization of the uncertainties �̄ is known ; we
will denote �k = �̄(kℎ) for simplicity. For any y ∈ ℝ2, we define the trajectory reconstruction algorithm up to time Tℎ = Nℎℎ,
described in Algorithm 1.

Algorithm 1 Stability
The starting point y and the uncertainties realization �̄ = (�̄k)k are known.
Initialization Set yℎ0 = y.
Recursive definition of yℎk Suppose (yℎl) is known for l = 0...k − 1. To determine yℎk, we define an optimal control uℎk such
that:

uℎk ∈ argminu∈U V
ℎ
Q (y

ℎ
k−1 + ℎf

ℎ(yℎk−1, �̄k, u))e
−�ℎ + �ℎgQ(yℎk−1).

The new position is then defined by:
yℎk = y

ℎ
k−1 + ℎf

ℎ(yℎk−1, �̄k, u
ℎ
k).

Complete trajectory We associate to the sequence of controls (uℎk)k the piecewise constant function uℎ(t) = uℎk for t ∈
[kℎ, (k + 1)ℎ), and an approximate trajectory yℎ defined on [0,+∞) by:

⎧

⎪

⎨

⎪

⎩

ẏℎ(t) = fℎ(yℎk, �̄k, u
ℎ
k) for t ∈ (kℎ, (k + 1)ℎ)

yℎ(kℎ) = yℎk ∀k ∈ ℕ, k ≤ Nℎ

ẏℎ(t) = f (y(t), �̄, 0) ∀t > Tℎ

Note that in general, y�̄,uℎy0
≠ yℎ. We shall show that any accumulation point ȳ of (yℎ)ℎ is a trajectory realyzing better than a

minimum for the cost function VQ: since �̄ is an actual realization of the uncertainties, it might be "better than the worst".

Theorem 2. Let y ∈ ℝn and let (yℎk) be the sequence defined by Algorithm1, under hypothesis (Hf ) and assumptions (HA1) -
(HA2). Suppose furthermore the following limits to hold true:

Nℎℎ ←→
ℎ→0

+∞, Nℎℎ
2 ←→
ℎ→0

0, NℎEℎ ←→
ℎ→0

0. (10)
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Then the functions (yℎ) form a better than minimizing sequence in the following sense:

VQ(y) ≥ lim sup
ℎ→0

+∞

∫
0

e−�tgQ(yℎ(t))dt (11)

Furthermore, the family (yℎ) has an accumulation point y inW 1,1([0,+∞), e−M0t), and if VQ(y) = 0 then it is a viable trajectory,
in the sense that:

∀t ≥ 0, y(t) ∈TQ .

Proof. Let y ∈ ℝ2 and let (yℎk) and (u
ℎ
k) be the corresponding sequences constructed by Algorithm1. One can show that there

exists R > 0 such that for any ℎ > 0 and any n ≤ Nℎ, |yℎk| ≤ R. Thus taking into account (3), there existsMR such that

∀ℎ > 0, ∀k ≤ Nℎ, ∀u ∈ U, |f (yℎk, �k, u)| ≤MR.

The proof of Theorem 2 is carried out in three steps.

Step 1
Let us show that there exists � > 0 such that:

VQ(yℎ0 ) ≥ VQ(yℎ0 + ℎf
ℎ(yℎ0 , �0, u

ℎ
0 ))e

−�ℎ + �ℎgQ(yℎ0 ) − �ℎ
2 − 2Eℎ. (12)

For simplicity, we will note here yℎ0 = y0, and u
ℎ
0 = u0. Recall that the dynamical programming principle for VQ writes as:

VQ(y0) = minu∈Υ
max
�∈

⎡

⎢

⎢

⎣

VQ(y�,u[�]y0
(ℎ))e−�ℎ +

ℎ

∫
0

gQ(y�,u[�]y0
(t))e−�tdt

⎤

⎥

⎥

⎦

. (13)

Let ū0 ∈ Υ be the minimizing strategy for this problem. Let �∗ be an approximation of the uncertainties, satisfying �∗(t) = �k
for any t ∈ [kℎ, (k + 1)ℎ). Then the following inequality holds:

VQ(y0) ≥ VQ(y
�∗,ū0[�∗]
y0 (ℎ))e−�ℎ +

ℎ

∫
0

gQ(y
�∗,ū0[�∗]
y0 (t))e−�tdt. (14)

We denote ū0[�∗] = u0 ∈  .
Let us consider the first term of the right-hand member of inequation (14). By convexity of f (x, �, ) for any x ∈ ℝn and

� ∈ A, there exists u∗0 ∈ U such that

y0 +

ℎ

∫
0

f (y0, �0,u0(t))dt = y0 + ℎf (y0, �0, u∗0).

Then, y�
∗,u0
y0 the trajectory starting at y0 for t = 0 and following uncertainties �∗ and control u0 satisfies |y

�∗,u0
y0 (ℎ) − y0| ≤MRℎ.

Moreover:

|y�0,u0y0 (ℎ) − y0 − ℎf (y0, �0, u∗0)| ≤

ℎ

∫
0

|f (y�0,u0y0 (t), �0,u0(t)) − f (y0, �0,u0(t))|dt

≤

ℎ

∫
0

M0|y
�0,u0
y0 (t) − y0|dt ≤M0MRℎ

2,

whereM0 is the Lipschitz coefficient of f .
Moreover, using fℎ the approximation of f :

|y�0,u0y0 (ℎ) − y0 − ℎfℎ(y0, �0, u∗0)| ≤M0MRℎ
2 + �Rℎ2.

From 2 we know that VQ is a Lipschitz continuous function on ℝ2 ; thus by denoting LV its Lipschitz coefficient:

|VQ(y
�0,u0
y0 (ℎ)) − VQ(y0 + ℎfℎ(y0, �0, u∗0))| ≤ LV |y

�0,u0
y0 (ℎ) − y0 − ℎfℎ(y0, �0, u∗0)|,
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which leads to:

VQ(y
�0,u0
y0 (ℎ)) ≥ VQ(y0 + ℎfℎ(y0, �0, u∗0)) − LV (M0MR + �R)ℎ2,

≥ V ℎ
Q (y0 + ℎf

ℎ(y0, �0, u∗0)) − LV ((M0MR + �R)ℎ2 − Eℎ,

≥ V ℎ
Q (y0 + ℎf

ℎ(y0, �0, u0)) − LV ((M0MR + �R)ℎ2 − Eℎ, (by definition of u0)
≥ VQ(y0 + ℎfℎ(y0, �0, C0)) − LV ((M0MR + �R)ℎ2 − 2Eℎ.

We now deal with the second term of (14). Since the function gQ is 1-Lipschitz, we get that for any t ∈ [0, ℎ]:

|gQ(y
�∗,u0
y0 (t)) − gQ(y0)| ≤

t

∫
0

|f (y�0,u0y0 (s), �0,u0(s))|ds ≤ �Rt,

which leads to:
ℎ

∫
0

gQ(y
�∗,u0
y0 (t))e−�tdt ≥

ℎ

∫
0

gQ(y0)e−�tdt −

ℎ

∫
0

�Rte
−�tdt ≥ �ℎgQ(y0) − �R

ℎ2

2
.

Going back to (14), we get that:

VQ(y0) ≥ VQ(y0 + ℎfℎ(y0, �0, u0))e−�ℎ − LV (LMR + �R)ℎ2 − 2Eℎ + �ℎgQ(y0) − Lg�R
ℎ2

2
which concludes the demonstration of (12) by setting � = LV (LMR + �R) + Lg�R∕2.

Step 2
We can generalize (12) to any k < Nℎ:

VQ(yk) ≥ VQ(yk + ℎfℎ(yk, �k, uk))e−�ℎ + �ℎgQ(yk) − 2Eℎ − �ℎ2.

Moreover,

VQ(y0) ≥ VQ(y1)e−�ℎ + �ℎgQ(y0) − 2Eℎ − �ℎ2

≥ VQ(y2)e−2�ℎ + �ℎ(gQ(y0) + e−�ℎgQ(y1)) − 4Eℎ − 2�ℎ2.

By induction we deduce that:

VQ(y0) ≥ VQ(yNℎ
)e−�Nℎℎ + �ℎ

Nℎ−1
∑

k=0
e−�kℎgQ(yk) − 2NℎEℎ − �Nℎℎ

2

Step 3
Now consider the complete integral ∫ Tℎ

0 e−�tgQ(yℎ(t))dt. We have that:
Tℎ

∫
0

e−�tgQ(yℎ(t))dt =
Nℎ−1
∑

k=0

(k+1)ℎ

∫
kℎ

e−�tgQ(yℎ(t))dt =
Nℎ−1
∑

k=0
e−kℎ

ℎ

∫
0

e−�tgQ(yℎ(t + kℎ))dt

≤
Nℎ−1
∑

k=0
e−kℎ

ℎ

∫
0

e−�t(gQ(yk) + tCR)dt ≤
Nℎ−1
∑

k=0
e−kℎ

(

�ℎgQ(yk) +
ℎ2

2
CR

)

.

Moreover,
+∞

∫
Tℎ

e−�tgQ(yℎ(t))dt ≤ ‖gQ‖∞e
−�Tℎ .

Thus,

VQ(y0) ≥

+∞

∫
0

e−�tgQ(yℎ(t))dt − ℎ2Nℎ(
CR
2
+ �) − 2NℎEℎ − ‖gQ‖∞e

−�Nℎℎ. (15)
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This concludes the proof of (11), since using the assumptions (10), we get;

VQ(y0) ≥ lim sup
ℎ→0

+∞

∫
0

e−�tgQ(yℎ(t))dt. (16)

Finally, the functions (yℎ) are equicontinuous in W 1,1([0,+∞), e−M0t), so they have an accumulation point y ∈
W 1,1([0,+∞), e−M0t). Using (16), we have:

0 = VQ(y0) ≥

+∞

∫
0

e−�tgQ(y(t))dt.

Therefore, the trajectory is viable, which concludes the proof of Theorem 2.

Remark 4. It is possible that, for a fixed ℎ > 0, the constructed trajectory yℎ is not viable on [0, Tℎ]. However, because of (16),
for ℎ small enough the trajectory stays close toTQ .
Moreover, it is possible that for an initial point y0 that satisfies gQ(y0) = 0 but VQ(y0) > 0, for certain realizations of the

uncertainties �̄, the trajectory y constructed by Algorithm1 is viable.

In Algorithm1, the uncertainty function �̄ is supposed to be known. This is obviously the case when the problem is without
uncertainty. This algorithm is also of interest when the model is with uncertainties. It provides a tool to explore different scenarii
and adjust the control depending on the variations of these uncertainties.
It is also possible to modify the algorithm to define the worst case scenario and to compute the best response to that scenario.

In this case, the algorithm should be modified as shown in Algorithm 2.

Algorithm 2 Stability (worst case)
The starting point y is known.
Initialization Set yℎ0 = y.
Recursive definition of yℎk Suppose (yℎl) is known for l = 0...k − 1. To determine yℎk, we first define the worst value of
uncertainties:

�ℎk ∈ argmax�∈Aminu∈U
V ℎ
Q (y

ℎ
k−1 + ℎf

ℎ(yℎk−1, �, u))e
−�ℎ + �ℎgQ(yℎk−1).

Then we consider the optimal control uℎk such that:

uℎn ∈ argminu∈U V
ℎ
Q (y

ℎ
k−1 + ℎf

ℎ(yℎk−1, �
ℎ
k , u))e

−�ℎ + �ℎgQ(yℎk−1).

The new position is then defined by:
yℎk = y

ℎ
k−1 + ℎf

ℎ(yℎk−1, �
ℎ
k , u

ℎ
k).

Complete trajectory We associate to the sequence of controls (uℎk)k the piecewise constant function uℎ(t) = uℎk for t ∈
[kℎ, (k + 1)ℎ), and an approximate trajectory yℎ defined on [0,+∞) by:

⎧

⎪

⎨

⎪

⎩

ẏℎ(t) = fℎ(yℎk, �
ℎ
k , u

ℎ
k) for t ∈ (kℎ, (k + 1)ℎ)

yℎ(kℎ) = yℎk ∀k ∈ ℕ, k ≤ Nℎ

ẏℎ(t) = f (y(t), �̄, 0) ∀t > Tℎ

Remark 5. Algorithm 2 provides a robust trajectory with respect to any uncertainty within the range of intervalA. This trajectory
can be seen as a trajectory of total "victory", but it can also be seen as a pessimistic trajectory because it is foreseen in the worst
case. In this perspective, the trajectories of Algorithm 1 are less pessimistic because they adjust to the value of the uncertainty
if it becomes available (by measurement for example) as the trajectory evolves.



13

4.2 Minimal entry time
We now study how to construct optimal trajectories, knowing an approximation of W , entering TQ in a minimal time. We
focus on system (M1), an extension to (M2) can be obtained with results from15.
The first algorithm we present is a direct application of the value functionW . Suppose an approximationW ℎ ofW has been

constructed. Choose a starting point x0 such that W ℎ(x0, T ) < 0. Given a fixed perturbation �̄ ∈ , and maximal number of
time stepsN (the fixed time step being ℎ = T ∕N), we define the trajectory reconstruction by Algorithm3

Algorithm 3Minimal entry time
The starting point x0 and the uncertainties realization �̄ ∶= (�̄k)k are known.
Initialization Set yℎ0 = x0.
Recursive definition of yℎl Suppose (yℎl) is known for l = 0...k− 1 < N . To determine yℎk, we define an optimal control uℎk
such that:

uℎk ∈ argminu∈U W
ℎ(yℎk−1 + ℎf

ℎ(yℎk−1, �̄k, u), kℎ)
The new position is then defined by:

yℎk = y
ℎ
k−1 + ℎf

ℎ(yℎk−1, �k, u
ℎ
k).

Complete trajectory We associate to the sequence of controls (uℎk)0≤k≤N−1 the piecewise constant function uℎ(t) = uℎk for
t ∈]kℎ, (k + 1)ℎ], and an approximate trajectory yℎ defined on [0, T ] by:

{

yℎ(kℎ) = yℎk ∀n ∈ ℕ, n ≤ N
ẏℎ(t) = fℎ(yℎk, �k, u

ℎ
k) for t ∈ (kℎ, (k + 1)ℎ], k < N.

We suppose that there exists Eℎ > 0 such that Eℎ∕ℎ ←→ 0 when ℎ→ 0 and:

∀t > 0, ||W (⋅, t) −W ℎ(⋅, t)||∞ ≤ Eℎ.

Then the following convergence theorem holds:

Theorem 3. Let y ∈ ℝ2 and let (yℎk) be the sequence defined by Algorithm 3. We suppose true the assumptions (Hf ) and
(HA1)-(HA2). Then the functions (yℎ) form a better than minimizing sequence in the following sense:

∀t ∈ [0, T ], W (x, t) ≤ lim sup
ℎ→0

dQ(yℎ(t))

Moreover, the family of functions yℎ admits cluster points as ℎ → 0. Any such cluster ȳ is a trajectory of system (M1) with
uncertainties �.

This theorem can be proven by using similar arguments as in the proof of theorem (11).

Remark 6. As there might be several controls such that the trajectory is optimal, the control found by Algorithm 3 might present
lots of variations depending on the implementation of the argmin function. Moreover, recall that u represents a dosage of drug
to give to a patient (or to put on a Petri dish as a first biological model). Thus, shattering controls are really not interesting for
a medical application. Gratefully, as shown in Section 5, the controls found numerically are rarely shattering, so their actual
implementation would be feasible.

In Algorithm 3, the the realization of the uncertainties is supposed to be known. To have a better hindsight of the adaptability
of the system, we can consider the worst case scenario, were the uncertainties always take the worst value possible to delay the
entrance in TQ . In this case, the corresponding trajectories can be obtained by Algorithm 4.

Remark 7. Asmentioned in Remark 5, the worst case (Algorithm 4) provides an admissible trajectory that can reach the stability
kernel for any uncertainty within the set A, whereas Algorithm 3 provides a less pessimistic trajectory that can reach a target
and adjust to the values of the uncertainties if they become available.
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Algorithm 4Minimal entry time (worst case)
The starting point x0 is known.
Initialization Set yℎ0 = x0.
Recursive definition of yℎl Suppose (yℎl) is known for l = 0...k − 1 < N . To determine yℎk, we first define the worst value
of the uncertainties:

�ℎk ∈ argmax�∈Aminu∈U
W ℎ(yℎk−1 + ℎf

ℎ(yℎk−1, �̄k, u), kℎ)

We then consider the optimal control uℎk such that:

uℎk ∈ argminu∈U W
ℎ(yℎk−1 + ℎf

ℎ(yℎk−1, �̄
ℎ
k , u), kℎ)

The new position is then defined by:
yℎk = y

ℎ
k−1 + ℎf

ℎ(yℎk−1, �
ℎ
k , u

ℎ
k).

Complete trajectory We associate to the sequence of controls (uℎk)0≤k≤N−1 the piecewise constant function uℎ(t) = uℎk for
t ∈]kℎ, (k + 1)ℎ], and an approximate trajectory yℎ defined on [0, T ] by:

{

yℎ(kℎ) = yℎk ∀n ∈ ℕ, n ≤ N
ẏℎ(t) = fℎ(yℎk, �

ℎ
k , u

ℎ
k) for t ∈ (kℎ, (k + 1)ℎ], k < N.

5 NUMERICAL SIMULATIONS

Wepresent in this section numerical simulations solving the viability and reachability problems. The simulations were performed
with the software ROC-HJ. The values of the different parameters are listed in table 1. These parameters were chosen arbitrarily
to show some general numerical results.

Parameter Symbol Value for numerical simulations
Growth rate � 1.0
Capacity K 3.0

Metabolism difference m 2.0
Size threshold Q 1.3 (Q=0.8 in Test 1)

Maximal time of treatment T 2, 5 or 10
Ghobal health indicator renewal �w 1.0
Global health indicator evacuation � 1
Drug effect on the global health � 1.0

Drug threshold for the global health utox 6.0

Maximal drug dosage Umax 10.0
Minimal/Maximal drug efficiency 
min, 
max 0.1 ± �

Minimal/Maximal competition force �min, �max 2∕3 ± �
Range of uncertainties � 0.0% (Tests without uncertainties),

2.0%, 5.0%, 7.5%, or 10.0%

TABLE 1 List of parameters and their values for numerical simulations

To solve the viability and reachability problems formulated in the previous sections, we proceed by solving the corresponding
Hamilton Jacobi equations. We first start with some simulations for model (M1) when there is no uncertainties in the model, in
other words when the set is reduced to a singleton.
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5.1 Numerical approximation of the value functions VQ andW
Following Theorem 1, we know that the value function VQ, corresponding to the viability problem, is the unique solution of a
steady HJ equation in the following form:

�VQ +H(x,∇VQ) − gQ(x) = 0, x ∈ ℝn,

where � > M0 and the Hamiltonian H is defined in Theorem 1. An approximation of VQ can be obtained by a numerical
discretization of this HJ equation. Note that numerical approximations of HJ equations have been studied extensively in the
literature. One can cite for instance the Semi-Lagrangian methods28,29,30, or the class of finite differences methods. It is known
that a Semi-Lagrangian scheme would require a discretization of the set of the control variables. Since we have an explicit
formula ofH , we prefer to use a scheme that will exploit this structure of the Hamiltonian and hence avoid the discretization of
the control variables. For this reason, in all our simulations we will use a scheme based on finite difference approximations. Let
Δy = (Δyk)1≤k≤n be a spatial discretization step (with Δyk > 0). Consider a uniform grid on ℝn as follows:

 ∶=
{

yi = iΔy ≡ (ikΔyk)1≤k≤n, i = (i1,… , in) ∈ ℤn}. (17)

Denote {ek}k=1,…,n the canonical basis of ℝn. For a function V ∶  → ℝ, the terms D±
kV (x) are given by:

D±
kV (x) ∶= ±

V (x ± Δykek) − V (x)
Δyk

. (18)

The vectors D±V (x) are defined by: D±V (x) ∶= (D±
1 V (x),⋯ , D±

n V (x)). An approximation of VQ can be obtained by solving
the following approximated scheme:

V ℎ(x) = (1 − �ℎ)V ℎ(x) −HΔ(x,D+V ℎ(x), D−V ℎ(x)) + g(x) for x ∈ , (19)

where the numerical Hamiltonian HΔ is an approximation of the Hamiltonian function H . The numerical approximation
V ℎ ∶ ℝn → ℝ is a bilinear interpolation of {V ℎ(x), x ∈ }.
Following31,15, if the numerical Hamiltonian HΔ is Lipschitz continuous on all its arguments, consistent with H (i.e.,

HΔ(y, p, p) = H(y, p)) and monotone (i.e )HΔ

)p−k
(y, p−, p+) ≥ 0, )HΔ

)p+k
(y, p−, p+) ≤ 0) together with the following Courant-

Friedrich-Levy (CFL) condition

ℎ
n
∑

k=1

1
Δyk

{

|

|

|

|

)HΔ

)p−k
(y, p−, p+)

|

|

|

|

+
|

|

|

|

)HΔ

)p+k
(y, p−, p+)

|

|

|

|

}

≤ 1,

then, as ℎ goes to 0, the numerical solution V ℎ converges uniformly, on every compact set, towards the desired solution VQ.
In this paper, a simple Lax-Friedrich scheme has been used:

HΔ(x, p−, p+) ∶= H(y,
p− + p+

2
) −

n
∑

k=1

ck
2
(p+k − p

−
k ),

with constants ck ≥ |

)H
)pk

|, and a fictitious time step ℎ such that:

ℎ
n
∑

k=1

ck
Δyk

≤ 1. (20)

Although (19) is a nonlinear equation, the use of a fictitious time ℎ such that ℎ� < 1 guarantees that the following fixed-point
algorithm converges towards a unique solution that happens to be V ℎ (see23,28,30):

•For k = 0, consider V ℎ,0 a given function on the domain of computation 

•For k ≥ 0, compute V ℎ,k+1 by:

V ℎ,k+1(x) = (1 − �ℎ)V ℎ,k −HΔ(x,D+V ℎ,k(x), D−V ℎ,k(x)) + g(x) for x ∈ . (21)

In practice, the above fixed-point algorithm stops at a stopping criteria:

‖V ℎ,k+1 − V ℎ,k
‖∞ ≤ ",

where " is a given tolerance. In all our simulations, this tolerance will be set to " = 1e − 8.
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Remark 8. Instead of a fixed-point algorithm described here above, one can use a policy iterations method (or Howard
algorithm), see32,33. In the rest of the paper, we prefer to focus on the analysis of the obtained results and not on the performances
of the numerical schemes. We simply use the Lax-Friederich scheme coupled with a fixed-point algorithm.

An approximation of W is now determined through the following scheme. Let N a given integer, denote Δt the time dis-
cretization step such that T ∕N = dt. Set tl ∶= lΔt, and denote by wl

i an approximation of the solution W (tl , yi). By using
again the Lax-Friedrich scheme, we consider the explicit scheme, as in15:

wl
i = max

(

wl+1
i − ΔtHΔ (yi, D

−wl+1
i , D+wl+1

i

)

, wl
i − gw(yi)

)

, (22a)

l ∈ {1⋯ , N} yi ∈ 
w0
i = VQ(yi) for yi ∈ , (22b)

and we denoteW Δ the interpolation of (W l
i )l,i on (tl, xi)l,i.

Remark 9. Under the CFL condition:

Δt
n
∑

k=1

ck
Δyk

≤ 1,

the scheme (22) produces a numerical approximation W Δ that converges to the desired solution W , as Δ = (Δt,Δy) go to 0
(see15 for more details).

Notice that Algorithm 2 of trajectory reconstrunction requires the values of the approximate functionW Δ at every time step
tl . It means, that the values wl

⋅ should be stored on the grid  at each time step. To reduce the storage effort, we can use the
minimal time function mapping  defined in (8). Indeed, while computing the approximationW Δ, we can obtain and store an
approximation  Δ as follows:

For l = 0, set  Δ,0(yi) = 0 if VQ(yi) ≤ 0, and  Δ,0(yi) = +∞ otherwise;

For l ≥ 1, once wl
i is computed, the minimum time function can be updated by:

 Δ,l(yi) =

{

tl if wl
i ≤ 0 and  Δ,l−1(yi) = +∞,

 Δ,l−1(yi) otherwise.

An algorithm of reconstruction, based on the minimum time function  Δ can be considered (insted of Algorithm 3). We
describe it in Algorithm 5

Algorithm 5Minimal entry time, using  Δ

Let x0 ∈  be the starting point and consider the given uncertainty realization �̄.
Initialization Set yℎ0 = x0.
Recursive definition of yℎl Suppose (yℎl) is known for l = 0...k− 1 < N . To determine yℎk, we define an optimal control uℎk
such that:

uℎk ∈ argminu∈U  ℎ(yℎk−1 + ℎf
ℎ(yℎk−1, �̄k, u))

The new position is then defined by:
yℎk = y

ℎ
k−1 + ℎf

ℎ(yℎk−1, �̄k, u
ℎ
k).

Complete trajectory We associate to the sequence of controls (uℎk)0≤k≤N−1 the piecewise constant function uℎ(t) = uℎk for
t ∈]kℎ, (k + 1)ℎ], and an approximate trajectory yℎ defined on [0, T ] by:

{

yℎ(kℎ) = yℎk ∀k ∈ ℕ, k ≤ N
ẏℎ(t) = fℎ(yℎk, �k, u

ℎ
k) for t ∈ (kℎ, (k + 1)ℎ], k < N.
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In general, the function  is not Lipschitz continuous and there is no proof of convergence for Algorithm 5. However, in the
simulations that we have performed in this section, we have considered both Algorithms 3 and 5, and the resulting trajectories
are very similar. Algorithm 5 can thus be seen as a numerical tool to reduce the memory storage. For more details, we refer to34.

Next, we will present different simulations and discuss the results on the two models (M1) and (M2). Table 2 gathers all the
parameters used in our simulations.

Domain of computation for model (M1)  ∶= [−0.1, 3.1] × [−0.1, 1.6]
# grid points 320 × 170

Domain of computation for model (M2)  ∶= [−0.1, 3.1] × [−0.1, 1.6] × [0, 1.2]
# grid points 320 × 170 × ×120

Fictitious time ℎ in (19) 2.6e-4

Time step in (22) 2.6e-4

Stopping threshold " in (21) " ∶= 1e − 8

TABLE 2 Parameters used in numerical reconstructions of functions V andW .

5.2 Model without toxicity and without uncertainties
Test 1
As stated in proposition 1, if Q < K

1+K�min∕�
, then the setTQ is reduced to the segment {(s, 0), s ∈ [0, Q]}.

Our numerical resolution is robust enough to retrieve this result, as shown on Figure 2a. Furthermore, for T large enough,
one can check that the set of initial tumours that can be brought to TQ is then reduced to {(s, 0), s ∈ [0, K]}, which we can
also numerically observe in Figure 2b, for T = 10. If we chose a size threshold too small, the only tumours that can satisfy the
objectives are the ones without any resistant cells. We do not represent trajectories corresponding to this problem here, as they
are all part of the {(s, 0), s ∈ [0, K]} segment. Of course, this case is trivial, and the aim of this simulation is just to show that
the methodology works even when the capture basin has an empty interior.

(a) Stability set (in green) (b) Reachability set (in blue) at T = 10

FIGURE 2 (Test 1) - Model (M1) with Q = 0.8.

Test 2
In this test, we consider the model (M1) with Q = 1.3. We first compute the stability kernel TQ which is displayed in Figure
3. In this figure, some viable trajectories and the corresponding control functions are represented.
More precisely, in Figure 3a, the computed stability kernel is represented as a filled zone and is limited by a dash line. Three

viable trajectories are represented inside the stability kernel. On Figure 3b are displayed the control functions corresponding to
the three trajectories. The time horizon chosen for this display is T = 20. In Figures 3c and 3d, we show the two components of
the stable trajectories. In this figure and all the following, for every displayed trajectory, we use a different color and line style
that is the same also used for the corresponding control function.
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(a) Stability kernel (b) Control laws

(c) Sensitive cells (d) Resistant cells

FIGURE 3 (Test 2) - Model (M1) with Q = 0.13, stability kernelTQ and some viable trajectories

One can notice that the controls for each trajectory, after a certain amount of time without treatment, do not reach the maximal
control value Umax, but reach an intermediate value. Moreover, the trajectories seem to be attracted to a region on the {(s, 0), s ∈
[0, Q]} segment. As stated in Proposition 1, this segment contains points that are stable and locally attractive for certain constant
values of the control u: the stability problem is thus numerically solved, here, by reaching their basin of attraction and setting
the control value to the corresponding fixed control.
Moreover, in this case, setting the control law u(⋅) to a high value near Umax, even for a short time, could make the system

escapeTQ . Indeed, the trajectory under controlUmax starting from any point inTQ is rapidly shifted to the left (corresponding
to a fast elimination of sensitive cells s), thus if the treatment is not stopped early enough, the system would exit TQ by its
left-side border.

Test 3
Here, we still consider the case of Model (M1) withQ = 1.3. Now, we consider the reachability problem where we want to steer
the trajectories to the stability kernelTQ computed in Test 2.
Figure 4 shows the capture basin(T ) (filled, blue region) corresponding to the positions from where there exist trajectories

that can reach the stability kernel TQ in a time less than T = 2 (figure 4a) and in a time less than T = 10 (figure 4b). In the
same figures, some trajectories are represented. These trajectories correspond to the optimal paths starting from some initial
positions outside the stability kernel and that reach the stability kernel in a minimum time less than T . The same trajectories
along with the associated control functions are also displayed in Figure 5.
The trajectories shown here all exhibit the same behaviour: two phases of control can be observed, a first one with no treatment,

and a second one with a maximal line of treatment, as pictured on Figure 5c. During the first phase, the sensitive cells population
usually increases as seen on Figure 5a, while the resistant cells population globally decreases, as seen on Figure 5b. During the
second phase, we see a decrease in the sensitive cells population, and a stabilization of the resistant cells population.
This can be expressed through the following biological interpretation. Since the control only acts on sensitive cells s, and that

resistant cells are repressed only through competition with sensitive cells, a tumour can be treated only if sensitive cells already
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(a) Reachability set at T = 2 (b) Reachability set at T = 10

FIGURE 4 (Test 3) - Model (M1) with Q = 1.3, different capture basins

(a) Optimal trajectories - Sensitive cells (b) Optimal trajectories - Resistent cells

(c) Control laws

FIGURE 5 (Test 3) - Model (M1) with Q = 1.3. Some trajectories in(T ), for T = 10.

have a numerical advantage over resistant cells. Thus, if a tumour is initially too resistant, it is more interesting to wait for it to
be "resensitized" than to treat it immediately. Then, once sensitive cells are sufficiently present, the control is set to its maximal
value in order to minimize the time of entry into TQ . This maximal dose period would then correspond to the loading charge
treatment used in classical chemotherapies.
Using maximal doses on actual patients can be very harmful for their sane cells, because of the general toxicity of the drugs

used. This is why system (M2) takes into account the effect of high doses of treatment on a quantity representing the global
health of the patient. We expect that this should change the behaviour of the system for the reachability problem, but not for the
stability problem.
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5.3 Model with toxicity and without uncertainties
Here, we consider the model (M2). Likewise in the simulations performed with model (M1), we first compute the stability kernel
and then we compute the set of positions from where it is possible to find admissible trajectories that can reach this stability
kernel in a time less than T = 10.
The stability kernelTQ is a 3-dimensional object, we represent a section of this kernel for a fixed value of the indicatorw(0) =

�w
�
. The trajectories represented on the phase planes are projections of the 3-dimensional trajectories on the 2-dimensional plane.

For the reachability problem, we also represent only the section of(T ) for w = �w
�
.

Test 4
Figure 6a displays the stability setTQ for a fixed initial indicator w(0) = �w

�
. This corresponds to a patient initially healthy.

(a) Section ofTQ at w = �w
� (b) Control laws

(c) Some trajectories in the stability kernel.

FIGURE 6 (Test 4) - Model (M2): approximation of the stability kernel and some viable trajectories.

As expected, the stability kernel, displayed on Figure 6a, looks quite similar to the stability kernel for model (M1). This is
because of our choice of parameters Q and utox.
Indeed, we chose Q such that the control u ≡ uQ =

�


(1 − Q

K
), for which the point (Q, 0, w0) is stable and attractive, is small

enough so thatw0 =
�w

�+�(uQ−utox)
is greater thanwmin. Thus some values of u smaller than utox, which do not affect the evolution

of w, can be sufficient to remain inTQ .
However, models (M1) and (M2) do not produce the same trajectories nor the same control laws. Figure 6c shows three

trajectories, starting from three different positions y0 in TQ and that stay forever in the stability kernel. The corresponding
control inputs are given in figure 6b. As can be noticed in this figure, the control laws present periods of drug holiday (periods
without drug application), which correspond on figure 6c to an increase of the global health indicator. The controls are constant
by parts, which is interesting for further medical applications.
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Test 5
We now run simulations for the reachability problem for model (M2). We gather the resulting trajectories into three groups of
similar structure.

Figure 7 presents a set of trajectories where the initial tumour is mostly sensitive to the treatment. The treatments begin with
a maximal dosage, but since this is very toxic for the patient, the controls switch quickly to an intermediary value, as seen on
Figure 7b. This intermediary value maintains the indicator w at its minimal value wmin, as it can be seen on Figure 7c. This
delays the time of entrance intoTQ , when compared to Figure 5 from model (M1).

(a) Capture set (section at w = �w
�
) at T = 10, and some

projected optimal trajectories (b) Control laws

(c) Optimal trajectories (sensitive cells, resistent cells and global health indicator)

FIGURE 7 (Test 5) - Reachability analysis for model (M2). Some trajectories corresponding to large sensitive initial tumours.

The set of trajectories gathered on Figure 8 represents tumours initially large and heterogeneous. As in model (M1), the
control starts with an initial phase at u = 0, then switches to higher values, as pictured on figure 8b. Because of the toxicity
constraint, except for short periods of time the control does not maintain u = Umax. Instead, an intermediary value is selected,
which maintains the indicator w at its minimal value, as pictured in FÃ§igure 8c.

Finally, Figure 9 represents tumours that are initially very resistant to the chemotherapy. The controls gathered on figure 9b
are very shattered, but present a global behaviour similar to previous results: a first phase without treatment to resensitize the
tumour, then an increase in dose. The control finally mainly selects a value maintaining the indicator w at its minimal value.

We note that the model still favours the use of maximal treatment doses for the reachability problem, but for shorter periods
of time, as it immediately increases the toxicity. Then, intermediary doses of treatment are preferred. During the intermediary
doses arcs, we notice that the conditionw(t) ≥ wmin is saturated: the global health indicator is at the lowest level the patient can
endure.



22

(a) Capture basin (section at w = �w
�
) at T = 10 and some

projected trajectories (b) Control laws

(c) Trajectories: sensitive cells population, resistant cells population, global health indicator.

FIGURE 8 (Test 5) - Reachability analysis for model (M2). A set of trajectories corresponding to large heterogeneous initial
tumours.

5.4 Model with toxicity and with uncertainties
In this section, we consider again the model (M2), this time we assume that the treatment efficiency 
(⋅) and the competition
force �(⋅) are unknown functions (i.e. there are uncertainties on some parameters of the model). In our simulations, we will
consider the range of uncertainties for these functions are ±0%, ±5%, ±7.5%, or ±10%.

Test 6
Figure 10 presents sections of the stability kernel TQ and the reachability set (T ) at time T = 5. In all these sections, the
health indicator is fixed to the value w = �w

�
.

As it can be seen on Figure 10, as the range of uncertainties increases, the stable setTQ shrinks in size, and for a fixed time
T , the reachability set(T ) also appears smaller. Indeed, as the expected uncertainty on the parameters is bigger, the model is
more pessimistic. Especially, with a range of uncertainties of ±10%, both the sets are almost reduced to a segment, as seen on
Figure 10d. With a medical application in mind, this tells us that if uncertainties on the parameters are too high, our method or
the model might not be adapted to the objective.

Let us stress that the reachable sets represented in Figure 10 correspond to the set of initial positions from where it is always
possible, for any uncertainty (within the prescribed range), to find a control strategy u(⋅) such that the corresponding trajectory
reaches the stability kernel and then stays there for ever.

Algorithm 4 provides robust trajectories corresponding to the worst case scenario. Figure 11 shows some of these robust
trajectories, starting from different initial positions and that reach the stability kernel for any perturbation � within a range of
uncertainties of � = 7.5%.
As mentioned in Remark 5, the robust trajectories might be too pessimistic. If the function � becomes available, it is then

possible to use Algorithm 5 to reconstruct an adjusted trajectory that takes into account the value of �.
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(a) Capture basin (section at w = �w
�
) and some projected

trajectories (b) Control laws

(c) Trajectories: sensitive cells population, resistant cells population, global health indicator.

FIGURE 9 (Test 5) - Reachability analysis for model (M2). A set of trajectories corresponding almost resistant initial tumours.

(a) Range of uncertainties=±0% (b) Range of uncertainties=±5%

(c) Range of uncertainties=±7.5% (d) Range of uncertainties=±10%

FIGURE 10 (Test 6) - Stability kernel (in cyan) and capture basin (in blue) at time T = 5 for model (M2) with uncertainties
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FIGURE 11 (Test 6) - Example of robust trajectories: range of uncertainties= ±7.5%

In Figure 12, we represent the trajectories, starting from the same initial position y0 = (2.0, 1.0, 1.0), and corresponding to
four different functions �i ∶= (
i, �i) (for i = 1,⋯ , 4) within a range of uncertainties of � = 7.5% (here, 
̄ = 0.1, �̄ = 2∕3):


1(t) =

⎧

⎪

⎨

⎪

⎩


̄(1 + �) for t ∈ [0, 1],

̄ for t ∈]1, 2],

̄(1 − �) for t > 2,

�1(t) =

⎧

⎪

⎨

⎪

⎩

�̄(1 − �) for t ∈ [0, 1],
�̄ for t ∈]1, 2],
�̄(1 + �) for t > 2,


2(t) =

⎧

⎪

⎨

⎪

⎩


̄ for t ∈ [0, 1],

̄(1 + �) for t ∈]1, 2],

̄(1 − �) for t > 2,

�2(t) =

⎧

⎪

⎨

⎪

⎩

�̄ for t ∈ [0, 1],
�̄(1 + �) for t ∈]1, 2],
�̄(1 − �) for t > 2,


3(t) ≡ 
̄(1 − �), �3(t) ≡ �̄(1 − �),

4(t) ≡ 
̄ , �4(t) ≡ �̄.

FIGURE 12 (Test 6) - Admissible trajectories corresponding to different uncertainties

We observe in Figure 12 that the overall trajectories are quite similar. However, the time of entry in TQ depends on the
outcome of the uncertainties �i wich confirms that the computed trajectories adjust to the values of the uncertainties �.
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