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We state in this paper a strong relation existing between Mathematical Morphology and Discrete Morse Theory when we work with 1D Morse functions. Specifically, in Mathematical Morphology, a classic way to extract robust markers for segmentation purposes, is to use the dynamics. On the other hand, in Discrete Morse Theory, a wellknown tool to simplify the Morse-Smale complexes representing the topological information of a Morse function is the persistence. We show that pairing by persistence is equivalent to pairing by dynamics. Furthermore, self-duality and injectivity of these pairings are proved.

Introduction

In Mathematical Morphology [START_REF] Najman | Mathematical Morphology: from theory to applications[END_REF][START_REF] Serra | Introduction to Mathematical Morphology[END_REF][START_REF] Serra | Mathematical Morphology and its applications to image processing[END_REF], dynamics [START_REF] Grimaud | La géodésie numérique en morphologie mathématique. Application à la détection automatique des microcalcifications en mammographie numérique[END_REF][START_REF] Grimaud | New measure of contrast: the dynamics[END_REF][START_REF] Vachier | Extraction de caractéristiques, segmentation d'image et Morphologie Mathématique[END_REF] represent a very powerful tool to measure the significance of an extrema in a gray-level image. Thanks to dynamics, we can construct efficient markers of objects belonging to an image which do not depend on the size or on the shape of the object we want to segment (to compute watershed transforms [START_REF] Najman | Geodesic saliency of watershed contours and hierarchical segmentation[END_REF][START_REF] Vincent | Watersheds in digital spaces: an efficient algorithm based on immersion simulations[END_REF] and proceed to image segmentation). This contrasts with convolution filters very often used in digital signal processing or morphological filters [START_REF] Najman | Mathematical Morphology: from theory to applications[END_REF][START_REF] Serra | Introduction to Mathematical Morphology[END_REF][START_REF] Serra | Mathematical Morphology and its applications to image processing[END_REF] where geometrical properties do matter.

Selecting components of high dynamics in an image is a way to filter objects depending on their contrast, whatever the scale of the objects. In persistent homology [START_REF] Edelsbrunner | Persistent homology -a survey[END_REF][START_REF] Edelsbrunner | Topological persistence and simplification[END_REF] well-known in Computational Topology [START_REF] Edelsbrunner | Computational topology: an introduction[END_REF], we can find the same paradigm: topological features whose persistence is high are "true" when the ones whose persistence is low are considered as sampling artifacts, whatever their scale. An example of application of persistence is the filtering of Morse-Smale complexes used in Discrete Morse Theory [START_REF] Forman | A user's guide to discrete Morse theory[END_REF] where pairs of extrema of low persistence are canceled for simplification purpose. This way, we obtain simplified topological representations of Morse functions.

In this paper, we prove that the relation between Mathematical Morphology and Persistent Homology is strong in the sense that pairing by dynamics and pairing by persistence are equivalent (and then dynamics and persistence are equal), at least in 1D, when we work with Morse functions.

The plan of the paper is the following: Section 2 recalls the mathematical background needed in this paper, Section 3 proves the equivalence between pairing by dynamics and pairing by persistence, Section 4 proves some properties of these pairings, and Section 5 concludes the paper.

Mathematical background

A 1D Morse function is a function f : R → R which belongs to C 2 (R) and whose second derivative f (x * ) at each critical point x * ∈ R verifies that f (x * ) is different from 0. A consequence of this property is that the critical points of a Morse function are isolated.

In this paper, we work with one-dimensional Morse functions f : R → R with the additional property that for any two local extrema x 1 and x 2 of f ,

x 1 = x 2 implies that f (x 1 ) = f (x 2 )
). In other words, critical values of f are "unique".

Even if it does not seem realistic to assume that the critical values are unique, we can easily obtain this property by perturbing slightly the given function while preserving its topology.

Let us define the lower threshold sets: the set [f ≤ λ] for any λ ∈ R is defined as the set {x ∈ R ; f (x) ≤ λ}. Then, we define the connected component of a set X ⊆ R containing x ∈ X the greatest interval contained in X and containing x and we denote it CC(X, x). Rep([a, b], f ) is said to be the representative [START_REF] Edelsbrunner | Persistent homology -a survey[END_REF] of the interval [a, b] relatively to f . Finally, we denote by ε → 0 + the fact that ε tends to 0 with the constraint ε > 0.

We denote as usual

R := R ∪ {-∞, +∞}.

Pairing by dynamics

Let f : R → R be a Morse function with unique critical values. For x min ∈ R a local minimum of f , if there exists at least one absciss x min ∈ R of f such that f (x min ) < f (x min ), then we define the dynamics [START_REF] Grimaud | New measure of contrast: the dynamics[END_REF] of x min by: dyn(x min ) := min

γ∈C max s∈[0,1] f (γ(s)) -f (x min ),
where C is the set of paths γ : [0, 1] → R verifying γ(0) := x min and verifying that there exists some s ∈]0, 1] such that f (γ(s)) < f (x min ). Let us now define γ * as a path of C verifying:

max s∈[0,1] f (γ * (s)) -f (x min ) = min γ∈C max s∈[0,1] f (γ(s)) -f (x min ),
then we say that this path is optimal. The real value x max paired by dynamics to x min (relatively to f ) is characterized by:

x max := γ * (s * ), with f (γ * (s * )) = max s∈[0,1] f (γ * (s)) and γ * (s * ) is a local maximum of f . We obtain then: f (x max ) -f (x min ) = dyn(x min ).
Note that the local maximum x max of f does not depend on the path γ * , and its value is unique (by hypothesis on f ), which shows that in some way x max and x min are "naturally" paired by dynamics. 

Pairing by persistence

:= ∅; [x - max , x + max ] := CC([f ≤ f (xmax)], xmax); if x - max > -∞ x + max < +∞ then x - min := Rep([x - max , xmax], f ); x + min := Rep([xmax, x + max ], f ); if x - max > -∞ && x + max < +∞ then xmin := arg max x∈{x - min ,x + min } f (x); if x - max > -∞ && x + max = +∞ then xmin := x - min ; if x - max = -∞ && x + max < +∞ then xmin := x + min ;
return xmin; Let f : R → R be a Morse function with unique critical values, and let x max be a local maximum of f . Let us recall the 1D procedure [START_REF] Edelsbrunner | Persistent homology -a survey[END_REF] which pairs (relatively to f ) local maxima to local minima (see Algorithm 1). Roughly speaking, the representatives x - min and x + min are the abscisses where connected components of respectively [f ≤ (f (x - min )] and [f ≤ (f (x + min )] "emerge" (see Figure 2), when x max is the absciss where two connected components of

[f < f (x max )] "merge" into a single component of [f ≤ f (x max )].
Pairing by persistence associates then x max to the value x min belonging to {x - min , x + min } which maximizes f (x min ). The persistence of x max relatively to f is then equal to per(x max ) := f (x max )f (x min ).

Pairings by dynamics and by persistence are equivalent in 1D

In this section, we prove that under some constraints, pairings by dynamics and by persistence are equivalent in the 1D case. Proposition 1 Let f : R → R be a Morse function with a finite number of local extrema and unique critical values. Now let us assume that a local minimum x min ∈ R of f is paired with a local maximum x max of f by dynamics. We assume without constraints that x min < x max . Also, we denote by (x - max , x + max ) ∈ R 2 the two values verifying:

[x - max , x + max ] = CC([f ≤ f (x max )],
x max ). Then the following properties are true: Let us first remark that x - max is finite since x min is paired with x max by dynamics relatively to f with x min < x max . Now, let us prove (P 1); we proceed by reductio ad absurdum. When x min is not the absolute minimum of f on the interval [x - max , x max ], then there exists x * := arg min x∈[x - max ,xmax] f (x) which is different from x min (see Figure 4) which verifies f (x * ) < f (x min ) (x * and x min being distinct local extrema of f , their images by f are not equal). Then, because the path joining x min and x * belongs to C, we have:

(P1) x min = Rep([x - max , x max ], f ), (P2) With x 2 min := Rep([x max , x + max ], f ), then f (x 2 min ) < f (x min ), ( 
dyn(x min ) ≤ max{f (x) -f (x min ) ; x ∈ iv(x * , x min )}. Let us call x * * := arg max x∈[iv(xmin,x * )] f (x), we can deduce that f (x * * ) < f (x max ) since x * * ∈ iv(x * , x min ) ⊆]x - max , x max [. This way, dyn(x min ) ≤ f (x * * ) -f (x min ),
which is lower than f (x max ) -f (x min ); this is a contradiction since x min and x max are paired by dynamics. (P 1) is then proven.

Let x 2 min be the representative of [x max , x + max ] relatively to f . Two cases are then possible:

-When x + max = +∞, it implies that f (+∞) = -∞ because f is a Morse function, and then x 2 min = +∞, which implies that f (x 2 min ) = -∞. Then f (x 2 min ) < f (x min ). -When x + max is finite, let us assume that f (x 2 min ) > f (x min ). Note that we cannot have equality of f (x 2 min ) and f (x min ) since x min and x 2 min are both local extrema of f . Then we obtain Figure 5. Since with x ∈ [x max , x + max ], we have f (x) > f (x min ), and because x min is paired with x max by dynamics with x min < x max , then there exists a value x on the right of x min where f (x) is lower than f (x min ). In other words, there exists:

x < := inf{x ∈ [x max , +∞] ; f (x) < f (x min )} such that for any ε → 0 + , f (x < + ε) < f (x min ). Since x < > x +
max , every path γ joining x min to x < go through a local maximum x 2 max defined by

x 2 max := arg max x∈]x + max ,x < [ f (x)
which verifies f (x 2 max ) > f (x + max ) (otherwise, x 2 max would belong to the interval [x max , x + max ] by definition of x + max ). Then the dynamics of x min is greater than or equal to f (x 2 max ) -f (x min ) which is greater than f (x max ) -f (x min ). We obtain a contradiction. One more time, f (x 2 min ) < f (x min ).

The proof of (P 2) is done.

Thanks to (P 1) and (P 2), we obtain directly (P 3) by applying the algorithm of pairing by persistence since f (x min ) > f (x 2 min ) with x min the representative of [x - max , x max ] and x 2 min the representative of [x max , x + max ].

Proposition 2 Let f : R → R be a Morse function with a finite number of local extrema and unique critical values. Now let us assume that a local minimum x min ∈ R of f is paired with a local maximum x max of f by persistence. We assume without constraints that x min < x max . Then, x max and x min are paired by dynamics.

x min x

x max Proof: We denote by (x - max , x + max ) ∈ R 2 the two values verifying:

[x - max , x + max ] = CC([f ≤ f (x max )], x max ).
Since x min is paired by persistence to x max with x min < x max (see Figure 6), then:

x min = Rep([x - max , x max ], f ) ∈ R, and there exists

x 2 min ∈ R such that x 2 min := arg min x∈[xmax,x + max ] f (x) verifies f (x 2 min ) < f (x min ).
Thanks to this last inequality, we know that the path defined as:

γ : λ ∈ [0, 1] → γ(λ) := (1 -λ)x min + λx 2 min
belongs to the set of paths C defining the dynamics of x min (see Section 2). Then, dyn(x min ) ≤ max{f (x) -f (x min ) ; x ∈ γ([0, 1])}, which is lower than or equal to f (x max ) -f (x min ) since f is maximal at x max on [x - max , x + max ]. Then we have the following property:

dyn(x min ) ≤ f (x max ) -f (x min ). (P 1)

x min x max x max - ℝ ℝ x *
x¹ Fig. 7: The proof that it is impossible to obtain a local maximum x * < x min paired with x min by dynamics when x min is paired with x max > x min by persistence.

Because f (x 2

) < f (x min ), we know that there exists some local maximum of f which is paired with x min by dynamics. However we do not know whether the absciss of this local maximum is lower than or greater than x min . Then, let us assume that there exists a local maximum x * < x min (lower case) which is associated to x min by dynamics. We denote this property (H) and we depict it in Figure 7. This would imply that x * < x - max since f is greater than or equal to f (x min ) on [x - max , x min ]. The consequence would be f (x * ) > f (x max ), since the local maximum x 1 of f of maximal absciss in [x * , x - max ] verifies f (x * ) ≥ f (x 1 ) > f (x max ), and then dyn(x min ) = f (x * ) -f (x min ) > f (x max ) -f (x min ) which contradicts (P ). (H) is then false. In other words, we are in the upper case: the local maximum paired by dynamics to x min belongs to ]x min , +∞[, let us call this property (P 2). Now let us define (see again Figure 6):

x < := inf{x > x min ; f (x) < f (x min )},
and let us remark that x < > x max (because x min is the representative of f on [x - max , x max ]). Since we know by (P 2) that a local maximum x > x min of f is paired by dynamics with x min , then the image of every optimal path belonging to C contains {x < }, and then [x min , x < ]. Indeed, an optimal path in C whose image would not contain {x < } would then contain an absciss x < x - max and then we would obtain dyn(x min ) > f (x max ) -f (x min ), which contradicts (P 1).

However, the maximal value of f on [x min , x < ] is equal to f (x max ), then dyn(x min ) = f (x max ) -f (x min ). The only local maximum of f whose value is f (x max ) is x max , then x max is paired with x min by dynamics relatively to f . Theorem 1 Let f : R → R be a Morse function with a finite number of local extrema and unique critical values. A local minimum x min ∈ R of f is paired by dynamics to a local maximum x max ∈ R of f iff x max is paired by persistence to x min . In other words, pairings by dynamics and by persistence lead to the same result. Furthermore, we obtain per(x max ) = dyn(x min ).

Proof: This theorem results from Propositions 1 and 2.

Properties of these pairings

Let us observe and prove some properties relative to the pairings studied in this paper.

Self-duality

Let us prove that pairings by dynamics and by persistence are self-dual on a 1D Morse function f : R → R, that is, the result is the same whatever if we work with f or its dual f -: R → R : x → f -(x) := -f (x).

Proposition 3 Let f : R → R be a Morse function with a finite number of local extrema and unique critical values. Then the pairing by dynamics (resp. by persistence) of f and of f -lead to the same result. In other words, these pairings are self-dual.

Proof: We assume that two finite real values x min and x max are paired by persistence relatively to f with x min < x max . Let us define (x

- max , x + max ) ∈ R 2 such that: [x - max , x + max ] = CC([f ≤ f (x max )], x max ),
and we also define (x - min , x + min ) ∈ R 2 such that:

[x - min , x + min ] = CC([f -≤ f -(x min )],
x min ). We can observe by noticing that:

x min = Rep([x - max , x max ], f )
(since x min < x max ) and by defining:

x 2 min := Rep([x max , x + max ], f ) that f (x min ) > f (x 2 
min ) (see Figure 8). First, let us observe that x - max is finite (otherwise, f (x min ) = -∞ which is impossible because f (x min ) > f (x 2 min )). Secund, let us prove that x max is the representative of f -on [x min , x + min ]. For any x ∈ [x min , x max [∪]x max , x 2 min ], the value f (x) is lower than f (x max ) because x min ∈]x - max , x max [ and x 2 min ∈]x max , x + max [. Because f -(x min ) < f -(x 2 min ), x + min < x 2 min (the case x 2 min < x - min is impossible since x 2 min > x max ). Also, we have x + min > x max because for any x ∈]x min , x max ], f (x) > f (x min ) (x min is the representative of f on [x - max , x max ]). Then x + min ∈]x max , x 2 min [. Then, for any x ∈ [x min , x max [∪]x max , x + min ], we have f (x) < f (x max ), and the consequence is that x max is the representative of f -on [x min , x + min ]. Third, let us define x * := Rep([x - min , x min ], f -), and let us prove that f -(x * ) < f -(x max ). Two cases are possible: either f -does not admit a local minimum of absciss lower than x - max and then

f -(-∞) = -∞ which implies x * = -∞ and f -(x * ) = -∞, or f -admits a local minimum x lower than x - max such that f -(x) < f -(x - max ) = f -(x max ). In both cases, f -(x * ) < f -(x max ). Since x max is the representative of f -on [x min , x + min ],
x * is the representative of f -on [x - min , x min ], and f -(x * ) < f -(x max ), then x max is paired with x min by persistence relatively to f -.

By Theorem 1, we can conclude that both pairings by persistence and by dynamics are self-dual.

Injectivity

IMPOSSIBLE IMPOSSIBLE

Fig. 9: Pairings by dynamics (on the left side) and by persistence (on the right side) are injective.

Let us prove that the pairings that are studied here are injective.

Proposition 4 Let f : R → R be a Morse function with a finite number of local extrema and unique critical values. Let P dyn : R → R the real function which gives for a local minimum x min of f the local maximum x max of f paired to x min by dynamics. Then, P dyn is injective (see Figure 9).

Proof: Let us assume that P dyn (x min ) = P dyn (x 2 min ) = x max with x min , x 2 min and x max three real values. Then by Theorem 1, we know that x max is paired with x min and x 2 min by persistence, which means that x min = x 2 min .

Proposition 5 Let f : R → R be a Morse function with a finite number of local extrema and unique critical values. Let P per : R → R the real function which gives for a local maximum x max of f the local minimum x min of f paired to x max by persistence. Then, P per is injective (see Figure 9).

Proof: Let us assume that P per (x max ) = P per (x 2 max ) = x min with x max , x 2 max and x min three real values. Then by Theorem 1, we know that x min is paired with x max and x 2 max by dynamics, which means that x max = x 2 max .

Conclusion

In this paper, we prove the equivalence between pairing by dynamics and pairing by persistence for 1D Morse functions and also their self-duality and their injectivity. As future work, we plan to study their relation in the n-D case, n ≥ 2. Another interesting issue is to explore how ideas steaming from Discrete Morse Theory can infuse Mathematical Morphology. Conversely, since the watershed is clearly linked to the topology of the surfaces [START_REF] Cousty | Collapses and watersheds in pseudomanifolds of arbitrary dimension[END_REF][START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF][START_REF] Najman | Watershed of a continuous function[END_REF], it is definitely worthwile to search how such ideas can contribute to (Discrete) Morse Theory. This can be done along the same lines as what is proposed in [START_REF] Čomić | Computing a discrete Morse gradient from a watershed decomposition[END_REF][START_REF] Čomić | Morphological modeling of terrains and volume data[END_REF][START_REF] De Floriani | Discrete Morse versus watershed decompositions of tessellated manifolds[END_REF].

  For a, b two elements of R, iv(a, b) is defined as the interval value [min(a, b), max(a, b)]. Also, for a given function f : R → R and for (a, b) ∈ R verifying a < b, we denote: Rep([a, b], f ) := arg min x∈[a,b] f (x).
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 1 Fig. 1: Example of pairing by dynamics.

Algorithm 1 :

 1 Pairing by persistence. /* Pairing of xmax */; xmin
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 2 Fig. 2: Example of pairing by persistence.
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 23 Fig. 3: A Morse function where the local extrema x min and x max are paired by dynamics.

  P3) x max and x min are paired by persistence. Proof: Figure 3 depicts an example of Morse function where x min and x max are paired by dynamics.
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 4 Fig.4: Proof of (P 1).
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 5 Fig.5: Proof of (P 2) in the case where x max is finite.
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 6 Fig. 6: A Morse function f : R → R where the local extrema x min and x max are paired by persistence relatively to f .
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 8 Fig.8: Proof of self-duality of these pairings.